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Quantum Adiabatic/Game-theoretic Control from Continuous-/Discrete-time Perspectives

by Hiroaki Mishima

Quantum control – technology that enables us to design and to observe a micro-scale world – is
recently important in quantum mechanics. There exist many quantum objects we want to control, for
example, atoms, qubits, and other microscopic ones, but they are usually sensitive and fragile. It is
meaningful to realize stabilization and speed-up of such manipulations of “quanta” for innovation of
technology because their interactions with an environment degrade the coherence of systems. In this
dissertation, we focus on how to control two kinds of quantum model, a quantum parametric oscillator
(QPO) and a qubit system. We approach each model through different ways.

For the QPO as a continuous-time dynamical system, we apply shortcuts to adiabaticity (STA).
Adiabatic processes, in a classical and quantum realm, are beneficial to control a state of the system but
require a long-time operation. By using STA, one can evolve the system toward the desired final state
as the same state as the final state of the adiabatic process but in an arbitrary short time. For example,
the transitionless tracking (TT) algorithm as one of the methods of STA brings about the preservation
of a quantum number of the system by adding a counter-diabatic Hamiltonian to the original adiabatic
Hamiltonian. Since adiabatic processes often appear in atomic, molecular and optical physics, there
exists a broad scope of application for STA. By applying Husimi’s method, we derive a concrete form
of a propagator of the QPO with the counter-diabatic Hamiltonian being added. We then calculate two
types of transition-probability generating function with two types of measure of adiabaticity. From
an analysis of these measures of adiabaticity, we characterize the quantum adiabatic evolution of the
QPO with the TT algorithm being applied in terms of Husimi’s method.

For the qubit system as a discrete-time dynamical system, we apply quantum game theory as a
method to control “quantum.” We want to achieve the desired final state even under the presence
of disturbances, but time is discrete. Note that this scheme is almost the same as an adiabatic
control. We propose a way to control the qubit system in discrete time step with a language of
game theory. Quantum natures – superposition, entanglement, and non-commutativity of physical
quantities – produce non-intuitive effects in terms of the probability. Naively, a quantum game
theory is given by regarding quantum amplitudes as the classical probabilities in game theory. A
quantum player generates superpositions state of the game by using unitary operations, which implies
that the quantum player possesses indecisive decision-makings. Then, game theory and quantum
information have common features such as a quantum error correction and quantum algorithms. We
analyze a quantum penny flip game with several kinds of modifications as a problem of quantum error
correction. We challenge how much we can do without using any ancillae, i.e., without relying on
quantum entanglement at all.
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Chapter 1

Introduction

Control is one of the means to connect us to the world. From day-to-day, we unconsciously live by
controlling objects within reach. The “catch” that anyone would have played once in childhood is a
play that is established by the control of the ball accurately. In PC games, we control the monitor
screen by typing a keyboard and clicking a mouse correctly. At the same time, lots of small electronic
components are precisely controlled inside the PC. In space exploration, we can indirectly control a
robot from a room on the earth and come to know a state of the moon, etc.

The purpose of control is to move an object from a given state to the desired state. We usually
want to control the object as quickly and/or robustly as possible. The most straightforward control
would be “move” such as in the catch. However, we know that there are objects that the same control
as the catch cannot be applied. What if we replace the ball with a soap bubble? As soon as we touch
it, it will crack. We must examine the nature of the object and change the type of control.

So what if the controlled objects belong to a microscopic world, for example, “quanta” such as
atoms, electrons and other microscopic objects? We cannot even see them directly. The quanta are
much more sensitive and fragile than the soap bubble of the previous example. The act of “seeing” is
to apply electromagnetic wave (i.e., light) to the object and to receive the response. Since the energy
of light is enormous for the quanta, even this visual observation disturbs them considerably.

To control the microscopic world (i.e., quantum systems) has become a major issue of modern
physics. Physicists are now able to manipulate simple quantum systems such as a few atoms, photons
and electrons. This technology would give us numerous applications: chemical reaction through
exploiting the quantum nature of electrons, superconductivity via making use of Bose-Einstein con-
densation with cold atoms, and quantum computation by controlling a few electrons or polarization
of photons.

Adiabatic transport provides a powerful way to manipulate quantum objects, such as quantum heat
engines with quantum parametric oscillators (QPOs) [1, 2] and a quantum computation [3–6]. In a
reciprocating quantum heat engine, the working medium is a quantum system such as spin systems [7]
or a QPO [8]. There exists a need for quantum adiabatic transport that can preserve a quantum number
of the system over the variation of the external parameters. In an annealing quantum computation,
by setting a system in a state that we can readily prepare as the initial state and then slowly changing
its Hamiltonian, one could achieve the desired quantum state. The ground state of the system is such
a readily prepared state. However, the dephasing effects of the environment may limit the quantum
correlations and degrade the power of such an adiabatic computation [9].

The adiabatic transport process is described by the quantum adiabatic theorem [10, 11]. Since,
unfortunately, the adiabatic process needs an infinitely long time, it is hard to realize such a process
in a laboratory. However, there exists a method for evolving the system toward the desired final
state as the same state as the final state of the adiabatic process in an arbitrary short time, which is
called shortcuts to adiabaticity (STA) [12]. STA has some kinds of formulation such as the assisted
adiabatic passage [13, 14], transitionless tracking algorithm [15], fast-forward method [16–20], Lewis-
Riesenfeld invariant-based inverse engineering [21, 22], scale-invariant driving [23], generator of
adiabatic transport [24], and quantum brachistochrone [25–27]. There exists research showing that
some of them are substantially the same [28]. It is crucial to specify differences and to find common
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features of STA, in order to construct a unified theory of STA. Toward this goal, in this dissertation,
we study STA of the QPO as the simplest example in terms of measure-of-adiabaticity approach.

Before considering another example of quantum control, let us consider relationship between infor-
mation and physics. There exists a hypothesis that information can inherently describe physical world
(i.e., the universe) and therefore it is computable, which is called digital ontology [29]. According to
the hypothesis, the results of physics are represented by the output of a deterministic or probabilistic
computer program and are regarded as mathematically isomorphic to a digital computing device.
Every computer can be consistent with the principle of information theory, statistical mechanics, and
quantum mechanics. Suppose that we identify a physical state of a two-state system with a “bit.” We
consider switching a physical state of this system to the other state, which is equivalent to change the
bit from a value (e.g., 0) to the other value (e.g., 1). In this sense, every physical state may be regarded
as information, and every change of the state may be equivalent to transformation of information that
requires the manipulation of one or more bits. Recently, a quantum version of digital ontology [30]
reinforces the idea of quantum computer [31] that uses information stored in the quantum state, i.e.,
quantum information. This hypothesis is convenient for combining fundamental physics, in particular,
quantum mechanics, with quantum Boolean algebra [32] and quantum logic [33, 34]. A unit of
quantum information is expressed by a qubit that is a two-state quantum-mechanical system such as
a quantum spin and polarization of a single photon. The qubit can be in a spin-up state |0⟩ and a
spin-down state |1⟩ just as a single electron and can also be in superposition states of the orthogonal
basis, |0⟩ and |1⟩.

Quantum mechanics includes quasi-probability which can take a negative or complex value. These
features reflect quantum natures. In this sense, quantum mechanics includes an aspect of probability
theory. Game theory, which is initially formulated by von Neumann and Morgenstein [35], has
been applied to diverse fields from economics to biology [36]. Game theory is also mathematically
formulated with a probability which takes a real number less than or equal to unity. Hence, quantum
mechanics and game theory have a common feature as probability theory. The theory which replaces
the probability in the conventional game theory with the quasi-probability and incorporates the
quantum natures is called quantum game theory. Quantum game theory was proposed independently
by Meyer [37] and Eisert et al. [38] at the same year. Although game theory is a mature field of
applied mathematics, the quantum game theory is still a young field. Players in quantum game theory,
which is called quantum players, possess a set of unitary operations as their quantum strategy. States
of a game are represented by quantum states. Therefore, the possible quantum game flows could be
regarded as quantum circuits.

Quantum mechanical protocols are known to be superior to classical ones both in solving specific
computational tasks and for cryptographic purposes. Strategy in games is similar to an algorithm.
Quantum algorithms such as Shor’s algorithm [39] have been shown to be more efficient than classical
algorithms.

Let us challenge protecting quantum information (states, data, etc.) from errors. This problem
constitutes another quantum control we want to consider in this dissertation. Quantum information
processing can be expressed by using quantum mechanics [40]. The game-like situation is drawn as:

intermediate state I

initial state final state classical output

intermediate state II

our 1st operation

third party

our 2nd operation

meas.

Figure 1.1: Schematic picture of a simple quantum error correction as a game flow.
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We have an initial quantum state that should be protected. A malicious third party tries to disturb
(tamper) this state. The third party triggers an error. For what kind of the third party can we
preserve and recover the quantum state? We can regard this situation as a problem of quantum
error correction. This game-like situation can be adapted by Meyer’s quantum penny flip game [37].
In the penny flip game, one coin has two states, heads or tails, and two players apply alternating
operations on the coin. In the original Meyer’s game, the first player is allowed to use quantum
(i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e.,
commutative) operations. In Meyer’s game with several kinds of modifications, both players are
allowed to use non-commutative operations, with the second player being partially restricted in what
operations they use. This consideration gives us an answer whether there exists a method for restoring
the quantum state disturbed by another agent. We will apply geometric algebra approach, which is
adequate for analysis of two-or-more-player games [41].

This dissertation is structured as follows. In chapter 2, we review the adiabatic theorem, STA, and
Husimi’s method that enables us to analyze the quantum adiabatic evolution of the QPO in terms of
the adiabatic evolution of the corresponding classical system. In chapter 3, we apply Husimi’s method
to STA of the QPO, in order to analyze STA by using classical description and to elucidate features of
STA. Some derivations used in chapter 3 are in Appendix A. In Appendix B, we give calculations of
a propagator of a generalized quantum parametric oscillator (GQPO) based on Husimi’s method. In
chapter 4, we consider the quantum penny flip game as a model of a quantum discrete-time control.
We try to modify the game without any ancilla qubits. In chapter 5, we give concluding remarks.

Due to the length of the manuscript and the different topics discussed, the notation is consistent
within each chapter, but not necessarily throughout the dissertation.

My, Hiroaki Mishima’s, original works are in chapter 3, 4 and appendices, but Sec. 3.5 and
Appendix B are unpublished works.
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Chapter 2

Adiabaticity in Quantum and Classical
Mechanics

2.1 Adiabaticity

The notion of adiabaticity appears when we consider slow changes of control parameters of classical
and quantum mechanical systems or thermodynamical systems. 1 Here, we consider the only former
context. Adiabaticity has played important roles in the history of physics, such as the important
contribution to the birth of the old quantum theory. This notion is on the border of statics and
dynamics [43], and it relates to an existence of an invariant under an infinitely slow change of
the system. In classical mechanics, an action variable is such an adiabatic invariant. In quantum
mechanics, a principal quantum number is such an adiabatic invariant.

2.1.1 Classical adiabatic evolution

In classical realm, we consider a classical system of one degree of freedom, described by a Hamiltonian
with a kinetic term and a time-dependent potential term,

Ht ≡ H (x, p; λ⃗t ) :=
p2

2M
+ V (x, p; λ⃗t ), (2.1)

where M , x, p and λ⃗t := (λ (1)
t , · · · , λ

(k)
t )⊤ are mass, position, momentum, and a set of external

parameters such as an angular frequency, respectively. Suppose that Ht varies with time t ∈ [t0, tf],
and k ∈ N.

Let Γ be a phase space. A classical state corresponds to the point of a classical phase space
(x, p) ∈ Γ, and a solution of a classical dynamics defines a trajectory in the phase space γ⃗ph

t :=
{(x, p; λ⃗t )}t ⊆ Γ. The term energy shell denotes a level set of Ht ; that is, the set of all points where
Ht takes a particular value, Et at time t. We then have Et = H (x, p; λ⃗t ). By solving this with respect
to p as p = p(x, Et ; λ⃗t ), the volume of phase space enclosed by a trajectory, that is, an energy shell
Ξ := {(x, p) |H (x, p; λ⃗t ) = Et }, is given by

V (Et ; λ⃗t ) :=
∫
Γ

dxdp Θ[Et − H (x, p; λ⃗t )] =
∮
Ξ

dx p(x, Et ; λ⃗t ). (2.2)

1In thermodynamics, an adiabatic process is a process with no heat transfer between a thermodynamic system and a heat
reservoir.

For a classical parametric oscillator (CPO) (see Sec. 2.1.1.1), the notion of adiabaticity in classical mechanics may be
“thermodynamically” understood by regarding an intrinsic oscillatory motion of the CPO as a “thermal motion” and by
supplying an external work to the system by varying external parameters (e.g., length of a pendulum) much slowly, without
any correlation with the intrinsic oscillatory motion [42]. In this case, the work is supplied to the CPO over the variation of
the external parameters without “heat transfer.” This is similar to the adiabatic process in thermodynamics.
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Θ(x) is Heaviside step function that satisfies Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. The notation
∮
Ξ

dx
denotes an integration around an energy shell Ξ, that is, over the complete range of excursion of x
from one turning point to the other and back with the opposite momentum.

The action variable,

St ≡ S(x, p; λ⃗t ) :=
1

2π
V (Ht ; λ⃗t ) (2.3)

is proportional to the volume enclosed by the trajectory that runs through the point (x, p).
In the limit of an infinitely slow change of λ⃗t , the value of St remains constant along a trajectory

evolving under Ht . The adiabatic evolution is identified with preservation of the action variable St
along the trajectory in the classical case, which can be shown as follows [44]. When we change λ⃗t
slowly in such a manner that it is not correlating with a motion cycle of the system, Et varies over the
variation of λ⃗t in the Hamiltonian Ht ; Ėt =

∂Ht

∂λ⃗t
· ˙⃗
λt , where ∂

∂λ⃗t
:=

(
∂

∂λ(1)
t

, · · · , ∂

∂λ(k )
t

)⊤
, and the dot

denotes time derivative. To be more specific, we impose the condition of | ˙⃗λt |T ≪ |λ⃗t |, where T is
one cycle period of the system. The value of St also varies over the variation of λ⃗t . By differentiating
Eq. (2.3) with respect to time t, we have

dSt
dt
=

1
2π

∮
Ξ

dx
(
∂p
∂Et

Ėt +
∂p

∂λ⃗t
· ˙⃗
λt

)
≃ ⟨

˙⃗
λt⟩
2π
·

[∮
Ξ

dx
(
∂p
∂Et

∂Ht

∂λ⃗t
+
∂p

∂λ⃗t

)]
. (2.4)

Here, since | ˙⃗λt | ≃ 0 and ˙⃗
λt does not depend on a motion cycle of the system as we assumed, we

replaced ˙⃗
λt with ⟨ ˙⃗λt⟩, which is an averaged value during a cycle, and put it outside the integral. By

substituting p = p(x, Et ; λ⃗t ) into the Hamiltonian Ht , we have H (x, p(x, Et ; λ⃗t ); λ⃗t ) = Et . Then, by
differentiating this by λ⃗t and Et , respectively, we have the following relations,

∂Ht

∂λ⃗t
+
∂Ht

∂p
∂p

∂λ⃗t
= 0⃗,

∂Ht

∂p
∂p
∂Et
= 1. (2.5)

By multiplying the former of Eq. (2.5) by ∂p
∂Et

and by using the latter, we have

∂p
∂Et

∂Ht

∂λ⃗t
+
∂p
∂Et

∂Ht

∂p
∂p

∂λ⃗t
=
∂p
∂Et

∂Ht

∂λ⃗t
+
∂p

∂λ⃗t
= 0⃗. (2.6)

Therefore, if we can neglect O(| ˙⃗λt |2), from Eqs. (2.4) and (2.6), we obtain

dSt
dt
≃ 0. (2.7)

As a result, we have the following theorem:

Theorem 1 (Classical adiabatic theorem). When a set of external parameters λ⃗t varies slowly enough,
the action variable St remains constant along the trajectory. In this case, St becomes an invariant Jt
called an adiabatic invariant.

2.1.1.1 Example: classical parametric oscillator

Let us consider a Hamiltonian of a classical parametric oscillator (CPO)

Ht ≡ H (x, p;ωt ) =
p2

2M
+

M
2
ω2
t x2 = Et, (2.8)
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where ωt is the angular frequency at time t. The momentum p is given as

p(x, Et ;ωt ) = ±

√
2M

(
Et −

M
2
ω2
t x2

)
. (2.9)

Under the condition of |ω̇t |T ≪ |ωt |, we can then calculate the adiabatic invariant Jt of the CPO from
Eqs. (2.2) and (2.3) as

Jt = St =
1

2π
· 2

∫ √2Et/Mω2
t

−
√

2Et/Mω2
t

dx

√
2M

(
Et −

M
2
ω2
t x2

)
=

Et

ωt
. (2.10)

2.1.2 Quantum adiabatic evolution

In quantum realm, suppose that a quantum system evolves in time t according to the Schrödinger
equation

iℏ
d
dt
|Ψ(t)⟩ = Ĥad

t |Ψ(t)⟩, (2.11)

with a Hamiltonian Ĥad
t ≡ Ĥad(λ⃗t ), which is Hermitian and may be a function of the time-dependent

parameters λ⃗t . It is difficult to solve the Schrödinger equation Eq. (2.11) in general. A formal solution
of Eq. (2.11) is given by the Dyson series [45]. However, by using the quantum adiabatic theorem,
we can solve it approximately. This theorem was first stated in Ref. [10] and was proved as a more
general one in Ref. [11].

We can obtain the adiabatic approximate solution of Eq. (2.11) as follows [43, 46]. We assume
that the spectrum of Ĥad

t is discrete and non-degenerate for an arbitrary time t. Without any loss of
generality, we expand the solution of Eq. (2.11) in terms of the instantaneous eigenstates |n; λ⃗t⟩ of
Ĥad
t as

|Ψ(t)⟩ =
∞∑
n=0

cn,te
− i
ℏ

∫ t

t0
dτEad

n,τ |n; λ⃗t⟩, (2.12)

where the factor e
− i
ℏ

∫ t

t0
dτEad

n,τ is a dynamical phase factor. The instantaneous eigenstate |n; λ⃗t⟩ satisfies

Ĥad
t |n; λ⃗t⟩ = Ead

n,t |n; λ⃗t⟩, (2.13)

where Ead
n,t is the eigenenergy. We impose the normalization condition ⟨m; λ⃗t |n; λ⃗t⟩ = δm,n. By

substituting Eq. (2.12) into Eq. (2.11) and then by multiplying the result by ⟨m; λ⃗t | from the left, we
have the following equations for the coefficients cn,t :

ċm,t + cm,t⟨m; λ⃗t |
d
dt
|m; λ⃗t⟩ +

∞∑
(m,)n=1

cn,te
− i
ℏ

∫ t

t0
dτ(Ead

n,τ−Ead
m,τ )⟨m; λ⃗t |

d
dt
|n; λ⃗t⟩ = 0. (2.14)

By differentiating Eq. (2.13) with respect to time t, and then by multiplying ⟨m; λ⃗t | from the left, we
have

⟨m; λ⃗t |
d
dt
|n; λ⃗t⟩ +

⟨m; λ⃗t | dĤ
ad
t

dt |n; λ⃗t⟩
Ead
m,t − Ead

n,t

= 0; n , m. (2.15)
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Here we introduce a condition for the adiabatic approximation: The time evolution governed by Ĥad
t

is adiabatic if the following condition holds:

�����⟨m; λ⃗t |
dĤad

t

dt
|n; λ⃗t⟩

�����T ≪ |Ead
m,t − Ead

n,t |, (2.16)

where T is an intrinsic time scale of the quantum system. From Eqs. (2.15) and (2.16), we then find 2

ℏ

���⟨m; λ⃗t | dĤ
ad
t

dt |n; λ⃗t⟩���
(Ead

m,t − Ead
n,t )2

= ℏ
����� ⟨m; λ⃗t | ddt |n; λ⃗t⟩

Ead
m,t − Ead

n,t

����� ≪ 1; n , m. (2.17)

Thus, in this approximation, Eq. (2.14) simplifies to

ċm,t + cm,t⟨m; λ⃗t |
d
dt
|m; λ⃗t⟩ ≃ 0. (2.18)

By integrating Eq. (2.18) and imposing an initial condition cm,t0 = δm,n, we find that cn,t is a phase
factor,

cn,t ≃ e
−

∫ t

t0
dτ⟨n;λ⃗τ | d

dτ |n;λ⃗τ ⟩
, (2.19)

which is well known as the geometric phase factor [48]. Therefore, we obtain the adiabatic approximate
solution of the Schrödinger equation Eq. (2.11), where

|Ψ(t)⟩ ≃
∞∑
n=0

Cneiξn, t |n; λ⃗t⟩, (2.20)

with Cn being a time-independent amplitude, and the time-dependent phase angle ξn,t ∈ R is defined
as

ξn,t := −1
ℏ

∫ t

t0

dτEad
n,τ + i

∫ t

t0

dτ⟨n; λ⃗τ |
d
dτ
|n; λ⃗τ⟩. (2.21)

The first and second terms of ξn,t are the dynamical phase and geometric phase, respectively.
Let us prepare the initial state of the system at t = t0 as an eigenstate of Ĥad

t0
as |Ψ(t0)⟩ = |n; λ⃗t0⟩.

If the Hamiltonian Ĥad
t changes under the condition of Eq. (2.16), the adiabatic approximate solution

Eq. (2.20) yields |Ψ(t)⟩ = eiξn, t |n; λ⃗t⟩ ∝ |n; λ⃗t⟩ for an arbitrary later time t ≥ t0. Namely, the state of
the system exhibits no transition. Therefore, we proved the following theorem.

Theorem 2 (Quantum adiabatic theorem). When we control a set of external parameters λ⃗t adia-
batically, a quantum system exhibits no transition between non-degenerated eigenstates with different
quantum numbers. In other words, although a set of external parameters λ⃗t varies, the system remains
in an instantaneous eigenstate. By using transition probabilities, this can be represented as

Pm,n
t,t0

:= |⟨m; λ⃗t |Û (t ← t0) |n; λ⃗t0⟩|2 ≃ δm,n, (2.22)

where Û (t ← t0) is a time-evolution unitary operator.

2The condition for the adiabatic approximation Eq. (2.17) has been used, for example, to determine the running time
required by an adiabatic quantum algorithm [47].
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2.2 Shortcuts to adiabaticity

As we have seen in Sec. 2.1.2, the quantum adiabatic theorem ensures the transitionless process
under an infinitely slow change of the parameters of the system. However, from an experimental
viewpoint, such a long time process is not favorable. Besides, because the time needed to achieve the
desired final state is long, the system may lose its coherence during the process due to surrounding
disturbance. These problems may also arise in an adiabatic process in classical mechanics. Hence,
it is desirable to have a method for achieving the same final state of the adiabatic process in a finite
duration. There exist various theoretical methods proposed as shortcuts to adiabaticity (STA) [12],
such as the assisted adiabatic passage [13, 14], transitionless tracking algorithm [15], fast-forward
method [16–20], Lewis-Riesenfeld invariant-based inverse engineering [22, 28], generator of adiabatic
transport [24, 49], scale-invariant driving [23], and quantum brachistochrone [25–27].

In this section, we review some methods of STA that include Lewis-Riesenfeld invariant-based
inverse engineering (Sec. 2.2.1), transitionless tracking algorithm (Sec. 2.2.2), and classical dissipa-
tionless driving [23, 24] (Sec. 2.2.3).

