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Abstract

Language production and comprehension have been studied by scientists for decades,
And hundreds of empirical observations as well as experimental results have been
reported. Numerous models and theories have been proposed to describe a wide
ranging aspects of human communication and its underlying mechanisms. This dis-
sertation will investigate the speaker-specific speech characteristics and their impact
on information transmission. After reviewing related researches, I consider that sim-
ilarity in the speaker-specific speech characteristics of conversation partners is one
of the key to understanding high linguistic information transmission efficiency dur-
ing conversations. Since few systematic investigations of the role of speaker-specific
speech characteristic similarity in conversational information transmission have been
published, especially ones focus on segmental speech characteristics similarity, the

objectives of this dissertation are as follows:

1. Investigate the effective similarity measure of speaker-specific speech char-
acteristics on speaker diarization tasks while developing speaker diarization

system with higher clustering accuracy (first study);

2. Investigate the impact of similarity in speaker-specific speech characteristics,
especially the segmental-based speech characteristics, on subtle prosodic in-

formation transmission (second study);

3. Use similarity in the speaker-specific speech characteristics of interlocutors as
a predictor of information transmission quality, and explore the effects of this

similarity on task performance using spontaneous speech corpus (third study).

In the background survey, segmental-based speech characteristics, prosodic speech

characteristics and lexical speech characteristics were found to be the most impor-
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tant speech characteristics affecting performance in speaker related signal processing

tasks (e.g., speaker identification, speaker recognition, speaker diarization, etc.).

In the first study, a method to evaluate whether a cluster contains all of one (and
only one) speaker’s speech segments, based on the statistical properties of with-
cluster similarity scores and between-cluster similarity scores in a “speaker space”
was proposed. Modified bottom-up clustering was then conducted based on the
proposed cluster evaluation method in order to increase diarization accuracy by
preventing over-merging. Experimental results showed that the proposed method

achieve higher clustering accuracy than conventional bottom-up clustering methods.

In the second study, a listening experiment was designed to investigate the efficiency
of subtle prosodic information transmission at different levels of speech characteristic
similarity. Japanese right-branching (RB) vs. left-branching (LB) ambiguous sen-
tences were used as experimental material. Morphing technology and text-dependent
objective similarity measures were introduced to control similarity levels. Partici-
pants were asked to finish a target identification task with RB vs. LB materials as
targets. Participant response time during the target identification task, as well as
the proportion of eye-fixing on different targets were recorded for analysis. Results
showed that speech characteristics similarity apparently has facilitative effect on

prosodic information transmission.

In the third study, the impact of similarity in speaker and listener speech character-
istics on the quality of linguistic information transmission was investigated, using a
map task dialogue corpus. Similarity between the segmental (MFCC) voice features,
prosodic features and lexical styles of different speakers were analyzed. Most of these
similarity measures were shown to have significant facilitative effect on information
transmission quality as measured with a direction following task in which a speaker

is describing a route to a partner.

In general, experimental results showed that similarity in speaker-specific speech
characteristics between conversation partners facilitated information transmission
accuracy. The findings imply that self-similar voice is an effective direction towards
high efficiency linguistic information transmission. The present dissertation is just
the first step towards self-similar high efficiency information transmission system,
several important issues, such as the impact of voice naturalness (caused by voice

conversion) on linguistic information transmission and the comfortableness of hear-



ing self-similar voice, are still unclear which need to be investigated in the future.






Chapter 1

Introduction

1.1 Overview

As a result of the rapid and continuous advancements occurring in the field of in-
formation science, human-like robots are no longer something to be found only in
science fiction novels. We now have the technology to dress robots with skin-like
materials, teach them how to walk and run on two legs and have them mimic human
emotions using various facial expressions. In speech-related fields, systems with the
ability to listen and speak to humans have been developed and continue to evolve day
by day. A computer’s “ears” are driven by speech recognition technology, one of the
oldest topics of signal processing research. As a result of technological innovation and
several decades of continuous improvement, relatively high accuracy speech recogni-
tion systems have been developed, one after another [1] [2] [3]. Current researchers
are not satisfied with automated transcription and interpretation of speech content,
but also desire to learn more from human speech signals, such as determining the
identity of the speaker (e.g., name [4], gender [5], age [6], personality traits [7], etc.),
the current status of a speaker (e.g., psychological health [8], stress level [9], intoxica-
tion [10], etc.), and information about the speaker’s emotional state [11][12]. Using
this speech-derived information, speech recognition systems can be customized for

specific users, further empowering a computer’s “ears” [13] [14] [15] [16].

Similarly, speech synthesis technology, which can provide a computer with a “voice”,
has also developed greatly in the last decade. Based on our physiological knowledge

of speech production and our understanding of mathematical models of random
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processes, many facets of synthesized speech are now under the engineer’s con-
trol [17]. Another product of speech analysis research has been the discovery of
speech characteristics which can provide general information about speakers (e.g.,
vocal spectrogram [18], age [19], etc.), the prosodic characteristics of their speech
(e.g., pronunciation [20], sound duration [21], etc.), and their emotion characteris-
tics [22] [23] [24] all of which are available options in current state-of-the-art speech

synthesis systems.

In short, modern speech signal processing technology seeks to achieve human-like
speech and speech comprehension performance. Computers should be able to not
only produce and comprehend linguistic information, but should also be able to
respond to nonlinguistic information, such as human identity, physical and emotional
states, and behaviour information. Just as it is difficult for humans to interpret
linguistic and nonlinguistic information processed separately, knowledge about the
integration of this information should help us to design better automated “ears” and

“voices”.

1.2 Research motivation and contribution

1.2.1 DMotivation and objective

In this dissertation, certain speaker-specific speech characteristics containing typi-
cal, nonlinguistic information from speech signals are selected, and their importance
in linguistic information transmission is examined. Speaker-specific speech charac-
teristics are defined as features which can be used to identify individual speakers.
These speech characteristics are typical, nonlinguistic features, but in contrast to
other nonlinguistic information, such as information about emotional states, these
characteristics of human speech are relatively stable and can be easily extracted
from speech signals. Speech can be emotionless, but it is very unlikely to be charac-
terless. However, since a speaker’s speech characteristics are determined by various
factors, such as their physiological profile, educational background, native language,
and so on, there are numerous features which need to be examined. Therefore, my
investigations began with speaker diarization, which is a technology that attempts

to differentiate and identify speakers without any prior information about them, be-



cause I suspected that speech characteristics which play an important role in speaker

recognition may also have an effect on information transmission.

Similarity among speakers is another focus of this dissertation, my hypothesis being
that similarity in the speech characteristics of conversation partners plays an im-
portant, facilitative role in linguistic information transmission during dialogue. As I
will discuss in the following chapter, it is believed that the language communication
process is an attempt to reconstruct a situation model orally and mentally. Similar-
ity in the speech characteristics of speakers are considered to facilitate this process
directly in two ways. First, it can increase linguistic information retrieval efficiency
due to listener familiarity with the speaker’s manner of speaking, freeing up cognitive
resources for listener comprehension. Second, it can increase utterance prediction
accuracy among interlocutors. Although it seems obvious that familiar (self-similar)
accents and vocabulary are easier to comprehend and produce, there are issues which
need to be examined. For example, the relationship between similarity in segmen-
tal speech characteristics (e.g., MFCC), one of the most important types of speech
characteristics used in both laboratory and commercial research, and information
transmission, has never been thoroughly investigated. Although it is believed that
segmental speaker characteristics mainly contain air vibration information, which
is different from the bone conducted voice we hear when we ourselves speak, it is
likely that segmental characteristics also contain information (e.g., dynamic spec-
trum information) which we may be familiar with, as a result of the thousands of
conducted and overheard conversations we have experienced. Therefore, I consider
similarity in segmental speech characteristics as potential factors which can affect
the information transmission process, and have decided to investigate their influ-
ence in this dissertation. Additionally, previous studies have conventionally used
categorical similarity levels (e.g., local accent versus foreign accent) to examine the
impact of speech characteristic similarity on information transmission, but more
quantifiable measures of speech characteristic similarity are necessary for further
investigation. Finally, most previous studies have utilized laboratory experiments
conducted under strictly controlled conditions, thus there is little data on the im-
pact of speech characteristic similarity on information transmission in spontaneous

dialogue corpora, which is obviously nearer to real world conversation conditions.



1.2.2 Contribution

The aim of this dissertation is to investigate which speaker-specific speech charac-
teristics influence information transmission efficiency. I will mainly focus on the
role of similarity in the speech characteristics of conversation partners in order to
gain a deeper comprehension of the mechanisms of the human language process.
For this reason, speech diarization was first studied in order to understand the im-
portance of various speech characteristics on speaker recognition and the possible
approaches to measuring the similarity of speech characteristics. A novel clustering
method was also proposed for high-accuracy speaker diarization. Experimental re-
sults showed that the proposed method increased the accuracy of speaker clustering

by the bottom-up clustering algorithm.

Several methods of measuring the similarity of important speech characteristics, in-
cluding segmental characteristics, prosodic characteristics and lexical characteristics
were then selected, and their impact on subtle prosodic information transmission ef-
ficiency was tested using a behavioural experiment. Analysis of the response time
data showed that participants understood prosodic information more quickly when
it was communicated by voices similar to their own. Analysis of the visual fixation
data also showed that participants understood more of the prosodically conveyed
information when the target images were described in voices similar to their own.
These findings were consistent with one another, and imply that acoustic feature sim-
ilarity is relevant to prosodic information transmission efficiency. Moreover, based
on an analysis of the objective, text-dependent similarity measurements employed,
differences in prosodic expression between paired participants were subtle. As it
is unlikely that these subtle prosodic differences have any linguistic meaning, our
results suggest that human information processing is so sensitive that even subtle
speech characteristics of speakers can influence information processing efficiency, as
is also the case regarding spectrum similarity (MFCC distance), which is considered

to contain information on the condition of the vocal tract.

Finally, I wanted to expand my inquiry into the relationship between speech char-
acteristic similarity and linguistic information transmission quality from laboratory
experiments to spontaneous speech. To do this, similarity in the speech character-
istics of speakers was proposed as a predictor of information transmission quality in

dialogues from a spontaneous speech corpus collected during a direction/navigation



task. Using approximated measurements of linguistic information transmission qual-

ity, the effectiveness of each predictor were analyzed at different levels, a topic which

had previously been little researched. Experimental results showed that most of the

speech similarity measures selected had significant facilitative effect on linguistic

information transmission accuracy. The results of this investigation suggest that

synthesized, listener-like speech could be used for high accuracy information trans-

mission.

1.3 Outline of the dissertation

Outline of the dissertation is shown in Fig 1.1.

Speech signal

[

Linguistic content C/’abt@
(e.g., syllables) !

Impact of self-similar voice on linguistic
information transmission
Chapter 4: transmission of subtle prosodic cues
Behavioural experiment using voice
morphing and objective similarity measures

Chapter 5: transmission in spontaneous corpus

Analyzing map task successfulness with
similarity measures in different levels

\

Nonlinguistic characteristics
(e.g., speaking rate)

Speaker-specific
speech characteristics

]

-

Chapter 3: speaker diarization

Using speech characteristics

Figure 1.1: Outline of this dissertation.

In Chapter 2, I provided a brief review of the literature on speech characteristics and

language processing, as well as of studies on the relationship between them. After
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describing the development of theories in these fields of research, I then proposed

the main hypothesis of this dissertation.

In Chapter 3, I proposed a method to increase clustering accuracy in connection
with a speaker diarization task. The proposed method is then evaluated using an

open-source spontaneous meeting speech corpus.

In Chapter 4, a behavioural experiment designed for investigating the impact of
similarities in speaker characteristics on the efficiency of subtle prosodic information

transmission is described.

In Chapter 5, I tested the idea that similarity in speech characteristics can be used
as a predictor of information transmission quality in dialogues. Spontaneous speech
data was used to test my hypothesis, and the effects of similarity in various speech

characteristics on information transmission quality were investigated.

Finally, in Chapter 6, I drawn my conclusions and discuss possible future work.
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Chapter 2

General Background

Keywords in this chapter:

Speech characteristics

Speaker recognition

- Information transmission in dialogue
Psycholinguistic theory
Conversational alignment

Similarity of speech characteristics

2.1 speech characteristics

Speech signals convey a mixture of information including linguistic information and
speaker- specific information. Speakers of different ages, genders, education levels,
social classes, etc., tend to speak in different ways based on their identity. For exam-
ple, imagine a male, Chinese student giving a speech in English at an international
conference. His voice may have a lower pitch because men’s vocal folds tend to
be larger than women’s. His voice may waver because he is a student who is not
accustomed to public speaking, and his nervousness may also affect the fundamental
frequency and spectrum of the sounds produced at his glottal source. Since he is
Chinese, the vocabulary he choose, his pronunciation and his speaking rate may
all be different from those of a native English speaker, or even from another non-
native speaker from a different nation. All of these features which can be obtained
from a speech signal can potentially give us the ability to discriminate one speaker
from others, and these features are what are referred to as speaker-specific speech

characteristics in this dissertation.
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There are several possible ways to categorize speech characteristics. Based on their
continuity, they can be categorized as discrete characteristics, which applies to most
of the linguistic characteristics, such as one’s vocabulary, or continuous characteris-
tics, such as the pitch contour of one’s speech. Based on their stability, they can be
divided by congenital characteristics which are unlikely to change (e.g., glottal source
frequency), acquired characteristics which are likely to remain unchanged during a
specified period (e.g., pronunciation), and temporal characteristics which are likely
to change often based on the speaker’s mental condition and the surrounding envi-
ronment (e.g., speech intensity). Or, based on the size of analysis windows, speech
characteristics can be separated into short-term characteristics (e.g., pitch, which is
extracted every 20ms in general) and long-term characteristics (e.g., average pitch
of a speech segment or a speaker). In this dissertation, speech characteristics will
be categorized based on their temporal spans as follows: 1) segmental speech char-
acteristics, 2) prosodic speech characteristics, and 3) idiolect speech characteristics,

each of which will be defined in the following subsections of this dissertation.

In general, segmental speech characteristics are easy to compute and yield good
performance for both speech and speaker recognition [25]. Prosodic speech char-
acteristics are considered to have higher robustness to channel variation (i.e., noise
coming from the acoustic environment and other technical factors), but are less
useful for discriminative tasks and are easier to imitate, especially by professional
voice imitators [26]. Idiolect speech characteristics, while sharing many of the strong
and weak points of prosodic speech characteristics, usually require the use of pre-
processing support (e.g., an automatic speech recognizer) with an acceptably high
accuracy, which is still difficult to achieve. Therefore, there is no best type of speech
characteristics for general use, so the choice of which speech characteristics to use
should be based on the particular application they will be used for. In general,
a combination of different speech characteristics will likely be the most useful for

discriminating among and identifying different speakers [27] [28].

