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It often happens in scientific research that when

one is looking for one thing, one is led to discover

something else that one wasn’t expecting.

——— P.A.M. Dirac

Chapter 1

Introduction

Since the quantum theory has been proposed by Heisenberg and Schrödinger in

1925 and 1926, it has become an essential concept in understanding nature. Nowa-

days, quite a number of quantum phenomena are known and investigated for their

theoretical understanding and possible application. Among the characteristic prop-

erties that distinguish classical theories from their quantized theories, the quantum

entanglement receives increasing attention in various fields of physics.

The Einstein-Podolsky-Rosen (EPR) phenomena [1] is one of the most well

known example of entanglement, followed by the discussion with its relation to

Bell-inequality [2].1 The entanglement in quantum mechanics is essentially a phe-

nomenon between two systems or particles. However, in order to discuss this concept

in field theory, which is the subject of this thesis, we must deal with the entanglement

between two regions in space since the state is now field valued.

In order to discuss the amount of entanglement of two regions in space in field

theory, we need an appropriate measure. One quantity for this is the Entanglement

Entropy (EE), and one of its generalization, the so called Rényi entropy [4]. In

the field theory, one major problem is the relation between the EE of a black hole

1See also [3].
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and the Bekenstein-Hawking entropy [5, 6, 7]. In this case, the EE measures the

entanglement of two regions, one is inside the black hole behind the event horizon,

and the other is its complement.

Kabat compared in his work [8] EE with the one-loop correction from matter

fields to the black hole entropy. They agreed for the spin 0 and 1/2, but not for

spin 1. For spin 1 field, he found a negative contribution to the entropy, which he

called contact term, that can result a negative value of entropy. This was disturbing

since, not only the mismatch with the EE, but also contradicting to the fact that

entropy is a positive value by its definition.

Even more, it turned out that the EE of gauge fields gives different results

depending on their scheme of calculation which caused much controversy [8, 9, 10,

11, 12, 13, 14, 15]. This mismatch of EE was resolved by Donnelly and Wall as the

EE of the edge modes living on the boundary [16], that are the classical solutions

determined by the electric field normal to the entangling surface.

These problems of EE in gauge theory originate from the fact that we cannot

define a gauge invariant tensor decomposition of Hilbert space. In other words, the

Gauss law constraint imposes a relation between physical states on the two sides of

the boundary [17]. This is crucial since this decomposition is needed to define EE,

and as a result the EE depends on the gauge choice.

Therefore, there is no proper definition of EE for gauge fields. Even if there

is no gauge independent definition of EE for gauge theory yet, it is important to

understand the basic property of entanglement of gauge fields. It is known that if

we consider an excited state, we can get such a quantity.

Recently, the Rényi EE of Locally Excited States was introduced in [18]. Locally

excited state is a state that we obtain by simply acting with a spacetime local

operator on the vacuum,

|ψ⟩ = O(x)|0⟩. (1.1)
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The time dependence of the Rényi EE of locally excited state has been intensively

studied recently, by Nozaki et al [19, 20] and including myself in [21, 22]. In these

articles, a quantity was introduced, that is the difference of Rényi EE of the vacuum

state and that of a locally excited state, which we call Rényi EE Growth in this

thesis. It was pointed out, that this Rényi EE growth measures the amount of

quantum mechanical degrees of freedom included in an operator [19].

In this thesis, we develop further this idea and we show that the Rényi EE

growth can really be decribed as a kind of measure of quantum mechanical degrees

of freedom. We also show that under a certain condition the time development of

the Rényi EE of this locally excited state is gauge independent. We evaluate several

types of excitation and investigate their time development.

This thesis is organized as follows. In chapter 2 we introduce the basic concepts

and techniques we use in this thesis. In chapter 3, we describe the Rényi EE growth

for scalar fields. Chapter 4, we introduce the Particle Propagating Model, and show

the relation of Rényi EE growth and its quantum mechanical degrees of freedom.

In chapter 5, we discuss the Rényi EE growth for Maxwell fields and its gauge

invariance. Chapter 6 is devoted to discussion and conclusion.
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Chapter 2

Entanglement Entropy and its

Growth

The growth of Entanglement Entropy (EE) for locally excited states of scalar and

fermionic fields are studied systematically in the works [18, 19, 20, 23]. Here, we

will introduce the definition of the locally excited state and the EE growth. We also

introduce the so-called replica method, which is the technique we use throughout the

QFT calculation in this thesis, both for vacuum state and locally excited state. We

explain the case for vacuum in detail since the case for locally excited state is an

extension of it.