2.2.1 Lewis-Riesenfeld invariant-based inverse engineering

We review the Lewis-Riesenfeld (LR) invariant-based inverse engineering based on Ref. [28]. Suppose
that a quantum system |Ψ(t)⟩ obeys a time-dependent Hamiltonian Ĥ IE

t :

iℏ
d
dt
|Ψ(t)⟩ = Ĥ IE

t |Ψ(t)⟩. (2.23)

We assume that there exists a Hermitian dynamical invariant ÎLR
t in the system, which is called the

LR invariant [21]. The LR invariant satisfies the following equation

dÎLR
t

dt
=
∂ ÎLR

t

∂t
+

1
iℏ

[ÎLR
t , Ĥ

IE
t ] = 0. (2.24)

We can express a solution of the Schrödinger equation Eq. (2.23) as

|Ψ(t)⟩ =
∞∑
n=0

Cneiα
LR
n, t |ϕn; λ⃗t⟩. (2.25)

Here, the instantaneous eigenstates |ϕn; λ⃗t⟩ satisfy the eigenvalue equation of ÎLR
t ,

ÎLR
t |ϕn; λ⃗t⟩ = ιn |ϕn; λ⃗t⟩, (2.26)

where ιn is the eigenvalue of ÎLR
t . The phase αLR

n,t is defined by

αLR
n,t :=

1
ℏ

∫ t

t0

dτ⟨ϕn; λ⃗τ |iℏ
d
dτ
− Ĥ IE

τ |ϕn; λ⃗τ⟩, (2.27)

which is known as the LR phase.
We want to drive the state of the system with the time-dependent Hamiltonian Ĥ IE

t such that the
quantum numbers in the initial and final instantaneous eigenstates are the same. We will achieve this
goal by determining the appropriate Hamiltonian Ĥ IE

t . The LR invariant ÎLR
t is formally written as

ÎLR
t =

∞∑
n=0
ιn |ϕn; λ⃗t⟩⟨ϕn; λ⃗t |. (2.28)
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We introduce the time-evolution unitary operator Û IE
t,t0

as

Û IE
t,t0 :=

∞∑
n=0

eiα
LR
n, t |ϕn; λ⃗t⟩⟨ϕn; λ⃗t0 |. (2.29)

Since the operator Û IE
t,t0

obeys iℏ d
dt Û

IE
t,t0
= Ĥ IE

t Û IE
t,t0

, we can formally solve it for the Hamiltonian as

Ĥ IE
t = iℏ

dÛ IE
t,t0

dt
Û IE†
t,t0
=: F̂diag

t + iℏ
∞∑
n=0

d|ϕn; λ⃗t⟩
dt

⟨ϕn; λ⃗t |, (2.30)

where F̂diag
t is a time-dependent diagonal operator in the basis |ϕn; λ⃗t⟩:

F̂diag
t := −ℏ

∞∑
n=0

dαLR
n,t

dt
|ϕn; λ⃗t⟩⟨ϕn; λ⃗t |. (2.31)

Since we can choose the LR phase αLR
n,t freely, we can obtain different F̂diag

t in Ĥ IE
t depending on the

choice of αLR
n,t for a given invariant ÎLR

t .
If we impose [ÎLR

t0
, Ĥ IE

t0
] = [ÎLR

tf
, Ĥ IE

tf
] = 0, ÎLR

t and Ĥ IE
t have the simultaneous eigenstate at the

endpoints of the time evolution. Therefore, if the eigenstate of Ĥ IE
t has the same quantum numbers at

the initial and the final states, we can achieve the desired final state with the same quantum number as
the initial state.

2.2.1.1 Example: Ĥ IE
t for a quantum parametric oscillator

We consider a usual quantum parametric oscillator (QPO) described by the following Hamiltonian,

Ĥad
t =

p̂2

2M
+

M
2
ω2
t x̂2, (2.32)

where x̂ and p̂ are position operator and momentum operator, respectively. x̂ and p̂ satisfy the
canonical commutation relation [x̂, p̂] = iℏ. For the QPO, we choose ÎLR

t =
∑∞

n=0 ιn |n; λ⃗t⟩⟨n; λ⃗t | with
ιn = ℏωt0

(
n + 1

2

)
, that is,

ÎLR
t =

ωt0

ωt
Ĥad
t . (2.33)

We set the LR phase as

αLR
n,t = ξn,t = −

1
ℏ

∫ t

t0

dτEad
n,τ, (2.34)

by using ξn,t , where the geometric phase i
∫ t

t0
dτ⟨n; λ⃗τ | d

dτ |n; λ⃗τ⟩ in ξn,t in Eq. (2.21) vanishes since
⟨n; λ⃗τ | d

dτ |n; λ⃗τ⟩ = 0 for the QPO [50]. We then obtain

Ĥ IE
t = F̂diag

t − 1
2
ω̇t

ωt

x̂ p̂ + p̂x̂
2
, (2.35)

from Eqs. (2.30) and (2.31), where F̂diag
t =

ωt

ωt0
ÎLR
t = Ĥad

t . For the QPO, we may adopt a different
LR invariant with another quadratic form. Such an invariant yields different inverse engineering of
the Hamiltonian (see Ref. [22] and Sec. III in Ref. [28]).
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2.2.2 Transitionless tracking algorithm

We review the transitionless tracking (TT) algorithm based on Ref. [15]. Let us consider an arbitrary
time-dependent Hamiltonian Ĥad

t , with instantaneous eigenstate and eigenenergy given by Eq. (2.13).
In the adiabatic approximation, we have already known that the state driven by Ĥad

t is given by
Eq. (2.20). In the TT algorithm, we seek a TT Hamiltonian ĤTT

t that satisfies

iℏ
d
dt
|Ψ(t)⟩ = ĤTT

t |Ψ(t)⟩, (2.36)

where

|Ψ(t)⟩ =
∞∑
n=0

Cneiξn, t |n; λ⃗t⟩. (2.37)

For this solution, it is obvious that no transition occurs between the different instantaneous eigenstates
of Ĥad

t in an arbitrary time duration.
We construct the Hamiltonian ĤTT

t by adding a counter-diabatic Hamiltonian Ĥcd
t to Ĥad

t as

ĤTT
t := Ĥad

t + Ĥcd
t . (2.38)

In order to find Ĥcd
t , we introduce the time-evolution unitary operator ÛTT

t,t0
as

ÛTT
t,t0 :=

∞∑
n=0

eiξn, t |n; λ⃗t⟩⟨n; λ⃗t0 |. (2.39)

ÛTT
t,t0

is the solution of iℏÛTT
t,t0
= ĤTT

t ÛTT
t,t0

, which can be formally solved for the TT Hamiltonian

ĤTT
t = iℏ

dÛTT
t, t0

dt ÛTT†
t,t0

. Therefore, we can obtain the TT Hamiltonian as

Ĥad
t =

∞∑
n=0

Ead
n,t |n; λ⃗t⟩⟨n; λ⃗t |, (2.40)

Ĥcd
t := iℏ

∞∑
n=0

(1̂l − |n; λ⃗t⟩⟨n; λ⃗t |)
d|n; λ⃗t⟩

dt
⟨n; λ⃗t | (2.41)

= iℏ ˙⃗
λt ·

∞∑
n=0

(1̂l − |n; λ⃗t⟩⟨n; λ⃗t |)
d|n; λ⃗t⟩

dλ⃗t
⟨n; λ⃗t | (2.42)

= −iℏ
∞∑

m,n=0
(m,n)

|m; λ⃗t⟩
⟨m; λ⃗t | dĤ

ad
t

dt |n; λ⃗t⟩
Ead
m,t − Ead

n,t

⟨n; λ⃗t |, (2.43)

where we have used Eq. (2.15) for the last equality.
We can express Ĥcd

t in Eq. (2.42) as

Ĥcd
t =: ˙⃗

λt · ˆ⃗ηt, (2.44)

where the operator ˆ⃗ηt can be regarded as a generator of adiabatic transport [24, 51]. We let δt be an
infinitesimal time displacement. We then have

e−iδt Ĥ
cd
t /ℏ |n; λ⃗t⟩ =

(
1 − i
ℏ

Ĥcd
t δt + O(δt2)

)
|n; λ⃗t⟩
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3
=

(
1 +

1
iℏ
δλ⃗t · ˆ⃗ηt

)
|n; λ⃗t⟩ + O(|δλ⃗t |2)

=

{
1 +

1
iℏ

[
iℏδλ⃗t ·

∞∑
m=0

(1̂l − |m; λ⃗t⟩⟨m; λ⃗t |)
d|m; λ⃗t⟩

dλ⃗t
⟨m; λ⃗t |

]}
|n; λ⃗t⟩ + O(|δλ⃗t |2)

= |n; λ⃗t⟩ +
(
d|n; λ⃗t⟩

dλ⃗t
− ⟨n; λ⃗t |

d|n; λ⃗t⟩
dλ⃗t

|n; λ⃗t⟩
)
· δλ⃗t + O( |δλ⃗t |2)

4
= |n; λ⃗t+δt⟩ − ⟨n; λ⃗t |

d|n; λ⃗t⟩
dλ⃗t

(|n; λ⃗t+δt⟩ + O(|δλ⃗t |)) · δλ⃗t + O(|δλ⃗t |2)

=

(
1 − ⟨n; λ⃗t |

d|n; λ⃗t⟩
dλ⃗t

· δλ⃗t
)
|n; λ⃗t+δt⟩ + O(|δλ⃗t |2)

= exp
(
−⟨n; λ⃗t |

d|n; λ⃗t⟩
dt

δt
)
|n; λ⃗t+δt⟩ + O(δt2). (2.45)

Therefore, we find

e−iδt Ĥ
TT
t /ℏ |n; λ⃗t⟩ = e−iδt (Ĥ

ad
t +Ĥ

cd
t )/ℏ |n; λ⃗t⟩

5
= e−iδt Ĥ

ad
t /ℏe−iδt Ĥ

cd
t /ℏ |n; λ⃗t⟩(1 + O(δt2)) (2.46)

= e−iδtE
ad
n, t/ℏ exp

(
−⟨n; λ⃗t |

d|n; λ⃗t⟩
dt

δt
)
|n; λ⃗t+δt⟩ + O(δt2)

= exp
[
i
(
−

Ead
n,t

ℏ
+ i⟨n; λ⃗t |

d|n; λ⃗t⟩
dt

)
δt

]
|n; λ⃗t+δt⟩ + O(δt2)

= eiξ̇n, t δt |n; λ⃗t+δt⟩ + O(δt2). (2.47)

Eq. (2.47) shows that the addition of Ĥcd
t to Ĥad

t generates the adiabatic evolution.
If we choose ÎLR

t =
∑∞

n=0 Ead
n,t0
|n; λ⃗t⟩⟨n; λ⃗t | and αLR

n,t = ξn,t , ĤTT
t generally coincides with Ĥ IE

t in
Eq. (2.30) [28]. Therefore, we can understand the TT algorithm in terms of the dynamical invariant (see
also Sec. 3.5). For the QPO, we can confirm from the example below that Ĥ IE

t in Eq. (2.35) indeed
coincides with ĤTT

t when we choose ÎLR
t =

ωt0
ωt

Ĥad
t and αLR

n,t = ξn,t .

2.2.2.1 Example: Ĥcd
t for a quantum parametric oscillator

For the QPO given by Eq. (2.32), the following relations hold as

x̂ =

√
ℏ

2Mωt
(ât + â†t ), (2.48)

p̂ =
1
i

√
ℏMωt

2
(ât + â†t ), (2.49)

â†Nt |n;ωt⟩ =
√

(n + N )!
N!

|n + N ;ωt⟩, (2.50)

âN
t |n;ωt⟩ =

√
n!

(n − N )!
|n − N ;ωt⟩; n > N ∈ N0, (2.51)

3δλ⃗t := ˙⃗
λt δt.

4 |n; λ⃗t+δt ⟩ =
∑∞

m=0
1
m!

(
δλ⃗t · d

dλ⃗t

)m |n; λ⃗t ⟩ = |n; λ⃗t ⟩ + δλ⃗t · d |n;λ⃗t ⟩
dλ⃗t

+ 1
2
(
δλ⃗t · d

dλ⃗t

)2 |n; λ⃗t ⟩ + · · · .
5We here used the Zassenhaus formula [52]: et ( Â+B̂) = et Âet B̂e−t

2[Â,B̂]/2et
3 ([Â,[Â,B̂]]−2[B̂,[B̂, Â]])/6 · · · .
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where [ât, â†t ] = 1. According to the TT algorithm, by using Eq. (2.43), the counter-diabatic Hamil-
tonian Ĥcd

t for the QPO [Eq. (2.32)] is calculated as [50, 53]

Ĥcd
t = −iℏ

∞∑
m,n=0
(m,n)

|m;ωt⟩
⟨m;ωt | dĤ

ad
t

dt |n;ωt⟩
Ead
m,t − Ead

n,t

⟨n;ωt |

= −iℏ
∞∑

m,n=0
(m,n)

|m;ωt⟩
⟨m;ωt |

[ d
dt

(
p̂2

2M +
M
2 ω

2
t x̂2

)] |n;ωt⟩
Ead
m,t − Ead

n,t

⟨n;ωt |

= −iMω̇t

∞∑
m,n=0
(m,n)

|m;ωt⟩
⟨m;ωt | x̂2 |n;ωt⟩

m − n
⟨n;ωt |

= − iℏ
2
ω̇t

ωt

∞∑
m,n=0
(m,n)

|m;ωt⟩
⟨m;ωt |(ât + â†t )2 |n;ωt⟩

m − n
⟨n;ωt |

= − iℏ
2
ω̇t

ωt

∞∑
m,n=0
(m,n)

|m;ωt⟩
⟨m;ωt |â2

t + â†2t + 2â†t ât + 1̂l|n;ωt⟩
m − n

⟨n;ωt |

= − iℏ
2
ω̇t

ωt

∞∑
m,n=0
(m,n)

|m;ωt⟩
√

(m + 1)(m + 2)δm+2,n +
√

(n + 1)(n + 2)δm,n+2 + (2n + 1)δm,n

m − n
⟨n;ωt |

=
iℏ
2
ω̇t

ωt

∞∑
n=0

√
(n − 1)n|n − 2;ωt⟩ −

√
(n + 1)(n + 2) |n + 2;ωt⟩

2
⟨n;ωt |

=
iℏ
2
ω̇t

ωt

â2
t − â†2t

2

∞∑
n=0
|n;ωt⟩⟨n;ωt |

=
iℏ
2
ω̇t

ωt

â2
t − â†2t

2
= −1

2
ω̇t

ωt

x̂ p̂ + p̂x̂
2

. (2.52)

We can confirm that the second term in Eq. (2.35) obtained by using the LR invariant-based inverse
engineering coincides with the counter-diabatic term in Eq. (2.52).

2.2.3 Classical dissipationless driving

We here review the classical dissipationless driving based on Refs. [23, 24]. The goal of this method
is to derive a counter-dissipative Hamiltonian such that an adiabatic invariant of a classical system is
conserved in an arbitrary time duration. This method can be regarded as the classical analog of the
TT algorithm.

Let us consider a classical Hamiltonian whose time-dependence originates from a set of external
parameters, i.e.,

Had
t ≡ Had(x, p; λ⃗t ) :=

p2

2M
+ V (x; λ⃗t ). (2.53)

Under an infinitely slow change of λ⃗t , the action variable St = 1
2πV (Had

t ; λ⃗t ) in Eq. (2.3) remains
constant as the adiabatic invariant Jt . We now seek a counter-dissipative Hamiltonian with a set of
counter-dissipative generators η⃗t ≡ η⃗(x, p; λ⃗t ) for the original system described by Eq. (2.53):

Hcd
t ≡ Hcd(x, p; λ⃗t ) =

˙⃗
λt · η⃗t, (2.54)
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such that the following action variable is conserved in an arbitrary time duration: 6

Jt ≡ J (x, p; λ⃗t ) :=
1

2π
V[Had(x, p; λ⃗t ); λ⃗t ]. (2.55)

We note that Eq. (2.54) is a classical version of the counter-diabatic Hamiltonian in Eq. (2.42). This
action variable is characterized by the phase space volumeV (Ēt ; λ⃗t ) enclosed by the adiabatic energy
shell [20, 23, 24] Ξ̄ := {(x, p) |Had(x, p; λ⃗t ) = Ēt } in the phase space Γ. The adiabatic energy shell Ξ̄
is the level set of Had

t with the value Ēt , enclosing the volumeV (Ēt ; λ⃗t ). The adiabatic energy Ēt is
defined as the energy such thatV (Ēt ; λ⃗t ) is exactly conserved.

We next consider the micro-canonical average of a quantity A(x, p; λ⃗t ) as

⟨A(x, p; λ⃗t )⟩Et,λ⃗t
:=

(
∂V (Et ; λ⃗t )
∂Et

)−1 ∫
Γ

dxdp δ[Et − Had(x, p; λ⃗t )]A(x, p; λ⃗t ). (2.56)

By solving V (Et ; λ⃗t ) with respect to Et , we have Et = E(V; λ⃗t ). By substituting V (Et ; λ⃗t ) into
E(V; λ⃗t ) again, we obtain E(V; λ⃗t ) = E(V (Et ; λ⃗t ); λ⃗t ). By differentiating V (Et ; λ⃗t ) [Eq. (2.2)]
with respect to λ⃗t and using Eq. (2.56), we have

∂V (Et ; λ⃗t )
∂λ⃗t

=

∫
Γ

dxdp
∂

∂λ⃗t
Θ[Et − Had(x, p; λ⃗t )]

= −
∫
Γ

dxdp δ[Et − Had(x, p; λ⃗t )]
∂Had(x, p; λ⃗t )

∂λ⃗t

= −∂V (Et ; λ⃗t )
∂Et

⟨
∂Had(x, p; λ⃗t )

∂λ⃗t

⟩
Et,λ⃗t

. (2.57)

By using the cyclic chain rule 7

∂V (Et ; λ⃗t )
∂λ⃗t

�����Et

· ∂λ⃗t (Et,V )
∂Et

�����V ∂E(V; λ⃗t )
∂V

�����λ⃗t

= −1, (2.58)

we have

∂E(V; λ⃗t )
∂λ⃗t

= −∂V (Et ; λ⃗t )
∂λ⃗t

(
∂V (Et ; λ⃗t )
∂Et

)−1

. (2.59)

From Eqs. (2.57) and (2.59), we obtain

∂E(V; λ⃗t )
∂λ⃗t

= −
(
∂V
∂Et

)−1
∂V
∂λ⃗t
=

⟨
∂Had

t

∂λ⃗t

⟩
Et,λ⃗t

. (2.60)

We here define the Poisson bracket as

{ A⃗, B⃗}P :=
∂ A⃗
∂x
· ∂ B⃗
∂p
− ∂ A⃗
∂p
· ∂ B⃗
∂x
. (2.61)

6From Eq. (2.2), we may defineV[Had(x, p; λ⃗t ); λ⃗t ] :=
∫
Γ

dx′dp′Θ[Had(x, p; λ⃗t ) − Had(x′, p′; λ⃗t )].
7The rule relates with partial derivatives of three interdependent variables. In each factor, the variable (vector variable)

in the numerator is set to be an implicit function of the other two. The variable (vector variable) in the subscript is being
held constant (constant vector).



2.2. Shortcuts to adiabaticity 15

We then introduce the following conditions for ηt [54] 8

{η⃗t, Had
t }P =

∂Had
t

∂λ⃗t
−

⟨
∂Had

t

∂λ⃗t

⟩
Had

t ,λ⃗t

, (2.62)

⟨η⃗t⟩Et,λ⃗t
= 0⃗. (2.63)

By calculating the left-hand side of Eq. (2.62), we have

{η⃗t, Had
t }P = 2π

(
∂V (Had

t ; λ⃗t )
∂Had

t

)−1

{η⃗t, Jt }P, (2.64)

where Jt is the action variable as already defined in Eq. (2.55). By calculating the right-hand side of
Eq. (2.62) and by using Eq. (2.60), we have 9

∂Had
t

∂λ⃗t
−

⟨
∂Had

t

∂λ⃗t

⟩
Had

t ,λ⃗t

= 2π
(
∂V (Had

t ; λ⃗t )
∂Had

t

)−1
∂J (x, p; λ⃗t )
∂λ⃗t

. (2.65)

From Eqs. (2.64) and (2.65), we obtain the simpler form of Eq. (2.62) as

{η⃗t, Jt }P =
∂Jt
∂λ⃗t
. (2.66)

As discussed in Ref. [24], η⃗t in Eq. (2.54) can be a generator of the infinitesimal transformation

z → z + dz, (2.67)

where z := (x, p). Since ż = {z, Hcd
t }P and using Eq. (2.54), we find

dz = {z, η⃗t }P · dλ⃗t . (2.68)

Eq. (2.68) provides a rule for converting a small change of the parameters dλ⃗t into a small displacement
in the phase space, dz. In order to achieve the classical dissipationless driving under Eq. (2.68), the
adiabatic energy shell Ξ̄ = {(x, p) |Had(x, p; λ⃗t ) = Ēt } should be mapped onto the adiabatic energy
shell Ξ̄′ := {(x, p) |Had(x, p; λ⃗t + dλ⃗t ) = Ēt + dĒt } such that V (Ēt ; λ⃗t ) = V (Ēt + dĒ; λ⃗t + dλ⃗t )
holds. By using Eqs. (2.66) and (2.68), we can show that this mapping is ensured as

J (x + dx, p + dp; λ⃗t + dλ⃗t ) = J (x, p; λ⃗t ) +
∂J (x, p; λ⃗t )
∂x

dx +
∂J (x, p; λ⃗t )
∂p

dp +
∂J (x, p; λ⃗t )
∂λ⃗t

· dλ⃗t

= J (x, p; λ⃗t ) +
(
{J (x, p; λ⃗t ), η⃗t }P +

∂J (x, p; λ⃗t )
∂λ⃗t

)
· dλ⃗t

= J (x, p; λ⃗t ). (2.69)

8 From Eq. (2.60), we may have⟨
∂Had

t

∂λ⃗t

⟩
Had

t ,λ⃗t

= −
(
∂V (Had

t ; λ⃗t )
∂Had

t

)−1 ∫
Γ

dx′dp′δ[Had
t − Had(x′, p′; λ⃗t )]

∂Had(x′, p′; λ⃗t )
∂λ⃗t

= −
(
∂V (Had

t ; λ⃗t )
∂Had

t

)−1 ∂V (Had
t ; λ⃗t )

∂λ⃗t
.

9 Here we used ∂ f

∂λ⃗t
=

∂ f

∂ ·
∂g

∂λ⃗t
+

∂ f

∂λ⃗t
for a function f (g( · ; λ⃗t ); λ⃗t ), where f contains g and λ⃗t as the arguments, and g

also contains λ⃗t as the argument. We then used the following calculation: ∂V
∂λ⃗t
= −

⟨ ∂Had
t

∂λ⃗t

⟩
Had

t ,λ⃗t

∂V
∂Had

t

.
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Hence, the term Hcd
t with η⃗t satisfying Eq. (2.66) provides precisely the classical dissipationless

driving.
Let us check the invariance of the action variable Jt with the generator η⃗t . We consider a point

z = (x, p) evolving under Hamilton equation

ż = {z, HTT
t }P, (2.70)

where HTT
t := Had

t + Hcd
t . From Eqs. (2.55), (2.66) and (2.70), we find

dJ (x, p; λ⃗t )
dt

= {J (x, p; λ⃗t ), HTT
t }P +

∂J (x, p; λ⃗t )
∂λ⃗t

· ˙⃗
λt = 0. (2.71)

Therefore, owing to the counter-dissipative Hamiltonian Hcd
t [Eq. (2.54)], the action variable Jt is

exactly conserved as the adiabatic invariant.