2.1.1 Segmental speech characteristics

Here, segmental speech characteristics refer to characteristics that calculated from
the smallest discrete linguistic unit that can be identified. In practice, segmen-

tal speech characteristics particularly refer to information that extracted from a
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short-term analysis window(s) (usually 20ms 30ms) which is considered to contain

phonemic information.

One of the most important segmental speaker characteristics is the spectrum of the
speech signal. As the sound of the speech we hear is actually the result of the
vibration of air molecules under the effect of sound waves. Because information
about our speech organs (e.g., our vocal tract) is contained in the air vibrations
they produce, the frequency domain information of these vibrations can provide
not only linguistic information but also information about speaker-specific speech
characteristics. The first step towards spectrum analysis of speech characteristics is
usually the transformation of the signal from a time domain signal to a frequency
domain signal. As a speech signal continuously changes due to the articulatory
movements of the vocal tract, transformation usually occurs in short time frames
with an interval of 20—30ms. The signal is assumed to remain stationary within this
interval, and a spectral feature vector is then extracted from each frame. Because
of the finite-length effects of the discrete Fourier transform (DFT), the frame is
multiplied by a window smoothing function, usually a Hamming window, before

further processing.

There are several ways to quantify a spectrum, but use of mel-frequency cepstral
coefficients (MFCCs) [29] is one of the most popular methods in speech and audio
processing. The calculation of MFCCs generally has three steps:

1. Apply to the spectrum a bank of triangularly shaped filters whose centers are

evenly spread over the mel-frequency axis;
2. Calculate the natural logarithm;

3. Apply a discrete cosine transform (DCT).

MFCCs use mel-frequency scaling instead of frequency scaling to create sub-band
filters. The human acoustic system has different resolution ratios in different fre-
quencies, and filter banks based on mel-frequency scaling are able to catch more of
the low frequency information produced by human beings [30]. Using a source-filter
model, speech spectrum Y (w) is considered to be the product of two components
which are assumed to be independent of each other: 1) a source component X (w),

which mainly represents the vibration of the vocal folds in response to airflow from
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the lungs (voiced speech) or turbulent airflow in the vocal tract (unvoiced speech);
and 2) a filter component H(w), which mainly represents the effects of the vocal
tract and lip radiation [31]. The high frequency region of the spectrum is believed
to contain information about the source component, while the low frequency region
of the spectrum is believed to contain the filter component. Using the calculated log-
arithm with the inverse Fourier transform (using DCT) is a mathematical procedure

which tends to separate the two components.

Although using MFCCs is the most popular spectrum speech characteristic analysis
method, there are several alternative methods which can also be used to capture
speech characteristic information from a spectrum. Linear predictive cepstral co-
efficients (LPCCs), for example, use the cepstrum (i.e., inverse Fourier transform
of the log-spectrum) of the linear prediction coeflicients (LPCs) as speech char-
acteristics [32]; perceptual linear prediction (PLP) coefficients utilize critical-band
spectral resolution, equal-loudness curves and the intensity-loudness power law as
a psycho-physics basis for computing speech characteristics[33]. It has been noted
that most spectrum features, including MFCCs, were originally proposed for use in
automatic speech recognition (ASR), which means that these features were originally
purposed to extract more linguistic information while ignoring the speaker-specific
information. In contrast, spectrum features that can catch more speaker-specific

information while ignoring linguistic information has also been designed[34].

Furthermore, the spectrum speech characteristics described above are extracted from
a single frame. As speech signals change continuously, it is reasonable to assume
that spectro-temporal signal details, such as formant transitions and energy modu-
lations, contain useful speaker-specific information which can be extracted as speech
characteristics. Although researchers have used spectro-dynamic speech character-
istics in attempts to identify robust, discriminative speech characteristics [35][36],
simple differentiation using the time deviation of features (e.g., MFCCs) seems to
yield equal or even better performance in practice [37]. Simple differentiation is usu-
ally computed using time differences between adjacent speech characteristics at the
frame level [38]. The first order time deviation is called delta (A), and the second
order time deviation is called delta-delta (AA). The original speech characteristics
are mathematically expanded three times (i.e., MFCCs with 20 dimensions will be

expanded to 60. dimensions when the delta and delta-delta values are also included).
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Another set of segmental speech characteristics is pitch and intensity related fea-
tures of the speech signal, which calculated based on the pitch and intensity values
computed within a short-term time frame with an interval of about 30 ms . They
are basic elements of sound wave, and are considered to be speaker-specific speech
characteristics because they can reflect, 1) physiological characteristics of speech
production organs and 2) acquired/learned habits. For instance, the amplitude
variation is affected by the reduction of glottal resistance on the vocal cords and is
correlated with the changes in noise emission and breathiness. Researchers have in-
vestigated methods to measure this variation (known as “shimmer”) and have used
it for speaker recognition [39]. In [40] researchers investigated seventy different such
features and their speaker identification performance when combined with conven-
tional MFCCs in a speaker diarization task. Pitch based features showed the best

performance.

Pitch, also known as fundamental frequency (Fp), is one of the the most important
speech characteristic!, and is considered to reflect the speaker’s vocal fold vibration
rate. It is affected by the various physical properties of the speaker’s vocal folds,
including their size, mass and stiffness, which obviously contain a large amount
of speaker-specific information [41]. For instance, using the parameter of mean
pitch alone can provide language-independent gender identification with 98% accu-
racy [42].

There are also speech characteristics developed based on the frequency and am-
plitude properties of sound wave, such as jitter and shimmer, which are two of
the so-called “voice quality” features. Jitter is defined as pitch variation from cy-
cle to cycle, and shimmer is defined as the variation in the amplitude of a sound
wave?. Since jitter and shimmer characterize aspects of particular voices, it is a pri-
ori expected that differences in values for jitter and shimmer will be found among
different speakers. The usefulness of jitter and shimmer for speaker identification
has been tested in several studies which have shown that, as with other prosodic

speech characteristics, jitter and shimmer can improve speaker recognition accuracy

1Strictly speaking, pitch is the perceived frequency of a sound, which determined by comparing
a signal with pure sinusoids to determine the best match, and is thus a psycho-acoustic concept.
Fundamental frequency, on the other hand, is the lowest frequency of a periodic waveform, and is
thus a physical concept. I will use the two terms interchangeably in this dissertation, however.

2Several methods of computing these features have been proposed. For example, the famous
speech analysis toolbox Praat[43] contains five different computations to determine jitter “fre-
quency variation” (“local”, “local, absolute”, “rap”, “ppg5”, and “ddp”).
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when combined with conventional spectral features such as MFCCs [39][44]

2.1.2 Prosodic speech characteristics

Prosodic speech characteristics are usually known as the suprasegmental speech
characteristics, which refer to speech characteristics that extend over syllables and
longer regions. Figure 2.1 shows an example of the usefulness of prosodic speech
characteristics (i.e., pitch contours) for speaker identification, from [45]. Four speak-
ers (two males, one female, and a child) repeated the word “sunday” three times,
and the pitch contours of their speech are shown in Figure 2.1. We can see that the
pitch contours are similar when the word is spoken by the same speaker, but quite

different when the speaker changes, even though the subjects all uttered the same

word.
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Figure 2.1: Variation in F{ contour dynamics of four different speakers: :
(a) Child, (b) Male 1, (c) Male 2, (d) Female. All four subjects repeatted
the same word three times (“Sunday”, “Sunday”, “Sunday”) [45].

Researchers have proposed several methods of modeling prosodic features for long-
term intervals to determine prosodic speech characteristics. One straight-forward
method is described in [46]. The tracked pitch contour of a syllable-like segment
was modeled by fitting it with a piecewise linear model, and the parameters of the
linear model were then used as statistical prosodic speech characteristics. In [47],

parameters were simplified into binary or integer values, and symbolic sequences of
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the coded prosodic features (i.e., rising vs. falling pitch contour, rising vs. falling
intensity contour, short/median/long duration) were then used as prosodic speech
characteristics. Other prosodic speech characteristics which have been extracted

from piecewise linear models of pitch contours can be found in [48][49][50].

2.1.3 Idiolect speech characteristics

An idiolect is the language or speech of an individual during a particular period of
his or her life. Here idiolect is used to refer to speech characteristics extracted from
morpheme (i.e., the smallest meaningful unit) and longer regions. In contrast to
prosodic speech characteristics, idiolect speech characteristics are all linguistically
meaningful. Idiolect speech characteristics can be useful for speaker identification
in two ways. First, when combined with other features, idiolect speech information
can be used to model the physiological characteristics and speech habits of a specific
speaker. Second, idiolect speech information can be used as speech characteristics
themselves, alone or together with other speech characteristics. For example, in [51]

Doddington used the relative frequency of common words to identify speakers.

Before obtaining idiolect speech characteristics, it is always necessary to separate
the original speech signal into segments with meaningful linguistic information, ei-
ther manually or automatically. These segments, also known as “tokens”, include
words [51], and even part-of-speech (POS) tags [52]. Note that when we consider
words or even longer idiolect features as speech characteristics, the techniques which

are used to identify speakers can also be used to identify writers?.

Segmental and prosodic speech characteristics can be modeled not only by using
whole speech, but also by using information within tokens (e.g., words). In [53],
researchers provided a method of modeling phonetic MFCCs using Gaussian mixture
models (GMMs). Based on an automatic speech recognition (ASR) system, this
method trained speaker-specific GMMs for every phone unit for speaker recognition.
Boakye and Peskin [54] proposed a similar method, using an ASR system to provide
hidden Markov models (HMMs) with a set of high-frequency keywords used by a
specified speaker as speech characteristics. Experimental results show that both of

these approaches can be used to obtain speech characteristics which can be used for

3In scientific literature, the history of authorship recognition is longer than that of speaker
recognition.
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state-of-the-art speaker identification.

When using only idiolect tokens for speaker recognition, it is common to use the
N-gram probability of token tags as speech characteristics. N-gram models can de-
termine the conditional probability of a token sequence. For example, N = 2 results
in a bigram which calculates the appearance probability of ¢; + 1|¢;, where ¢; is the
-th token tag of a specific speaker’s speech. Word N-gram model have been widely
used for both speaker recognition [51] and authorship recognition [55] (which can
also be viewed as speaker recognition based on manual transcription), but the accu-
racy level is comparable to methods using individual words [56]. Other researchers,
with the help of natural language processing (NLP) techniques, have used N-grams
to model syntactic information or other linguistic speech features as speech charac-
teristics [57]. Idiolect speech information can also be used alone. The appearance
frequency of a set of keywords is the usual method when using this approach. Func-
tion words such as “for”, “the”, “and”, etc. are usually chosen as keywords for
three reasons: 1) function words are content/topic-independent, and thus can be
used as a general measure; 2) function words are generally commonly used words,
thus it is possible to collect sufficient data from a limited amount of speech; and per-
haps most importantly, 3) function words are considered to be used unconsciously
and are therefore important markers of a variety of individual differences and social

behaviors, ranging from leadership style to honesty [58][59].

2.2 Information transmission during dialogues

Information transmission can be described as information production by a sender,
the transfer of that information through some medium, information reception by
a receiver, and comprehension of that information by the receiver. As humans
mainly engage in linguistic information transmission, the issue can be simplified as
language production (by a speaker or writer) and comprehension (by a listener or
reader), topics which have been widely researched in the last three decades. This sec-
tion will provide a brief review of psycho-linguistic research, which will also provide
an explanation of concepts related to language production and comprehension. Al-
though traditional theorists consider language production and comprehension as two

independent processes, recent empirical investigations from behavioral and neuro-
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imaging studies show that they tend to be intertwined [60][61]. As a result, this

section will not discuss these two issues separately.

Most psycho-linguistic theorists, including both historical and modern researchers,
consider the process of linguistic communication as action that begins with the link-
ing of linguistic units (e.g., words, clauses) with their referential units (e.g., actions,
events) in the mind, followed by an effort to integrate them into an oral/mental
representation [62][63]. It is also understood that short-term and long-term mem-
ory play an important role in the language production process. Short-term memory
not only stores the previous linguistic units of the current utterance, but also in-
formation about previous utterances in the series, which affects the mapping and
interpretation process both consciously and unconsciously. Meanwhile, parts of the
long-term memory are used for this process by providing schemata, experience and

linguistic knowledge[64].

Linguistic priming is a good example of how information stored in short-term mem-
ory affects language processing. Based on psycho-linguistic studies which have fo-
cused on the priming effect, information that is stored in our short-term memory
affects both our language production and language comprehension processes. Like
a prompt, humans tend to produce information in a style similar to the information
stored in their short-term memory, and to also comprehend what they hear based
on the style of the information stored in their short-term memory. Here, “style”
includes almost all linguistic concepts, from the phonetic to the semantic level. An
example of lexical priming is provided by [65], in which researchers showed that peo-
ple were faster at recognizing a string of letters in a word when the word followed a
semantically related word (e.g., “nurse” is recognized more quickly when it follows
“doctor” than when it follows “bread”). An example of syntactic (or structural)
priming can be found in another early study [66], in which researchers observed that
a strong predictor of the use of the passive tense in interviews was the presence of
another passive sentence in the previous five utterances. Another more recent study
on syntactic priming [67] involved an experiment in which participants first saw an

ambiguous sentence, such as:
e The policeman prodding the doctor with the gun,

which can be understood as either “policeman used the gun to prod the doctor”, or

“the policeman prodded the doctor who had the gun”. The subjects were then shown
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two pictures, one of which matched one or the other of the possible interpretations,
and another which matched neither interpretation. Participants were then presented

with a syntactically similar target sentence, such as :
e The waitress prodding the clown with the umbrella,

and were then shown two pictures, but this time each picture matched one of the pos-
sible interpretations of the target sentence. Researchers found that the participants
tended to choose the picture that matched the syntactic structure of the sentence
in the first trial which matched the picture in the first trial. Other studies [66]have
also suggested that some of our analysis and production choices are affected by the
information stored in our short-term memory. For more examples and discussions
about priming, see review paper [60]. This priming effect is so common that it has
been observed in a broad range of studies, in situations from monologues to spon-
taneous conversations; almost everyone’s language comprehension and production

styles are affected by what they have just experienced.