2.1 Basic Concepts

2.1.1 Quantum Entanglement

Quantum entanglement is a non-local correlation which has no counterpart in clas-

sical systems. The concept of quantum entanglement has a simple description in a

discrete system.

Consider a two-level system at two points p and q in space. Two-level systems
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in quantum mechanics can be represented as up state |↑⟩ and down state |↓⟩. We

denote the states of two-level systems in point p and q as |↑⟩p, |↓⟩p and |↑⟩q, |↓⟩q,

respectively. The total Hilbert space for that system is then

H = Hp ⊗ Hq, (2.1)

where Hp = Span{|↑⟩p, |↓⟩p},Hq = Span{|↑⟩q, |↓⟩q}. Let us consider the following

state:

|Ψ1⟩ = 1√
2

(|↑⟩p⊗ |↓⟩q+ |↓⟩p⊗ |↑⟩q) . (2.2)

In this state, if we know whether the state at p is up or down, then we know

immediately the state at point q. On the other hand, if we have a state like

|Ψ2⟩ = 1
2

(|↑⟩p+ |↓⟩p) ⊗ (|↑⟩q− |↓⟩q) , (2.3)

we can have no information about the point q, by knowing the state at point p.

Such a correlated state like (2.2) is called entangled, while (2.3) is not.

One quantity to measure the amount of entanglement is the Entanglement En-

tropy (EE). To define EE, let us recall the definition of the density matrix. The

density matrices for |Ψ1⟩, |Ψ2⟩ are defined as operators on H :

ρ(1) = |Ψ1⟩⟨Ψ1|,

ρ(2) = |Ψ2⟩⟨Ψ2|,
(2.4)

respectively.

In general, if the Hilbert space is a tensor product of two subspaces as in equation

(2.1), then we can define the reduced density matrix. The reduced density matrix

is defined by taking the trace over one subspace, and is an operator on the other

subspace. The idea of reduced density matrix was already introduced in 1930 by

Paul Dirac [24]. In the present example, the reduced density matrices ρ(1)
q and ρ(2)

q ,
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corresponding to |Ψ1⟩ and |Ψ2⟩, respectively, are defined by taking the trace over

the Hilbert space Hp

ρ(1)
q = trpρ(1) =

∑
i=↑,↓

(p⟨i| ⊗ 1q) ρ(1) (|i⟩p ⊗ 1q) ,

ρ(2)
q = trpρ(2) =

∑
i=↑,↓

(p⟨i| ⊗ 1q) ρ(2) (|i⟩p ⊗ 1q) ,
(2.5)

where 1q is the identity operator acting on Hq, and trp is the partial trace over Hp

defined in the right hand side of the equation.

Once one gets the reduced density matrix for a state, one can define the EE as

the von Neumann entropy of that reduced density matrix. In the present case, the

EE for ρ(1)
q and ρ(2)

q are

S(1)
EE = −trqρ(1)

q log ρ(1)
q = log 2,

S(2)
EE = −trqρ(2)

q log ρ(2)
q = 0,

(2.6)

respectively. We can see in equation (2.6), that the EE for entangled state is non-

zero, while that for non-entangled state is zero, and that EE actually reflects the

amount of entanglement.

In this thesis, we want to study the property of entanglement in QFT by using

this EE and its generalization the Rényi EE. We will give their definitions for QFT

in the next section.

2.1.2 Decomposition of Spacetime and Density Matrix

Let M be a d+1-dimensional spacetime with Minkowski signature. The coordinate

of a point p ∈ M is given by a map x,

x : M−→Rd+1

∈ ∈

p 7−→x(p) = (x0(p), x1(p), · · · , xd(p)).

(2.7)
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Here, we denote the coordinate function as xµ, and x0 is the time direction. We use

the spacelike signature convention (−,+,+, · · · ).

The submanifold M0

M0 = {p ∈ M | x0(p) = 0}. (2.8)

defines a timeslice at x0 = 0.