2.2.3.1 Example: scale-invariant classical system

Suppose that λ⃗t =: (λ (1)
t , λ

(2)
t )⊤. Let us consider the following Hamiltonian

Had(x, p; λ (1)
t , λ

(2)
t ) =

p2

2M
+

1
λ (1)2
t

V sc
(

x − λ (2)
t

λ (1)
t

)
. (2.72)

This Hamiltonian Eq. (2.72) satisfies the following scale-invariant conditions:

Had(x + a, p; λ (1)
t , λ

(2)
t + a) = Had(x, p; λ (1)

t , λ
(2)
t ), (2.73)

b2Had
(
bx,

p
b

; bλ (1)
t , bλ

(2)
t

)
= Had(x, p; λ (1)

t , λ
(2)
t ), (2.74)

V (Et ; λ (1)
t , λ

(2)
t ) = V (λ (1)2

t Et ; 1, 0), (2.75)

with a ∈ R and b > 0.
Let us next consider the following canonical transformation

(x, p) →
(
x + dλ (2)

t +
x − λ (2)

t

λ (1)
t

dλ (1)
t , p −

p

λ (1)
t

dλ (1)
t

)
, (2.76)

where the change λ (1)
t → λ (1)

t + dλ (1)
t squeezes the adiabatic energy shell Ξ̄, while the change

λ (2)
t → λ

(2)
t + dλ (2)

t translates it in the phase space Γ. We can find that the transformation Eq. (2.76)
satisfies the condition Eq. (2.69) by using Eqs. (2.73)–(2.75) and by neglecting O(dλ (1)2

t ). 10 By

10The detailed calculation is as bellows:

J
(
x + dx, p + dp;λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

)
Eq. (2.76)

= J

(
x + dλ(2)

t +
x − λ(2)

t

λ(1)
t

dλ(1)
t , p − p

λ(1)
t

dλ(1)
t ;λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

)
Eq. (2.55)

=
1

2π
V

[
Had

(
x + dλ(2)

t +
x − λ(2)

t

λ(1)
t

dλ(1)
t , p − p

λ(1)
t

dλ(1)
t ;λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

)
;λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

]
Eq. (2.73)

=
1

2π
V

[
Had

(
x +

x − λ(2)
t

λ(1)
t

dλ(1)
t ,

(
1 −

dλ(1)
t

λ(1)
t

)
p;λ(1)

t + dλ(1)
t , λ(2)

t

)
;λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

]
Taylor
expansion

=
1

2π
V


Had

*...,
(
1 +

dλ(1)
t

λ(1)
t

)
x −

dλ(1)
t

λ(1)
t

λ(2)
t ,

p

1 + dλ(1)
t

λ(1)
t

+ O (
dλ(1)2

t

)
;
(
1 +

dλ(1)
t

λ(1)
t

)
λ(1)
t ,

(
1 +

dλ(1)
t

λ(1)
t

)
λ(2)
t −

dλ(1)
t

λ(1)
t

λ(2)
t

+///- ;λ(1)
t + dλ(1)

t , λ(2)
t + dλ(2)

t


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using Eqs. (2.68) and (2.76), we find that the following equations for ηt :



∂η (1)
t

∂x
=

p

λ (1)
t

,
∂η (2)

t

∂x
= 0,

∂η (1)
t

∂p
=

x − λ (2)
t

λ (1)
t

,
∂η (2)

t

∂p
= 1.

(2.77)

(2.78)

By solving Eqs. (2.77) and (2.78), we obtain the generator for the infinitesimal canonical transformation
Eq. (2.76) as

η⃗t =: (η (1)
t , η

(2)
t )⊤ =

(
x − λ (2)

t

λ (1)
t

p, p
)⊤
. (2.79)

By substituting Eq. (2.79) into Eq. (2.54), we obtain

Hcd
t =

λ̇ (1)
t

λ (1)
t

(x − λ (2)
t )p + λ̇ (2)

t p. (2.80)

Upon quantization with the Weyl (symmetric) ordering rule, this result agrees with the quantum
counter-diabatic Hamiltonian for the scale-invariant system.

For a CPO with λ (1)
t =

1√
ωt

and λ (2)
t = 0 as the most straightforward scale-invariant system, we

can easily have

Hcd
t = −

1
2
ω̇t

ωt
xp. (2.81)

By quantizing Eq. (2.81) with the Weyl (symmetric) ordering rule, we obtain the counter-diabatic term
for a QPO [Eq. (2.52)].

2.3 Quantum-classical correspondence in adiabatic theorems

Although there is a conceptual difference between classical and quantum adiabatic theorems, a method
of classical mechanics is applicable for analyzing the adiabatic evolution of a QPO. This is called
Husimi’s method [55].

Eq. (2.73)
=

1
2π
V


Had

*...,
(
1 +

dλ(1)
t

λ(1)
t

)
x,

p

1 + dλ(1)
t

λ(1)
t

;
(
1 +

dλ(1)
t

λ(1)
t

)
λ(1)
t ,

(
1 +

dλ(1)
t

λ(1)
t

)
λ(2)
t

+///- ;λ(1)
t + dλ(1)

t , λ(2)
t + dλ(2)

t


+ O (

dλ(1)2
t

)
Eq. (2.74)

=
1

2π
V

[
λ(1)2
t(

λ(1)
t + dλ(1)

t

)2 H
ad(x, p;λ(1)

t , λ(2)
t );λ(1)

t + dλ(1)
t , λ(2)

t + dλ(2)
t

]
+ O (

dλ(1)2
t

)
Eq. (2.75)

=
1

2π
V [

λ(1)2
t Had(x, p;λ(1)

t , λ(2)
t ); 1, 0

]
+ O (

dλ(1)2
t

)
Eq. (2.75)

=
1

2π
V [

Had(x, p;λ(1)
t , λ(2)

t );λ(1)
t , λ(2)

t

]
+ O (

dλ(1)2
t

)
Eq. (2.55)

= J
(
x, p;λ(1)

t , λ(2)
t

)
+ O (

dλ(1)2
t

)
.
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2.3.1 Husimi’s method

Let us consider a usual QPO described by the following Hamiltonian,

Ĥad
t =

p̂2

2M
+

M
2
ω2
t x̂2. (2.82)

For this Hamiltonian, the x-representation of the wave function

⟨x |Ψ(t)⟩ =
∫
R

dx0UH
t,t0 (x |x0)⟨x0 |Ψ(t0)⟩, t ∈ [t0,∞), (2.83)

satisfies the Schröginger equation

iℏ
∂

∂t
⟨x |Ψ(t)⟩ = ⟨x |Ĥad

t |Ψ(t)⟩, (2.84)

where UH
t,t0

(x |x0) is the propagator. Here, we assume the following Gaussian form of the propagator
as the specific ansatz [55]:

UH
t,t0 (x |x0) =

√
M

2πiℏµt
ei(αt x

2+βt xx0+γt x
2
0 )/ℏ, (2.85)

where the coefficients µt , αt , βt , and γt are time-dependent real-valued functions. By substituting
Eq. (2.85) into Eq. (2.84), we have

0 =
[(
α̇t +

2
M
α2
t +

M
2
ω2
t

)
x2 +

(
β̇t +

2
M
αt βt

)
xx0 +

(
γ̇t +

β2
t

2M

)
x2

0 +
iℏ
2

(
µ̇t
µt
− 2

M
αt

)]
UH
t,t0 (x |x0).

(2.86)

We then find that four coupled ordinary differential equations (ODEs) for the time-dependent coeffi-
cients αt , βt , γt , and µt : 

µ̇t
µt
− 2

M
αt = 0,

α̇t +
2
M
α2
t +

M
2
ω2
t = 0,

β̇t +
2
M
αt βt = 0,

γ̇t +
β2
t

2M
= 0.

(2.87)

(2.88)

(2.89)

(2.90)

From Eq. (2.87), we have

αt =
M
2
µ̇t
µt
. (2.91)

By substituting Eq. (2.91) into Eq. (2.88), we obtain the equation of motion (EoM) of a CPO as

µ̈t + ω
2
t µt = 0. (2.92)

By substituting Eq. (2.91) into Eq. (2.89), we have

β̇t +
µ̇t
µt
βt = 0, ∴ βt =

B1

µt
, (2.93)
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where B1 is an integral constant. By substituting Eq. (2.93) into Eq. (2.90), we have

γ̇t +
B1

2Mµ2
t

= 0, ∴ γt = B2 −
B1

2M

∫ t

t0

dτ
µ2
τ

, (2.94)

where B2 is an integral constant. On the other hand, it is known that the short-time asymptotic form
of the propagator is

UH
t,t0 (x |x0) |t≃t0 ≃

√
M

2πiℏ(t − t0)
exp

[
i
ℏ

M
2

(x − x0)2

t − t0
+ O(t − t0)

]
, (2.95)

which satisfies

UH
t,t0 (x |x0) |t≃t0

t→t0+0−−−−−−→ δ(x − x0). (2.96)

From Eqs. (2.85) and (2.95), we can deduce the initial condition imposed on µt :

µt |t≃t0 ≃ t − t0 + O2(t − t0)
t→t0+0−−−−−−→ µt0 = 0, (2.97)

µ̇t |t≃t0 ≃ 1 + O(t − t0)
t→t0+0−−−−−−→ µ̇t0 = 1. (2.98)

Hence, when we have the solution µt of Eq. (2.92) under the initial condition Eqs. (2.97) and (2.98),
we obtain the solutions of Eqs. (2.87)–(2.90) in succession. As a result, we obtain UH

t,t0
(x |x0).

Let νt now be a second solution of Eq. (2.92) with the initial values

νt
t→t0+0−−−−−−→ νt0 = 1, (2.99)

ν̇t
t→t0+0−−−−−−→ ν̇t0 = 0. (2.100)

We consider the Wronskian Wt := µ̇tνt − µt ν̇t . From EoMs of µt and νt , we have Ẇt = 0. With the
two initial conditions [Eqs. (2.97)–(2.100)], we find

Wt = µ̇tνt − µt ν̇t = 1. (2.101)

From this, we have

νt
µt
= −

∫ t

t0

dτ
µ2
τ

. (2.102)

Here, by comparing Eq. (2.85) with Eq. (2.95) in relation to the coefficients of x, we have to set
the integral constant of βt in Eq. (2.93) as B1 = −M . We then have

βt = −
M
µt
. (2.103)

From Eq. (2.94), we have

γt =
M
2
νt
µt
+ B2. (2.104)

By comparing Eq. (2.85) with Eq. (2.95) in relation to the coefficients of x2
0, we have to set the integral

constant of γt in Eq. (2.104) as B2 = 0, then we have

γt =
M
2
νt
µt
. (2.105)
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Summarizing the above results, using the two solutions µt and νt of Eq. (2.92) that satisfy the initial
conditions (2.97)–(2.100), we can write down the propagator of the QPO as

UH
t,t0 (x |x0) =

√
M

2πiℏµt
exp

[
iM

2ℏµt
( µ̇t x2 − 2xx0 + νt x2

0)
]
. (2.106)

2.3.2 Husimi’s measure of adiabaticity

In a usual QPO, we consider the transition probability P(H)m,n
t,t0

from an initial state |n;ωt0⟩ at initial
time t0 to a certain state |m;ωt⟩ at time t ∈ [t0, tf] is

P(H)m,n
t,t0

:=
�����
"
R2

dxdx0⟨m;ωt |x⟩UH
t,t0 (x |x0)⟨x0 |n;ωt0⟩

�����
2

, (2.107)

where UH
t,t0

(x |x0) is the propagator. By using the unitary operator 11

ÛH
t,t0 :=

"
R2

dxdx0 |x⟩UH
t,t0 (x |x0)⟨x0 |, (2.108)

we can also write P(H)m,n
t,t0

= |⟨m;ωt |ÛH
t,t0
|n;ωt0⟩|2. The energy eigenfunction of the QPO [Eq. (2.82)]

for position x is given as

⟨x |n;ωt⟩ =
1

√
2nn!

(
Mωt

πℏ

)1/4

Hn

(√
Mωt

ℏ
x
)

exp
(
−Mωt

2ℏ
x2

)
, (2.109)

where the n-th-degree Hermite polynomials Hn(·) are defined as

Hn(x) := (−1)nex
2 dn

dxn
e−x

2
. (2.110)

By using Mehler’s formula:

∞∑
n=0

1
n!

(
z
2

)n
Hn(x)Hn(y) =

1
√

1 − z2
exp

[
− z2(x2 + y2) − 2zxy

1 − z2

]
, (2.111)

and the energy eigenfunction Eq. (2.109), we obtain

∞∑
n=0

zn⟨n;ωt |x⟩⟨y |n;ωt⟩ =
√

mωt

πℏ(1 − z2)
exp

[
−mωt

2ℏ
(1 + z2)(x2 + y2) − 4zxy

1 − z2

]
. (2.112)

By using Eq. (2.112), we can calculate the transition-probability generating function (TPGF) as

P (H)u,v
t,t0

:=
∞∑

n,m=0
unvmP(H)m,n

t,t0

=

∞∑
n,m=0

unvm
�����
"
R2

dxdx0⟨m;ωt |x⟩UH
t,t0 (x |x0)⟨x0 |n;ωt0⟩

�����
2

=

&
R4

dxdx0dx ′dx ′0UH∗
t,t0 (x |x0)UH

t,t0 (x ′ |x ′0)

11Eq. (2.108) may be represented as an exponential operator, ÛH
t,t0
= ⃗T exp

(
− i
ℏ

∫ t

t0
dτĤad

τ

)
, where ⃗T denotes a time

ordered product.
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×
∞∑

m=0
vm⟨m;ωt |x⟩⟨x ′ |m;ωt⟩

∞∑
n=0

un⟨n;ωt0 |x0⟩⟨x ′0 |n;ωt0⟩

=
2
µt

(
M

2πℏ

)2√
ωtωt0

(1 − u2)(1 − v2)

∫
R4

dx⃗ exp
(
−M

2ℏ
x⃗ · Ax⃗

)
=

2
µt

√
ωtωt0

(1 − u2)(1 − v2) det A
, (2.113)

where we defined

x⃗ :=

*.......,

x

x0

x ′

x ′0

+///////-
, A :=

*.......,

1+v2

1−v2ωt + i µ̇t

µt

− i
µt

− 2v
1−v2ωt

0

− i
µt

1+u2

1−u2ωt0 + i νtµt

0
− 2u

1−u2ωt0

− 2v
1−v2ωt

0
1+v2

1−v2ωt − i µ̇t

µt

i
µt

0
− 2u

1−u2ωt0

i
µt

1+u2

1−u2ωt0 − i νtµt

+///////-
, (2.114)

and used the following formula of the Gaussian integral:∫
Rn

dx⃗e−ax⃗ ·Ax⃗ =

√
(π/a)n

det A
, (2.115)

that holds for a > 0, x⃗ ∈ Rn, and the n-by-n symmetric matrix A. By using the Wronskian given by
Eq. (2.101), we obtain

det A =
1
µ2
t

2ωtωt0

(1 − u2)(1 − v2)
[
Q∗t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv

]
. (2.116)

Therefore, we have

P (H)u,v
t,t0

=

√
2

Q∗t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv
. (2.117)

We here introduced the Husimi’s measure of adiabaticity Q∗t as

Q∗t := ωt0

E (µ)
t

ωt
+ ω−1

t0

E (ν)
t

ωt
, (2.118)

where

E (µ)
t :=

1
2

( µ̇2
t + ω

2
t µ

2
t ), (2.119)

E (ν)
t :=

1
2

(ν̇2t + ω
2
t ν

2
t ), (2.120)

are the classical energies of µt and νt , respectively. The time-dependent variables, µt and νt , obey
the EoMs for the CPO with linearly independent initial conditions:

µ̈t + ω
2
t µt = 0, (µt0, µ̇t0 ) = (0, 1), (2.121)

ν̈t + ω
2
t νt = 0, (νt0, ν̇t0 ) = (1, 0). (2.122)

Q∗t is a linear combination of these two energies of the CPO divided by the common angular frequency,
E

(µ)
t

ωt
and E (ν)

t

ωt
. During an adiabatic process with the slowly changing angular frequency ω̇t ≃ 0, these

quantities are conserved as the adiabatic invariants as 1
2ωt0
= J (µ) and ωt0

2 = J (ν), respectively, which
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leads to Q∗t = 1. They are equivalent to the areas of the ellipses enclosed by the trajectories of the

CPO on the classical phase space with E (µ)
t0
= 1

2 and E (ν)
t0
=

ω2
t0
2 determined from the initial conditions

in Eqs. (2.121) and (2.122).
If Q∗t = 1, the TPGF becomes P (H)u,v

t,t0
��Q∗t=1 =

1
1−uv =

∑∞
n,m=0 unvmδm,n, which means P(H)m,n

t,t0
=

δm,n. In this case, the time evolution is adiabatic (transitionless). This fact can also be confirmed as
below. By taking the first derivative of Eq. (2.117) with respect to v and putting v = 1, we obtain

∞∑
n=0

un
∞∑

m=0
mP(H)m,n

t,t0
=
∂P (H)u,v

t,t0

∂v

�����v=1
=

Q∗t (1 + u) − (1 − u)
2(1 − u)2 . (2.123)

By expanding the right-hand side of Eq. (2.123) with respect to u, we can show the following relation
between Q∗t and the mean quantum number ⟨m⟩Hn,t :=

∑∞
m=0 mP(H)m,n

t,t0
[55, 56]:

Q∗t =
⟨m⟩Hn,t + 1

2

n + 1
2
. (2.124)

Therefore, we find ⟨m⟩Hn,t = n when Q∗t = 1, from which we conclude P(H)m,n
t,t0

= δm,n.
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Chapter 3

Adiabaticity and Invariants in a
Continuous-time Control

This chapter is mainly based on the contents from the published paper [57]. One exception is Sec. 3.5,
which is based on the unpublished work [58].

3.1 Introductory remarks for chapter 3

In the previous chapter 2, we reviewed the quantum and classical adiabatic evolution, the shortcuts
to adiabaticity (STA), and the quantum-classical correspondence in a quantum parametric oscillator
(QPO) based on Husimi’s method. In this chapter 3, we shall discuss the relation between STA and
Husimi’s method.

Suppose that we can vary external parameters of a system to control it. An adiabatic process is
the dynamics of the system with the external parameters changing slowly enough compared to the
intrinsic time scale of the system. An adiabatic invariant is a quantity that is conserved in the limit
of infinitely slow change of the control parameter. Adiabatic invariants appear in both classical and
quantum mechanics. A classical example of an adiabatic invariant is the volume V enclosed by a
trajectory γ⃗ph

t in a two-dimensional phase space Γ. A quantum analog of the adiabatic invariant is the
principal quantum number, which labels different energy levels. Ideally, a quantum system exhibits
no transition between energy levels during an adiabatic process, whereas in a realistic process carried
out for a finite duration, the adiabatic invariant is not conserved and transition occurs in a quantum
realm.

The quantum adiabatic theorem, which was discussed in Sec. 2.1.2, is summarized as follows.
Suppose that the system obeys a Hamiltonian Ĥad

t = Ĥad(λ⃗t ), which is a function of external time-
dependent parameters λ⃗t . The instantaneous eigenstate |n; λ⃗t⟩ satisfies Ĥad

t |n; λ⃗t⟩ = Ead
n,t |n; λ⃗t⟩. The

quantum adiabatic theorem ensures that the solution of the time-dependent Schrödinger equation is
approximated with the instantaneous eigenstate if the initial state is an instantaneous eigenstate and
the parameters λ⃗t vary slowly enough. Under this adiabatic approximation, the solution |Ψ(t)⟩ of the
Schrödinger equation, iℏ d

dt |Ψ(t)⟩ = Ĥad
t |Ψ(t)⟩, is given by [Eq. (2.20)]

|Ψ(t)⟩ ≃
∞∑
n=0

Cneiξnt |n; λ⃗t⟩, (3.1)

with the time-independent coefficients Cn and the time-dependent phases ξn,t , which is given in
Eq. (2.21).

We discussed the propagator of the QPO in Sec. 2.3. For the QPO, the propagator can be
expressed in terms of the solutions of the corresponding classical parametric oscillator (CPO). From
the propagator, one can define a transition-probability generating function (TPGF) for probabilities
between arbitrary two states. Husimi found that the TPGF of the QPO is characterized by a parameter
Q∗t , which is called Husimi’s measure of adiabaticity. The value of Q∗t is unity if and only if
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no transitions occur between arbitrary instantaneous eigenstates. Besides, Q∗t is a function of two
adiabatic invariants of the CPO [Eq. (2.118)]. Each adiabatic invariant is defined in terms of each
solution of the CPO [Eqs. (2.121) and (2.122)].

Among the various methods in STA, the transitionless tracking (TT) algorithm introduces a
counter-diabatic Hamiltonian Ĥcd

t Eqs. (2.41)–(2.43) for canceling the deviation from exact tracking
along instantaneous eigenstates of the original adiabatic Hamiltonian Ĥad

t [15]. In this method, it
is assumed that the system obeys the total Hamiltonian ĤTT

t = Ĥad
t + Ĥcd

t , which we call the TT
Hamiltonian. Then, the adiabatic approximate solution Eq. (3.1) becomes an exact solution of the
Schrödinger equation for ĤTT

t . For a case in which the original Hamiltonian Ĥad
t is a QPO, the

counter-diabatic Hamiltonian Ĥcd
t has been calculated explicitly [50] (Eq. (2.52)).

On the other hand, Husimi showed that the TPGF of the QPO without the counter-diabatic term
is a function of an adiabatic invariant. Then, it is natural to ask what type of parameter characterizes
the TPGF of the QPO with the counter-diabatic term. For answering this question, it is necessary to
calculate the TPGF of the QPO with the counter-diabatic term by applying Husimi’s method.

Here, we characterize the QPO with the counter-diabatic term by using a TPGF with a new
parameter. By introducing an instantaneous eigenstate of the TT Hamiltonian, we apply Husimi’s
method to the QPO with the counter-diabatic term to obtain the propagator expressed with independent
solutions of the corresponding CPO (Sec. 3.2). By using this propagator, we obtain the TPGF with the
time-dependent parameter [Eqs. (3.15) and (3.21)], from which the adiabatic process in an arbitrary
short time achieved by the TT algorithm is easily characterized (Sec. 3.3). We obtain this parameter
by solving the equations of the CPO by using the phase-amplitude method [59]. We illustrate this
result by exhibiting some trajectories of the solutions of the CPO of a specific case, which visualize
the effect of the counter-diabatic term of the QPO on the classical phase space (Sec. 3.4). We also
introduce the extended Husimi’s measure of adiabaticity to characterize the TT algorithm in terms of
dynamical-invariant perspectives (Sec. 3.5).

3.2 Propagator of a QPO with the counter-diabatic Hamiltonian

For the convenience of later arguments, we shall rewrite the TT Hamiltonian of a QPO [Eq. (3.2)] and
derive a propagator of the QPO with a counter-diabatic term concretely by applying Husimi’s method.

3.2.1 Bosonic operator and instantaneous eigenstates for the TT Hamiltonian

Let ωt,M, x̂, and p̂ be, the angular frequency at time t, mass, position operator, and momentum
operator, respectively, where x̂ and p̂ satisfy the canonical commutation relation [x̂, p̂] = iℏ. For the
QPO, the TT Hamiltonian ĤTT

t is given by [50]

ĤTT
t =

p̂2

2M
+

M
2
ω2
t x̂2︸             ︷︷             ︸

Ĥad
t

−1
2
ω̇t

ωt

x̂ p̂ + p̂x̂
2︸             ︷︷             ︸

Ĥcd
t

, (3.2)

where Ĥad
t and Ĥcd

t denote the adiabatic Hamiltonian and the counter-diabatic one, respectively. We
denote the time derivative by a dot.

We rewrite ĤTT
t of the QPO in Eq. (3.2) with the instantaneous (Bosonic) ladder operator b̂t as

ĤTT
t = ℏΩt

(
b̂†t b̂t +

1
2

)
, (3.3)
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where

Ωt :=

√
ω2
t −

(
1
2
ω̇t

ωt

)2

, (3.4)

b̂t :=
√

MΩt

2ℏ

(
ζt x̂ +

i p̂
MΩt

)
, with ζt := 1 +

1
2iΩt

ω̇t

ωt
. (3.5)

Since b̂t satisfies the Bosonic commutation relation [b̂t, b̂†t ] = 1, ĤTT
t can be regarded as the Hamilto-

nian of a certain type of harmonic oscillator with the energy-level interval ℏΩt . We assume Ωt > 0 to
avoid trap inversion. We adopt the Schrödinger picture to interpret these operators at time t. It is to be
noted that the Bosonic operators, b̂t and b̂†t , defined at different times do not have simple commutation
relations.