Schema theory is a typical theory used to explain the influence of long-term memory.
In one of the field’s original studies, a researcher asked British subjects to reproduce
a native American legend they were told, and found that participants tended to re-
place some details involving things they were unfamiliar with with things they were
more familiar with (e.g., they replaced “peanuts” with “nuts”) [68]. The author
of the study hypothesized that language comprehension is an active process, and
that received information only provides a general outline for listeners, who then re-
trieve or construct a mental representation based on their prior knowledge structures
(schemata)[69]. Some modern experiential theorists have expanded this view and
claim that the listener is immersed in a mental representation which they themselves
have constructed [63]. For example, the sentence “The mouse approached the fence”
implies not only a different distance between the subject and object of the sentence
than does “The tractor approached the fence”, it also implies a different distance
between the observer and the situation being observed [70]. Empirical evidence has
been provided by both behavioral and neuro-imaging studies. For example, it has
been found that words activate areas of the brain that overlap with areas that will
be active when their referent is experienced. Nouns which are difficult to visualize
(e.g., “justice”) are less likely to activate visual areas of the brain than concrete

nouns (e.g., “apple”) [71]. Behavioral studies have also shown similar results, for
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instance, that subjects respond more quickly to a picture of an eagle with its wings
spread out after reading “The ranger saw an eagle in the sky” than after reading
“The ranger saw an eagle in a tree” [72]. The authors claim that due to the subjects’
experience of viewing the picture of the eagle with spread wings, the location of the

eagle is constrained by its experienced appearance.

Meanwhile, long-term memory also facilitates language comprehension as a predictor
[61]. When participants read sentences such as “The day was breezy so the boy
went outside to ...”, researchers observed an N400* effect when the sentence ended
with the less predictable “an airplane” than with the more predictable “a kite”.
Curiously, the N400 effect occurred at “an”, not at “airplane”. Researchers argued
that the N400 effect was the result of the subjects’ discovery that they had made a
mistaken prediction based on the appearance of the word “fly”, which they realized
as soon as the phonological form of the expected word (i.e., that it began with a
consonant) was eliminated by the appearance of the word “an” [73]. A similar N400
effect was also observed while participants heard sentences such as “I like to drink
wine” spoken by a child instead of by an adult voice [79], which provides evidence

of prediction based on social commonsense.

2.3 Impact of speech characteristics on informa-
tion transmission in dialogue

The first question to be addressed in this section is whether or not the speech char-
acteristics of a speaker have an impact on information transmission in dialogues.
Traditionally, researchers have tended to answer “yes”, because they have found that
participants can remember fewer words when word lists are presented by multiple
speakers than by a single speaker, as in [75] for example. However, in [76|researchers
found the opposite, i.e., that word lists spoken by multiple speakers can be more
accurately remembered if the duration of the pause between words is increased (e.g.,
from 250 ms to 4000 ms). Researchers have also argued that speaker recognition
and speech recognition are processed by different parts of the brain. Aphasia re-

search has shown that patients with damage to the right hemisphere of the brain

4N400 is a negative electroencephalography (EEG) signal observed when subjects encounter
unexpected words in a read sentence.
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perform worse in voice discrimination tasks [77]. Moreover, recent neuro-imaging
studies have found consistent evidence that there appears to be more activity in the
right hemisphere than in the left hemisphere when subjects recognize a speaker’s
voice [78]. Therefore, the answer to the question of whether or not speech char-
acteristics have an impact on information transmission in dialogues still tends to
be “yes”. But it is also necessary to note that, as speech characteristics and lin-
guistic information are probably processed in two separated areas (i.e., in different
hemispheres) of the brain, the impact of speech characteristics may not be very

strong.

The second question which needs to be addressed is how the impact of speech char-
acteristics on language comprehension is manifest. As mentioned above, short-term
and long-term memory are two important factors in the human language process, so
in the following sections how speech characteristics stored in short-term and long-
term memory affect our transmission of information in dialogues will be examined.
For the impact of short-term memory, I will mainly introduce researches focus on
speech characteristics alignment. For the impact of long-term memory, in the other
hand, T will mainly introduce researches focus on the familiarity of speech charac-

teristics.

2.3.1 Impact of speech characteristics alignment in dialogue

Since the priming effect automatically and ubiquitously affects the communication
process, it is not hard to imagine that one of its natural results is the linguistic align-
ment of speakers during dialogues. Because speech stored in short-term memory has
a higher reproduction probability (or even repetition probability, in some linguis-
tic aspects), it is likely that as a conversation goes on, the interlocutors’ speech
patterns will align with each other. In [74], the authors summarized the alignment
phenomenon and proposed the idea of interactive alignment, which is the hypothesis
that alignment occurring at one linguistic level will probably lead to alignment at
other linguistic levels, and when interlocutors achieve mental states which are in
alignment (i.e., when they understand a topic in a similar way), conversations tend

to be more successful.

Numerous studies have investigated alignment in speech characteristics during di-
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alogue. Some of these studies focused on whether or not alignment occurs and
exactly which speech characteristics are affected, while others attempt to quantize
that alignment or have proposed scales of conversational successfulness. In [80] for
example, researchers investigated the alignment of prosodic speech characteristics
such as mean pitch using a cooperative game corpus, and found that prosodic speech
characteristics did indeed become more similar during conversation. Lexical align-
ment, the choice of backchannel words such as “well” during a conversation, was
also investigated in [81]. The results of that study showed that similarity in the
use of backchannel words increases during conversation. Researchers have also had
positive results when using alignment as a measure of dialogue successfulness. For
instance in [82], researchers found that alignment in the use of high frequency words
had a positive correlation with both the successfulness and naturalness of the dia-
logue. Similar results have also been found when researchers have investigated the
relationship between dialogue successfulness and syntactic alignment using another

cooperative conversation corpus|83].

2.3.2 Impact of familiarity of speech characteristics on in-
formation transmission during dialogues

As mentioned in Section 2.2, familiar (self-similar) speech characteristics can affect
information transmission in two ways. First, since linguistic units (e.g., words) are
stored structurally, their appearance with familiar speech characteristics tends to
help us retrieve their schemata more easily. For example, the opposite results of
studies [75] and [76], which I described at the beginning of this section, can be
explained if we assume that words are encoded along with the speaker’s speech
characteristics. When participants do not have enough time for encoding (i.e., in
[75]), they remember less information because part of their mental processing ca-
pacity is needed to adjust to the speakers unfamiliar speech characteristics. When
participants do have enough time (i.e., in [76]), speech characteristics help listeners
retrieve the fully encoded words, and therefore they are able to achieve better recall

performance.

Second, because interlocutors with similar speech characteristics also tend to be sim-
ilar in physical, social, cultural and educational backgrounds, these similarities will

increase the predictability of their representations and therefore positively impact
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information transmission[61]. Moreover, interlocutors tend to show more friendli-
ness towards people who have speech characteristics they are familiar with. This
suggests that interlocutors sharing similar speech characteristics will put more effort
into cooperation, which might indirectly lead to a more successful dialogue. In [84]
for example, researchers found that infants preferred to look at faces associated with
their native language, and that young children preferred to be friends with speakers
of their native language or speakers who had native accents. Furthermore, in [85]
researchers found that people with similar styles of language use tended to develop

relationships with each other, and were able to maintain those relationships longer.

2.4 Summary of this chapter

In Section 2.1, various features which have been developed for speaker recognition
were reviewed. Although segmental features are the most widely used and most
effective features in both laboratory and commercial settings, other features such
as prosodic and lexical features, which are considered to contain additional speaker
identification information, are also useful. In Section 2.2, modern linguistic theories
about the language process were reviewed. Most theorists accept that interaction
between short-term memory, long-term memory and input information play a cru-
cial role in language production and comprehension. Short-term memory not only
provides contextual information but also affects our interpretation and production
preferences at all linguistic levels. Meanwhile, linguistic units (e.g., words) are stored
together with memories of our personal experiences in our long-term memory. Hence,
retrieving a linguistic unit will probably activate the related experience, and vice
versa. In Section 2.3, studies investigating the relationship between speech charac-
teristics and information transmission in dialogues were reviewed. Many studies on
conversational alignment have been conducted, and although different methods of
quantizing linguistic alignment have been proposed, this alignment has been success-
fully used as a predictor of dialogue success. However, there have been few studies
which have systematically investigated the relationship between similarity in speech
characteristics and success in information transmission. In addition, in contrast to
the important role that segmental speech characteristics plays in the field of speaker
recognition, the correlation between segmental speech characteristics and informa-

tion transmission efficiency have not apparently been investigated yet. This may be
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natural when we consider that segmental speech characteristics are hard to imitate,
making them useful for speaking identification, but when we consider the correlation
between similarity in speech characteristics and information transmission efficiency
in dialogues, it is worthwhile to investigate not only the role of prosodic and idiolect
speech characteristics, but also that of segmental speech characteristics, which is

one of the motivations of this dissertation.
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Chapter 3

Modified Bottom-up Clustering
Based on Cluster Evaluation and
Removal of Distinctive Speaker
Data for Improved Speaker
Diarization

Keywords in this chapter:

- Speaker diarization
- Cluster evaluation
- Modified bottom-up clustering

In this chapter, I study on a straight-forward application of speaker-specific speech
characteristics, speaker diarization, which is treated as a speech segment clustering
problem based on speaker-specific speech characteristics. 1 propose a method to
judge whether or not a speech cluster is composed almost entirely of speech seg-
ments from only one speaker, and adopt this method for bottom-up clustering for
speaker diarization. Such clusters are ideal for speaker diarization, and detecting
and filtering these clusters during bottom-up clustering can make clustering more ef-
fective and efficient. The procedure utilizes statistical characteristics of the distance
between the centroid of a cluster and each initial speech segment. Experimental re-
sults show that the proposed method can effectively distinguish at least one speaker’s

data from all other speakers in multiple audio files. When the proposed cluster eval-

28
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uation method was applied to our modified bottom-up clustering algorithm, higher

clustering accuracy was achieved compared to conventional bottom-up baselines.

3.1 Introduction

Speaker diarization is a task that attempts to answer the question “who spoke when”
without any prior knowledge about a conversation (e.g., a meeting, broadcast, etc.).
It is usually treated as a speech segment clustering problem, in which the speech
of each speaker is clustered into discrete groups [86]. The ideal result of speaker
diarization is that each cluster is composed almost entirely of speech segments from
an unique speaker. The conventional approach to speaker diarization involves three
steps: 1) during pre-processing, non-speech sections identified using voice activity
detection and sections with overlapping speech are detected and removed; 2) dur-
ing segmentation, the remained speech data is divided into initial segments, each
of which are assumed to contain the speech of only one speaker; 3) during clus-
tering, speech segments are clustered based on the speech characteristics of the
speaker [86]. Segmentation can begin with initially rough segments (e.g., speech is
randomly divided into N segments) and then re-segmented during clustering [87].
An alternative method is to use a relatively small segment duration (e.g., one sec-
ond), which is likely to contain only one speaker’s speech [88]. As segmentation does
not usually affect the final diarization results too much, clustering is considered to
be the key component of speaker diarization systems, and is therefore the main issue
of this study.

Having no prior knowledge about the nature of the conversation or the characteristics
of the speakers is one of the reasons why speaker diarization is such a difficult task.
Both the number of speakers and their speech characteristics need to be estimated
based only on the target speech!. Conventional diarization methods tend to treat
every speaker in a conversation equally, which means that when clustering stops, ev-
ery cluster which remains is hoped to be an ideal cluster composed only of the speech
of one speaker [87][89]. However, the speech characteristics of various speakers vary
in their speech characteristics similarity. Some speakers are easier to discriminate

from others. Imagine doing speaker diarization manually, the separation of speakers

'For other speech characteristic related tasks, such as speaker recognition, the speech charac-
teristics of the speakers can usually be obtained in advance from training data.
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who have distinctive voices initially should obviously increase diarization accuracy.
Hence, 1 assume that the accuracy of automated speaker diarization can also be

improved using a similar approach.

In this chapter, I proposed a method to evaluate whether or not a cluster is an ideal
cluster (i.e., whether or not it is composed almost entirely of speech segments from
an unique speaker). A modified bottom-up clustering algorithm is then proposed
based on this cluster evaluation method. Experimental results show that proposed

method increases diarization accuracy.

The rest of this chapter is organized as follows. After a description of the pro-
posed cluster evaluation method in Section 3.2, the modified bottom-up clustering
algorithm based on the proposed evaluation method is described in Section 3.3. In
Section 3.4, the results of the clustering experiment are reported. I end the chapter

with my conclusions and a discussion of future research.

3.2 Cluster evaluation based on a speaker space

In this section I propose a method to evaluate whether or not a cluster is an ideal
cluster containing all of the speech segments of a specified speaker (recall ~ 1) and
only containing speech segments from that particular speaker (precision ~ 1). 1
assume that in a speaker space where speech characteristics are well represented,
clusters which approximate an ideal cluster shows some special statistical properties
between intra-cluster segments and inter-cluster segments, which will be used for

cluster evaluation.

3.2.1 Speaker space

In addition to speaker-specific speech characteristics, audio signals contain other
information which would influence the accuracy of analysis if we do nothing about
it. In order to extract speaker-specific speech characteristics from audio signals,
researchers have proposed various vector spaces which are also known as speaker
spaces [90][91]. The speaker space proposed in [90] (a so-called i-vector) was used
in this study. This method uses factor analysis to extract vectors from an audio

signal to represent speaker-specific speech characteristics[90][92]. A speaker- and
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channel- (or session-) dependent supervector M, which is usually composed of the
mean vectors of the Gaussians in the Gaussian Mixed Model (GMM) trained from

the current data set, can be expressed as follows:
M =m+ Tw, (3.1)

where m is the speaker- and channel-independent supervector, commonly taken
from a universal background GMM representing speaker- and channel-independent
acoustic features. T is a rectangular matrix using virtual speakers as its rows (i.e.,

it is the speaker space), and w is a vector called the total factor vector or i-vector.

Cosine similarity has been applied successfully in the speaker space to measure the
similarity of two i-vectors. Therefore, the similarity of two data sets, X and Y,
represented by two vectors in the Total Variability space (the speaker space) wx
and wy respectively, can be measured using the following equation:
(wx)'(wy)

WX WY (3.2)
[[wx|[ - [[wyl]

(T(Wx,Wy) =

3.2.2 Cluster evaluation

Based on the speaker space introduced in Section 3.2.1, in this section I propose a
method to evaluate whether or not a cluster is a ideal cluster. Here the i-vector of
cluster « in speaker space was noted as w,2. To evaluate w,, I define D, as the set
which contains the similarity data between w, and all the segment vectors in the

speech. Therefore D, can be written as follows:

D, = {0(Wa,81),0(Wa,82), ..., 0(Wa, SN) }, (3.3)

where s; represents the i-vector of segment ¢, NV is the number of segments in the
speech®. And o(.) here represents the similarity between two vectors (i.e., cosine

distance) in a speaker space.