We divide the timeslice M0 into two subspaces A and B. Thus, A and B satisfy

A,B ⊂ M0

B = Ac
(2.9)

where Ac is the complement of A in M0. The boundary of A is denoted as ∂A,

that is the intersection of the closure of A with the closure of its complement:

∂A := A ∩ Ac. (2.10)

The boundary ∂A (∂B) is called the entangling surface, and we denote it as Σ

Σ = ∂A = ∂B. (2.11)

Now, we consider a QFT on spacetime M with the corresponding Hilbert space

H . Let the Hilbert space H spanned by the set of basis {|i⟩}

H = Span{|i⟩}, (2.12)

where i is the label for the basis. We assume here that we can decompose this

Hilbert space into a tensor product of two subsets HA and HB, as

H = HA ⊗ HB, (2.13)

where HA and HB are the Hilbert spaces associated with the subspaces A and B,

respectively. We denote the basis for HA and HB as {|i⟩A} and {|i⟩B}, respectively,

where i is the label of these bases.
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The density matrix for an arbitrary pure state |ψ⟩ ∈ H is defined as

ρ = |ψ⟩⟨ψ|. (2.14)

In general, the density matrix describes also mixed states, which has the form

ρ =
∑
i

pi|i⟩⟨i|, (2.15)

where pi is positive and satisfies ∑i pi = 1.

If the Hilbert space can be decomposed as described above, the reduced density

matrix is then defined as the partial trace of the whole density matrix

ρA = trBρ =
∑
i

(1A ⊗ B⟨i |) ρ (1A⊗ | i⟩B) , (2.16)

where 1A is the identity operator acting on HA.

2.1.3 Entanglement Entropy and Rényi Entanglement En-

tropy

As we explained previously, the EE is defined as the von Neumann entropy of the

reduced density matrix

SA = −trAρA log ρA. (2.17)

The Rényi EE is defined by the n-th power of the reduced density matrix ρA, as

S
(n)
A = 1

1 − n
log trAρ

n
A. (2.18)

Here, we have assumed that n > 1. The Rényi EE has an advantage in practical

calculation, namely we can avoid to take the logarithm of a matrix.

In the limit n → 1, the Rényi EE S
(n)
A agrees with the definition of EE. This can
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be derived easily,

lim
n→+1

S
(n)
A = lim

n→+1
− 1
n− 1

log trAρ
n
A

= lim
n→+1

− 1
n− 1

(log trAρ
n
A − 0)

= lim
n→+1

− 1
n− 1

(log trAρ
n
A − log trAρA)

= lim
x→+1

−∂x (log trAρ
x
A)

= lim
x→+1

− 1
trAρxA

trA (ρnA log ρA)

= −trAρA log ρA.

(2.19)

where n → +1 or x → +1 means, we take the limit of 1 from the region n > 1 and

x > 1, respectively. Here, we have used the condition trAρA = 1. In the replica

method, we use this formal relation to get EE.

2.2 The Replica Method

Here we explain the so-called replica method. We use the replica method to evaluate

the n-th power of the reduced density matrix ρnA in QFT. We compute the reduced

density matrix ρA in the path-integral form, and then formulate the n-th power of

it.

We will discuss the path integral representation of the reduced density matrix,

first for the vacuum state ρvac
A and then for the locally excited state ρex

A.

2.2.1 The Case of Vacuum State

The wave functional Ψ on the time slice x0 = 0 is the functional of the field config-

uration ϕ(xk) on that time slice, where xk is a space coordinate (k ∈ {1, 2, · · · d}).

Considering a vacuum state at past infinity, the wave functional Ψ on the time slice
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x0 = 0 is expressed by the path integral as

Ψ(ϕ(xk)) =
∫ ψ(x0=0,xk)=ϕ(xk)

t=−∞
Dψ eiS[ψ]

=
∫ x0=0

x0=−∞
Dψ eiS[ψ]δ

(
ψ(x0 = 0, xk) − ϕ(xk)

)
,

(2.20)

where S[ψ] is the action, and ϕ(xk) gives the boundary condition of the path-integral

at x0 = 0. We equivalently write Ψ(ϕ(xk)) = ⟨ϕ|0⟩.