Let |n;Ωt⟩ be an instantaneous n-th excited energy eigenstate of ĤTT
t in Eq. (3.3) that satisfies√

n!|n;Ωt⟩ = b̂†nt |0;Ωt⟩ and b̂†t b̂t |n;Ωt⟩ = n|n;Ωt⟩, where the vacuum state |0;Ωt⟩ is defined as
b̂t |0;Ωt⟩ = 0. The instantaneous n-th excited energy eigenfunction in the position representation is
given as (see Appendix A.1)

⟨x |n;Ωt⟩ =
1

√
2nn!

(
MΩt

πℏ

)1/4

Hn

(√
MΩt

ℏ
x
)

exp
(
− ζt MΩt

2ℏ
x2

)
, (3.6)

where Hn(·) are the n-th-degree Hermite polynomials [Eq. (2.110)].

3.2.2 Propagator based on Husimi’s method

We calculate the probability for the transition from an initial state |n;Ωt0⟩ at initial time t0 to a certain
state |m;Ωt⟩ at time t ∈ [t0, tf]

Pm,n
t,t0

:=
�����
"
R2

dxdx0⟨m;Ωt |x⟩UTT
t,t0 (x |x0)⟨x0 |n;Ωt0⟩

�����
2

, (3.7)

where UTT
t,t0

(x |x0) is the propagator associated to the Hamiltonian ĤTT
t in Eq. (3.3). If we define the

unitary time-evolution operator

ÛTT
t,t0 :=

"
R2

dxdx0 |x⟩UTT
t,t0 (x |x0)⟨x0 |, (3.8)

we can also write Pm,n
t,t0
= |⟨m;Ωt |ÛTT

t,t0
|n;Ωt0⟩|2. The TT algorithm usually imposes the boundary

condition ω̇t0 = ω̇tf = 0 (Ĥcd
t0
= Ĥcd

tf
= 0) at the initial and final times t = t0 and tf , respectively, such

that the instantaneous eigenstates of the original Hamiltonian, Ĥad
t , and the TT Hamiltonian, ĤTT

t ,
coincide with these times. However, we first consider the transition probability of Eq. (3.7) without a
boundary condition on ωt and later impose this boundary condition.

By applying Husimi’s method [55], we obtain the concrete propagator as (see Appendix A.2 for
derivation and also see Appendix B for more generalized cases)

UTT
t,t0 (x |x0) =

√
M

2πiℏµt
exp

[
iM
2ℏ

{(
µ̇t
µt
+

1
2
ω̇t

ωt

)
x2 − 2xx0

µt
+

(
νt
µt
− 1

2
ω̇t0

ωt0

)
x2

0

}]
, (3.9)

where µt and νt are the solutions of the equations of motion (EoMs) of the CPO with different initial
conditions at t = t0:

µ̈t + Ω̃
2
t µt = 0, (µt0, µ̇t0 ) = (0, 1), (3.10)

ν̈t + Ω̃
2
t νt = 0, (νt0, ν̇t0 ) = (1, 0), (3.11)
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where

Ω̃t :=

√
Ω2

t +
1
2

d
dt
ω̇t

ωt
=

√
ω2
t −

3
4
ω̇2
t

ω2
t

+
1
2
ω̈t

ωt
. (3.12)

Here it should be noted that the angular frequency Ω̃t is not equal to ωt of the original oscillator
[Eq. (2.82)] nor to Ωt of the transitionless-tracked oscillator [Eq. (3.3)], in general. We can confirm
that the solutions µt and νt satisfying Eqs. (3.10) and (3.11) are linearly independent by verifying that
the Wronskian Wt is a non-zero constant at an arbitrary time t:

Wt := µ̇tνt − µt ν̇t = 1. (3.13)

Note that µt has the dimension of time, whereas νt is dimensionless.

3.3 Measure of adiabaticity characterizing the transitionless tracking
algorithm

In this section 3.3, we derive a measure of adiabaticity of the QPO with the counter-diabatic term by
applying Husimi’s method.

3.3.1 Transition-probability generating function

Although the concrete expression for the transition probabilities in Eq. (3.7) is complicated (Eqs. (A.58)
and (A.59)), its generating function,

Pu,v
t,t0

:=
∞∑

n,m=0
unvmPm,n

t,t0
, (3.14)

becomes a rather simple expression (see Appendix A.3 for detailed calculation):

Pu,v
t,t0
=

√
2

QTT
t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv

, (3.15)

where QTT
t is a time-dependent parameter defined as

QTT
t := Ωt0

E (µ)
t

Ωt
+Ω−1

t0

E (ν)
t

Ωt
+
ω̇t

ωt

Ω2
t0
µ̇t µt + ν̇tνt +

1
2
ω̇t

ωt
(Ω2

t0
µ2
t + ν

2
t )

ΩtΩt0

. (3.16)

Here, we have introduced the two classical “energies” as (see just after Eq. (3.23) for more detail)

E (µ)
t :=

1
2

( µ̇2
t +Ω

2
t µ

2
t ), (3.17)

E (ν)
t :=

1
2

(ν̇2t +Ω
2
t ν

2
t ). (3.18)

Note that the angular frequency Ωt in the definition of the “energy” is different from the angular
frequency Ω̃t in the EoMs (3.10) and (3.11) for µt and νt in general. We can simplify this parameter
QTT

t by imposing ω̇t0 = 0 (Ĥcd
t0
= 0). In this case, the initial state is |n;Ωt0⟩ = |n;ωt0⟩. Then, the
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solutions of µt and νt in Eqs. (3.10) and (3.11) are

µt =
1

√
ωtωt0

sin
(∫ t

t0

ωτdτ
)
; ω̇t0 = 0, (3.19)

νt =

√
ωt0

ωt
cos

(∫ t

t0

ωτdτ
)
; ω̇t0 = 0, (3.20)

respectively; 12 these solutions will be derived in Sec. 3.3.3. Then, by substituting Eqs. (3.19) and
(3.20) into Eq. (3.16), we find that the third term in Eq. (3.16) vanishes and that the former two terms
are reduced to

QTT
t =

ωt

Ωt
; ω̇t0 = 0. (3.21)

The key to obtaining this simple form is the explicit solutions Eqs. (3.19) and (3.20), despite the time
dependence of ωt . The TPGF in Eq. (3.15) with the simple time-dependent parameter Eq. (3.21) is
the main result of the chapter 3.

As in the case of Eq. (2.124), we can show the following relation between QTT
t and the mean

quantum number ⟨m⟩TT
n,t :=

∑∞
m=0 mPm,n

t,t0
[55, 56]:

QTT
t =

⟨m⟩TT
n,t +

1
2

n + 1
2
. (3.22)

When QTT
t = 1, we find ⟨m⟩TT

n,t = n and can show Pu,v
t,t0

��QTT
t =1 =

1
1−uv , from which Pm,n

t,t0
= δm,n (no

transition) follows. Indeed, by letting |n;Ωtf ⟩ = |n;ωtf ⟩ be the final state under imposing ω̇tf = 0
(Ĥcd

tf
= 0), we find that our new parameter QTT

t in Eq. (3.21) at t = tf is unity. This implies Pm,n
tf,t0
= δm,n,

and the transitionless tracking is achieved.

3.3.2 Comparison between Q∗t and QTT
t

While Husimi calculated the TPGF in (2.117) for the oscillator without the counter-diabatic term,
we calculated the one in Eq. (3.15) for the oscillator with the counter-diabatic term. The results in
Eqs. (2.117) and (3.15) look almost identical. Only the difference is the expression of the parameter
QTT

t ; while Husimi’s definition in Eq. (2.118), our definition is Eq. (3.16) or Eq. (3.21). The Husimi’s
parameter Q∗t , Eq. (2.118), is a linear combination of the two energies of the CPO divided by the

common angular frequency, E
(µ)
t

ωt
and E (ν)

t

ωt
. During an adiabatic process with the slowly changing

angular frequency ω̇t ≃ 0, these quantities are conserved as the adiabatic invariants as J (µ) := 1
2ωt0

and J (ν) := ωt0
2 , respectively. They are equivalent to the areas of the ellipses enclosed by the

trajectories of the CPO on the classical phase space with E (µ)
t0
= 1

2 and E (ν)
t0
=

ω2
t0
2 determined from

12Despite the time dependence of ωt , the Heisenberg equation for x̂(t) and p̂(t) of this system can also be solved. The
equation is given as 

dx̂(t)
dt
=

1
iℏ

[x̂(t), ĤTT
t ] =

p̂(t)
M
− x̂(t)

2
ω̇t
ωt
,

dp̂(t)
dt
=

1
iℏ

[p̂(t), ĤTT
t ] =

p̂(t)
2
ω̇t
ωt
− Mω2

t x̂(t).

Based on the method developed in Ref. [60], we can obtain the solutions as

x̂(t) =
√
ωt0
ωt

[
x̂(t0) cos

(∫ t

t0

ωτdτ
)
+

p̂(t0)
Mωt0

sin
(∫ t

t0

ωτdτ
)]
,

p̂(t) =
√
ωt
ωt0

[
p̂(t0) cos

(∫ t

t0

ωτdτ
)
− Mωt0 x̂(t0) sin

(∫ t

t0

ωτdτ
)]
.
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the initial conditions in Eqs. (2.121) and (2.122). In contrast to Eqs. (3.10) and (3.11), which have the
explicit solutions given by Eqs. (3.19) and (3.20), respectively, we may not obtain explicit solutions
for Eqs. (2.121) and (2.122). Therefore, we can not obtain a simple form as in Eq. (3.21) for this usual
QPO. However, Q∗t ≃ 1 holds during the adiabatic process owing to the existence of these adiabatic
invariants. This is an expression of the quantum adiabatic theorem as it implies Pm,n

t,t0
= δm,n for any t.

For a comparison with Husimi’s measure of adiabaticity, it is convenient to express QTT
t in

Eq. (3.21) as

QTT
t = ωt0

E (µ)
t

Ωt
+ ω−1

t0

E (ν)
t

Ωt
; ω̇t0 = 0. (3.23)

It should be noted that these “energies,” E (µ)
t and E (ν)

t , are defined with the angular frequency Ωt that
appeared in the QPO with the TT Hamiltonian in Eq. (3.4), but µt and νt are solutions of the equations
of the CPO in Eqs. (3.10) and (3.11) with the angular frequency Ω̃t . We can rewrite E (µ)

t and E (ν)
t as

(see Sec. 3.3.3)

E (µ)
t =

ωt

2ωt0

−
(
µ̇t +

µt
2
ω̇t

ωt

)
µt
2
ω̇t

ωt
; ω̇t0 = 0, (3.24)

E (ν)
t =

ωt0ωt

2
−

(
ν̇t +

νt
2
ω̇t

ωt

)
νt
2
ω̇t

ωt
; ω̇t0 = 0, (3.25)

respectively. Because E (µ)
t0
= 1

2 and E (ν)
t0
=

ω2
t0
2 for ω̇t0 = ω̇tf = 0 readily follow from the initial

conditions in Eqs. (3.10) and (3.11), by using Eqs. (3.24) and (3.25), we can also show that E (µ)
tf
=

ωtf
2ωt0

and E (ν)
tf
=

ωt0ωtf
2 . Therefore, we obtain

E (µ)
t0

ωt0
=
E (µ)
tf

ωtf
= J (µ) and

E (ν)
t0

ωt0
=
E (ν)
tf

ωtf
= J (ν), i.e., at both the

initial and final times, the values of these “energies" divided by the common angular frequency Ωt

agree with the adiabatic invariants J (µ) and J (ν). This explains the reason for QTT
tf
= 1 at the final

time tf in a manner comparable to Husimi’s measure of adiabaticity. During the intermediate times,
however, QTT

t = 1 does not hold in general, because the exact solution Eq. (3.1) for the TT Hamiltonian
may be diabatic (non-adiabatic) with respect to the instantaneous eigenstate of this Hamiltonian [50].
This behavior may be similar to that of the system with the fast-forward method [20] being applied,
where the system is allowed to deviate from the original adiabatic path and returns to it only at the
end of the process. We note that in our case with the TT algorithm the state vector itself always tracks
the original adiabatic path given by Eq. (3.1).

3.3.3 Derivation of key equations

In this subsection, we derive the key equations Eqs. (3.19), (3.20), (3.24), and (3.25).
We first derive Eqs. (3.19) and (3.20) as the solutions of Eqs. (3.10) and (3.11), respectively, by

using the phase-amplitude method [59]. We define the time-dependent function ρt in terms of the two
linearly independent solutions µt and νt satisfying Eqs. (3.10) and (3.11), respectively, as

ρt :=

√
Ω2

t0
µ2
t + ν

2
t

Ωt0

. (3.26)
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We can then rewrite the Wronskian in Eq. (3.13) by eliminating either µt or νt as

Wt =



− ρt√
Ω−1

t0
ρ2t − µ2

t

( ρ̇t µt − ρt µ̇t ) =: W (µ)
t ,

ρt√
Ωt0 ρ

2
t − ν2t

( ρ̇tνt − ρt ν̇t ) =: W (ν)
t ,

(3.27)

(3.28)

where we note that Wt = W (µ)
t = W (ν)

t = 1 holds for an arbitrary time t. The time-evolution equation
of ρt in Eq. (3.26) is obtained by differentiating the Wronskian of Eqs. (3.27) and (3.28) with respect
to time t and by using Eqs. (3.10), (3.11), and (3.13) (see Appendix A.4):

ρ̈t + Ω̃
2
t ρt =

W2
t

ρ3t
, (3.29)

which is called the Ermakov equation [61–63]. On the other hand, by integrating Eqs. (3.27) and
(3.28), we obtain

µt =
ρt√
Ωt0

sin θt, (3.30)

νt =
√
Ωt0 ρt cos θt, (3.31)

where

θt :=
∫ t

t0

W (µ)
τ

ρ2τ
dτ =

∫ t

t0

W (ν)
τ

ρ2τ
dτ (3.32)

is a phase function (see Appendix A.5). This description of the coordinate variables µt and νt in
terms of ρt and θt is called the phase-amplitude method [59]. The Wronskian Wt is then given by
Wt = ρ

2
t θ̇t by differentiating θt with respect to time t. From this Wronskian represented by ρt and θt ,

we can derive a general expression of the Ermakov equation based on the phase-amplitude method as
(see Appendix A.5)

ρ̈t + f 2
t ρt =

W2
t

ρ3t
, (3.33)

where

f t :=

√
θ̇2t −

3
4
θ̈2t

θ̇2t
+

1
2

...
θ t

θ̇t
. (3.34)

Since ρt obeys Eq. (3.29), by comparing the two expressions, we find Ω̃t = f t from Eq. (3.12). If
ω̇t0 = 0, we can self-evidently identify the time differential of the phase function θt with the angular
frequency ωt as

θ̇t = ωt ; ω̇t0 = 0. (3.35)

The Wronskian Wt is rewritten by

Wt = ρ
2
tωt ; ω̇t0 = 0. (3.36)
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Noting Wt = 1, we obtain the explicit solution of the Ermakov equation [Eq. (3.29)] as

ρt =
1
√
ωt

; ω̇t0 = 0. (3.37)

Here, the condition of ω̇t0 = 0 in Eqs. (3.35)–(3.37) is necessary for the following reason. From the

definition of ρt in Eq. (3.26), we find ρt0 =
√
Ω2

t0
µ2
t0
+ν2

t0
Ωt0

= 1√
Ωt0

by using Eqs. (3.10) and (3.11). For

this expression to be consistent with 1√
ωt0

, we must require ω̇t0 = 0. By substituting Eq. (3.37) into
Eqs. (3.30) and (3.31), we obtain Eqs. (3.19) and (3.20), respectively.

We next derive Eqs. (3.24) and (3.25). We define the Ermakov-Lewis (EL) invariant [21, 64] as

IEL
t :=



Ωt0

2

[
( ρ̇t µt − ρt µ̇t )2 +W (µ)2

t

(
µt
ρt

)2]
=: IEL(µ)

t ,

1
2Ωt0

[
( ρ̇tνt − ρt ν̇t )2 +W (ν)2

t

(
νt
ρt

)2]
=: IEL(ν)

t .

(3.38)

(3.39)

It can be shown [65] that the Ermakov-Lewis invariant can be related to the Wronskian, Eqs. (3.27)
and (3.28), as

IEL
t = IEL(µ)

t = IEL(ν)
t =

W2
t

2
. (3.40)

Then, from Eqs. (3.36) and (3.38)–(3.40), we rewrite the Wronskian Wt in terms of the coordinate
variables µt and νt and angular frequency ωt as (see Appendix A.6)

W (µ)
t =

2ωt0

ωt

[
E (µ)
t +

(
µ̇t +

µt
2
ω̇t

ωt

)
µt
2
ω̇t

ωt

]
; ω̇t0 = 0, (3.41)

W (ν)
t =

2
ωtωt0

[
E (ν)
t +

(
ν̇t +

νt
2
ω̇t

ωt

)
νt
2
ω̇t

ωt

]
; ω̇t0 = 0. (3.42)

By noting Wt = W (µ)
t = W (ν)

t = 1, we obtain Eqs. (3.24) and (3.25) from Eqs. (3.41) and (3.42),
respectively.

3.4 Example: cubic-function angular frequency

Here we illustrate the effect of the counter-diabatic term on the trajectory in the classical phase space.
We consider a specific case where the angular frequency of the QPO is a cubic function of time
t ∈ [t0, tf],

ωt = ω0 + (ωf − ω0)
[
1 + 2

(tf − t0)(tf − t)
t2
0 + t2

f

] (
t − t0

tf − t0

)2

, (3.43)

which satisfies ωt0 = ω0, ωtf = ωf , and ω̇t0 = ω̇tf = 0. Here, we consider three cases with different
final times tf = 0.2, 0.5, 2.0 and set t0 = 0 and (ω0, ωf ) = (2, 4) (see Fig. 3.1). In Fig. 3.2, we show
some phase-space trajectories of the CPO, which are the solutions of Eqs. (3.10) and (3.11). For
every final time tf , we can find that the final points of the trajectories are always on the same targeted
energy shells E (µ)

tf
=

ωtf
2ωt0
=

ωf
2ω0

and E (ν)
tf
=

ωt0ωtf
2 =

ω0ωf
2 with the aid of the counter-adiabatic term,

implying the success of the TT algorithm. On the other hand, E (µ)
tf

and E (ν)
tf

at the final points of the
trajectories given by Eqs. (2.121) and (2.122), respectively, vary depending on tf , failing to achieve
the same final state as that of the adiabatic processes unless a sufficiently large tf is taken.
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ωf = 4

ω0 = 2

t0 = 0 tf = 0.2, 0.5, 2.0

Figure 3.1: Time evolution of the angular frequency Eq. (3.43) given as the cubic
function.

In Fig. 3.3, we show the time dependence of the parameters QTT
t and Q∗t together with the quantities

E (X )
t

Ωt
and E (X )

t

ωt
(X := µ or ν) in the insets, for the trajectories in Fig. 3.2. We can find that the equality

E (X )
t

Ωt
= J (X) holds at the final points at t = tf as expected. That is, QTT

t is unity at every final time tf

we chose, but it is not so for the intermediate times . Without the counter-diabatic Hamiltonian Ĥcd
t ,

the areas enclosed by the trajectories were well defined. In Fig. 3.3, E (X )
t

ωt
= J (X) holds for an arbitrary

time t only if a sufficiently large tf is taken.
In Fig. 3.4, we show two transition probabilities P0,0

t,t0
and P1,1

t,t0
obtained using the time evolution of

QTT
t and Q∗t in Fig. 3.3. By a selection rule [55], only transitions between even or odd quantum-number

states are allowed (see Appendix A.7).
We note that, in the fastest case of tf = 0.2 in Fig. 3.3, Ωt temporarily attains an imaginary

value after QTT
t shows diverging behavior as Ωt → 0. Because ĤTT in Eq. (3.3) has a continuous

energy spectrum in this time interval, the transition probabilities in Eq. (3.7) using the discrete energy
spectrum cannot be defined there (the gray-shaded regions in the insets of Fig. 3.4 represent these
time intervals). As the time evolution approaches the final state, however, Ωt becomes a real number
again.

3.5 Measure of adiabaticity from dynamical-invariant perspectives

3.5.1 Canonical transformation of the CPO

In Sec. 3.2.2, we defined the transition probability Eq. (3.7) between the instantaneous eigenstates
of the TT Hamiltonian and calculated its TPGF (3.15). Here we introduce the transition probability
between the instantaneous eigenstates of the adiabatic Hamiltonian,

P̄m,n
t,t0

:=
�����
"
R2

dxdx0⟨m;ωt |x⟩UTT
t,t0 (x |x0)⟨x0 |n;ωt0⟩

�����
2

, (3.44)

where UTT
t,t0

(x |x0) was given in Eq. (3.9). We can also write P̄m,n
t,t0
= |⟨m;ωt |ÛTT

t,t0
|n;ωt0⟩|2. We let Xt

be a solution of the EoM

Ẍt + Ω̃
2
t Xt = 0, Xt = µt or νt, (3.45)

with different initial conditions of (µt0, µ̇t0 ) = (0, 1) and (νt0, ν̇t0 ) = (1, 0). We regard the variables
Xt and Ẋt as a pair of classical canonical variables, that is, Xt and P(X)

t := Ẋt , respectively. The



32 Chapter 3. Adiabaticity and Invariants in a Continuous-time Control

µ

µ̇

tf = 0.2

tf = 0.5

tf = 2.0

(a)

0.4 0.2 0.0 0.2 0.4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

ν

ν̇

_

|

tf = 0.2

tf = 0.5

tf = 2.0

(b)

1.0 0.5 0.0 0.5 1.0
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Figure 3.2: The trajectories of the classical parametric oscillator (CPO) in the phase
space. (a) The colored solid curves are solutions µt of Eq. (3.10). The colored dashed
curves are solutions µt of Eq. (2.121). The final time tf is varied. The monochromatic
ellipses are the energy shells at the initial and the final times. (b) The colored solid
curves are solutions νt of Eq. (3.11). The colored dashed curves are solutions νt
of Eq. (2.122). The arrows point the initial points (0, 1) for (a) and (1, 0) for (b).
The initial conditions are chosen to have E (µ)

t0
= 1

2 for (a) and E (ν)
t0
=

ω2
0

2 = 2 for
(b). The final boundary conditions are chosen to have E (µ)

tf
=

ωf
2ω0
= 1 for (a) and

E (ν)
tf
=

ω0ωf
2 = 4 for (b).

Hamiltonian for Eq. (3.45) is given as

H (X)
t ≡ H (X) (Xt, P

(X)
t ) :=

1
2

(P(X)2
t + Ω̃2

t X2
t ). (3.46)

We then introduce the generating function of a type II canonical transformation between (Xt, P
(X)
t )

and (x (X)
t , p

(X)
t ) [23, 66] as

F (Xt, p
(X)
t , t) := p(X)

t Xt −
X2
t

4
ω̇t

ωt
. (3.47)

By using Eq. (3.47), we find that these canonical variables are related as


P(X)
t =

∂F (Xt, p
(X)
t , t)

∂Xt
= p(X)

t − Xt

2
ω̇t

ωt
,

x (X)
t =

∂F (Xt, p
(X)
t , t)

∂p(X)
t

= Xt .

(3.48)

(3.49)



3.5. Measure of adiabaticity from dynamical-invariant perspectives 33

0.0 0.5 1.0 1.5 2.0

1.00

1.05

1.10

1.15

1.20

0.0 0.5 1.0 1.5 2.0

0.15

0.20

0.25

0.30

0.35

0.0 0.5 1.0 1.5 2.0
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Q
T
T

t
,Q

∗ t

t

t

t

tf = 0.2

tf = 0.5

tf = 2.0

E
(µ

)
t

/
Ω

t
,
E

(µ
)

t
/
ω
t

E
(ν

)
t

/
Ω

t
,
E

(ν
)

t
/
ω
t

J
(µ)

J
(ν)

Figure 3.3: The adiabaticity measures as a function of the time t. If the value of
these measures at the final time is unity, the complete transitionless control is attained.
Q∗t (dashed curve) is the Husimi’s parameter for the quantum parametric oscillator
without the counter-diabatic control. QTT

t (solid curve) is defined for the quantum
parametric oscillator with the counter-diabatic control. The insets show comparison
of the quantities E

(X )
t

Ωt
and E (X )

t

ωt
with the ideal invariants J (X) .