I assume that if there exist “easy speakers” whose voices are more discrimina-
tive than others, the difference between inter-speaker segment similarity and intra-

speaker segment similarity should be large enough. Based on this assumption, the

2The i-vector of a cluster is usually the mean vector of all of the segment vectors included in
that cluster.

3For segmentation, I used the same method as [88], which extracted segments every second
using a 3 second analysis window.



32

4OL

40

%)

o
w
(=)
L

Frequency
=]

o
Frequency
N
o

10 10

-06-04 -02 0 02 04 06 08
Cosine similarity

Cosine similarity

Figure 3.1: The histograms of an ideal vector’s(w,) D, (left) and an im-
perfect vector’s(wg) Ds (right). Segments in the red circle all belong to one
speaker when clustering doing the trick.

distribution of D, should be distinctly bi-modal, with the within-speaker similarity
having a mean/mode closer to 1 while the between-speaker scores have a mean/mode
closer to 0. Moreover, as the extraction of i-vectors is based on the assumption that
i-vectors from a specific speaker follow a Gaussian distribution[90]. We can then
expect that if cluster a is an ideal cluster of an “easy speaker”, the distribution of
D,, can be modelled by a two mixture Gaussian mixture models (GMMSs), with one
Gaussian composes within-cluster similarity scores and another Gaussian composes

between-cluster similarity scores.

Therefore, I propose the use of two mixture Gaussian mixture models (GMMs) to
model the distribution of D,, and use the average log-likelihood of the GMMs to

evaluate cluster C,. The average log-likelihood evaluation can be written as follows:

n{wlN di; pi1,0%) + woN (d; pia, 03) } (3.4)

\\Mz

where d; expresses elements belonging to D, and N is the number of segments. If
cluster C, is an ideal cluster, based on my assumption the distribution of D, tends
to be bi-modal, which fits the two mixture GMM and leads to a larger in In L. In
contrast, if the distribution of D, is far from a bi-modal distribution, In L should

be relatively smaller (see Fig. 3.1).
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Finally, if the average likelihood is over the threshold, all the segments s; which fit
Wa N (di; fa, 02) > wa N (di; pig, 02) (3.5)

should be removed from the clustering process, considered as segments belonged to
speaker A, and combined as one cluster. Here, ji,, 02, and w, are the mean, variance,
and weight of the Gaussian distribution with the larger mean, respectively; g, 02,
and ws are the mean, variance, and weight of the Gaussian distribution with the

smaller mean, respectively.

An alternative threshold has also been proposed, in which I ignore the influences of

the variance and the weight. The threshold can be written as follows:

|0(8i, wa) = pa| > |o(8i; wa) = pia)]- (3.6)

3.3 Modified bottom-up clustering

In this section, I describe the proposed modified bottom-up clustering method which
uses the cluster evaluation method proposed in Section 3.2 to prevent over-merging
(the merging of two different speakers’ clusters). Bottom-up clustering is the most
frequently used method of clustering when performing speaker diarization tasks [86].

The main approach of bottom-up clustering algorithm can be described as follows:

1. Divide all segments into K initial clusters;
2. Merge the cluster pair with the highest similarity score;

3. Re-build the cluster model, and perform re-segmentation based on the new

model;

4. Repeat steps 2 — 3 until a threshold for the highest similarity score for the

merging of cluster pairs is met.

Conventional bottom-up clustering renews the cluster model with the entire in-
put, calculates the similarity score of every cluster pair and merges the cluster pair
with the highest similarity score in every iteration. Clustering finally stops when

a threshold is met, and the remaining clusters, which are considered to be ideal
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clusters for each speaker, are treated as the final output. Conventional bottom-up
clustering methods label clusters (i.e., considers the clusters to be ideal clusters)
only during its final stage, which means clusters containing segments from different
speakers have the possibility of being over merged before the merging of clusters
containing segments from the same speaker. As merging is not reversed during the
process, this over-merging will result in a significant error. If we consider applica-
tion, over-merging is obviously worse than under-merging (i.e., more than one cluster
containing segments from the same speaker remain unmerged). Therefore, merging
control is an important issue in speaker diarization, and some researchers even claim

that it is necessary to set a relatively strict threshold to prevent over-merging [93].

The cluster evaluation method I proposed in Section 3.2 can detect speakers who
are more easily identified at an earlier stage, which can prevent over-merging. In
contrast to the conventional clustering methods, picking out some speakers at an
early stage in the process allows us to set a more “limited” threshold which has
potential ability to increase diarization accuracy. I propose a modified bottom-up

clustering algorithm based on cluster evaluation, which can be described as follows:

1. Divide all segments into K initial clusters;
2. Merge the cluster pair with the highest similarity score;

3. Evaluate all the remaining clusters and remove any cluster(s) considered to be

ideal from the clustering process;

4. Re-build the cluster model, and perform re-segmentation based on the new

model

5. Repeat 2 — 4 until a threshold for the highest similarity score for the merging

of cluster pairs is met.

Because the final goal of speaker diarization is creating only one cluster for each
speaker, clusters which are believed to be ideal no longer require further merging.
Therefore, I proposed the use of cluster evaluation to detect clusters which are likely

to be ideal and to remove any “ideal” clusters from further clustering.
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3.4 Experiment

Eight meetings from AMI English meeting corpus [94] were used as development
data, and eight other meetings from the same corpus were used as test data. The
development data contained about 4.76 hours of meeting conversation, and the test
data contained about 5.43 hours of meeting conversation. The AMI project is a
multi-modal meeting analysis project which took place in Europe which created
over one hundred hours of multi-modal meeting data including audio, video, anno-
tation, etc., which is available for free download. The meetings were about produc-
tion design, and 3 — 5 participants discussed this theme during four meetings (one

experimental set), each of which was about thirty minutes in length.

The meetings used in my experiment were basically randomly selected. However,
since most of the meetings in the AMI corpus have four participants, I selected
meetings with various numbers of participants in order to introduce variation in the
number of speakers into the experiment. Thus, three meetings which contain three
participants were selected directly*. Data recorded with a headset microphone was
chosen. Development data contained eight meetings with four different participants
in each meeting. Test data contained three meetings with three participants and
five meetings with four participants. Speech characteristics (i.e., i-vectors) were
extracted using ALIZE [95]. 60 dimensional linear frequency cepstral coefficients
(LFCCs) were extracted every 10 ms using a 30 ms analysis window. Segments
were extracted every second, using a 3 seconds analysis window. I-vectors were
then computed for every segment using the LFCCs it contained. As my focus is
on the proposed clustering evaluation method and modified clustering algorithm, in
this experiment pre-processing, which includes voice activity detection (VAD) and

overlapped speech detection, were performed manually.

3.4.1 Cluster evaluation

The experiment described in this section was performed to evaluate the cluster
evaluation function proposed in Eq. (3.4).First, we need to develop a measurement

to determine whether a cluster is an ideal cluster. The frame level (i.e., 10 ms)

4A meeting which contained five participants was not selected because one of the participants
spoke too little (less than two minutes) during the meeting.
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harmonic mean of the precision and recall (i.e., F-measure) of the main speaker
(speaker who provided the most frames in a cluster) was used as the standard when
assessing a cluster if it is ideal. Based on the conventional bottom-up clustering
approach I introduced in Section 3.3, the development data were clustered from 16
random initial clusters into one cluster. Figure 3.2 shows the relationship between
the ideal cluster measurement defined in this section and the cluster evaluation score
proposed at Section 3.2, both of which were computed using all of the clusters created
during conventional bottom- up clustering. There is clearly a positive relationship
between the proposed ideal cluster measurement (i.e., the harmonic mean of the
recall and precision of the cluster) and the proposed cluster evaluation function.
Moreover, it seems that all of the data (all the clusters) can be divided into two
groups at the position where the harmonic mean is about 0.8. As a result, I defined
a cluster which has a harmonic mean of the recall and precision of its main speaker of
over 0.8 as ideal cluster. Next, I investigated whether the proposed cluster evaluation
function can detect these ideal clusters. In Figure 3.3, the recall, precision and F-
value lines were plotted for this detection task. The highest F-value (about 0.9)
appears when the average log-likelihood is about 0.32°. As a result, 0.3 was set to

be the threshold for the proposed cluster evaluation method.

3.4.2 Modified bottom-up clustering

The initial number of clusters K was set to be 16 in the experiment. During initial-
ization, the entire data was equally divided into K parts as K initial clusters [87].
Although i-vectors were used as the speech characteristic similarity measure in this
experiment, I believe that the modified clustering method used here appropriates
other similarity measures. K-means clustering [96] with the number of speakers as
prior information, and conventional bottom-up clustering with stopping criterion
trained using the development data were set to be the baselines. As the initial cen-
troids affect the results of k-means clustering, all of the data was clustered using

k-means twenty times with random initial centroids, and the best result was chosen

51 also tried setting the definition of “ideal cluster” as clusters with harmonic means larger than
0.7 and larger than 0.9. When clusters with harmonic means larger than 0.7 were defined as ideal,
the highest F-value (0.95) occurs when the average log-likelihood is about 0.3; when clusters with
harmonic mean larger than 0.9 were defined as ideal, the highest F-value (0.8) occurs when the
average log-likelihood is about 0.4.

6T also tried setting K to 32, but the final results were almost the same.



37

Harmonic mean

Average log-likelihood

Figure 3.2: Verification results of the proposed cluster evaluation method.
The horizontal axis is the average log-likelihood calculated using Eq. (3.4), and the
vertical axis is the, harmonic mean of the recall and the precision of the dominant
person’s segments in the cluster.

as the baseline. The proposed method here means bottom-up clustering using the
modified bottom-up clustering method proposed in Section 3.3 with the stopping
criterion trained from the development data and cluster evaluation threshold defined
in Section 3.4.1.

The method used to evaluate diarization accuracy when using the proposed method
was based on [98], so-called the misclassification rate’, cluster purity and Rand index

were used.

Given a one-to-one speaker-to-cluster mapping, any frames (LFCCs) from speaker j
that is not mapped is considered to be an error, the summation of which is denoted
as e;. Thus, misclassification rate defined as follows:
N
Zj:l €
PIED AR

where n;; represents frames from speaker j that are mapped to cluster ¢, C' is the

M= (3.7)

" As the non-voice and overlapping speech sections were removed manually, the misclassification
rate here is the same as the most popularly used diarization error rate (DER) [97].
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Figure 3.3: F-measure of the proposed method when consider 0.8 as the
threshold of the clusters’ harmonic average (Fig.3.2)

number of clusters, and N is the number of speakers. The final mapping was defined

as the one that minimizes the misclassification rate.

Meanwhile, cluster purity was computed using:

Eiczl fj

P = —
C N
Dic1 2t Mg

(3.8)

where f; is the number of frames which are the majority in cluster j.

Rand index has been proposed as a method to evaluate similarity between two

clusters[99]. A Rand index can be computed as follows:
a+b
)

where a expresses the number of frame pairs which have been clustered into the same

R= (3.9)

cluster during speaker diarization and in the ground truth, b expresses the number



39

Table 3.1: Diariazation result

Data Misclassification rate (%) Cluster purity (%) Rand Index

CB KM PM1 PM2 [CB KM PMI PM2| CB KM PMI1 PM2
EN2002c| 9.11 8.65 9.11 9.11 [ 91.00 91.46 91.00 91.00/ 0.89 0.89 0.89 0.89
EN2009b| 21.44 7.34 15.90 15.94 | 88.81 92.85 84.75 84.25/ 0.84 0.90 0.82 0.82
IN1001 |9.23 22.71 9.55 9.89 | 90.86 83.82 90.54 90.20 0.89 0.80 0.86 0.86
ES2003b| 16.15 12.24 5.19 5.86 | 83.97 87.88 95.40 95.11 0.86 0.89 0.95 0.94
ES2007b| 33.65 17.63 11.75 12.56 | 78.38 83.00 88.49 87.68 0.80 0.84 0.88 0.87
ES2008b| 5.08 6.06 8.62 854 | 91.39 94.07 92.43 91.60 0.94 0.94 0.92 0.92
ES2014b| 23.71 8.19 7.76 8.18 | 89.47 91.99 92.41 91.99 0.85 0.91 0.92 0.91
ES2016c | 15.18 421 4.91 559 | 84.87 95.96 96.17 95.86 0.92 0.96 0.96 0.96
| Ave. [ 16.69 10.81 9.10 9.46 [ 87.04 90.14 91.34 90.96/ 0.87 0.89 0.90 0.89]

of frame pairs which have been clustered into different clusters during speaker di-

arization and in the ground truth, and n is the number of frames.

Diarization results are shown in Table 3.1. Here CB and KM represent conven-
tional bottom-up clustering and k-means clustering (baselines), respectively. PM1
and PM2 represent the proposed clustering methods using Eq. (3.5) and (3.6) as
the cluster evaluation threshold, respectively. The result shows that the proposed
methods achieve higher diarization accuracy than the baselines when using all three

of the evaluation measures.

Furthermore, to evaluate whether the proposed method can help prevent over- merg-
ing, diarization results when using the proposed method and when using the conven-
tional bottom-up clustering method with different stopping thresholds are shown in
Figure 3.4. The results show that the proposed method is more robust for preventing
over-merging than the conventional bottom-up clustering method, especially when

the stopping threshold is small (i.e., hard to stop).

The original idea behind this study was that when doing speaker diarization tasks,
the utterances of speakers who are easy to recognize should be removed first. But
when all of the speakers are easy to recognize (e.g., ES2008b), or when cluster
evaluation cannot extract “ideal clusters” (e.g., EN2002c), the proposed method
delivers the same results as the conventional method. Moreover, similar to the
conventional bottom-up method, if the cluster evaluation process mistakenly detects
an “ideal cluster” (which did not happen in this experiment), a large error would

occur as the clustering process cannot be reversed.
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Figure 3.4: The relationship between misclassification rate and the stop-
ping threshold(left). The relationship between cluster purity and the
stopping threshold(right). The dashed line is the stopping threshold computed
from the develop data.