The hermitian conjugate, which is denoted as ⟨0|ϕ⟩, can be defined as:

⟨0|ϕ⟩ = Ψ†(ϕ(xk)) =
∫ t=∞

ψ(x0=0,xk)=ϕ(xk)
Dψ eiS[ψ]. (2.21)

So, if we have two field configurations ϕ±(xk), we are able to write the matrix

element of the density matrix as

ρ(ϕ−(xk), ϕ+(xk)) ≡ ⟨ϕ−|ρ|ϕ+⟩ = N −2⟨ϕ−|0⟩⟨0|ϕ+⟩

= N −2Ψ(ϕ−(xk))Ψ†(ϕ+(xk)),
(2.22)

where the boundary condition of each path integral corresponding to the wave func-

tionals Ψ, Ψ† is specified by ϕ±(xk), and N is a normalization constant.

Now, we want to consider the two subregions A and B. We divide the field

configuration ϕ±(xk) according to A,B.

ϕ±(xk(p)) =


ϕA

±(xk(p)) p ∈ A

ϕB
±(xk(p)) p ∈ B

(2.23)

where p ∈ M0. We can rewrite the above expression of ⟨ϕ−|0⟩ in the following form;

⟨ϕ−|0⟩ =


∫ t=0
t=−∞ Dψ eiS[ψ]δ

(
ψ(t = 0, xk) − ϕA

−(xk)
)

x ∈ A∫ t=0
t=−∞ Dψ eiS[ψ]δ

(
ψ(t = 0, xk) − ϕB

−(xk)
)

x ∈ B
, (2.24)

where figure (2.1) shows the correspondence between the boundary condition and

the region.
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A
ϕB

±
B
ϕB

±

Figure 2.1: Region A ,B, and their boundary condition at each region.

As defined in (2.16), to get the reduced density matrix we have to take the partial

trace of HB. This trace can now be defined by using (2.24).

First we introduce a small positive constant 0 < ζ ≪ 1, and deform the integra-

tion region as1

⟨ϕ−(−ζ)|0⟩ =
∫ t=−ζ

t=−∞
Dψ eiS[ψ]δ

(
ψ(t = −ζ, x) − ϕA,B

− (x)
)
, (2.25)

⟨0|ϕ−(ζ)⟩ =
∫ t=∞

t=ζ
Dψ eiS[ψ]δ

(
ψ(t = ζ, x) − ϕA,B

− (x)
)
. (2.26)

Here we have introduced ϕA,B
± (x), which means we choose ϕA

±(x) if x ∈ A and ϕB
±(x)

if x ∈ B. We define the density matrix ρ(ϕ−, ϕ+, ζ) as

ρ(ϕ−, ϕ+, ζ)

= 1
Z1

∫ t=−ζ

t=−∞

∫ t=∞

t=ζ
Dψ eiS[ψ]δ

(
ψ(t = −ζ, x) − ϕA,B

− (x)
)
δ
(
ψ(t = ζ, x) − ϕA,B

+ (x)
)
,

(2.27)

where in the limit ζ → 0, this expression matches with the definition of the density

matrix in equation (2.22). Z1 is the normalization constant Z1 = N 2 = ⟨0|0⟩.

We are now able to write down the reduced density matrix of the vacuum ρvac
A

in the path integral form. Taking the trace over HB is equal to summing up over

the boundary condition ϕB
± under the condition ϕB

+ = ϕB
−. Thus by following the

1ζ is a small value, which will be taken to zero in the end.

11



definition (2.16), we get the form

ρA(ϕA
−, ϕ

A
+, ζ) = 1

Z1

∫
DϕB

−DϕB
+ ρ (ϕ−, ϕ+, ζ) δ(ϕB

−(x) − ϕB
+(x)) (2.28)

in the limit ζ → 0, formula (2.28) is the path integral over the spacetime M with

the boundary conditions defined as A; ϕA
−(x) for t → −ζ and ϕA

+(x) for t → +ζ.

x0

xi
2ζ

: A, with b.c. ϕA
+, ϕ

A
−.

: B, with b.c. ϕB
+ = ϕB

−.
: Region to path integrate.

Figure 2.2: The blue lined region is the region to be path integrated. The vertical axis is the x0

direction, horizontal axis is the space direction.

Figure (2.2) shows schematically the relation of the path integral and boundary

condition for the case ζ ̸= 0.