By using Eqs. (3.46)–(3.49), we can define the Hamiltonian for the canonical variables (x (X)
t , p

(X)
t ) as

HTT(X) (x (X)
t , p

(X)
t ) := H (X) (Xt, P

(X)
t ) +

∂F (Xt, p
(X)
t , t)

∂t
, (3.50)

which turns out to be

HTT(X)
t = Had(X)

t + Hcd(X)
t , (3.51)

where

Had(X)
t :=

1
2

(p(X)2
t + ω2

t x (X)2
t ), (3.52)

Hcd(X)
t := −1

2
ω̇t

ωt
x (X)
t p(X)

t . (3.53)

The Hamiltonian Hcd(X)
t in Eq. (3.53) is the same as the counter-dissipative Hamiltonian in Eq. (2.81) [23].

The Hamilton equation of Eq. (3.51) is given as


ẋ (X)
t =

∂HTT(X)
t

∂p(X)
t

= p(X)
t −

x (X)
t

2
ω̇t

ωt
,

ṗ(X)
t = −

∂HTT(X)
t

∂x (X)
t

=
p(X)
t

2
ω̇t

ωt
− ω2

t x (X)
t .

(3.54)

(3.55)
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Figure 3.4: Transition probabilities between (a) even and (b) odd quantum-number
states, n,m = 0 and n,m = 1, respectively, as functions of time t. The solid (dashed)
curves represent the probabilities with (without) the counter-diabatic term. The gray-
shaded regions in the insets represent the time intervals in which the Ωt becomes
imaginary, and hence the instantaneous energy spectrum becomes continuous for the
case of tf = 0.2.

From Eq. (3.54), the generalized momentum p(X)
t can be written by the generalized position x (X)

t as

p(X)
t = ẋ (X)

t +
x (X )
t

2
ω̇t

ωt
. By eliminating p(X)

t from Eq. (3.55), we have the same EoM as Eq. (3.45):

ẍ (X)
t + Ω̃2

t x (X)
t = 0. (3.56)

The initial conditions of the canonical variables (x (X)
t , p

(X)
t ) are (x (µ)

t0
, p(µ)

t0
) = (0, 1) and (x (ν)

t0
, p(ν)

t0
) =(

1, 1
2
ω̇t0
ωt0

)
.
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3.5.2 Extended Husimi’s measure of adiabaticity

By using the variables (x (X)
t , p

(X)
t ), we can rewrite the propagator [Eq. (3.9)] as

UTT
t,t0 (x |x0) =

√
M

2πiℏx (µ)
t

exp
[

iM

2ℏx (µ)
t

{
p(µ)
t x2 − 2xx0 + (x (ν)

t − p(ν)
t0

x (µ)
t )x2

0
}]
. (3.57)

For the propagator Eq. (3.57), we calculate the TPGF as

P̄u,v
t,t0

:=
∞∑

n,m=0
unvmP̄m,n

t,t0

=

√
2

Q̄TT
t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv

. (3.58)

In this case, a measure of adiabaticity is given as 13

Q̄TT
t := ωt0

Ē (µ)
t

ωt
+ ω−1

t0

Ē (ν)
t

ωt
; ω̇t0 = 0, (3.59)

which we call the extended Husimi’s measure of adiabaticity. We have introduced the two classical
energies as

Ē (X)
t :=

1
2

(p(X)2
t + ω2

t x (X)2
t ). (3.60)

Note that Ē (X)
t is a function of the canonical variables (x (X)

t , p
(X)
t ), and is equal to Had(X)

t of Eq. (3.52).

We can easily show d
dt

Ē (X )
t

ωt
= 0 by using Eqs. (3.54) and (3.55). Therefore, whereas Ē (X )

t

ωt
is conserved

as the adiabatic invariant for the usual QPO driven by slowly changing Had(X)
t , it becomes the

dynamical invariant that is precisely conserved for the QPO driven by HTT(X)
t [23]. From the initial

value of x (X)
t and p(X)

t , we find Q̄TT
t = 1 for arbitrary time t ∈ [t0, tf]. This means P̄m,n

t,t0
= δm,n, that

is, a transitionless time evolution has been achieved at all time.

3.5.3 Expression of Q̄TT
t using the Ermakov-Lewis invariant

Here we introduce two types of the EL invariants in terms of the CPO, µt and νt , as

ĪEL
t :=



ωt0

2

[
( ρ̇t µt − ρt µ̇t )2 +W2

t

(
µt
ρt

)2]
=: ĪEL(µ)

t ,

1
2ωt0

[
( ρ̇tνt − ρt ν̇t )2 +W2

t

(
νt
ρt

)2]
=: ĪEL(ν)

t .

(3.61)

(3.62)

In the above, the time-dependent variable ρt is defined as a solution of the Ermakov equation [61–63],

ρ̈t + Ω̃
2
t ρt =

W2
t

ρ3t
, with ρt =

√
ω2
t0
µ2
t + ν

2
t

ωt0

. (3.63)

13Without the condition of ω̇t0 = 0, the parameter Q̄TT
t becomes

Q̄TT
t = ωt0

Ē (µ)
t

ωt
+ ω−1

t0

Ē (ν)
t

ωt
+ p(ν)

t0

p(ν)
t0

Ē (µ)
t − 2

(
p(µ)
t p(ν)

t + ω2
t x(µ)

t x(ν)
t

)
ωtωt0

,

which is generally time-dependent.
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As we have seen in Eq. (3.40), the EL invariants are equal to a half of the squared classical Wronskian
as

ĪEL
t = ĪEL(µ)

t = ĪEL(ν)
t =

W2
t

2
=

1
2
. (3.64)

By using Eqs. (3.61) and (3.62), Eqs. (3.27) and (3.28), and ρt = 1√
ωt

as the solution of Eq. (3.63),

we can rewrite Ē
(µ)
t

ωt
in Eq. (3.59) as

Ē (µ)
t

ωt
=

ĪEL(µ)
t

ωt0

,
Ē (ν)
t

ωt
= ĪEL(ν)

t ωt0 ; ω̇t0 = 0. (3.65)

We then obtain

Q̄TT
t = ĪEL(µ)

t + ĪEL(ν)
t = 1; ω̇t0 = 0. (3.66)

Therefore, Q̄TT
t itself is also an dynamical invariant.

3.5.4 Expression of a quantum version of the EL invariant using quantum Wronakians

We introduce the following quantum Wronskians [67] as

Ĝ(µ)
t :=

√
Mωt0

(
p(µ)
t x̂ − x (µ)

t

p̂
M

)
, (3.67)

Ĝ(ν)
t := −

√
M
ωt0

(
p(ν)
t x̂ − x (ν)

t

p̂
M

)
. (3.68)

By differentiating them with respect to time t and by using Eq. (3.56), we have 14

dĜ(µ)
t

dt
=
√

Mωt0 ( ẍ (µ)
t + Ω̃

2
t x (µ)

t ) x̂ = 0, (3.70)

dĜ(ν)
t

dt
= −

√
M
ωt0

( ẍ (ν)
t + Ω̃

2
t x (ν)

t ) x̂ = 0. (3.71)

The commutation relation between the quantum Wronskian Ĝ(µ)
t and Ĝ(ν)

t is related to the classical
Wronskian as [67]

[Ĝ(µ)
t , Ĝ

(ν)
t ] = iℏWt . (3.72)

If the classical Wronskian is unity, the quantum Wronskians are canonical conjugate.
We introduce the following invariant as

ˆ̄IEL
t :=

1
2

(Ĝ(µ)2
t + Ĝ(ν)2

t )

=
M
2

{ [(
ρ̇t +

ρt
2
ω̇t

ωt

)
x̂ − ρt

p̂
M

]2

+W2
t

(
x̂
ρt

)2}
, (3.73)

14From Eqs. (3.67)–(3.71) and their forms at an initial values, Ĝ(µ)
t

��t=t0= √Mωt0 x̂ and Ĝ(ν)
t

��t=t0= √
M
ωt0

(
p̂
M −

x̂
2
ω̇t0
ωt0

)
,

we find that these quantum Wronskians are constant operators of x̂ and p̂, that is,

Ĝ(µ)
t =

√
Mωt0 x̂, Ĝ(ν)

t =

√
M
ωt0

(
p̂
M
− x̂

2
ω̇t0
ωt0

)
. (3.69)
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where we used Eqs. (3.67) and (3.68). Eq. (3.73) can be regarded as the quantum EL invariant [67]
for the QPO with the counter-diabatic term. The quantum EL invariant can be expressed in terms of
the quantum Wronskians as is similar to the classical case (see Eqs. (3.61), (3.62), and (3.64)). Since
the quantum Wronskians, Ĝ(µ)

t and Ĝ(ν)
t , are conserved quantities as verified at Eqs. (3.70) and (3.71),

any polynomials of these operators with time-independent coefficients are also conserved quantities.
Since ρt = 1√

ωt
and Wt = 1, the invariant ˆ̄IEL

t is equal to the ratio of the adiabatic Hamiltonian to the
angular frequency,

ˆ̄IEL
t =

Ĥad
t

ωt
; ω̇t0 = 0. (3.74)

Because of ˆ̄IEL
t = ω

−1
t0

ÎLR
t from Eq. (2.33), we find that ˆ̄IEL

t is the LR invariant [21].
We can express ˆ̄IEL

t by using a Bosonic operator as follows [21]. From Eqs. (3.72) and (3.74), we
have

ˆ̄IEL
t |n;ωt⟩ = ℏ

(
n +

Wt

2

)
|n;ωt⟩; ω̇t0 = 0. (3.75)

Therefore, we can infer from Eq. (3.75) that another form of the quantum EL invariant becomes

ˆ̄IEL
t = ℏ

(
Â†t Ât +

Wt

2

)
= ℏ

(
â(ρ)†
t â(ρ)

t +
Wt

2

)
, (3.76)

where

Ât :=
1
√

2ℏ
(Ĝ(µ)

t + iĜ(ν)
t ), (3.77)

â(ρ)
t :=

√
M
2ℏ

{
Wt

x̂
ρt
− i

[(
ρ̇t +

ρt
2
ω̇t

ωt

)
x̂ − ρt

p̂
M

]}
, (3.78)

with relations [Ât, Â
†
t ] = [ât, â†t ] = Wt . Note that Ât is clearly a time-independent operator and

Ât , ât , i.e.,

â(ρ)
t = e−iθ

(ρ)
t

ˆ̄IEL
t /ℏ Âteiθ

(ρ)
t

ˆ̄IEL
t /ℏ = Âteiθ

(ρ)
t , (3.79)

where θ (ρ)
t :=

∫ t

t0

Wτ

ρ2
τ

dτ. Also, by defining a time-independent number operator as

n̂(ρ)
t := Â†t Ât = â(ρ)†

t â(ρ)
t , (3.80)

we can write ˆ̄IEL
t = ℏ

(
n̂(ρ)
t +

Wt

2

)
.

3.6 Concluding remarks for chapter 3

We give a few remarks on the main result of the TPGF of the QPO with the counter-diabatic term
given by Eq. (3.15).

First, we note that the phase-amplitude method is formally applicable to the CPO in Eqs. (2.121)
and (2.122) induced from the usual QPO without the counter-diabatic term; that is, it is formally
applicable to the original case considered by Husimi [55]. In this case, the Ermakov equation given
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by Eq. (3.29) is replaced with

ρ̈t + ω
2
t ρt =

W2
t

ρ3t
. (3.81)

With this replacement, the simple identification θ̇t = ωt in Eq. (3.35) is no longer applicable, and we
cannot obtain a simple solution such as Eq. (3.37) for this case in general. However, in the adiabatic
approximation of ρ̈t ≃ 0, the Ermakov equation in Eq. (3.81) has the solution given by Eq. (3.37) as
an adiabatic solution [1]:

ρt ≃
1
√
ωt

. (3.82)

This implies that the Ermakov equation given by Eq. (3.29) for the QPO with the counter-diabatic
term can have the adiabatic solution of the original Ermakov equation given by Eq. (3.81) for the usual
QPO as the exact solution. The Schrödinger equation with the TT Hamiltonian can have the adiabatic
solution of the original Schrödinger equation as the exact solution. This is an interpretation of the TT
algorithm applied to the QPO based on the TPGF approach via Husimi’s method.

Second, Beau et al. [1] recently introduced the ratio of the diabatic (non-adiabatic) mean energy
to the adiabatic one as a measure of adiabaticity of a quantum heat engine, which is represented by a
scale factor satisfying the Ermakov equation. This adiabaticity measure is equivalent to the original
Husimi’s measure of adiabaticity in the case of scale-invariant systems [68]. In contrast, our parameter
is derived from the direct calculation of the probability generating function Eq. (3.15) and includes
the adiabaticity measure as a special case. By substituting Eqs. (3.30) and (3.31) into Eq. (3.16) and
using Eq. (3.37), we can express QTT

t as

QTT
t =

1
2Ωt

(
ρ̇2t +Ω

2
t ρ

2
t +

W2
t

ρ2t

)
+
ρt
Ωt

(
ρ̇t +

ρt
2
ω̇t

ωt

)
ω̇t

ωt
. (3.83)

This expression agrees with the diabatic factor in Ref. [1] if we replace Ωt with ωt and if we impose
ω̇t0 = 0.

In this chapter, we have studied the QPO with the counter-diabatic term with the TT algorithm
based on the TPGF approach. By applying Husimi’s method, we have obtained the propagator of the
QPO with the counter-diabatic term with the two linearly independent solutions of the corresponding
CPO. By calculating the TPGF from the propagator, we have found that it contains a simple time-
dependent parameter that characterizes the success of the TT algorithm. The key to obtaining this
simple parameter was the explicit solutions of the CPO derived based on the phase-amplitude method.
We have illustrated this result by showing the trajectories of the CPO on the classical phase space and
the time dependence of our parameter by using a specific form of the angular frequency. We have also
introduced the extended Husimi’s measure of adiabaticity to characterize the TT algorithm from the
dynamical-invariant perspectives. Main points of this chapter are summarized in Tab. 3.1.
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Û
H t,
t 0
=
! R

2
dx

dx
0|

x⟩
U

H t,
t 0

(x
|x

0)
⟨x

0|
Û
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Chapter 4

Gaming the Quantum as a Discrete-time
Control

Most of this chapter is based on my work [69].
In the previous chapter 2 and 3, we have considered the continuous-time evolution and the adiabatic

control while in here we shall discuss a discrete-time unitary evolution in a quantum two-level system.

4.1 Introductory remarks for chapter 4

“Game” familiar to many people will be Go, Shogi, card games, etc. More than two “agents (or players
15)” follow the rules and aim for their victory. The issue of applied mathematics, which analyzes
the influence of a set of player’s behaviors (strategy) on each “victory/defeat,” is called game theory.
Game theory was originally introduced by von Neumann and Morgenstein [35]. Nash mathematically
formulated the composition of cooperation and non-cooperation among players in the game and also
introduced a basic concept, Nash equilibrium, which is applied in an analysis of almost all of non-
cooperative games [70]. The range of applications of game theory is wide, for example, social science,
biology, computer science, political science, and, more recently, physics [71]. In a usual setting of a
game, each player can select one of a few numbers of possible operations. The results of the game are
determined by the strategies of all players.

The game theory analyzes all “game situations.” Game situations mean that there exist multiple
decision-making entities depending on each other for their purposes. In game theory, we formalize
such game situation using a mathematical model and analyze the cooperation and non-cooperation
among players. This mathematical model is called a game.

The Prisoner’s Dilemma [72] is a game which shows that evolution of cooperative behaviors among
selfish agents is possible. The Hawk-Dove Game [73] is a model which indicates that competition
between cooperative and aggressive agents can reach a Nash equilibrium. There recently exists interest
in applying game-theoretic techniques in physics. The games are necessarily idealizations of social
and physical situations.

On the other hand, quantum computers perform computations by exploiting the quantum mechan-
ical principles of superposition, entanglement, non-locality, and interference [74]. The upsurge of
interest in quantum computing has been accompanied with increasing attention to research on quantum
information processing [75].

A game including quantum natures was independently brought by Meyer [37] and Eisert et al. [38]
in 1999. This occurrence was a starting point of quantum game theory. Naively, this theory can
be formulated by expressing a unitary operator as a quantum player’s operation and by replacing the
classical probability with a quantum amplitude. Since states of quantum games should be regarded
as quantum states, possible quantum game flows could be described as quantum circuits. In order

15A player is an essential element of the game which is the subject of decision-making. Depending on the situation we
analyzed, players are individuals such as consumers, investors, various organizations such as companies, organizations and
political parties, and a wider variety of entities such as governments and nations.
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to know the result of the quantum game, we need to do a projection measurement. Quantum games
keep coherence until we have measured the state of the quantum game. Quantum-game-theoretic
approaches could be applied to quantum communication [76] or quantum computing [77] protocols.

In a seminal paper [37], Meyer originated the “quantum penny flip game” in quantum game theory.
In non-cooperative games, he attempted to apply game theory to quantum mechanics in order to make
a thorough investigation of equilibrium behaviors of quantum algorithms. In the quantum penny flip
game, two players manipulate one invisible coin and try to control the final state of the coin. One
player is allowed to use quantum mechanical operations on the coin while another player is allowed
to use only classical operations which is commutative unitary. Meyer found a typical strategy that
always guarantees a secure victory of the quantum player against the classical one.

It has been demonstrated that quantum players are more predominant than classical players [37].
We here define the meaning of “predominance” in a game as follows. As we will see at Sec. 4.2.2
concretely, if player Q can neutralize another player P’s operations while player P cannot do so against
player Q, player Q is more predominant than player P. This definition implies that more predominant
player Q can freely decide the final state of a game if less predominant player P has just two operations.
Regarding games with malicious rules [78] in which a classical player can win against a full quantum
player [79], this classical player does not have any predominance because he may not be able to lose on
purpose, i.e., he cannot freely decide the final state of the game. Being able to win does not constitute
predominance. In this chapter, we consider that the meaning of “predominance” is more strict than
that of “advantage” which is often used in other papers.

Although there have been numerous discussions about games with quantum vs. classical players
and quantum vs. quantum players, there have been few discussions about games without any ancillary
systems with quantum vs. restricted quantum players. Such games would be useful in identifying
the precise quantum behavior that leads predominance. Namely, the following questions could
be answered. What are the conditions for the existence of the predominance/advantage of a full
quantum player under some restrictions of another quantum player? How much restriction allows
predominance/advantage of the full quantum player?

Strategies in the penny flip game can be regarded as a kind of information processing. The
quantum penny flip game was introduced to investigate the possible influence of quantum mechanics
on information processing [37, 38, 80]. The purpose of this chapter is to investigate whether quantum
operations can recover the state of a system disturbed by a classical agent. Our standpoint can be
classified as “gaming the quantum [81],” which purports to be one of the natural approaches to
exploring the quantum landscape for situations that are biasedly or unbiasedly restricted.

The remainder of this chapter is organized as follows. In Sec. 4.2, we review the classical/quantum
penny flip game. In Sec. 4.3, we change the set of classical player P’s commutative operations to
various non-commutative ones (see Sec. 4.3.1–4.3.4), find an example of quantum player Q’s winning
strategy, and calculate the general solutions of player Q’s winning strategies. In Sec. 4.4, we conclude
the chapter 4, discuss other research, and mention future work.

4.2 Classical/Quantum penny flip game

Here, we introduce the simple “penny flip game,” which is a main subject of this section.

4.2.1 Classical version

The classical penny flip game was introduced by Meyer [37]. This game has the following rules:

i) Players P and Q have a common penny coin.
ii) The initial state of the penny is heads; the penny is in a box, making it invisible to the players.
iii) Each player can choose whether to flip the penny.
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iv) The players can see neither the current state of the penny nor the other player’s previous
operation.

v) The sequence of operations is Q→ P→ Q.
vi) If the final state is heads (i.e., the final state is equal to the initial state), Q wins; otherwise, P

wins.

The payoff matrix of the game is given in Table 4.1, in which F, N , and NF represent the actions
of flip, no flip, and no flip after flip, respectively. The numbers in the matrix are the payoffs for
each player; the first index is for player P, and the second index is for player Q. For example, (−1, 1)
means that player P loses and player Q wins because the final state is heads. It is easily verified
that the probability of each player winning is 1

2 , and that there exists no pure strategy under Nash
equilibrium [70]. The probabilities of the choices of each player are denoted as p⃗ := (pN, pF ) and
q⃗ := (qNN, qNF, qFN, qFF ), respectively. The payoff functions are defined as the expectation of an
individual player as uP(p⃗, q⃗) = −uQ(p⃗, q⃗) = (1− 2pN )[1− 2(qNF + qFN )]. The mixed-strategy Nash
equilibria are given at p⃗ ∗ =

(
1
2,

1
2

)
and q⃗ ∗ =

(
q∗NN, q

∗
NF,

1
2 − q∗NF,

1
2 − q∗NN

)
, where q∗NF and q∗NN

may take any value in the range
[
0, 1

2

]
. Hence, player P’s optimal strategy is to choose either F or

N with equal probability, and player Q’s optimal strategies are to choose either the same or different
operations with equal probability. We find that the average payoffs of both players are zero at the Nash
equilibrium. Altogether, the classical penny flip game is a symmetric, zero-sum, and fair game.

Q
(P,Q) N N NF FN FF

P
N (−1, 1) (1,−1) (1,−1) (−1, 1)

F (1,−1) (−1, 1) (−1, 1) (1,−1)

Table 4.1: Payoff matrix of the classical penny flip game.

4.2.2 Quantum version

In discussing unitary quantum operations, we use the following notation: ˆ⃗σ := (σ̂1, σ̂2, σ̂3), where
σ̂1 �

(0
1

1
0

)
, σ̂2 �

(
0
i
−i
0

)
, and σ̂3 �

(1
0

0
−1

)
are Pauli matrices.

The quantum penny flip game was formulated by Meyer [37]. In the classical penny flip game,
a penny coin takes one of two states: heads or tails. Meyer introduced a two-state quantum system
through the spin of a “quantum coin.” In this case, we have to account for quantum properties such as
superposition and unitary transformation. In the quantum penny flip game, only player Q can employ
a “quantum operation.” Namely, the quantum player can apply arbitrary unitary transformations
whereas the classical player can apply only Abelian unitary transformations. Moving forward, player
P’s and Q’s quantum payoff functions are defined as $P = −$Q = 1 − 2|⟨ f |i⟩|2, where |i⟩ and | f ⟩ are
the initial and final states of the coin, respectively. Meyer showed that player Q wins every time if he
uses the Hadamard transformation:

|0⟩ Q−−−−−−→
Ĥ

|0⟩ + |1⟩
√

2
�

1
√

2

(
1
1

)
P−−−−−−−→

σ̂1 or 1̂l


|1⟩+ |0⟩√

2
if P applies σ̂1

|0⟩+ |1⟩√
2

if P applies 1̂l


Q−−−−−−→
Ĥ

|0⟩, (4.1)

where |0⟩ �
(1
0

)
denotes “heads” (i.e., spin up), |1⟩ �

(0
1

)
denotes “tails” (i.e., spin down), Ĥ =

σ̂1+σ̂3√
2
� 1√

2

(
1
1

1
−1

)
is the Hadamard transformation, the Pauli matrix σ̂1 flips the penny coin, and the
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identity matrix 1̂l leaves the penny coin unchanged. In the first step, player Q applies the Hadamard
transformation, Ĥ , which puts the coin into the equal-weight superposition state of heads and tails.
In the second step, player P can choose whether to flip the coin, but the superposed state of the coin
remains unchanged by either operation selected by player P. In the third step, player Q again applies
the Hadamard transformation Ĥ , which puts the coin back to the initial state because of Ĥ2 = 1̂l. Thus,
player Q always wins when they open the box. Hence, in the penny flip game, the quantum strategy
is perfectly advantageous against any classical strategy. It is worth noting that the intermediate state
|+ x⟩ is a simultaneous eigenstate of player P’s operations 1̂l and σ̂1. This fact implies that the quantum
player Q nullifies the operations of player P, σ̂1 or 1̂l (see Fig. 4.1), that is, player Q is predominant.

|−x〉

|−y〉

|−z〉

|+x〉

|+y〉

|+z〉

Ĥ Ĥ

σ̂1

±π

Figure 4.1: Winning quantum strategy of Meyer drawn on the Bloch sphere. Here,
we set | ± x⟩ � 1√

2

(
1
±1

)
, | ± y⟩ � 1√

2

(
1
±i

)
, | + z⟩ = |0⟩ and | − z⟩ = |1⟩. The Hadamard

transformation, which is the operation of player Q, converts the | + z⟩ state to the | + x⟩
state. The operation of σ̂1, which is the coin-flip operation by player P, is a rotation
around the x-axis by π radians. Player P cannot change the | + x⟩ state by applying the
coin-flip operation (see Eq. (4.1)).