3.5 Summary of this chapter

This chapter proposed a cluster evaluation method to judge whether a cluster is
composed almost entirely of speech segments from only one speaker. Based on this
proposed cluster evaluation method, a modified bottom-up clustering method was
also proposed. The experimental results show that the proposed cluster evaluation
method can detect “ideal clusters”, and that the modified bottom-up clustering

method achieved a higher level of diarization accuracy than the baseline methods.

The proposed method is based on statistical properties between within-cluster sim-
ilarity score and between-cluster similarity score, hence it is less effective when
applied to speakers who speak too little during the whole conversation (i.e., when
there are not enough speech segments for that speaker). Moreover, although the
experimental results showed that the proposed method can accurately detect “ideal
clusters” (with an F-value of about 0.9), as I mentioned above, errors can result
from the mistaken detection of “ideal clusters”. These two problems will need to be
solved in future research. Finally, as the number of speakers in the AMI meeting
corpus has a relatively limited range, in order to test the generality of the proposed

method, the experiment should be repeated under different diarization conditions.
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Chapter 4

Impact of acoustic similarity on
efficiency of linguistic information
transmission via subtle prosodic
cues

Keywords in this chapter:

Subtle prosodic cues

Prosody information transmission efficiency
Voice morphing

Eye-tracking

Objective similarity measure

In this study I investigate the impact of acoustic differences on the efficiency of subtle
prosodic information transmission. In the study, participants listened to lexically
ambiguous sentences, which could be understood with prosodic cues, such as syllable
length and pause length. Sentences were uttered in voices similar to the participant’s
own voice and in voices dissimilar to their own voice. The participants then identified
which of four targets the speaker was referring to. Both the eye-movement and
response time of the participants were recorded. Eye-tracking and response time
results both showed that participants understood the lexically ambiguous sentences
faster when listening to voices similar to their own. The results revealed that be
similar in acoustic features, which do not contain linguistic information can influence

the processing of linguistic information.

42
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4.1 Introduction

Language comprehension involves a complex interaction between the transmitted
message and the receiver’s background knowledge and experiences [100]. As a
result of this complexity, differences in representation styles can clearly influence
the efficiency of our language comprehension process. For example, the inversion
of subject and object in passive sentences makes these sentences more difficult for
listeners to understand than sentences with the same meaning expressed using active
form, for both positive and negative sentences [101]. Listeners also have difficulty
interpreting “garden path” sentences, i.e., grammatically correct sentences which
have meanings different from those that a listener would normally expect. For
example, “The dog that I had really loved bones,” and “I told her children are
noisy.” Such sentences are considered to be evidence of our sequential reading

process (i.e., one word read at a time) [102].

Schema theory suggests that presenting messages in style that is familiar to the
recipient improves linguistic comprehension efficiency, because when a receiver has
relevant background knowledge, he or she can free up more working memory for
analysis and interpretation of the linguistic information [68] [103]. Researchers have
found evidence to support the theory that both lexical and prosodic familiarity in-
crease the efficiency of our linguistic comprehension. Use of familiar topics has been
found to help foreign language learners improve their performance on reading com-
prehension tasks, no matter which second language they are learning [104] or what
their native language is [105]. Moreover, the facilitative effect of comprehension on
language-related tasks is revealed in simple nativization drills, such as the changing
of character and location names into native ones (e.g., when a Japanese English
learner replaces “Barack Obama lives in Washington D.C.” with “Shinzo Abe lives
in Tokyo”) [106]. Studies also show that familiarity with the speaker’s prosodic
speech characteristics, such as the speaker’s accent, also have a positive influence on

our listening comprehension, for both native and non-native listeners [107] [108].

If we want to apply this “speech characteristics familiarity effect” to provide high
efficiency linguistic information transmitter (e.g., in call center), however, there are
still questions need to be answered. One of the questions is how to measure the
transmitter’s speaker-specific speech characteristics familiarity to the listener. We

can find that in most of the cases mentioned above, familiarity also involves self-
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similarity (i.e., we are familiar with our own accent, capital, president, etc.). Thus,
I propose self-similarity as a measure of speaker-specific speech characteristics fa-
miliarity, which is factor related with high efficiency communication. To examine
this proposal, the present study conducted a behavioural experiments in which I
tracked participants’ eye movements while they listened to sentences and simultane-
ously watched related images on a computer screen and reacted. Images including
lexically ambiguous items which can only be understood with subtle prosodic cues.
Images were described at different levels of voice similarity to the participant, al-
lowing me to investigate the impact of acoustic similarity on efficiency of subtle

prosodic cues processing in real time.

This chapter is organized as follows. After a description of the experimental method,
I describe my experimental procedure, report the experimental results and discuss
their implications. And then end up with conclusions and a discussion of future

research.

4.2 Method

This study employed lexically ambiguous material in the experiment to control the
influence of lexical and prosodic features on comprehension. To vary similarity of
the speakers’ voices, morphing technology was used This allowed us to present infor-
mation at different levels of self-similarity. This study also used objective similarity
measures for further similarity analysis. To measure linguistic transmission effi-
ciency, both response time during the target selection task and the proportion of
the time participants were visually fixated on the appropriate target during the task

were used.

4.2.1 Participants

Twenty-eight male, native Japanese-speaking college students were recruited as par-

ticipants®.

T did not believe that gender would affect performance in this sort of comprehension experiment,
and as a result there is an obvious imbalance in the genders of my participants. Future research
should include more female participants, and should investigate the effect of a mixed-gender voice.
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4.2.2 Materials

Spoken Japanese phrases with right-branching (RB) vs. left-branching (LB) ambi-
guities were employed as the experimental material. Fig. 4.1(a) shows an example?.
In Japanese sentences such as “akai / hoshi no / nekutai” (“red (adjective phrase)
/ star (first noun phrase) / necktie (second noun phrase)”) can be interpreted, as
in English, as either “the red necktie with stars” or “the necktie with red stars”.
It is RB when the second phrase (the first noun phrase) should first be combined
with the third phrase (the second noun phrase) (i.e. “the red necktie with stars”),
and LB when the second phrase should first be combined with the first phrase (i.e.
“the necktie with red stars”). These two phrases are identical in spelling and pho-
netic pronunciation, but can be distinguished by subtle prosodic cues [109]. No
clear downstepping 3 “\,” from the first phrase to the second phrase, followed by
downstepping “\/” from the second phrase to the third phrase suggests the right-
branching meaning (the red necktie with stars), while clear downstepping “N\,” from
the first phrase to the second phrase, followed by moving up of pitch “, 7 from the
second phrase to the third phrase suggests the left-branching meaning (the necktie
with red stars)?. A longer pause between the first and second phrases also indicates
the RB meaning, while a longer pause between the second noun and its particle
(“no”), inside the second phrase, indicates the LB meaning. A third prosodic cue
is called “final segment duration”, which is the duration of the final vowels in the
different phrases. When the RB meaning is intended, there is longer final segment
duration in the first phrase, while longer final segment duration in the second phrase
implies the LB meaning (also see Fig. 4.2(a) and Fig. 4.2(b)).

2The other ambiguous material used in this study can be found in the appendix.

3A mechanism whereby the pitch register for marking accentual prominences, is lowered with
each successive occurrence of a pitch accent within a phrase.

4Considered to be the main prosodic cue.
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Figure 4.1: Example of experimental items. (a) Example of RB vs. LB ambi-
guity items used for recording; both of the pitcured items can be referred to as “akai
hoshi no nekutai” in Japanese (“red star necktie” in English). RB prosodic cues:
1) No clear downstepping from the first phrase to the second phrase, followed by
downstepping from the second phrase to the third phrase; 2) longer pause between
the first and second phrases; 3) longer final segment duration in the first phrase. LB
prosodic cues: 1) clearer downstepping from the first phrase to the second phrase,
followed by moving up of pitch from the second phrase to the third phrase; 2) longer
pause between the second noun and its particle (“no”), inside the second phrase; 3)
longer final segment duration in the second phrase. In the figure, the lower height of
a phrase means there is a clearer downstepping; a “LI” mark means there is a longer
pause; a “-” mark means there is a longer final segment. And the pitch-height is
indicated by a vertical placement of the text-characters. (b) Example of material
used in each listening comprehension experiment trial.
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Figure 4.2: Examples of different waveforms. (a) Original waveforms of the
phrase “the red necktie with stars” (RB) as read by different participants. (b) Orig-
inal waveforms of “the necktie with red stars” (LB) as read by different participants.
The dashed lines show the boundaries of each phrase in the upper sentence. (c) Syn-
thesized waveforms when morphing the waveforms in (a) together under different
morphing conditions. (d) Spectrogram information of waveforms shown in (c).
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Sixty experimental pictures were created (see Fig. 4.3 for an example). Each picture
consisted of four pairs of items that can be described using RB vs. LB phrase. In
each picture, the two rectangles, which contained the correct first (left) item, no
matter what the second item was, were defined as the “correct” areas, while the
two rectangles, which contained the incorrect (ambiguous) first item were defined as
the “incorrect” areas. Other parts of the screen, which had no items displayed were
defined as “other” areas. In each trial the first item in the target pair was described
ambiguously, while the second item in the target pair was described unambiguously.
Note that until the description of the second item is provided, all of the rectangles
containing the correct first item could be perceived by the participants as “correct”
targets. In this experiment, I wanted to see whether there were differences in the
proportion of visual fixation on “correct” pairs of items under different experimental

conditions.

Screen (1024 X 768)

[ correct
[1 incorrect
] others

Figure 4.3: Definition of visual fixation areas. When the first item is described
ambiguously but with prosodic cues as “red star necktie”, the areas inside the red
squares are defined as “correct” areas, while the areas inside the blue squares are
defined as “incorrect” areas. The other areas of the screen are defined as “other”
areas.
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4.2.3 Voice morphing

Morphing techniques have been developed to change one stimulus object (e.g., an im-
age) into another with a seamless transition. Since morphing techniques can enrich
the level of stimulus without salient loss of naturalness, they have been used in many
facial image-related experiments, such as those involving facial recognition [110] and
attractiveness perception [111]. TANDEM-STRAIGHT [112] is a speech analysis,
modification and re-synthesis framework, which can similarly deconstruct a speech
signal based on the source-filter model. TANDEM-STRAIGHT extracts the FO and
aperiodicity of the input speech signal as the source parameters. The signal’s spec-
trogram information was used together with its FO to obtain the filter parameters.
While morphing, the weighted average of all the parameters from the two source sig-
nals, which also included mapping information in the time and frequency domains,
were used to re-synthesize the voice, based on the source-filter model® (see Fig.
4.4(a)). TANDEM-STRAIGHT can generate naturally sounding voices, allowing
acoustic researchers to apply morphing techniques in their experiments in order to
investigate the perception of paralinguistic and non-linguistic information in voices,

such as the perception of gender [113] and speaker identification [114].

After the participants’ voices were recorded reading the Japanese RB vs. LB ambigu-
ous phrases, I randomly paired participants with a stranger® and used the TANDEM-
STRAIGHT toolbox to morph their original voices into four transitional levels of
similarity using manually anchored start and end points of each syllable. The start-
ing point and ending point of each syllable were aligned manually (see Fig. 4.4(b),
the white circles are the anchored points). The morphing conditions were; 100%
speaker A’s voice, 67% speaker A’s voice mixed with 33% speaker B’s voice, 33%
speaker A’s voice mixed with 67% speaker B’s voice, and 100% speaker B’s voice.
As the synthesized voices still sound somewhat artificial, to compensate for this,
voices were re-synthesized using TANDEM-STRAIGHT even for the 100% and 0%

similarity conditions. Fig. 4.2(c) and (d) shows the morphed waveforms and spec-

5 Although TANDEM-STRAIGHT allows users to modify the parameters independently (some
of the parameters are fixed), however, in this study all of the parameters were modified together
(i.e. replaced by a weighted average of the two source voices). This was because the main question
I wanted to investigate was whether the similarity of interlocutor’s voices influences information
transmission.

6Before being paired-up with a partner, participants were shown a list of the names of all of
the participants to make sure they did not know their partner.
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Figure 4.4: TANDEM-STRAIGHT toolbox for voice morphing. (a) Flow
chart of TANDEM-STRAIGHT for voice synthesis. TANDEM-STRAIGHT extracts
the FO and aperiodicity of the input speech signal as the source parameters. The
signal’s spectrogram information was used together with its FO to obtain the filter
parameters. While morphing, the weighted average of all the parameters from the
two source signals (also included other information such as mapping information
in time and frequency domains) were used to re-synthesize the voice, based on the
source-filter model. (b) Time anchor panel for voice morphing. The diagonally
oriented square is the distance matrix of Signal A and Signal B. The white circles in
the distance matrix are anchored points, which can be determined manually. White
lines between anchored points show the aligned frames.
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trum based on the waveforms shown in Fig. 4.2(a), respectively. And we can see

that they are very similar to each other in timing and intensity.

4.2.4 Objective similarity measures

Although used morphing technology to artificially create voices with different levels
of similarity, the original dissimilarity of the speaker’s voices varied, i.e., for some
participants, even in the 0% “own voice” condition (100% other person’s voice), their
partner’s voice was still very similar to their own. Hence, I introduced objective
similarity measures, which included spectrum, pitch contour and duration, to allow
further analysis. The spectrum is assumed contains one’s personal characteristics,
which partially defines the acoustic features of an individual’s speech. Meanwhile,
prosodic cues, such as intonation and duration, are relevant to one’s speaking style,
which will also influence the acoustic features of one’s speech. For convenience, all

of these features are called “acoustic features” in this paper.

Spectrum similarity measure

The optimal cost of a dynamic time warping algorithm (DTW) is frequently used
for measuring similarity between two spectral sequences. The DTW algorithm itself
is used for measuring similarity between temporal sequences, based on a distance
matrix and dynamic programming. In practice, DTW first evaluates the local align-
ment distance between each pair of elements in order to obtain a distance matrix.
Then, a cost matrix is calculated from the distance matrix. The cost matrix is the

same size as the distance matrix, with C'(1,1) = D(1,1) as its initial element, with

C(i-1,5)
C(i,j) = D(i,j) +min{ C(i-1,5-1) ¢, (4.1)
C(Z;]_Z)

as its other elements 7). D(i, j) is the entry of the local distance matrix and C(i, 5)
is the entry of the cost matrix. Thus, the final entry in the cost matrix (e.g. C(1,J))
is the optimum global alignment cost. The optimum mapping path between the two

input vectors can also be found by backtracking the optimum path of each node.