However, the game proceeds differently if both players are allowed to play with quantum strategies.
Meyer showed that the one-sided advantage is lost in this case (see Theorem 2 of Ref. [37]). Although
the strategy provided by Meyer is only one of many winning strategies, his example demonstrates the
predominance of quantum strategies. Chappell et al. [41] provided all of the unitary transformations
that are winning strategies for player Q:

Û (1)
Q (θ, ϕ) = eiδ1 exp

[
i
θ

2

(
a, b cot

θ

2
, ab

)
· ˆ⃗σ

]
, Û (2)

Q (θ, ϕ) = eiδ2 eiϕσ̂3/2Û (1)†
Q , (4.2)

where Û (1)
Q and Û (2)

Q are player Q’s first and second operations, respectively, a = ±
√

1
2

(
1 − cot2 θ

2

)
,

b = ±1, |θ | ∈
[
π
2 ,

3π
2

]
, and ϕ, δ1, δ2 ∈ [0, 2π). By selecting (θ, ϕ, δ1, δ2) =

(
π, 0,− π

2 ,−
π
2

)
, the
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Chappell transformation becomes Û (1)
Q = Û (2)

Q =
σ̂1+σ̂3√

2
= Ĥ , which corresponds to Meyer’s solution.

4.3 Modified quantum penny flip game

In the previous section, we saw that player Q can change the state of the coin into a simultaneous
eigenstate of the possible operations of player P if the operations of P are mutually commutative. This
is the winning strategy for player Q. As a direct extension of this observation, we propose a question:
if player P is allowed to use a restricted class of non-commutative unitary operations, does player
Q have a winning strategy? Meyer [37] showed that if player P is also allowed to use any unitary
operation, player Q has no winning strategies. Thus, to interpret the question, we must define the class
of the operations available to player P.

4.3.1 Non-Abelian strategy and winning counter-strategy

To begin with, we consider a simple modification of the strategy of player P by allowing him to use
σ̂3 instead of 1̂l as the non-flipping operation. Player P still uses σ̂1 as the flipping operation. These
operators are non-commutative: [σ̂3, σ̂1] = 2iσ̂2 , 0; therefore, they generate a non-Abelian group.
In this case, there is no longer a simultaneous eigenstate of player P’s operations. Nevertheless, we
found a winning strategy for player Q:

Û (1)
Q �

1
√

2

(
1
i

i

1

)
, Û (2)

Q �
1
√

2

(
i

1
−1
−i

)
. (4.3)

The game proceeds as follows:

|0⟩ Q−−−−−−→
Û (1)

Q

|0⟩ + i |1⟩
√

2
�

1
√

2

(
1
i

)
P−−−−−−−−−−→

σ̂1 or σ̂3


i |0⟩−i |1⟩√

2
if P applies σ̂1

|0⟩−i |1⟩√
2

if P applies σ̂3


Q−−−−−−→

Û (2)
Q


−|0⟩,

i |0⟩.
(4.4)

Thus, the final state of the coin is always equivalent to the initial state, heads. This means that the
operations given in Eq. (4.3) constitute a winning strategy for player Q.

This strategy utilizes two special states, | ± y⟩ � 1√
2

(
1
±i

)
, for which both operations σ̂1 and σ̂3, i.e.,

those available to player P, have the same effect except for a phase change. Namely, player P must flip
the coin through the operations, which implies player Q is predominant even if player P’s operations
are non-commutative. Thus, player Q can always know the state of the coin (see Fig. 4.2).

By using a method similar to Chappell et al. [41], we can obtain all winning strategies for player
Q in the modified game in which player P uses σ̂1 and σ̂3. The complete set of the winning strategies
are the unitary operators

Û (1)
Q (θ, ϕ) = eiδ1 exp

[
i
θ

2

(
b cot

θ

2
, ab, a

)
· ˆ⃗σ

]
, Û (2)

Q (θ, ϕ) = eiδ2 eiϕσ̂3/2Û (1)†
Q σ̂3, (4.5)

which are parameterized by the same variables as Eq. (4.2). By selecting (θ, ϕ, δ1, δ2) =
(
π
2 , 0, 0,

π
2

)
,

the general solution in Eq. (4.5) is reduced to Eq. (4.3).
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|−y〉

|+x〉

|−x〉

|+z〉

|−z〉

|+y〉

σ̂3

σ̂1

±π

±π

σ̂1 or σ̂3

Û
(2)
Q

Û
(1)
Q

Figure 4.2: Winning strategy against operations σ̂1 and σ̂3 on the Bloch sphere.
Player P always converts the state | + y⟩ into | − y⟩ (see Eq. (4.4)).

4.3.2 Non-Abelian strategy with phase variables and winning counter-strategy

In this game variant, we introduce a modified flipping operator F̂ and a modified non-flipping operator
N̂ for player P:

F̂ (α) := eiασ̂3/2σ̂1 �
(

0

e−iα/2
eiα/2

0

)
, N̂ (β) := eiβσ̂3/2 �

(
eiβ/2

0

0

e−iβ/2

)
, (4.6)

where α, β ∈ R. In a classical sense, operator F̂ flips the coin whereas operator N̂ does not, but
both introduce phase changes to the quantum state of the coin. In general, they are non-commutative:
[F̂ (α), N̂ (β)] = 2eiασ̂3/2σ̂2 sin β

2 , 0 if β < 2πZ. By using the group composition law of SU (2) [82],
the modified flipping operation can be rewritten as iF̂ (α) = exp

[
±i π2

(
cos α

2 ,− sin α
2 , 0

)
· ˆ⃗σ

]
whose

rotation (i.e., flipping) axes are in the same plane of the Bloch sphere. Even if we replace α with
α + 2πZ, the rotation axis is unchanged. This is equivalent to the fact that the commutation relation,
[F̂ (α), F̂ (α′)] = 2iσ̂3 sin α−α′

2 , is zero. We call the operators in Eq. (4.6) a phase-variable strategy,
and we call player P using this strategy a phase-variable player. Various operations can be derived
from this general case provided that plus–minus signs are arbitrary:

• By selecting α, β ∈ 4πZ, player P’s operations become (F̂, N̂ ) = (σ̂1, 1̂l), i.e., those in Meyer’s
setting.

• By selecting α, β ∈ 2(2Z + 1)π, player P’s operations become (F̂, N̂ ) = −(σ̂1, 1̂l), i.e., those in
Meyer’s setting, except for a sign change.

• By selecting α ∈ 4πZ, β ∈ (4Z + 1)π, player P’s operations become (F̂, N̂ ) = (σ̂1, iσ̂3), i.e.,
those defined in Sec. 4.3.1 except for a phase change.

• By selecting α ∈ 2(2Z+1)π, β ∈ (4Z−1)π, player P’s operations become (F̂, N̂ ) = −(σ̂1, iσ̂3),
i.e., those defined in Sec. 4.3.1, except for a phase change.
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The difference of the phase is not important in these arguments.
We seek a winning strategy for player Q against the phase-variable player P. We use density matrix

representation of the coin state to deal with classical and quantum operations on the same footing. By
using density matrix representation, the game flow is illustrated as:

ρ̂0
Q−−−−−−−→

Û (1)
Q

ρ̂1
P−−−−−−−−−−−−→

F̂ (α) or N̂ (β)
ρ̂2

Q−−−−−−−→
Û (2)

Q

ρ̂3. (4.7)

The initial state of the coin is assumed to be heads, ρ̂0 := |0⟩⟨0|. Player Q applies a unitary
transformation Û (1)

Q on the coin, yielding ρ̂1 := Û (1)
Q ρ̂0Û (1)†

Q . In the next step, player P applies the
flipping operation F̂ (α) with probability p or the non-flipping operation N̂ (β) with probability 1− p.
Thus, the density matrix is transformed to ρ̂2 := pF̂ ρ̂1F̂† + (1 − p)N̂ ρ̂1 N̂†. The phase parameters α
and β can be adjusted to yield the strongest strategy for player P. In the final step, player Q applies
another unitary transformation Û (2)

Q , which yields ρ̂3 := Û (2)
Q ρ̂2Û (2)†

Q . Thus, the density matrix of the
final state is

ρ̂3 = pÛ (2)
Q F̂Û (1)

Q ρ̂0Û (1)†
Q F̂†Û (2)†

Q + (1 − p)Û (2)
Q N̂Û (1)

Q ρ̂0Û (1)†
Q N̂†Û (2)†

Q . (4.8)

A perfect strategy for player Q requires that ρ̂3 = ρ̂0 for arbitrary flip probability p; thus, the following
equations must hold:

Û (2)
Q F̂Û (1)

Q ρ̂0Û (1)†
Q F̂†Û (2)†

Q

Û (2)
Q N̂Û (1)

Q ρ̂0Û (1)†
Q N̂†Û (2)†

Q

 = ρ̂0.
(4.9)

(4.10)

By using ρ̂0 =
1̂l+σ̂3

2 , we can rewrite Eq. (4.10) as [Û (2)
Q N̂Û (1)

Q , σ̂3] = 0. From this, we can derive a
relation between Û (1)

Q and Û (2)
Q , i.e., Û (2)

Q N̂Û (1)
Q = eiδ2 eiϕσ̂3/2, which is equivalent to

Û (2)
Q = eiδ2 eiϕσ̂3/2Û (1)†

Q N̂†(β) (4.11)

where ϕ, δ2 ∈ [0, 2π). By substituting Eq. (4.11) into Eq. (4.9), we obtain

eiϕσ̂3/2Û (1)†
Q N̂†F̂Û (1)

Q ρ̂0Û (1)†
Q F̂† N̂Û (1)

Q e−iϕσ̂3/2 = ρ̂0. (4.12)

Furthermore, Eq. (4.12) can be rewritten as [Û (1)†
Q N̂†F̂Û (1)

Q , σ̂3] = 0, which implies that Û :=
Û (1)†

Q N̂†F̂Û (1)
Q is a linear combination of 1̂l and σ̂3. Because Û is an arbitrary unitary transformation,

Û satisfies Û†Û = 1̂l. Furthermore, we need to seek Û satisfying Û , ±1̂l. We consider the case
Û (1)†

Q N̂†F̂Û (1)
Q = ±σ̂3, i.e.,

Û (1)†
Q N̂†F̂ = ±σ̂3Û (1)†

Q . (4.13)

The unitary operator Û (1)
Q can be parameterized as

Û (1)
Q = eiδ1 eiθ n⃗ ·

ˆ⃗σ/2 = eiδ1

(
cos
θ

2
1̂l + i sin

θ

2
n⃗ · ˆ⃗σ

)
, (4.14)

with the parameters θ ∈ R, n⃗ = (n1, n2, n3) ∈ S2 ⊂ R3, and δ1 ∈ [0, 2π). By substituting Eq. (4.14)
into Eq. (4.13), we obtain the relation[

cos
θ

2
1̂l − i sin

θ

2

(
n1σ̂1 + n2σ̂2 + n3σ̂3

)]
N̂†F̂ = bσ̂3

[
cos
θ

2
1̂l − i sin

θ

2

(
n1σ̂1 + n2σ̂2 + n3σ̂3

)]
,

(4.15)
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where b = ±1. We want to find the parameters θ and n̂ satisfying Eq. (4.15). From Eq. (4.6), we have
N̂†F̂ = cos ∆2 σ̂1 − sin ∆2 σ̂2, where ∆ := α − β. By comparing both sides of Eq. (4.15), this equation
is satisfied if 

(
n1 cos

∆

2
− n2 sin

∆

2

)
sin
θ

2
= bn3 sin

θ

2
,(

n1 sin
∆

2
+ n2 cos

∆

2

)
sin
θ

2
= b cos

θ

2
,

(4.16)

(4.17)

which implies sin θ
2 , 0. From Eqs. (4.16) and (4.17), we obtain

n2 = b cot
θ

2
sec
∆

2
− n1 tan

∆

2
, n3 = bn1 sec

∆

2
− cot

θ

2
tan
∆

2
. (4.18)

By substituting these into the constraint n2
1 + n2

2 + n2
3 = 1, we obtain

n2
1 − 2bn1 cot

θ

2
sin
∆

2
+

1
2

[
cot2
θ

2

(
1 + sin2 ∆

2

)
− cos2 ∆

2

]
= 0, (4.19)

and hence,

n1 = b cot
θ

2
sin
∆

2
+ a cos

∆

2
, (4.20)

where a := ±
√

1
2

(
1 − cot2 θ

2

)
and ���cot θ

2
��� ≤ 1 (i.e., |θ | ∈

[
π
2 ,

3π
2

]
). By substituting Eq. (4.20) into

Eq. (4.18), we obtain

n2 = b cot
θ

2
cos
∆

2
− a sin

∆

2
, n3 = ab. (4.21)

By combining these with Eqs. (4.11) and (4.14), we obtain the winning strategy for player Q:

Û (1)
Q (θ, ϕ; α, β) = eiδ1 exp

[
i
θ

2

(
b cot

θ

2
sin
∆

2
+ a cos

∆

2
, b cot

θ

2
cos
∆

2
− a sin

∆

2
, ab

)
· ˆ⃗σ

]
, (4.22)

Û (2)
Q (θ, ϕ; α, β) = eiδ2 N̂ (ϕ)Û (1)†

Q N̂†(β) = eiδ2 eiϕσ̂3/2Û (1)†
Q e−iβσ̂3/2. (4.23)

Even if player P can change the phase, player Q always possesses winning strategies independent of
the probability p, with the provision that player Q knows player P’s values of α and β. Thus, player
Q is always at least advantageous.

4.3.3 Unrestricted strategy and winning counter-strategy

In the above game variants, the operations of player P must be coin flipping or non-flipping operations
in the classical sense. Here, we discard this restriction. Player P is allowed to use one of two arbitrary
unitary operators, Û (1)

P and Û (2)
P . They do not necessarily yield definitive heads or tails states when

they act on a coin in the heads state. Instead, they can yield superposition states of heads and tails. In
this sense, player P also becomes a quantum player. Player P applies Û (1)

P to the coin with probability
p or Û (2)

P with probability 1 − p. In this section, we seek a winning strategy for player Q.
By using density matrices, the game flow is illustrated as

ρ̂0
Q−−−−−−−→

Û (1)
Q

ρ̂1
P−−−−−−−−−−−→

{Û (k )
P }k=1,2

ρ̂2
Q−−−−−−−→

Û (2)
Q

ρ̂3. (4.24)
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The final state of the coin is

ρ̂3 := pÛ (2)
Q Û (1)

P Û (1)
Q ρ̂0Û (1)†

Q Û (1)†
P Û (2)†

Q + (1 − p)Û (2)
Q Û (2)

P Û (1)
Q ρ̂0Û (1)†

Q Û (2)†
P Û (2)†

Q (4.25)

where p ∈ [0, 1]. We would like to find Û (1)
Q and Û (2)

Q that yield ρ̂3 = ρ̂0 for arbitrary p. Via arguments
similar to the previous section, we obtain the equation [Û (2)

Q Û (2)
P Û (1)

Q , σ̂3] = 0. From this, we have

Û (2)
Q = eiδ2 eiθ2σ̂3/2Û (1)†

Q Û (2)†
P , (4.26)

where δ2, θ2 ∈ [0, 2π). By substituting Eq. (4.26) into Eq. (4.25), we obtain

eiθ2σ̂3/2Û (1)†
Q Û (2)†

P Û (1)
P Û (1)

Q ρ̂0Û (1)†
Q Û (1)†

P Û (2)
P Û (1)

Q e−iθ2σ̂3/2 = ρ̂0. (4.27)

By using ρ̂0 =
1̂l+σ̂3

2 , we can rewrite Eq. (4.27) as [Û (1)†
Q Û (2)†

P Û (1)
P Û (1)

Q , σ̂3] = 0, which implies

Û (1)†
Q Û (2)†

P Û (1)
P = eiδ3 eiγσ̂3/2Û (1)†

Q , (4.28)

with the parameters δ3, γ ∈ R. The unitary operators Û (1)
Q and Û (k)

P can be parameterized as

Û (1)
Q = eiδ1 eiθ1n⃗ · ˆ⃗σ/2 = eiδ1

(
cos
θ1
2

1̂l + i sin
θ1
2

n⃗ · ˆ⃗σ
)
, (4.29)

Û (k)
P = eiξk eiϕk m⃗k · ˆ⃗σ/2 = eiξk

(
cos
ϕk
2

1̂l + i sin
ϕk
2

m⃗k · ˆ⃗σ
)
, (4.30)

with the parameters k (= 1, 2), δ1, ξk, θ1, ϕk ∈ R, n⃗ := (n1, n2, n3) ∈ S2, and m⃗k := (mk1,mk2,mk3) ∈
S2. Here, we need to obtain Û (1)

Q satisfying Eq. (4.28). By using the law of spherical trigonometry [82],
we can rewrite the left-hand side of Eq. (4.28) as

Û (1)†
Q Û (2)†

P Û (1)
P = ei(ξ1−ξ2−δ1)eiΦM⃗ ·

ˆ⃗σ/2 = ei(ξ1−ξ2−δ1)
(
cos
Φ

2
1̂l + i sin

Φ

2
M⃗ · ˆ⃗σ

)
, (4.31)

where

cos
φ

2
:= cos

ϕ1

2
cos
ϕ2

2
+ m⃗1 · m⃗2 sin

ϕ1

2
sin
ϕ2

2
, (4.32)

M⃗ :=
m⃗1 sin ϕ1

2 cos ϕ2
2 − m⃗2 cos ϕ1

2 sin ϕ2
2 − m⃗1 × m⃗2 sin ϕ1

2 sin ϕ2
2

sin φ
2

∈ S2, (4.33)

cos
Φ

2
:= cos

θ1
2

cos
φ

2
+ M⃗ · n⃗ sin

θ1
2

sin
φ

2
, (4.34)

M⃗ :=
M⃗ sin φ

2 cos θ1
2 − n⃗ cos φ

2 sin θ1
2 − M⃗ × n⃗ sin φ

2 sin θ1
2

sin Φ2
∈ S2. (4.35)

Similarly, the right-hand side of Eq. (4.28) is rewritten as

eiδ3 eiγσ̂3/2Û (1)†
Q = ei(δ3−δ1)

(
cos
Θ

2
1̂l + i sin

Θ

2
N⃗ · ˆ⃗σ

)
, (4.36)

where

cos
Θ

2
:= cos

γ

2
cos
θ1
2
+ n3 sin

γ

2
sin
θ1
2
, (4.37)
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N⃗ := − 1
sin Θ2

*.....,

(
n1 cos γ

2 + n2 sin γ
2

)
sin θ1

2(
n2 cos γ

2 − n1 sin γ
2

)
sin θ1

2

n3 sin θ1
2 cos γ

2 − cos θ1
2 sin γ

2

+/////-
∈ S2 (4.38)

From Eqs. (4.31) and (4.36), we obtain the following relation:

cos
Φ

2
1̂l + i sin

Φ

2
M⃗ · ˆ⃗σ = ei(δ3+ξ2−ξ1)

(
cos
Θ

2
1̂l + i sin

Θ

2
N⃗ · ˆ⃗σ

)
. (4.39)

Because cos Φ2 , sin
Φ

2 , cos Θ2 , sin
Θ

2 ∈ R, it must be true that ei(δ3+ξ2−ξ1) ∈ R. We choose the value of
δ3 so as to satisfy δ3 + ξ2 − ξ1 ∈ πZ. Namely, we find ei(δ3+ξ2−ξ1) =: c, where c = ±1. The value of c
is decided from the start of the game. We obtain a system of linear equations:


cos
Φ

2
= c cos

Θ

2
,

M⃗ sin
Φ

2
= cN⃗ sin

Θ

2
.

(4.40)

(4.41)

Since Eqs. (4.40) and (4.41) are equivalent to a system of four linear equations with three unknowns
n1, n2, and n3, only three of the four equations are mutually independent. By selecting Eq. (4.41), we
obtain the matrix equation:

V̂ n⃗ = cos
θ1
2

*.....,
M1 sin φ

2

M2 sin φ
2

M3 sin φ
2 − c sin γ

2

+/////-
, (4.42)

where

V̂ := sin
θ1
2

*.....,
cos φ

2 − c cos γ
2

M3 sin φ
2 + c sin γ

2

−M2 sin φ
2

−
(
M3 sin φ

2 + c sin γ
2

)
cos φ

2 − c cos γ
2

M1 sin φ
2

M2 sin φ
2

−M1 sin φ
2

cos φ
2 − c cos γ

2

+/////-
. (4.43)

Notably, Eq. (4.42) can be solved if the inverse matrix V̂−1 exists, i.e., if the determinant of matrix V
is non-zero. The determinant of matrix V̂ , is calculated as

det V̂ = 2c sin3 θ1
2

(
cos
φ

2
− c cos

γ

2

) (
M3 sin

φ

2
sin
γ

2
− cos

φ

2
cos
γ

2
+ c

)
. (4.44)

We find that winning strategies actually exist for player Q when player P is allowed to use two arbitrary
U (2) operations Û (k)

P ,

Û (1)
Q = eiδ1 eiθ1n⃗ · ˆ⃗σ/2, Û (2)

Q = eiδ2 eiθ2σ̂3/2Û (1)†
Q Û (2)†

P , (4.45)

where the Bloch vector for player Q’s winning strategies is given by

n⃗ = −
cot θ1

2
M3 sin φ

2 sin γ
2 − cos φ

2 cos γ
2 + c

*.....,

(
M1 cos γ

2 − M2 sin γ
2

)
sin φ

2(
M1 sin γ

2 + M2 cos γ
2

)
sin φ

2

M3 sin φ
2 cos γ

2 + cos φ
2 sin γ

2

+/////-
. (4.46)
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Player Q should choose parameters θ1, γ, and c = ±1 such that Eq. (4.44) is non-zero so as to make
Eq. (4.46) converge, with the provision that player Q knows player P’s values of φ [Eq. (4.32)] and
M⃗ [Eq. (4.33)]. When player Q operates the strategies in Eq. (4.45), player Q always wins independent
of the probability p. Thus, player Q is always at least advantageous.

4.3.4 Multiple strategy and winning counter-strategy

Finally, we propose an even more general game. We allow player P to choose one of ℓ elements
{Û ( j)

P }j=1, · · · ,ℓ of the group U (2) as his/her operation. We call this a multiple strategy. We seek to
evaluate the existence of a winning strategy for player Q in this game. If all the operators given to player
P are mutually commutative, a simultaneous eigenvector of these operators exists, and this vector is
invariant under operations of player P. Hence, in this case, player Q always wins by transforming the
initial state vector to the simultaneous eigenvector at the first step and transforming it back to the initial
state at the final step.

We can also consider when player P has one of ℓ elements of the group U (2), which are di-
vided into two types of unitary operations. We allow player P to choose s modified flipping
operations {F̂ (αkF )}kF=1, · · · ,s := {eiαkF σ̂3/2σ̂1}kF=1, · · · ,s and ℓ − s modified non-flipping operations
{N̂ (βkN )}kN=s+1, · · · ,ℓ := {eiβkN σ̂3/2}kN=s+1, · · · ,ℓ . Player P has at least one of each type of unitary
operation, i.e., 1 ≤ s ≤ ℓ − 1.

If all of player P’s modified flipping operations {F̂ (αkF )}kF are mutually commutative and all of
their modified non-flipping operations {N̂ (βkN )}kN are equal to identity 1̂l, i.e., βkN ∈ πZ for all kN, we
can easily deduce that player Q always has a complete set of winning strategies because simultaneous
eigenstates exist for player P, similar to Sec. 4.2.2.

If all {F̂ (αkF )}kF are mutually commutative and all {N̂ (βkN )}kN are not equal to identity 1̂l, no
winning strategies exist for player Q in general. However, only for s = 1 or ℓ − 1, winning strategies
do exist for player Q because examinations such as that in Sec. 4.3.2 are always available.

4.4 Concluding remarks of chapter 4

Meyer proposed a quantum version of the penny flip game in which player P is allowed to use only
classical operations, i.e., flipping or non-flipping, on the coin whereas player Q is allowed to use
any unitary transformation. Meyer showed that there is a winning strategy for player Q; player Q
always wins by transforming the initial coin state to a superposition state that is the simultaneous
eigenvector of the flipping operation σ̂1 and the non-flipping operation 1̂l, and is hence invariant under
any operation of player P. Therefore, player Q is always predominant.

In this chapter, we proposed and analyzed four generalizations of the quantum penny flip game.
In the first generalization, we allow player P to use σ̂1 and σ̂3 as his/her operations; in contrast

to Meyer’s game, these operations are non-commutative and do not admit simultaneous eigenvectors.
Even in this game, we found a simple example and a complete set of winning strategies for player Q.
After the first winning operation of player Q, the two possible operations of player P yield equivalent
states; therefore, player Q can restore the coin state into the same initial state through his second
operation. This scheme is common among all the winning strategies. Then, player Q is always
predominant even if player P’s operations are non-commutative.

In the second generalization, we allow player P to use phase-changing flipping and non-flipping
operations. In this game, we also found a complete set of winning strategies for player Q, with the
provision that player Q knows the values of the parameters α and β in player P’s operations. Thus,
player Q is always at least advantageous.

In the third generalization, we allow player P to use two arbitrary unitary operations. Even in this
game, player Q has a set of winning strategies with a suitable choice of parameters. This fact implies
that non-commutativity, phase, and the number of generators of unitary operations are completely
unrelated to the existence of winning strategies. Thus, player Q is always at least advantageous.
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In the fourth generalization, we allow player P to use ℓ ≥ 3 elements of phase-changing flipping
and non-flipping operations. Even in this game, player Q has a set of winning strategies if some
conditions are satisfied. Meyer’s original game and our first, second, and third generalizations are
special cases of this fourth generalized game. Consequently, we found that even if player P has
non-Abelian mixed strategies, there were cases in which player Q has a set of winning strategies.

In these games, the purpose of player Q was to restore the initial state at the end whereas the
purpose of player P was to change the coin from the initial state. In this context, a winning strategy for
player Q is equivalent to restoration of the initial state against player P. Furthermore, the conditions
for the existence of winning strategies were similar to the classification of interference such that the
initial state can be always restored.
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Chapter 5

Concluding Remarks

In this dissertation, we have discussed quantum control through two approaches, adiabatic processes
and gaming flows, as continuous- and discrete-time quantum transports.

In chapter 3, by applying Husimi’s method, we have derived the propagator of a quantum parametric
oscillator (QPO) with the counter-diabatic Hamiltonian realizing an adiabatic evolution in an arbitrary
short time [Eq. (3.9)]. This propagator is written with two linearly independent solutions of a
corresponding classical parametric oscillator (CPO). By using this propagator, we defined two kinds of
transition probabilities, Pm,n

t,t0
[Eq. (3.7)] and P̄m,n

t,t0
[Eq. (3.44)]. The former is a transition probability

between the instantaneous eigenstates of the adiabatic Hamiltonian, and the latter is a transition
probability between the instantaneous eigenstates of the TT Hamiltonian (the adiabatic Hamiltonian
plus the counter-diabatic Hamiltonian). By introducing two measures of adiabaticity, QTT

t [Eq. (3.21)]
and Q̄TT

t [Eq. (3.59)], we obtained concise expressions of the generating functions for these transition
probabilities. From the analysis of QTT

t , we found one aspect of shortcuts to adiabaticity (STA):
Whereas the state itself is given by the exact solution |Ψ(t)⟩ = eiξn, t |n; λ⃗t⟩ that preserves the quantum
number, the transition probability Pm,n

t,t0
becomes δm,n only at the endpoints of the time evolution

because of QTT
t = 1 only at these points. Namely, its intermediate state may be highly diabatic with

respect to the instantaneous eigenstate of the TT Hamiltonian. From the analysis of Q̄TT
t , which

consists of the linear summation of the adiabatic invariant or the Ermakov-Lewis (EL) invariant of the
CPO, we found that the transition probability P̄m,n

t,t0
always becomes δm,n because of Q̄TT

t = 1 all the
time during the time evolution. We also introduced the quantum EL invariant [Eq. (3.73)] written with
the quantum Wronskian [Eqs. (3.67) and (3.68)]. In the presence of the counter-diabatic Hamiltonian,
we found that the quantum EL invariant is proportional to the Lewis-Riesenfeld (LR) invariant. This
LR invariant may be interpreted as a quantum version of the adiabatic invariant [Eq. (3.74)].

The results in chapter 3 may have broader applications. In statistical mechanics, there exists a
method possessing a similar motivation to STA, which is called shortcuts to isothermality (STI) [83].
The other methods such as engineered swift equilibration approach [84] and stochastic shortcuts using
flow-fields [51] are also similar to STI. STA realizes an adiabatic process in an arbitrary short time,
whereas STI realizes an isothermal process from an equilibrium state to another one in an arbitrary
short time. In STI, the time-evolution equation is the Fokker-Planck equation which determines the
probability distribution of a Brownian particle, instead of the Schödinger equation. No matter how
fast the system evolves, STI enables the shape of the probability distribution of the Brownian particle
to be preserved exactly. Suppose that system evolves with an original Hamiltonian including a set of
time-dependent external parameters. STI gives us an auxiliary Hamiltonian that cancels out deviation
from an instantaneous equilibrium distribution of the original Hamiltonian. We should impose the
boundary condition such that the auxiliary Hamiltonian vanishes at two endpoints of the driving
process. STI inherits the idea of STA for isolate quantum systems [13, 15, 16, 22–24, 85–87]. Since
the Fokker-Planck equation is formally equivalent to the Schrödinger equation, we may solve it by
applying Husimi’s method. It would be interesting to find a measure of isothermality and several
invariants characterizing STI.

In chapter 4, we have analyzed the quantum penny flip game as a problem of quantum error
correction. In the original game, the malicious third party that schemes to disturb quantum state had
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two commutative operations. Since there existed a simultaneous eigenstate of his/her operations, we
were able to invalidate one of his/her operations. This result could be trivial. We then gave the third
party “power,” i.e., non-commutativity. There exists no longer a simultaneous eigenstate. Even in
this setting, we showed that the third party’s operation could be neutralized. We have challenged how
much we could do without using any ancillae, i.e., without relying on quantum entanglement at all. I
hope that this research will be a key to achieve quantum error correction with minimal ancillae.

It is my expectation that this work provides a new perspective on other quantum games in various
fields such as finance [88, 89]. In the quantum prisoner’s dilemma [38], the quantum Hawk-Dove
game [90], and the quantum stag hunt game [91], replacing a classical player’s operations with a
restricted set of quantum operations could change properties of the game. Especially in the quantum
penny flip game [37] and our modified games, the goals of the two players are to either save the initial
state or disturb it. To guarantee victory, player Q needs to set a suitable intermediate state. This
situation can also be represented as quantum information processing, that is, player Q can be regarded
as a sender/receiver of information and player P can be regarded as an eavesdropper.
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Appendix A

Supplementary Materials for Chapter 3

We list some complicated calculus and also include essential techniques. This appendix is based on
the contents from Ref. [57].

A.1 Derivation of energy eigenfunction in Eq. (3.6)

From the definition of the vacuum state b̂t |0;Ωt⟩ ≡ 0 and by using Eq. (3.5), we can easily obtain the
normalized energy eigenfunction of the vacuum state for position x as

⟨x |0;Ωt⟩ =
(

MΩt

πℏ

)1/4

exp
(
− ζt MΩt

2ℏ
x2

)
. (A.1)

For a function f (x), by using the relation(√
ax − 1

√
a
∂

∂x

)n
f (x) = (−1)neax

2/2 1
an/2

∂n

∂xn
(
e−ax

2/2 f (x)
)
, (A.2)

we can also obtain the normalized energy eigenfunction of the n-th excited state in Eq. (3.6) as follows:

⟨x |n;Ωt⟩ =
1
√

n!
⟨x |b̂†nt |0;Ωt⟩

=
ζ∗n/2
√

2nn!

(√
ζ∗t MΩt

ℏ
x −

√
ℏ

ζ∗t MΩt

∂

∂x

)n
⟨x |0;Ωt⟩

=
1

√
2nn!

(−1)n exp
(
ζ∗t MΩt

2ℏ
x2

) (
ℏ

MΩt

)n/2
∂n

∂xn

[
exp

(
−
ζ∗t MΩt

2ℏ
x2

)
⟨x |0;Ωt⟩

]
=

1
√

2nn!

(
MΩt

πℏ

)1/4

(−1)n exp
(

MΩt

ℏ
x2

) (
ℏ

MΩt

)n/2
×

[
∂n

∂xn
exp

(
−MΩt

ℏ
x2

)]
exp

(
− ζt MΩt

2ℏ
x2

)
=

1
√

2nn!

(
MΩt

πℏ

)1/4

Hn

(√
MΩt

ℏ
x
)

exp
(
− ζt MΩt

2ℏ
x2

)
, (A.3)

where Hn(·) are the n-th-degree Hermite polynomials [Eq. (2.110)].
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A.2 Derivation of propagator in Eq. (3.9)

Based on Husimi’s method [55], we derive Eq. (3.9). For the TT Hamiltonian of the QPO in Eq. (3.2),
the x-representation of the wave function

⟨x |Ψ(t)⟩ =
∫
R

dx0UTT
t,t0 (x |x0)⟨x0 |Ψ(t0)⟩, t ∈ [t0,∞), (A.4)

satisfies the Schröginger equation

iℏ
∂

∂t
⟨x |Ψ(t)⟩ = ⟨x |ĤTT

t |Ψ(t)⟩, (A.5)

where UTT
t,t0

(x |x0) is the propagator. Here, we assume the following Gaussian form of the propagator
as the specific anstaz [55]:

UTT
t,t0 (x |x0) =

√
M

2πiℏµt
ei(αt x

2+βt xx0+γt x
2
0 )/ℏ, (A.6)

where the coefficients µt , αt , βt , and γt are time-dependent real-valued functions. By substituting
Eq. (B.18) with Eq. (A.6) into the Schröginger equation given by Eq. (B.19), we find that four coupled
ordinary differential equations (ODEs) for the coefficients µt , αt , βt , and γt follow:



αt =
M
2

(
µ̇t
µt
+

1
2
ω̇t

ωt

)
,

α̇t +
2
M
α2
t −
ω̇t

ωt
αt +

M
2
ω2
t = 0,

β̇t +

(
2
M
αt −

1
2
ω̇t

ωt

)
βt = 0,

γ̇t +
β2
t

2M
= 0.

(A.7)

(A.8)

(A.9)

(A.10)

By substituting Eq. (A.7) into Eq. (A.8), we obtain

µ̈t + Ω̃
2
t µt = 0. (A.11)

By substituting Eq. (A.7) into Eq. (A.9) and by solving Eq. (A.9) with respect to βt , we have

βt =
C1

µt
, (A.12)

with the integral constant C1. Next, by substituting Eq. (A.12) into Eq. (A.10) and by solving Eq. (A.10)
with respect to γt , we also have

γt = −
C2

1
2M

∫ t

t0

dτ
µ2
τ

+ C2, (A.13)

with the integral constant C2. From Eqs. (A.7), (A.12), and (A.13), the dynamics of αt , βt , and γt
can be determined by using the solution of µt satisfying Eq. (A.11).

We now determine the initial condition of µt in Eq. (A.11) and the integral constants C1 and
C2 according to the following argument: to represent the wave function ⟨x |Ψ(t)⟩ from an ar-
bitrary initial wave function ⟨x0 |Ψ(t0)⟩, the propagator UTT

t,t0
(x |x0) in Eq. (A.6) needs to satisfy

limt→t0+0 UTT
t,t0

(x |x0) = δ(x − x0). Therefore, it is natural to assume the following asymptotic form of
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the propagator :

UTT
t,t0 (x |x0) |t≃t0 =

√
M

2πiℏ(t − t0)
exp

[
iM
2ℏ

(x − x0)2

t − t0

]
eiF (x,x0)/ℏ(1 + O(t − t0)), (A.14)

where F (x, x0) is a function that satisfies F (x0, x0) = 0. Althrough a Taylor expansion of µt with
respect to t around t0 and from Eqs. (A.6) and (A.14), we have

µt |t≃t0 = µt0 + µ̇t0 (t − t0) + O((t − t0)2)

= t − t0 + O((t − t0)2), (A.15)

from which we can determine µt0 and µ̇t0 as

µt0 = 0, µ̇t0 = 1, (A.16)

as the initial condition of Eq. (A.11). By using µ̈t0 = 0 obtained from Eqs. (A.11) and (A.16), we
modify Eq. (A.15) as

µt |t≃t0 = t − t0 + O((t − t0)3). (A.17)

From Eq. (A.7), we can find

αt |t≃t0 =
M
2

(
1

t − t0
+

1
2
ω̇t0

ωt0

)
+ O(t − t0). (A.18)

From Eqs. (A.12) and (A.17), we then find

βt |t≃t0 =
C1

t − t0
+ O(t − t0). (A.19)

To determine the asymptotic form of γt in Eq. (A.13), we introduce a solution νt as a linearly
independent solution of µt , which satisfies the same equation as Eq. (A.11) but with a different initial
condition:

νt0 = 1, ν̇t0 = 0, (A.20)

where the Wronskian Wt = µ̇tνt − µt ν̇t is unity as in Eq. (3.13). From this Wronskian, we obtain

νt
µt
= −

∫ t

t0

dτ
µ2
τ

. (A.21)

From Eqs. (A.13) and (A.21), we have

γt =
C2

1
2M
νt
µt
+ C2. (A.22)

From Eqs. (A.15), (A.16), and (A.20), we obtain the asymptotic form of γt as

γt |t≃t0 =
C2

1
2M

1
t − t0

+ C2 + O(t − t0). (A.23)
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By substituting Eqs. (A.15), (A.18), (A.19), and (A.23) into Eq. (A.6), we have the following asymp-
totic form of the propagator:

UTT
t,t0 (x |x0) |t≃t0 =

√
M

2πiℏ(t − t0)
exp

[
i
ℏ

{
M
2

(
1

t − t0
+

1
2
ω̇t0

ωt0

)
x2

+
C1

t − t0
xx0 +

(
C2

1
2M

1
t − t0

+ C2

)
x2

0

}
+ O(t − t0)

]
=

√
M

2πiℏ(t − t0)
exp

[
iM
2ℏ

(x − x0)2

t − t0

]
eiF (x,x0)/ℏ(1 + O(t − t0)), (A.24)

where the function F (x, x0) is

F (x, x0) =
M
4
ω̇t0

ωt0

x2 +
C1 + M
t − t0

xx0 +

(
C2

1 − M2

2M
1

t − t0
+ C2

)
x2

0. (A.25)

Since F (x0, x0) = 0 is required in the limit of t → t0 + 0, we must set C1 = −M and C2 = −M
4

ω̇t0
ωt0

.
We then obtain

βt = −
M
µt
, (A.26)

γt =
M
2

(
νt
µt
− 1

2
ω̇t0

ωt0

)
. (A.27)

By substituting Eqs. (A.7), (A.26) and (A.27) into Eq. (A.6), we finally obtain the propagator given
by Eq. (3.9).

The Husimi’s method can be applied to a generalized quantum parametric oscillator (GQPO)
[Eq. (B.1)] as given in Appendix B.

A.3 Derivation of probability generating function in Eq. (3.15)

By using Mehler’s formula and the energy eigenfunction given by Eq. (A.3) (Eq. (3.6)), we obtain the
following relation:

∞∑
n=0

zn⟨n;Ωt |x⟩⟨y |n;Ωt⟩ =
√

MΩt

πℏ(1 − z2)
exp

[
−MΩt

2ℏ
(1 + z2)(x2 + y2) − 4zxy

1 − z2 − iM
4ℏ
ω̇t

ωt
(x2 − y2)

]
.

(A.28)

By using Eq. (A.28), we can calculate the probability generating function as

Pu,v
t,t0
=

∞∑
n,m=0

unvmPm,n
t,t0

=

∞∑
n,m=0

unvm
�����
"
R2

dxdx0⟨m;Ωt |x⟩UTT
t,t0 (x |x0)⟨x0 |n;Ωt0⟩

�����
2

=

&
R4

dxdx0dx ′dx ′0UTT∗
t,t0 (x |x0)UTT

t,t0 (x ′ |x ′0)

×
∞∑

m=0
vm⟨m;Ωt |x⟩⟨x ′ |m;Ωt⟩

∞∑
n=0

un⟨n;Ωt0 |x0⟩⟨x ′0 |n;Ωt0⟩
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=
2
µt

(
M

2πℏ

)2√
ΩtΩt0

(1 − u2)(1 − v2)

∫
R4

dx⃗ exp
(
−M

2ℏ
x⃗ · Ax⃗

)
=

2
µt

√
ΩtΩt0

(1 − u2)(1 − v2) det A
, (A.29)

where we defined

x⃗ :=

*.......,

x

x0

x ′

x ′0

+///////-
, A :=

*.......,

1+v2

1−v2Ωt + i
(
µ̇t

µt
+

ω̇t

ωt

)
− i

µt

− 2v
1−v2Ωt

0

− i
µt

1+u2

1−u2Ωt0 + i νtµt

0
− 2u

1−u2Ωt0

− 2v
1−v2Ωt

0
1+v2

1−v2Ωt − i
(
µ̇t

µt
+

ω̇t

ωt

)
i
µt

0
− 2u

1−u2Ωt0

i
µt

1+u2

1−u2Ωt0 − i νtµt

+///////-
.

(A.30)

and used the following formula of the Gaussian integral:∫
Rn

dx⃗e−ax⃗ ·Ax⃗ =

√
(π/a)n

det A
, (A.31)

provided a > 0, x⃗ ∈ Rn, and the n-by-n matrix A is symmetric. By using the Wronskian given by
Eq. (3.13), we obtain

det A =
1
µ2
t

2ΩtΩt0

(1 − u2)(1 − v2)
[
QTT

t (1 − u2)(1 − v2) + (1 + u2)(1 + v2) − 4uv
]
. (A.32)

Here, QTT
t is given as Eq. (3.16). Then, we finally obtain Eq. (3.15) by substituting Eq. (A.32) into

Eq. (A.29).

A.4 Derivation of Ermakov equation in Eq. (3.29) from Wronskian

Here, we derive the Ermakov equation in Eq. (3.29) [61–63]. By differentiating Eq. (3.27) with respect
to time t and using Eqs. (3.10) and (3.13), we can show the following relation:

0 =
dW (µ)

t

dt

= − ρt µt√
Ω−1

t0
ρ2t − µ2

t

[
ρ̈t µt − ρt µ̈t
µt

− ( ρ̇t µt − ρt µ̇t )2

ρt (Ω−1
t0
ρ2t − µ2

t )

]

=
µtW

(µ)
t

ρ̇t µt − ρt µ̇t

(
ρ̈t + Ω̃

2
t ρt −

W (µ)2
t

ρ3t

)
. (A.33)

From the above, we have the Ermakov equation of ρt for µt :

ρ̈t + Ω̃
2
t ρt =

W (µ)2
t

ρ3t
. (A.34)

Similarly, by differentiating Eq. (3.28) with respect to time t and using Eqs. (3.11) and (3.13), we can
obtain the following relation:

0 =
dW (ν)

t

dt



60 Appendix A. Supplementary Materials for Chapter 3

=
ρtνt√
Ωt0 ρ

2
t − ν2t

[
ρ̈tνt − ρt ν̈t
νt

− ( ρ̇tνt − ρt ν̇t )2

ρt (Ωt0 ρ
2
t − ν2t )

]

=
νtW

(ν)
t

ρ̇tνt − ρt ν̇t

(
ρ̈t + Ω̃

2
t ρt −

W (ν)2
t

ρ3t

)
. (A.35)

From the above, we have the Ermakov equation of ρt for νt :

ρ̈t + Ω̃
2
t ρt =

W (ν)2
t

ρ3t
. (A.36)

Because Wt = W (µ)
t = W (ν)

t = 1, we obtain Eq. (3.29) from Eqs. (A.34) and (A.36).

A.5 Derivation of Ermakov equation (3.33) by phase-amplitude method

According to the phase-amplitude method [59], we rewrite µt and νt by using ρt defined in Eq. (3.26),
from which a phase function can naturally be defined. Since ρ̇t µt − ρt µ̇t = −ρ2t d

dt
µt

ρt
, the Wronskian

given by Eq. (3.27) can be rewritten as

W (µ)
t =

ρ2t√
Ω−1

t0
−

(
µt

ρt

)2

d
dt
µt
ρt
. (A.37)

This can easily be integrated to obtain

µt =
ρt√
Ωt0

sin
∫ t

t0

W (µ)
τ

ρ2τ
dτ. (A.38)

From Eqs. (3.13), (3.26), and (A.38), we also obtain

νt =
√
Ωt0 ρt cos

∫ t

t0

W (ν)
τ

ρ2τ
dτ. (A.39)

We now introduce the phase function θt defined as

θt :=
∫ t

t0

W (µ)
τ

ρ2τ
dτ =

∫ t

t0

W (ν)
τ

ρ2τ
dτ. (A.40)

By differentiating Eq. (A.40) with respect to time t, we can represent the Wronskian with ρt and θt as

Wt = ρ
2
t θ̇t . (A.41)

By differentiating ρt in Eq. (A.41) with respect to time t twice, we have

ρ̈t +

(
−3

4
θ̈2t

θ̇2t
+

1
2

...
θ t

θ̇t

)
ρt = 0. (A.42)

Adding θ̇2t ρt to both sides of the above equation and defining

f t :=

√
θ̇2t −

3
4
θ̈2t

θ̇2t
+

1
2

...
θ t

θ̇t
, (A.43)
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we obtain the Ermakov equation:

ρ̈t + f 2
t ρt = θ̇

2
t ρt =

(
Wt

ρ2t

)2

ρt =
W2

t

ρ3t
, (A.44)

where we used Eq. (A.41).