"There are numerous ways to calculate the cost matrix, and here only explain the method used
in this paper (for more details see [115]).
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In this paper, MFCC distance is used to compute the distance between each pair of
spectra (one for partner A and one for partner B) for a given phrase (e.g. ‘'red star

necktie”) so that I can obtain a distance matrix.

After fixing the manually anchored points together, DTW is used to align the rest
of the frames with each other. Spectrum information is extracted using TANDEM-
STRAIGHT. MFCC distance, which is the logarithm of the Euclidean distance be-
tween two MFCC vectors normalized by the maximum value of the total Euclidean
distance, is the default distance measurement for spectrum sequences employed by
TANDEM-STRAIGHT (and the distance measurement recommended by its cre-

ators).

Pitch contour similarity measure

The weighted correlation proposed in [116] is used for measuring similarity between a
pair of pitch contours. After aligning two speech segments using DTW (as explained
in the previous subsection), their pitch contour similarity is then computed using

the following formula:

S w(@)(fa(0) — ma)(fa(i) —mp)
VI w(@i)(fali) — ma)2 i, w(i)(f(i) — mp)?

where f4(i) and fp(i) represents the log Fy ® value of speaker A and B in the 4th

, (4.2)

Tfa.fz =

aligned frame, respectively, m 4 and mpg represent the mean log Fj of speaker A and
B in the current speech segment, respectively. [ represents the number of frames
in the aligned sequence, and w(i) is the weighting factor, based on the frame signal

power 9.

Duration similarity measure

The absolute mean difference between anchored intervals (in this case, representing

syllable and pause duration) is used for measuring similarity between two sets of

8y was tracked using TANDEM-STRAIGHT. Unvoiced intervals were interpolated based on
a cost function aimed at minimizing discontinuities in the resulting trajectories and maximizing
plausibility, based on the side information associated with Fy candidates [117].

9In this paper, the signal power stands for the mean square of the input waveform.
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anchored speech. After anchoring the start point and end point of each syllable

manually, duration similarity is measured using the following formula
1 N-1
Dsase = 51 > 1Sa(s) = Sg(s)], (4.3)
s=1

where S4(s) and Sg(s) are the s-th intervals of speaker A and B computed from

the anchored points, respectively, and N is the number of anchored points.

4.2.5 Procedure

The experiment was divided into two phases. In the recording phase, participants
were shown 13 pairs of pictures. The two pictures in each pair were different,
but could be described using the same lexically ambiguous phrase, depending on
whether the RB or LB reading was used. They were asked to describe each picture
in Japanese twice, using their own natural speaking style, by reading the supplied
ambiguous phrase. Example pictures and an example description are shown in
Fig. 4.1(a). They were recorded in a sound-proof booth at 48 000 Hz with 20
bits sampling. Participants were then randomly paired with a stranger participant,
and TANDEM-STRAIGHT was used to morph their voices with the voices of their

partners.

In the second phase of the experiment, a listening comprehension experiment was
performed about one week later. After completing two unambiguous warm-up trials,
the only aim of which was to make sure that the participants understood what they
should do during the experiment, participants listened to the previously recorded
ambiguous phrases (in which their voices had been re-synthesized and morphed)
while viewing images (1024 x 768 pixels) shown on a visual display (see Fig. 4.1(b)).
Participants were asked to identify which target they heard described as quickly as
possible by pressing one of four arrow keys on the keyboard. Note that participants
listened to exactly the same phrases as their randomly paired stranger partner, the
only difference being that the self-similarity conditions differed (i.e., one participant’s

voice was the “other’s person’s voice” for their partner, and vice versa).

During the experiment, the eye movements of the participants were tracked with a
Tobii X2-30 eye tracker at a sampling frequency of 30Hz. The targets were pictures

of pairs of items, all of which had been seen by the participants during the recording
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phase of the experiment. The first (left) item in each pair was the subject of the
ambiguous phrase, while the second (right) item was unique and was described
without ambiguity. I included these “second items” because the prosodic differences
between the descriptions of pairs of ambiguous options is very subtle. Based on
previous research, even when listeners hear their own recorded voices, they can only
achieve a comprehension accuracy of about 70%. By adding a unique “second item”,
I am able to better distinguish between confused responses (when the listener does
not know which target is being described) and incorrect responses (when the listener
presses the wrong key by mistake). Each set of four pairs of items included two pairs
with correct first items and two pairs with incorrect first items, which could be easily

mistaken for the correct items due to RB vs. LB ambiguity.

The listening comprehension experiment involved a total of sixty similar trials (i.e.
15 trials from the 26 in each morphing condition were randomly selected for each
pair of participants). Fig. 4.5 shows an example of one trial. Participants were
asked to select the correct pair of items based on the phrase they heard by using
a keyboard. The phrases were a combination of the participants’ morphed voices
(“first item” and “second item”) in the same morphing condition. As shown in
Fig. 4.5, each trial was divided into four logical stages. The first stage was a five
second preparation stage, in which the set of four picture pairs was shown without
any sound. The second stage ran from the beginning of the description of the first
item (the item on the left) to the end of the description of the first item. In the
third stage, the participants heard the word “to” (pronounced like the word “toe”
in English, which means “and” in Japanese) and then a 0.3 second pause. The
fourth and final stage spanned the period from the beginning of the description of

the second item until the participant’s response via the keyboard 1°.

10Participants can respond at any time during a trial, therefore the fourth stage is absent in
some trials due to situations such as mistaken responses, etc.
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Figure 4.5: Experimental procedure. The experimental procedure was divided
into four stages. In the first stage, only visual information is presented. During the
second stage, information about the ambiguous item is presented. In the third stage,
the word “to” (which corresponds to “and” in English) is heard, followed by a 0.3
second pause. In the fourth stage, information about the unique item is presented.
The participant’s comprehension of the ambiguous information is considered to occur
during the second and third stage.

4.3 Results

In this paper, the results were analyzed using analysis of variance (ANOVA), which
assumes that the ratio (i.e., F-value) of between-group variability to within-group
variability follows an F-distribution. The probability (i.e., p-value) that the means
of the experimental groups are all equal becomes smaller as the F-value increases.
When the p-value is smaller than the alpha level (which was set to 0.05 for this
study), the null hypothesis will be rejected (i.e., there is a significant difference
between the means of the experimental performances of the groups being compared).
Further, as four morphing levels were used in the experiment, Tukey’s test was
applied for pairwise comparisons when ANOVA shows that there is a significant

difference in experimental performance.

The “stranger’s voice” data was further divided into “strangers with voices similar
to the listener’s own voice” and “strangers with voices dissimilar to the listener’s
own voice” based on the objective similarity measures, which can be considered to
be an extension of the original experiment. Thirty-third percentile and sixty-seventh
percentile of all the data were set as thresholds for “similar stranger” and “dissimilar
stranger”, respectively. Participant pairs whose average objective similarity measure

was higher or lower than these thresholds were considered to be a “similar stranger”
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or “dissimilar stranger”, respectively. Further ANOVA analysis was applied using
the “similar stranger” and “dissimilar stranger” categories as an additional “between
subjects” factor. Because I was afraid that similarity of pitch and duration of
utterances within a participant pair could change (i.e., some utterances could sound
similar while other utterances sounded dissimilar), for the purpose of analysis, both
pitch and duration similarities were treated as both a “between subjects” factor and
a “within subjects” factor (i.e., they were analyzed twice)!!. Also note that there
were only tiny differences in prosodic expression between paired participants. Fig.
4.6 shows the histograms of the similarity measures used in this study. The mean
and variance of the mean differences in syllable and pause duration were 44.4ms
and 378.04(ms)?, respectively. The mean and variance of the weighted correlation

of pitch contours was 0.78'2 and 0.04, respectively.

HParticipants/trials which did not meet both of the thresholds were ignored. For analysis of
spectrum similarity, two participants were ignored. For pitch similarity, three participants were
ignored. For duration similarity, four participants were ignored.

12A value that has been considered to indicate a high level perceptual prosodic similarity in
previous researchs [116].
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Figure 4.6: Histograms of similarity measures used in this study. The upper
shows the histogram of MFCC similarity measure of all the trials. The middle
shows the histogram of pitch similarity measure of all the trials.The lower shows the
histogram of duration similarity measure of all the trials.

4.3.1 Pre-processing

Data collected from four of the participants was removed from analysis either be-
cause of experimental error (the participants misunderstood the task) or due to data
recording error (50% of their eye movement data was lost). Thus, the study was

conducted using data collected from twenty-four participants®®.

Although practice trials were conducted, there still appears to have been a strong
practice effect in our results. Fig. 4.7 shows the average response time in chrono-
logical order. We can see a strong tendency toward decreasing response times as
the experiment proceeds, especially at the beginning. Therefore, trials before the

tenth trial were excluded from our results as training trials. This imbalance in the

13Trials in which participant gave an incorrect response or which had more than a 50% loss of
eye movement data were also removed from analysis, which ignores 10% of the remaining data.
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appearance of each morphing condition during pre-processing should be avoided in
future research. Also, to control for individual differences in response times, the
response times of each participant were normalized into z-scores for analysis as fol-

lows: z = R;—M where R is the response time measured from the end of the speaker’s
production to the listener’s keystroke response, M; is the mean response time of par-

ticipant ¢, and o; is the standard deviation of the response time of participant 7.
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Figure 4.7: Average response time for each trial. The horizontal axis axis
represents the order of the trials, while the vertical axis represents the average
response time of the #th trial from the end of the speaker’s production to the
listener’s keystroke response.
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4.3.2 Response time

Response time under different morphing conditions
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-
T
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o
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Figure 4.8: Average response times of each participant under different
voice morphing conditions. Each coloured of bar shows one participant’s average
response time (z-score) under one morphing condition.

Fig. 4.8 shows the average normalized response times of each participant under
different morphing conditions. Each color of bar shows one participant’s average
response time. We can see that when participants heard voices the same or similar to
their own (100% own voice and 67% own voice) they responded faster than when they
heard voices dissimilar to their own (33% own voice and 0% own voice). But little
difference was observed between the 100% own voice and 67% own voice conditions,
or between the 33% own voice and 0% own voice conditions. Statistical analysis
also supported this observation. Tukey’s test indicates that there are significant
differences between the 100% own voice and both the 33% own voice and 0% own
voice levels (p < 0.01), and also between the 67% own voice and both the 33%
and 0% own voice levels (p < 0.05), but that there is no significant difference
between the 100% own voice and 67% own voice levels, or between the 33% own
voice and 0% own voice morphing conditions. It appeared that the participants

could hardly distinguish the differences. I expected to find a linear relationship
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between morphing level and perceived similarity, but this was not the case. Thus,
the 100% own voice and the 67% own voice data were combined and considered both
to represent the “own voice” condition, while the 33% own voice and 0% own voice

data were similarly combined to represent the “stranger’s voice” condition.
fzo T T T T T T T T T
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Figure 4.9: Histogram of response times under different voice conditions.
Blue bars stand for the “stranger’s voice” condition (67% stranger’s voice and 100%
stranger’s voice), and red bars stand for the listener’s own voice condition (67%
own voice and 100% own voice). Horizontal axis represents the normalized (z-score)
response time.

Fig 4.9, shows a histogram of normalized response times for the “own voice” and
“stranger’s voice” conditions using the combination of morphing data percentages
described above. Similar to the results shown in Fig. 4.8, participants responded
faster when prosodic information was presented in voices similar to their own. The
morphing conditions were considered as within-subjects factor (designs), statistical
analysis (ANOVA) shows a significant difference between these two groups of nor-
malized response times (F' = 15.22, p < .001). As both of the participants in each
pair experienced exactly the same stimuli (saw the same pictures and heard the
same voices), it should be able to exclude the possibility of irrelevant factors, such
as the match-up between the images and spoken words, that may cause a difference

in response times. Therefore, the significant difference in response times is probably
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the result of the variation in the familiarity (similarity) of the voices presenting the
information. For example, in Trial 1, Partner A heard his own voice describing the
objects, while Partner B heard a stranger’s voice (Partner A) describing the objects

in his experiment.

Response time under different pairing conditions

There is still a significant difference between response times when using the duration
similarity measure to divide “stranger” (F = 7.754,p < 0.05 as a between subjects
factor, F' = 3.37,p < 0.05 as a within subjects factor). However, there is no sig-
nificant difference in response time between trials divided by spectrum similarity
measure (F' = 2.10,p = 0.16) or pitch similarity measure (F = 1.55,p = 0.23 as a
within subjects factor, F' = 1.1, p = 0.34 as a between subjects factor). One possible
explanation is that differences in prosodic information comprehension are difficult
to catch using response time as an indicator, and the difference in duration itself
causes different response times (e.g. one’s response would probably be slower when

the stimulus lasts longer).

4.3.3 Degree of visual fixation

Visual fixation under different voice morphing conditions

Fig. 4.10 shows the proportion of listener eye fixation on the “correct” areas of the
screen under different morphing conditions. We can see that although there is little
difference during the second stage of the trial, participants were more likely to focus
on the “correct” target during the third stage when the voice they were listening
to was more similar to their own voice. The second stage includes the period from
the beginning to the end of the description of the first item, and the third stage
is listening to the word “and ” followed by a short pause. These results support
our hypothesis that listeners can more easily catch the subtle prosodic cues which
help them to resolve lexical ambiguity when they are listening to voices similar their
own. There was no statistical difference between eye fixation on the “correct” and

“incorrect” areas of the diagrams by the participants to confirm this, however.
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Figure 4.10: Proportion of visual fixation on correct/incorrect areas under
different morphing conditions during each stage of experimental trials.
The upper red line shows the proportion of visual fixation on the area of the correct
first item under the “own voice” condition (67% own voice and 100% own voice).
The lower red line shows the proportion of visual fixation on areas of incorrect first
items under the “own voice” condition. The upper black line shows the proportion
of visual fixation on the area of the correct first item under the “stranger’s voice”
condition (67% stranger’s voice and 100% stranger’s voice). The lower black line
shows the proportion of visual fixation on incorrect areas under the “stranger’s
voice” condition.

Visual fixation under different pairing conditions

Just as in the previous section regarding response time under different pairing con-
ditions, the “stranger’s voice” condition was further divided into other voices similar
to the listener’s voice and other voices dissimilar to the listener’s voice, and inves-
tigated differences in the visual fixation of the participants. Fig. 4.11 shows the
proportion of visual fixation on the “correct” areas under different spectrum simi-
larity levels. Fig. 4.12 shows the proportion of visual fixation on the “correct” areas
under different pitch contour similarity levels (considered as within subjects factor).
Fig. 4.13 shows the proportion of visual fixation on the “correct” areas under differ-

ent syllable/pause duration similarity levels (considered as within subjects factor)4.

14Here I only show the proportion of visual fixation on the “correct” areas for simplicity.
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From these three figures We can see that when the listener hears another person’s
voice, which is similar to their own, their visual fixation during the third stage of the
trials is the same as when they are listening to their own voice, especially when the
trials are analyzed using spectrum and pitch contour similarity measurements. On
the other hand, when listeners heard the voices of others, which differed from their
own voices, We can see that their visual activity was more chaotic when selecting a
fixation target. Statistical analysis shows a significant difference in the proportion
of visual fixation on “correct” areas of the target when the “stranger’s voices” were
divided by spectrum similarity measure (F' = 4.64,p < 0.05) and pitch contour sim-
ilarity measure (F' = 8.32,p < 0.01 as a between subjects factor, F' = 3.51,p < 0.05
as a within subjects factor). Also note that in Fig. 4.13, while visual fixation on
the “correct” areas under the “own voice” conditions and “similar stranger’s voice”
conditions are still similar, in contrast in Fig. 4.11 and Fig. 4.12, we can see that
the proportion of visual fixation on “correct” areas is lower during the third stage
under the “dissimilar stranger’s voice” condition (F' = 0.36,p = 0.55 as a between
subjects factor, F' = 1.34,p = 0.27 as a within subjects factor). This result may
be because the duration cues used by different participants were perceptually more

similar than the other two cues (i.e., changes in pitch and spectrum).

In summary, since the audio stimuli used in these experiments were verbally iden-
tical, the results of our experiment indicate that similarity in subtle prosodic cues
does indeed positively influence the efficiency of prosodic information transmission.
Additionally, there are significant differences in response times at different morphing
levels and under different duration-based pairing conditions, but no significant dif-
ference in response times between MFCC-based pairing conditions or pitch contour
based pairing conditions. In contrast, the visual fixation results show no significant
differences at different morphing levels or different duration-based pairing condi-
tions, but show significant differences between different MFCC-based pairing condi-
tions and pitch contour based pairing conditions. I cannot explain this contrastive
result, except to suggest that perhaps this experiment revealed a “boundary” of
human speech perception ability. Investigation of a possible boundary of this type
would be an interesting topic of future research. Also note that the utterances of
some pairs of participants may have sounded more artificial than others, and that
even within the same pair of participants some sentences sounded more artificial

than others since nasal sounds usually sound slightly more artificial than plosive
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Figure 4.11: Proportion of visual fixation on correct areas under different
similarity conditions (DTW cost) during different trial stages. Red shows
the proportion of visual fixation on areas with the correct first item under the “own
voice” condition (same as in Fig. 4.10). Black shows the proportion of visual fixation
on areas with the correct first item under the “similar stranger’s voice” condition.
Blue shows the proportion of visual fixation on areas with the correct first item
under the “dissimilar stranger’s voice” condition.
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Figure 4.12: Proportion of visual fixation on correct areas under different
similarity conditions (pitch contour) during various trial stages. Red shows
the proportion of visual fixation on areas with the correct first item under the “own
voice” condition (same as in Fig. 4.10). Black shows the proportion of visual fixation
on areas with the correct first item under the “similar stranger’s voice” condition.
Blue shows the proportion of visual fixation on areas with the correct first item
under the “dissimilar stranger’s voice” condition.
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Figure 4.13: Proportion of visual fixation on correct areas under different
similarity conditions (duration) during various trial stages. Red shows
the proportion of visual fixation on areas with the correct first item under the “own
voice” condition (same as in Fig. 4.10). Black shows the proportion of visual fixation
on areas with the correct first item under the “similar stranger’s voice” condition.
Blue shows the proportion of visual fixation on areas with the correct first item
under the “dissimilar stranger’s voice” condition.



66

sounds. This research does not investigate the influence of the naturalness of the

synthesized voices, which should also be examined in future research.

4.4 Summary of this chapter

Experiments to investigate the effect of subtle prosodic similarity on the efficiency of
prosodic information transmission were designed and conducted in this study. Sen-
tences with RB vs. LB ambiguity were used as the experimental material, and voice
morphing technology was used to control voice similarity levels during the experi-
ments. Objective similarity measurements were also used for analysis. Participants’
response times and visual fixation behaviour were recorded. Analysis of the re-
sponse time data showed that participants identified ambiguous target images more
quickly when they heard voices similar to their own. Analysis of the visual fixation
data also showed that participants understood more of the prosodically conveyed
information when the target images were described in voices similar to their own.
The results support the hypotheses that similarity in the speech characteristics of
the information sender and information receiver result in higher information trans-
mission efficiency, and that subtle acoustic cues influence efficiency of information

transmission.

These findings were consistent with one another and imply that acoustic feature sim-
ilarity is relevant to prosodic information transmission efficiency. In comparison to
previous researches, the subjects of this study were all male undergraduate students
who were native speakers of standard Japanese. The results suggest that human
processing of speech information is so sensitive that even subtle prosodic cues in-
fluence our information transmission efficiency and language processing ability. But
it should also be noted that only half of our experimental results were statistically
significant, thus additional experiments which can verify the findings and investi-
gate the “boundary” of human speech perception ability are needed. Finally, as
spectrum similarity (MFCC distance) is considered to contain information on the
condition of the vocal tract, the results suggest that physiological similarity is likely
to be an additional dimension which needs to be considered when discussing speech

communication and information transmission between speakers.

Regarding future works, the current experiment is unbalance in participants’ gen-
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der and the appearance of different morphing conditions, a stricter experiment with
female participants ought to be done in the future. Also, as mentioned above, syn-
thesized voices still sound somewhat artificial. Therefore, further investigation of
the naturalness of morphed stimuli and their impact on information transmission
is a potential area of research. Furthermore, instead of using morphed stimuli, in-
formation transmission efficiency when using “similar” or “dissimilar” participants’
voices, as determined through the use of an objective similarity measure, should also
be investigated. The combination of these two research projects might help us to
verify that the slower listener reactions are not merely due to lower-quality stimuli
or the amount of morphing, or due to the possibility that participants can identify

their own voices and therefore exert extra effort.
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Chapter 5

Correlation between Similarity in
Speech Characteristics and
Information Transmission Quality
in Spoken Dialogue

Keywords in this chapter:

Speaker similarity

Speech characteristics

Information transmission quality

- Map task

This study proposed speech characteristics similarity as a predictor of information
transmission quality in spoken dialogue, and validates the proposal using a map
task dialogue corpus. Typical speech characteristics similarity measures proposed
for automatic speaker recognition based on their segmental features, prosodic fea-
tures and idiolect features had been chosen. Likelihood ratio test of generalized
mixed linear model was used to evaluate whether the selected similarity measures
are effective predictors of the map task success. The results revealed an facilitative
effect, with more successful in dialogues occurred between similar interlocutors than

in dialogues occurred between dissimilar interlocutors.
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5.1 Introduction

Speech signal we heard not only contains linguistic content, such as syllables, words,
and phrases of the current utterance, but also ample amount of speaker-specific
speech characteristics, such as fundamental frequency, formant spacing, and over-
all speaking rate. It means that when processing speech signal, listener should
somehow process linguistic information as well as speaker-specific information. Pre-
vious researches suggest that these two process interact with each other, which
means that speaker variation affects linguistic process[75][76][118][119], and vice
versa[120][121][122]. For example in [123], compared to participants who were asked
to do nothing during training phase, participants who were asked to finish a word
identification task and participants who were asked to finish a speaker identifica-
tion task during training phase both showed better (and similar) performance in a
later phrases transcription test. As a result, it is natural for us to consider refining
speaker-specific speech characteristics as an approach towards better linguistic in-
formation transmission quality. Increasing listener familiarity with speaker-specific
speech characteristics has been found to be a potential direction of such a refin-
ing. It is found that not only be familiar with linguistic content related speech
characteristics, such as accent and intonation, can facilitate speech perception pro-
cess [107][124][125][126], but also speech characteristics that considered to be less
relevant to linguistic content, such as the overall fundamental frequency. have fa-
cilitatory effects on the speech perception process[127][128]. For example in [129],
researchers found that participants have higher accuracy in a word identification
task, which was considered as a measure of their implicit memory, when the intona-
tion contour, emotional prosody, or fundamental frequency of the voice in test phase

are the same as what they had heard during training phase.

If we want to apply this “speech characteristics familiarity effect” to provide high
quality linguistic information transmitter (e.g., in call center), however, there are
still questions need to be answered. One of the questions is how to measure the
transmitter’s speaker-specific speech characteristics familiarity to the listener. In
my last study, I proposed similarity in speech characteristics between listener and
speaker as a measure of familiarity. Although similarity it is not exactly familiar-
ity, most of us will accept that we are familiar with our own accent, intonation,

vocabulary, culture, and so forth. This proposal has been validated using an am-
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biguous sentences interpretation experiment in voice morphing similarity measure
and objective similarity measure [130]. Results showed that when participants hear
voices similar to their own at the segmental and prosodic (suprasegmental) levels,
they could understand subtle prosodic cues better and faster, reducing ambigu-
ity. Another question that need to be answered is whether it is still operative in
the processing of spontaneous dialogues. As most of the previous studies relying
on carefully controlled behavioural experiments, whether familiarity with speaker-
specific speech characteristics affects linguistic information transmission quality is
unclear. The present study investigated this issue using a map task dialogue corpus.
Several typical speech characteristics similarity measures had been chosen to evalu-
ate the impact of segmental level, prosodic level and idiolect level speaker /listener

similarity on information transmission quality.

This chapter is organized as follows. After a brief introduction to the map task
corpus and its information transmission quality measure used in this study in Section
5.2, I describe the selected methods of measuring similarity in speech characteristics
in Section 5.3. In Section 5.4, I report the experimental results and discuss their
implications. I end the chapter with conclusions and a discussion of my future

research.

5.2 Human Communication Research Centre (HCRC)
map task corpus [131]

The HCRC Map Task Corpus is a set of 128 direction sharing dialogues which have
been recorded, transcribed, and annotated. The dialogues have been released and
have been used by researchers investigating a wide range of behaviors [131]. There
are 64 speakers featured in the corpus, all of whom were born in Scotland, who each
take part in four conversations. The main task for the subjects is route guidance
as shown in Fig. 5.1. Pairs of two participants take turns playing the roles of a
giver and a follower of directions. During the dialogue, the direction giver describes
a route that appears on his or her own map to the direction follower, using speech
communication only, and the direction follower then tries to reproduce the same
route on his or her own map. After the dialogue is finished, both the direction giver’s

and direction follower’s A3 sized maps are covered with a grid of 1 cm squares, and
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the deviation between their routes, measured in squares, is then calculated. This
path deviation value is then used to measure the linguistic information transmission
quality in this study. Note that, half of the dialogues occurred between familiar
(i.e., acquainted) interlocutors, while the other half occurred between unfamiliar
interlocutors. Meanwhile, half of the participants who took part in the task were
able to make eye-contact with their partner, while the other half had no eye-contact.
These experimental conditions, together with the participants’ gender information

will be used to set up a baseline prediction model in the experiment section.

5.3 Measures of similarity in speaker-specific speech
characteristics

Typical speaker-specific speech characteristics similarity measures proposed for au-
tomatic speaker recognition have been chosen to examine whether be similar in
segmental level , prosodic level , and idiolect level speaker-specific speech charac-
teristics improve the linguistic information transmission quality between listener
and speaker. As most of them are well known and operative in general automatic
speaker recognition task, they are considered to have enough discriminative capacity

to measure the similarity between two pieces of speech signals.

5.3.1 Segmental similarity measures

Here, segmental features refer to the features that calculated from the smallest
discrete linguistic unit that can be identified. In practice, segmental features par-
ticularly refer to information that extracted from a short-term analysis window
(usually 20ms 30ms) which is considered to contain phonemic information. I-vector
of MFCCs and some segmental features’ overall statistical values were chosen to be

the segmental similarity measures of this study.

MFCCs (mel frequency cepstral coefficients), which are believed to contain formant
information about the human voice in a small piece of speech (usually 20ms 30ms),
are the most popular segmental features used in both speaker identification and
speech recognition research. I-vector, which has state-of-art performance in speaker

related recognition task (e.g., speaker recognition, speaker identification, speaker
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Figure 5.2: Examples of routes drawn by direction follower. The path devi-
ations calculated for the completed route for qdecd (left) and qdec8 (right) were 73
and 30, respectively.

verification, etc.) and has already become source features of some speaker recog-

nition challenges[132], was used to calculate the similarity between giver’s and fol-
lower’s MFCCs,

Because the acoustic stream contains not only speaker identity information but also
other verbal information, When doing speaker recognition, we want to exclude any
information which may influence our evaluation of the similarity in speaker-specific
speech characteristics. An i-vector is created to perform this task using a specified
joint factor analysis. Based on the procedure used in [90], a speaker- and channel- (or
session-) dependent supervector M, which is usually composed of the mean vectors

of the Gaussians in the GMM of the current data set, can be expressed as follows:

M=m+ Tw, (5.1)

where m is the speaker- and channel-independent supervector, commonly taken
from a universal background GMM representing speaker- and channel-independent
acoustic features. T is a rectangular matrix using virtual speakers as its dimensions

(i.e., it is the speaker space), and w is a vector called the total factor vector or
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I-vector.

Cosine similarity has been applied successfully in the speaker space to measure the
similarity of two I-vectors. Therefore, the similarity of two data sets, X and Y,
represented by two vectors in the Total Variability space (the speaker space) wx

and wy respectively, can be measured using the following equation:

) — )W)

= Wx)AWY) (5.2)
[Tl - [[w ]

where, X and Y represent, respectively, all the giver speech segments of the current
direction giver and all the giver speech segments of the current direction follower

when he or she played the role of direction giver.

5.3.2 Prosodic similarity measures

Prosodic (or suprasegmental) features refer to features that extend over syllables
and longer regions, they are usually considered as complementary information to

automatic speaker recognition systems based on segmental features.