A.6 Derivation of Wronskian in Eqs. (3.41) and (3.42)

By using Eqs. (3.37), (3.38), and (3.40), we obtain Eq. (3.41) as follows [65]:

W (µ)
t =

2IEL(µ)
t

W (µ)
t

=
ωt0

W (µ)
t

[
( ρ̇t µt − ρt µ̇t )2 +W (µ)2

t

(
µt
ρt

)2]
= ωt0

[(
µ̇t −

ρ̇t
ρt
µt

)2
ρ2t

W (µ)
t

+ µ2
t

W (µ)
t

ρ2t

]
= ωt0

[(
µ̇t +

µt
2
ω̇t

ωt

)2 1
ωt
+ µ2

tωt

]
=

2ωt0

ωt

[
E (µ)
t +

(
µ̇t +

µt
2
ω̇t

ωt

)
µt
2
ω̇t

ωt

]
. (A.45)

Similarly, by using Eqs. (3.37), (3.39), and (3.40), we obtain Eq. (3.42) as follows:

W (ν)
t =

2IEL(ν)
t

W (ν)
t

=
1

ωt0W (ν)
t

[
( ρ̇tνt − ρt ν̇t )2 +W (ν)2

t

(
νt
ρt

)2]
=

1
ωt0

[(
ν̇t −

ρ̇t
ρt
νt

)2
ρ2t

W (ν)
t

+ ν2t
W (ν)

t

ρ2t

]
=

1
ωt0

[(
ν̇t +

νt
2
ω̇t

ωt

)2 1
ωt
+ ν2t ωt

]
=

2
ωtωt0

[
E (ν)
t +

(
ν̇t +

νt
2
ω̇t

ωt

)
νt
2
ω̇t

ωt

]
. (A.46)

A.7 Exact explicit form of transition probabilities in Eq. (3.7)

Here, we derive an exact explicit form of the transition probabilities Pm,n
t,t0

in Eq. (3.7) as a function of
time t through the parameter QTT

t according to [55, 92]. Since the probability generating function Pu,v
t,t0

cannot be expanded in powers of u and v in an explicit series, we introduce the following transition
amplitude Um,n

t,t0
[55]:

Um,n
t,t0

:=
"
R2

dxdx0⟨m;Ωt |x⟩UTT
t,t0 (x |x0)⟨x0 |n;Ωt0⟩, (A.47)
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where Pm,n
t,t0
= ��Um,n

t,t0
��2. By using the generating function of the n-th-degree Hermite polynomials

e2xz−z2
=

∞∑
n=0

Hn(x)
n!

zn, (A.48)

we have
∞∑
n=0

√
2n
n!

zn⟨x |n;Ωt⟩ =
(

MΩt

πℏ

)1/4

exp
(
− ζt MΩt

2ℏ
x2

)
exp

(
2
√

MΩt

ℏ
xz − z2

)
. (A.49)

We calculate the generating function of the transition amplitude Um,n
t,t0

as follows:

Uu,v
t,t0

:=
∞∑

m,n=0

√
2m+n−1

m!n!
unvmUm,n

t,t0

=
1
√

2

"
R2

dxdx0UTT
t,t0 (x |x0)

∞∑
m=0

√
2m
m!

vm⟨m;Ωt |x⟩
∞∑
n=0

√
2n
n!

un⟨x0 |n;Ωt0⟩

=
M

2πℏ
(ΩtΩt0 )1/4
√

iµt
e−(u2+v2)

∫
R2

dx⃗ exp
[
−M

2ℏ
( x⃗ · Bx⃗ − 2b⃗ · x⃗︸            ︷︷            ︸

(x⃗−B−1b⃗) ·B(x⃗−B−1b⃗)−b⃗ ·B−1b⃗

)
]

=
(ΩtΩt0 )1/4
√

iµt det B
e−(u2+v2) exp

(
M
2ℏ

b⃗ · B−1b⃗
)

=
(ΩtΩt0 )1/4√

i χ(−)
t

exp
(
χ(+)
t u2 − 4i

√
ΩtΩt0uv + χ(+)∗

t v2

χ(−)
t

)
. (A.50)

In the above, we have defined the following quantities:

x⃗ := *, x
x0

+- , b⃗ := 2
√
ℏ

M
*,
√
Ωtv√
Ωt0u

+- , (A.51)

B := *,
Ωt − i µ̇t

µt

i
µt

i
µt

Ωt0 − i νtµt

+- , (A.52)

χ(±)
t := Ωt0 (Ωt µt − i µ̇t ) ± i(Ωtνt − iν̇t ). (A.53)

Note that det B = χ(−)
t

µt
and ��χ(±)

t
��2 = 2ΩtΩt0 (Qt ∓ 1), where

Qt := Ωt0

E (µ)
t

Ωt
+Ω−1

t0

E (ν)
t

Ωt
, (A.54)

which agrees with QTT
t in Eq. (3.23) if ω̇t0 = 0 is imposed. For a usual QPO in the absence of Ĥcd

t , Qt

is identified as Husimi’s measure of adiabaticity Q∗t . From the symmetric property of P−u,−vt,t0
= Pu,v

t,t0
,

we find Pm,n
t,t0
= ��Um,n

t,t0
��2 = 0 if m and n are of different parity. Then, by expanding Eq. (A.50) explicitly

in powers of u and v, we can obtain the matrix elements of Um,n
t,t0

as

Um,n
t,t0
= (2ΩtΩt0 )1/4

√
m!n!

2m+n−1

√√
χ(+)∗m
t χ(+)n

t

i χ(−)m+n+1
t

min(m,n)∑
s≥0

2s
(

2
1−Qt

)s/2
s!

(
m−s

2

)
!
(
n−s

2

)
!
. (A.55)

By applying the selection rule m − n ∈ 2Z, the number s satisfies s ∈ 2N0 for m, n ∈ 2N0, and
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s ∈ 2N0 + 1 for m, n ∈ 2N0 + 1. The explicit expression for the matrix elements of Um,n
t,t0

reads for
even elements and odd elements [92], respectively, as

U2k,2l
t,t0

=
(2ΩtΩt0 )1/4

k!l!

√
(2k)!(2l)!
22(k+l)−1

χ(+)∗k
t χ(+)l

t

χ(−)k+l
t

√
i χ(−)

t

2F1

(
−k,−l;

1
2

;
2

1 − Qt

)
, (A.56)

U2k+1,2l+1
t,t0

= −
(2ΩtΩt0 )1/4

k!l!

√
(2k + 1)!(2l + 1)!

22(k+l)+1
χ(+)∗k
t χ(+)l

t

χ(−)k+l
t

√
i χ(−)

t

��χ(+)
t

��
χ(−)
t

√
2

1 − Qt
2F1

(
−k,−l;

3
2

;
2

1 − Qt

)
,

(A.57)

where k, l ∈ N0 and 2F1 is Gauss’s hypergeometric function. We finally obtain the explicit closed
form of transition probabilities as functions of the parameter Qt , which reads for even elements and
odd elements, respectively, as

P2k,2l
t,t0
=

(2k − 1)!!(2l − 1)!!
(2k)!!(2l)!!

√
2

Qt + 1

(
Qt − 1
Qt + 1

)k+l
2F1

2
(
−k,−l;

1
2

;
2

1 − Qt

)
, (A.58)

P2k+1,2l+1
t,t0

=
(2k + 1)!!(2l + 1)!!

(2k)!!(2l)!!

(
2

Qt + 1

)3/2 (Qt − 1
Qt + 1

)k+l
2F1

2
(
−k,−l;

3
2

;
2

1 − Qt

)
. (A.59)
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Appendix B

Generalized Quantum Parametric
Oscillator

We consider the Hamiltonian of a generalized quantum parametric oscillator (GQPO)

Ĥt = at p̂2 + bt x̂2 + ct
x̂ p̂ + p̂x̂

2
+ f t x̂ + gt p̂ + ht, (B.1)

with at, bt, ct, f t, gt , and ht being arbitrary real functions of time t. Since we wish to consider a case
that the kinetic term at p̂2 in Eq. (B.1) always exists, we set at > 0 for arbitrary time t. The Schrödinger
equation is given by

iℏ
d
dt
|Ψ(t)⟩ = Ĥt |Ψ(t)⟩. (B.2)

B.1 Generalized Husimi’s method

B.1.1 Boson operator and eigenstate

By applying a technique in Ref. [93], we can rewrite the Hamiltonian Eq. (B.1) as

Ĥt = ℏΩt

(
Â†t Ât +

1
2

)
+ f t x̂ + gt p̂ + ht (B.3)

= ℏΩt

(
B̂†t B̂t + |Λt |2 +

1
2

)
, (B.4)

where we defined

Ωt :=
√

4atbt − c2
t , (B.5)

Ât :=
1
2

√
Ωt

ℏat

(
x̂ + i

2at p̂ + ct x̂
Ωt

)
, (B.6)

B̂t := Ât + Λt, (B.7)

Λt :=
1

√
ℏΩtat

(
at f t − ctgt
Ωt

+ i
gt

2

)
∈ C, (B.8)

with ht := ℏΩt |Λt |2. The Bosonic operators Ât and B̂t satisfy the Boson commutation relations
[Ât, Â

†
t ] = [B̂t, B̂

†
t ] = 1. We here define a basis created by B̂†t as

√
n!|n;Ωt⟩ := B̂†nt |0;Ωt⟩ and do a

vacuum as B̂t |0;Ωt⟩ = 0. The basis is an instantaneous eigenstate |n;Ωt⟩,

Ĥt |n;Ωt⟩ = En,Λ,t |n;Ωt⟩, (B.9)
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where we defined an instantaneous eigenenergy as

En,Λ,t := ℏΩt

(
n + |Λt |2 +

1
2

)
. (B.10)

From the definition of the vacuum, we have the following condition as

0 = ⟨x |B̂t |0;Ωt⟩ =
√
ℏat
Ωt

[
∂

∂x
+

(
1 + i

ct
Ωt

)
Ωt

2ℏat
x +

√
Ωt

ℏat
Λt

]
⟨x |0;Ωt⟩. (B.11)

We then obtain

⟨x |0;Ωt⟩ = N0,t exp
[
−
{(

1 + i
ct
Ωt

)
Ωt

4ℏat
x2 +

√
Ωt

ℏat
Λt x

}]
= N0,teRe2 {Λt } exp

[
− Ωt

4ℏat

(
x + 2

√
ℏat
Ωt

Re{Λt }
)2

+ i
{
Ωt

ct
Im2{Λt } −

ct
4ℏat

(
x + 2

√
ℏΩtat
ct

Im{Λt }
)2}]
. (B.12)

Since the normalized eigenfunction of the ground state for position x satisfies

1 = ∥⟨x |0;Ωt⟩∥2 = |N0,t |2e2Re2 {Λt }
√

2πℏat
Ωt
, (B.13)

we have

N0,t =

(
Ωt

2πℏat

)1/4

e−Re2 {Λt } . (B.14)

Hence, the eigenfunction of the ground state is given by

⟨x |0;Ωt⟩ =
(
Ωt

2πℏat

)1/4

e−Re2 {Λt } exp
[
−
{(

1 + i
ct
Ωt

)
Ωt

4ℏat
x2 +

√
Ωt

ℏat
Λt x

}]
=

(
Ωt

2πℏat

)1/4

exp
[
− Ωt

4ℏat

(
x + 2

√
ℏat
Ωt

Re{Λt }
)2

+ i
{
Ωt

ct
Im2{Λt } −

ct
4ℏat

(
x + 2

√
ℏΩtat
ct

Im{Λt }
)2}]
. (B.15)

By using Eqs. (A.2) and (B.15), binomial expansion, and the following formula

m∑
n=0

(
m
n

)
(2x)m−nHn(y) = Hm(x + y), (B.16)

we obtain the eigenfunction of the n-th excited state of the GQPO [Eq. (B.1)] as

⟨x |n;Ω(t)⟩ = 1
√

n!
⟨x |B̂†nt |0;Ω(t)⟩ = 1

√
n!
⟨x |( Â†t + Λ

∗
t )n |0;Ω(t)⟩

=
1
√

n!

[
1
2

(
1 − i

ct
Ωt

)√
Ωt

ℏat
x −

√
ℏat
Ωt

∂

∂x
+ Λ∗t

]n
⟨x |0;Ωt⟩

=
1
√

n!

n∑
l=0

(n

l

)
Λ∗n−lt

[
1
2

(
1 − i

ct
Ωt

)√
Ωt

ℏat
x −

√
ℏat
Ωt

∂

∂x

] l
⟨x |0;Ωt⟩
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=
1

√
2nn!

n∑
l=0

(n

l

)
(
√

2Λ∗t )n−l
(
1 − i

ct
Ωt

) l/2 
√(

1 − i
ct
Ωt

)
Ωt

2ℏat
x − 1√(

1 − i ct
Ωt

)
Ωt

2ℏat

∂

∂x


l

⟨x |0;Ωt⟩

=
1

√
2nn!

exp
[(

1 − i
ct
Ωt

)
Ωt

4ℏat
x2

] n∑
l=0

(n

l

)
(
√

2Λ∗t )n−l

× (−1)l
1(
Ωt

2ℏat

) l/2 ∂l∂xl

{
exp

[
−
(
1 − i

ct
Ωt

)
Ωt

4ℏat
x2

]
⟨x |0;Ωt⟩

}

=
1

√
2nn!

(
Ωt

2πℏat

)1/4

e−Re2 {Λt }+Λ2
t /2 exp

[(
1 − i

ct
Ωt

)
Ωt

4ℏat
x2

] n∑
l=0

(n

l

)
(
√

2Λ∗t )n−l

× (−1)l
1(
Ωt

2ℏat

) l/2 ∂l∂xl
exp

[
− Ωt

2ℏat

(
x +

√
ℏat
Ωt
Λt

)2]

=
1

√
2nn!

(
Ωt

2πℏat

)1/4 n∑
l=0

(n

l

)
(
√

2Λ∗t )n−lHl

(√
Ωt

2ℏat

(
x +

√
ℏat
Ωt
Λt

))

× e−Re2 {Λt } exp
[
−
{(

1 + i
ct
Ωt

)
Ωt

4ℏat
x2 +

√
ℏat
Ωt
Λt x

}]
=

1
√

2nn!

(
Ωt

2πℏat

)1/4

Hn

(√
Ωt

2ℏat

(
x + 2

√
ℏat
Ωt

Re{Λt }
))

× e−Re2 {Λt } exp
[
−
{(

1 + i
ct
Ωt

)
Ωt

4ℏat
x2 +

√
ℏat
Ωt
Λt x

}]
=

1
√

2nn!

(
Ωt

2πℏat

)1/4

Hn

(√
Ωt

2ℏat

(
x + 2

√
ℏat
Ωt

Re{Λt }
))

× exp
[
− Ωt

4ℏat

(
x + 2

√
ℏat
Ωt

Re{Λt }
)2

+ i
{
Ωt

ct
Im2{Λt } −

ct
4ℏat

(
x + 2

√
ℏΩtat
ct

Im{Λt }
)2}]
. (B.17)

B.1.2 Propagator of generalized quantum parametric oscillator

Let us consider the propagator Ut,t0 (x |x0) defined as

⟨x |Ψ(t)⟩ =
∫
R

dx0Ut,t0 (x |x0)⟨x0 |Ψ(t0)⟩, t ∈ [t0,∞), (B.18)

which satisfies the Schröginger equation

iℏ
∂

∂t
⟨x |Ψ(t)⟩ = ⟨x |Ĥt |Ψ(t)⟩. (B.19)

This is a non-autonomous and inhomogeneous diffusion-type equation for the GQPOs. If t < t0, the
propagator Ut,t0 (x |x0) is zero. We assume the specific ansatz of the propagator:

Ut,t0 (x |x0) =
1

√
4πiℏat µt

ei(αt x
2+βt xx0+γt x

2
0+ζt x+ηt x0+κt )/ℏ, (B.20)

where we introduced the time-dependent coefficients αt , βt , γt , ζt , ηt , κt , and µt . By substituting
Eq. (B.20) into Eq. (B.19), we have

0 =
{[
α̇t + 2αt (2αtat + ct ) + bt

]
x2 +

[
β̇t + βt (4αtat + ct )

]
xx0 + (γ̇t + β2

t at )x2
0
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+
[
ζ̇t + ζt (4αtat + ct ) + 2αtgt + f t

]
x +

[
η̇t + βt (2ζtat + gt )

]
x0

+ κ̇t + ζt (ζtat + gt ) + ht −
iℏ
2

(
4αtat + ct −

ȧt
at
− µ̇t
µt

)}
Ut,t0 (x |x0). (B.21)

Eq. (B.21) can be reduced to the following seven coupled ordinary differential equations (ODEs):



α̇t + 2αt (2αtat + ct ) + bt = 0,
β̇t + (4αtat + ct ) βt = 0,
γ̇t + at β2

t = 0,
ζ̇t + (4αtat + ct )ζt + f t + 2αtgt = 0,
η̇t + (gt + 2ζtat ) βt = 0,
κ̇t + (gt + ζtat )ζt + ht = 0,

4αtat + ct −
ȧt
at
− µ̇t
µt
= 0.

(B.22)
(B.23)
(B.24)
(B.25)
(B.26)
(B.27)

(B.28)

From Eq. (B.28), we have

αt =
1

4at

(
ȧt
at
+
µ̇t
µt
− ct

)
, (B.29)

α̇t =
1

4at

[
ät
at
−

(
ȧt
at

)2

+
µ̈t
µt
−

(
µ̇t
µt

)2

− ȧt
at

(
ȧt
at
+
µ̇t
µt
− ct

)
− ċt

]
. (B.30)

By substituting Eq. (B.29) into Eq. (B.22), we have an EoM of a damped CPO as

µ̈t +
ȧt
at
µ̇t + Ω̃

2
t µt = 0, (B.31)

where we defined the new angular frequency as

Ω̃t :=

√
Ω2

t − ċt +
(
ct −

ȧt
at

)
ȧt
at
+

ät
at
, (B.32)

with the angular frequency Ωt [Eq. (B.5)]. By substituting Eq. (B.29) into Eqs. (B.23) and (B.25), we
can reduce Eqs. (B.23)–(B.27) to the following equations, which can be solved explicitly:

β̇t +

(
ȧt
at
+
µ̇t
µt

)
βt = 0, ∴ βt =

A1

at µt
, (B.33)

γ̇t +
A2

1

at µ2
t

= 0, ∴ γt = A2 − A2
1

∫ t

t0

dτ
aτ µ2

τ

, (B.34)

ζ̇t +

(
ȧt
at
+
µ̇t
µt

)
ζt + f t + 2αtgt = 0, ∴ ζt =

1
at µt

[
A3 −

∫ t

t0

dτaτ µτ
(

fτ + 2gτατ
)]
, (B.35)

η̇t + A1
gt + 2ζtat

at µt
= 0, ∴ ηt = A4 − A1

∫ t

t0

dτ
gτ + 2ζτaτ

aτ µτ
, (B.36)

κ̇t + (gt + ζtat )ζt + ht = 0, ∴ κt = A5 −
∫ t

t0

dτ[(gτ + ζτaτ )ζτ + hτ], (B.37)

provided that {Ai }i=1, · · · ,5 are integral constants.
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For the propagator with the Hamiltonian in Eq. (B.1), the asymptotic form of the solution
Ut,t0 (x |x0) has been shown as [94]

Ut,t0 (x |x0) |t≃t0 =
1

√
4πiℏat0 (t − t0)

exp
[

i
ℏ

1
4at0

{(
1

t − t0
− 1

2
ȧt0
at0
− ct0

)
x2

− 2
(

1
t − t0

− 1
2

ȧt0
at0

)
xx0 +

(
1

t − t0
− 1

2
ȧt0
at0
+ ct0

)
x2

0 − 2gt0 (x − x0)
}
+ O(t − t0)

]
=

1
√

4πiℏat0 (t − t0)
exp

[
i
ℏ

(x − x0)2

4at0

]
× exp

[
− i
ℏ

1
4at0

{
1
2

ȧt0
at0

(x − x0)2 + ct0 (x2 − x2
0) + 2gt0 (x − x0)

}
+ O(t − t0)

]
.

(B.38)

We can confirm the consistency of the propagator at the initial time:

Ut,t0 (x |x0) |t→t0+0 = δ(x − x0) exp
[
− i
ℏ

1
4at0

{
1
2

ȧt0
at0

(x − x0)2 + ct0 (x2 − x2
0) + 2gt0 (x − x0)

}]
= δ(x − x0). (B.39)

Thus, we find the asymptotic relations of the time-dependent coefficients αt , βt , γt , ζt , ηt , κt , and µt :



αt |t≃t0 =
1

4at0

(
1

t − t0
− 1

2
ȧt0
at0
− ct0

)
+ O(t − t0),

βt |t≃t0 = −
1

2at0

(
1

t − t0
− 1

2
ȧt0
at0

)
+ O(t − t0),

γt |t≃t0 =
1

4at0

(
1

t − t0
− 1

2
ȧt0
at0
+ ct0

)
+ O(t − t0),

ζt |t≃t0 = −2gt0 + O(t − t0),

ηt |t≃t0 = 2gt0 + O(t − t0),

κt |t≃t0 = O(t − t0),

µt |t≃t0 = t − t0 + O2(t − t0).

(B.40)

(B.41)

(B.42)

(B.43)
(B.44)
(B.45)
(B.46)

From Eq. (B.46), we find the initial conditions of µt as

µt |t≃t0
t→t0+0−−−−−−→ µt0 = 0, (B.47)

µ̇t |t≃t0 = 1 + O(t − t0)
t→t0+0−−−−−−→ µ̇t0 = 1. (B.48)

Hence, by solving Eq. (B.31) with respect to µt under the initial condition (B.47) and (B.48), we
obtain the solutions of Eqs. (B.33)–(B.37) in succession.

Let νt be an another solution of Eq. (B.31) under the following initial condition

νt0 = 1, ν̇t0 = 0. (B.49)

Note that µt has the dimension of time, whereas νt is dimensionless. Let us consider the Wronskian
Wt := µ̇tνt − µt ν̇t . Since d

dtWt = − ȧt

at
Wt , Wt0 = 1, and at > 0, we have

Wt =
at0
at
> 0. (B.50)
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By using Eq. (B.50), we have

νt
µt
= −at0

∫ t

t0

dτ
aτ µ2

τ

. (B.51)

By comparing Eq. (B.33) with Eq. (B.41), we have to set the integral constant as A1 =
1
2

( µt0
2

ȧt0
at0
− 1

)
,

then we get

βt =
1

2at µt

(
µt0
2

ȧt0
at0
− 1

)
. (B.52)

From Eqs. (B.34) and (B.51), we have

γt = A2 +
1

4at0

(
µt0
2

ȧt0
at0
− 1

)2
νt
µt
. (B.53)

By comparing Eq. (B.42) with Eq. (B.53), we have to set the integral constant as A2 =
1

4at0

(
ct0− 1

2
ȧt0
at0

)
,

then we get

γt =
1

4at0

[(
µt0
2

ȧt0
at0
− 1

)2
νt
µt
− 1

2
ȧt0
at0
+ ct0

]
. (B.54)

We then have to set A3 = −2at0gt0 µt0 , A4 = 2gt0 and A5 = 0. Hence, we obtain

ζt = −
1

at µt

{
2at0gt0 µt0 +

∫ t

t0

dτµτ
[
aτ fτ +

gτ

2

(
ȧτ
aτ
+
µ̇τ
µτ
− cτ

)]}
, (B.55)

ηt = 2gt0 +
1
2

(
1 −
µt0
2

ȧt0
at0

) ∫ t

t0

dτ
gτ + 2aτζτ

aτ µτ
, (B.56)

κt = −
∫ t

t0

dτ[(gτ + aτζτ )ζτ + hτ]. (B.57)

The time-dependent coefficients ζt , ηt , and κt of Eqs. (B.55)–(B.57) in the ansatz Eq. (B.20) can be
determined when we have the solution µt in Eq. (B.31) under the initial conditions Eqs. (B.47) and
(B.48).

Summarizing the above results, we obtain the propagator Ut,t0 (x |x0) of the GQPO [Eq. (B.1)]:

Ut,t0 (x |x0) =
1

√
4πiℏat µt

exp
[

i
ℏ

1
4at

{(
ȧt
at
+
µ̇t
µt
− ct

)
x2 + 2

(
µt0
2

ȧt0
at0
− 1

)
xx0

µt

+
at
at0

[(
µt0
2

ȧt0
at0
− 1

)2
νt
µt
− 1

2
ȧt0
at0
+ ct0

]
x2

0

}]
ei(ζt x+ηt x0+κt )/ℏ, (B.58)

where µt and νt are the solutions of the damped CPO with the angular frequency Ω̃t [Eq. (B.32)] and
the different initial conditions:

µ̈t +
ȧt
at
µ̇t + Ω̃

2
t µt = 0, (µt0, µ̇t0 ) = (0, 1), (B.59)

ν̈t +
ȧt
at
ν̇t + Ω̃

2
t νt = 0, (νt0, ν̇t0 ) = (1, 0). (B.60)

Since the Wronskian is always non-zero (i.e., Wt =
at0
at
> 0) [Eq. (B.50)], the solutions µt and νt of

Eqs. (B.59) and (B.60) are linearly independent, respectively.
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