In [133], researchers used the slope of both pitch and intensity contours, in con-
junction with segment duration to encode the prosodic dynamic features (or “pitch
accent” in the words of the authors) of speech segment. After a speech segment is
divided into syllable-like units by an automatic syllable detector, the slope of both
the pitch and intensity of the units were calculated. Positive slopes were coded as
“4+7 and negative slopes were coded as “—”. In addition, segment durations were
coded as either S, L, or M, with S representing the shortest 33% of segment dura-
tions, L representing the longest 33% of segment durations, and M representing all
segment durations in between. This means that for each syllable-like speech unit,
three symbols will be used to encode the slope of the pitch contour, the slope of the
intensity contour and the duration of the speech segment (e.g., ++S or + — M).
A bigram model is then used to model all of the coded segments spoken by a par-
ticular speaker. To measure the similarity of two bigram models constructed from
the speech of the direction giver and direction follower in a dialogue, respectively,
This study used a conventional log likelihood ratio test, which was also used in the

original paper [133] and [51], to measure the similarity between two bigram models.
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The similarity score can be expressed as:

Yo Ty(k)loglly(k)/1; (k)]
> Ty(k) ’

where T, (k) is the number of occurrences of bigram type k (e.g., ++ L| + —L) in

score =

(5.3)

the direction giver’s speech segments, N is the number of possible bigrams (in this
case, N = (2 x 2 x2x3)?=196), and [,(k)/l;(k) is the bigram likelihood estimates
for direction giver’s/direction follower’s model. The likelihood estimates for a model

m, are calculated from the speech data using

U (k) = NTm(k)

771:1 T (5.4)

5.3.3 Idiolect similarity measures

An idiolect is the language or speech of an individual during a particular period of
his or her life. An individual’s idiolectal style contains speaker identity information,
and these traits could be expected to have an influence on the quality of linguistic
information transmission, i.e., a speaker’s use of slang, affected pronunciation, an
accent, a lisp or a non-standard dialect would intuitively seem to make it more
difficult for a listener who is not familiar with those particular idiolectal features to
understand the speaker, and thus would impair transmission efficiency. For example,
in the corpus, when describing the same section of the route some direction givers
say “you want to go round the outside of that (forest)”, while other direction givers

say “a curve almost a half ‘u’ shape”.

Language style matching [85]

In [85], researchers developed a method to calculate the similarity in dyads’ use of
function words, which they called language style matching (LSM). LSM calculates
the frequency of occurrence of nine sorts of function words in a dialogue, and uses
the following equation to calculate a final stylistic similarity

1 Y |A; — B

LSM = =3 (1—
N;( A; + B; +0.0001

) (5:5)

where N represents the number of function word categories used for LSM (in this

case N = 9); A; and B; represent the percentage of function words belonging to
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Table 5.1: Word Categories Used for Calculating Language Style Matching|[85]

Category Examples
Personal pronouns I, his, their
Impersonal pronouns it, that, anything
Articles a, an, the
Conjunctions and, but, because
Prepositions in, under, about
Auxiliary verbs shall, be, was
High-frequency adverbs  very, rather, just
Negations no, not, never
Quantifiers much, few, lots

category ¢ used by speaker A and speaker B during the whole dialogue, respectively,
and 0.0001 is added to prevent empty sets. The function word categories used for
calculating LSM are shown in Table 5.1. Note that instead of using an automatic
word category counter such as Linguistic Inquiry and Word Count (LIWC), This
study uses the manually annotated part-of-speech tagging provided in [131] for
LSM calculation. It is believed that the manually annotated labels provide higher
statistical accuracy when counting function words since it allows us to distinguish
which part of speech a word is being used as. For example, the word “that” can be
used as a definite article: “That man is my father”, or as a conjunction: “He told
me that he would be late”. Note that different from other similarity measures used
in this study, LSM was first proposed for social relationship study[134], and to our

knowledge has never been used in any automatic speaker recognition systems.

Bigram model of part-of-speech (POS) tags

Textual bigram models are a common method of modeling text data [51]. As
HCRC map task corpus only has an average of about one thousand words of each
direction giver’s speech, in this study, instead of actual words in the original paper,
part-of-speech (POS) tags was used to build bigram models for each speaker. The
POS tags used in this study are: verbs, nouns, adjectives, adverbs, auxiliary verbs,
determiners, pronouns, prepositions, conjunctions and interjections. The similarity

measure used in Section 5.3.2 (Eq. 5.3) is also used here.
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5.4 Experiment

5.4.1 Experimental setup

For all of the models reported in this study, I used generalized linear mixed mod-
els to model the data with MFCCs ivector similarity, prosodic dynamic similarity,
language style matching similarity, and part-of-speech bigram similarity as fixed ef-
fects, and group ID and map ID! as random effects. We began by building a base
model with familiarity conditions, eye-contact conditions, and gender information
as the fixed factor and then respectively added MFCCs ivector similarity, prosodic
dynamic similarity, language style matching similarity, and part-of-speech bigram
similarity to the base model as fixed effects. Model improvement was assessed by
the likelihood ratio tests, which uses a chi-square test to examine whether likelihood
improvement is significant with the additional predictor. If the added predictor sig-
nificantly improved the model fit, it will be considered that the predictor accounted
for a significant amount of variation in the dependent variable (i.e., path deviation).
Functions provided by Matlab were used for these statistical significance analysis,

and Poisson distribution was set to be the distribution of the dependent variable.

For all the similarity measures, the silent segments of the recordings were removed
manually. For the MFCC based similarity measure, 39 dimensional MFCCs (with
A and AA values) were extracted every 10 ms using a 25 ms analysis window.
For prosodic similarity measure, pitch and intensity contours were extracted using
PRAAT [43] every 10 ms using a 25 ms analysis window. Syllable boundaries were
extracted using Julius[135]. After extraction, the log values of every data point
were calculated, and then linear interpolation was used to fill in the zero values.
For bigram models, after calculating the appearance probability of every unigram
and bigram, 0.001 was used to fill the zero-probability items. The bigram model
was then renormalized so that its probability sum was 1. Also note that due to
an experimental error during recording (restarting from the middle of the data)
and extremely noisy recording conditions, three of the dialogues (q3ech, q3nc3, and

q6ec2) were removed from analysis.

!There were totally sixteen groups and sixteen maps. Each group provided eight dialogues using
eight different maps.
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5.4.2 Results

Fig. 5.3 shows the histograms of the similarity measures used in this study. We
can see that while prosodic dynamic bigram similarity, language style matching
similarity, and POS bigram similarity have similar distributions, MFCCs ivector
similarity seem to has a more intensive distribution. Table 5.2 shows the model
fitting comparison results between base predictor and the proposed predictor. Com-
parison results revealed that adding MFCCs ivector similarity, prosodic bigram sim-
ilarity, and POS bigram similarity as predictor significantly improved the model
fits(x? = 36.809,p < 0.01; x* = 6.397,p < 0.05; x* = 33.814,p < 0.01 , respec-
tively). However, adding language style matching similarity as predictor did not
improved the model fit (x* = 0.1298,p > 0.05). The results suggest that MFCCs
ivector similarity, prosodic bigram similarity, and POS bigram similarity signifi-
cantly influenced the final path deviation of the map task dialogue. Interlocutors
with similar voices, who used similar sentence structures, and who exhibited sim-
ilar prosodic behaviours, tended to achieve higher levels of linguistic information
transmission quality. It may be a litter surprise that be similar in MFCCs ivector
also facilitate linguistic information transmission quality, because it is well known
that the perception of one’s own voice involves a mixture of air conduction and
bone conduction, meaning that our perception of our recorded voice differs from
our daily perception of our own voices. It implies that although the spectral en-
velopes are different between these two types of voices (i.e., recorded voice and daily
heard voice), our MFCCs including other speech characteristics which we are fa-
miliar with (e.g., fundamental frequency). Compared to MFCCs ivector similarity
and POS bigram similarity, prosodic bigram similarity showed a lower significant
level in our experiment. Maybe it is because of that participants in the HCRC map
task were all born in Scotland, and therefore shared similarity prosodic dynamic
patterns. Finally, LSM similarity did not significantly influence the linguistic infor-
mation transmission quality. As LSM has usually been used to investigate social
interaction and has never been evaluated with automatic speaker recognition task,
function words are less important in linguistic information transmission quality and
lack of discriminative capacity to measure the similarity between two speakers are

two possible explanation of this result.
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Figure 5.3: Histograms of the similarity measures. The upper left shows the
histogram of MFCCs ivector similarity between direction giver and direction fol-
lower. The upper right shows the histogram of prosodic dynamic similarity between
direction giver and direction follower. The lower left shows the histogram of LSM
similarity between direction giver and direction follower. The lower right shows the
histogram of POS bigram similarity between direction giver and direction follower.

Table 5.2: Results of likelihood ratio tests

Model Predictor Y2 p

Null model base

Alternative model base + ivector 36.809 < 0.01
Null model base

Alternative model base + prosodic-bigram 6.397 < 0.05
Null model base

Alternative model base + LSM 0.1298 > 0.05
Null model base

Alternative model base + POS-bigram 33.814 < 0.01
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5.5 Summary of this chapter

In this study relationships between the speaker-specific speech characteristics, such
as segmental, prosodic and idiolectal similarity, and information transmission quality
when speakers gave instructions using spoken language has been investigated. The
results showed that interlocutors those with similar voices, who used similar sentence
structures, and who exhibited similar prosodic behaviours, tended to achieve higher
levels of linguistic information transmission accuracy. Also note that, the speech
characteristics features for the participants were calculated using different dialogues,
which implies that the prediction model could predict the accuracy of information

transmission before the conversations had started.

Since the participants in the HCRC map task were all born in Scotland, this implies
that they shared similar prosodic dynamic features and vocabularies. The results
seems to support the idea that human language processing mechanisms are more sen-
sitive than we generally believe. The facilitative effect of MFCCs ivector similarity
consisted of our previous finding[130], which implies that MFCC feature including
other speech characteristics which we are familiar with. For example, the funda-
mental frequency of the voice is the same between recorded voice and daily heard
voice, and has already been demonstrated to have facilitative effect on implicit word

recognition rate when words were read using the same fundamental frequency[129].

For future work, we plan to built a dialogue system based on the finding of this study
that be similar with the speaker’s voice could improve the linguistic information
transmission quality. But there are still questions left, one of the most comments
we heard is that it is very strange to hear somebody speaking using our own voice.
Therefore, it is necessary to find out a compromised way to provide high quality

information transmission while caring the listener’s feeling.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this dissertation I have described my investigations of the impact of speech char-
acteristic similarity on information transmission efficiency in dialogue. Few previous
studies in this area of research have attempted to measure the impact of quantized
similarity in speech characteristics on communication among speakers, or have ver-
ified those effects using a spontaneous speech corpus. Moreover, the effects of seg-
mental speech characteristics, such as formant information, similarity on information
transmission have never been studied, because these characteristics are considered

to contain physiological information, which is difficult to measure.

In my first study, I proposed a method to reduce clustering error during speaker
diarization, which is the division of dialogues into speaker-specific clusters. The
proposed method evaluated whether or not clusters were composed almost entirely
of speech segments from only one speaker, using the statistical properties of inter-
cluster similarity scores and intra-cluster similarity scores as measured in a so-called
speaker space. Experimental results showed that the proposed cluster evaluation
method could detect “ideal clusters” effectively, which improved the performance of
the clustering algorithm by preventing over-merging, and hence diarization perfor-

mance, compared to methods using conventional bottom-up clustering.

In my second study, a listening experiment was designed to investigate the impact

of speech characteristic similarity on subtle prosodic information transmission ef-
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ficiency at the segmental, prosodic, and lexical levels. Japanese right-branching
(RB) vs. left- branching (LB) ambiguous sentences were used in the experiment in
order to control lexical influence. Morphing technology and text-dependent objec-
tive similarity measures were introduced to control similarity levels. Participants
were asked to finish a target identification task with RB vs. LB materials as tar-
gets. Their response times during the tasks, together with the proportion of their
eye-fixation on different targets, were recorded for analysis. Results showed that
similarity in speech characteristics, including similarity in segmental speech charac-
teristics!, which had not been investigated previously, has an apparently facilitative

effect on subtle prosodic information transmission.

In the third study, speech characteristics similarity between subjects was proposed
as a predictor of information transmission quality. The proposal was validated using
a map task dialogue corpus. Typical speech characteristics similarity measures pro-
posed for automatic speaker recognition based on their segmental features, prosodic
features and lexical features had been selected. Likelihood ratio test of generalized
mixed linear model was used to evaluate whether the selected similarity measures
are effective predictors of the map task success. The results revealed an facilitative
effect, with more successful in dialogues occurred between similar interlocutors than

in dialogues occurred between dissimilar interlocutors.

In general, my investigations showed that similarity in speaker-specific speech char-
acteristics between conversation partners facilitated information transmission effi-
ciency. Comparison to familiarity of speech characteristics, which has been found
facilitating linguistic information transmission by previous studies, speech charac-
teristics similarity is more measurable which therefore makes self-similar voice a
potential predictor and direction of high efficiency information transmission sys-

tems.

6.2 Future work

One possible direction for future research could be the exploration other speech
characteristics and their associated properties which might have beneficial effects

on information transmission efficiency. For example, since each speaker likely has

In my research, this refers to the Euclidean distance between the MFCCs of aligned frames
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his or her specific speech characteristics, being similar to one particular speaker
may decrease a person’s similarity to other speakers. In contrast, it is not hard to
imagine that there may be speaker-specific speech characteristics which increase a
speaker’s information transmission efficiency in general for all listeners, such as the
speech characteristics shared by news announcers (e.g., clear enunciation, steady
pacing, high volume, etc.). Extracting these “general” speech characteristics which
facilitate information transmission, and comparing their performance with that of
“specific” speech characteristics (i.e., speech characteristics similar to those of the

information receiver) is likely to be a focus of my future research.

Regarding practical applications of my research, on the one hand the investigations
described in this dissertation suggests that the use of synthesized voices similar to
those of system users can improve information transmission efficiency. On the other
hand, it could be uncomfortable for customers to hear a voice identical to their own.
Thus, we may need to balance high efficiency in conversation with user comfort,

which could also be a big challenge.

In the future, just as smart phones have become indispensable in modern society,
personal virtual assistants might become our closest confidants and most loyal sup-
porters. These virtual assistants might serve not only as our private guides and
secretaries, which is close to being achieved already, but also as our personal super-
visors, counsellors and coaches who can help us process complex information, discuss
with us the risks and benefits of various options and motivate us to take necessary
action. Users might be able to customize their virtual personal assistant with various
personalities, appearances, and speech characteristics. When facing tasks in which
high efficiency information transmission is required, I believe the use of user-similar
speech characteristics, at the prosodic, lexical, and even the segmental level, should

be one of the available options.
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Appendix A

Other 12 ambiguous material used
in the ambiguous sentences

interpretation experiment
(Chapter 3)
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Figure A.1: The other 12 ambiguous items used in the experiment of Chap-
ter 4.
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