In the following, we will move to the Euclidean spacetime. We perform an

analytic continuation to imaginary time τ :

x0 = −iτ. (2.29)

Taking powers of this reduced density matrix means, matching the boundary

condition of each ρA. Simply,
(
ρ2

A

) (
ϕ

A,(1)
− , ϕ

A,(2)
+ , ζ

)
=
∫

DϕA,(1)
+ DϕA,(2)

− δ
(
ϕ

A,(1)
+ − ϕ

A,(2)
−

)
ρA
(
ϕ

A,(1)
− , ϕ

A,(1)
+ , ζ

)
ρA
(
ϕ

A,(2)
− , ϕ

A,(2)
+ , ζ

)
(2.30)
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Therefore, the trace of the n-th power of the reduced density matrix trAρ
n
A is, after

taking the limit ζ → 0,

trHA (ρnA) = lim
ζ→0

∫
DϕA,(1)

− DϕA,(n)
+ δ

(
ϕ

A,(1)
− − ϕ

A,(n)
+

)
(ρnA)

(
ϕ

A,(1)
− , ϕ

A,(n)
+ , ζ

)
= (Z1)−n

∫
M(n)

Dψe−SE [ψ],
(2.31)

where SE is the Euclidean action. This path integral runs over the space M(n),

where M(n) is defined as follows. M(n) is a manifold which consits of n copies of

the spacetime M connected by a cut at the subregion A to each other as described

in figure 2.3. We define the integral part of the last line in equation (2.31) as Zn,

τ

xi
M

M

M(n)

Figure 2.3: Schematic description of trAρn
A. Each sheet is isomorphic to M with a cut in subregion

A, which is connected to another M-sheet there. There are n M-sheets, so if one draws a line

from any sheet, after crossing the nth cut one returns to the first sheet.

Zn :=
∫

M(n)
Dψ e−SE [ψ] (2.32)

and write (2.31) simply

trA (ρA)n = Zn
Zn

1
. (2.33)

Thus the Rényi EE of this state is

S
(n)
A = 1

1 − n
log trAρ

n
A

= 1
1 − n

log Zn
Zn

1
.

(2.34)
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2.2.2 The Case of Excited State

The discussion for the replica method for locally excited state is parallel to the

above discussion of vacuum state, except that we introduce explicitly a regularization

parameter ϵ here to avoid the divergence.

We start with a locally excited state |ψex⟩ defined in Minkowski spacetime as

|ψex⟩ = e−ϵHO(t, x)|0⟩, (2.35)

where O is an operator local in spacetime inserted at (t, x) with t < 0, and ϵ > 0 is

a regularization parameter introduced here2. The density matrix ρ of this state is

ρ = |ψex⟩⟨ψex| (2.36)

= e−ϵHO(t, x)|0⟩⟨0|O†(t, x)e−ϵH (2.37)

= e(it−ϵ)HO(x)|0⟩⟨0|O†(x)e−(it+ϵ)H . (2.38)

Now, we move to Euclidean time. We define τe = −ϵ and τl = ϵ, and define the

density matrix in Euclidean spacetime

ρ = eτeHO(x)|0⟩⟨0|O†(x)e−τlH (2.39)

= O(τe, x)|0⟩⟨0|O†(τl, x). (2.40)

We choose τe and τl so that we recover the density matrix by the analytic continu-

ation τe = it− ϵ and τl = it+ ϵ.

The corresponding wave functional is, in the path-integral form,

⟨ϕ|ψex⟩ = ⟨ϕ|O(τe, x)|0⟩ (2.41)

=
∫ t=0

t=−∞
Dψ O(τe, x)e−SE [ψ]δ

(
ψ(0, xi) − ϕ(xi)

)
. (2.42)

2If t > 0, the following discussion will be completely the same as in vacuum state, since we are

interested in the wave functional at t = 0.
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where SE is the Euclidean action. The hermitian conjugate is

⟨ψex | ϕ⟩ = ⟨0|O†(τl, x)|ϕ⟩ (2.43)

=
∫ t=∞

t=0
Dψ O†(τl, x)e−SE [ψ]δ

(
ψ(0, xi) − ϕ(xi)

)
. (2.44)

The reduced density matrix ρex
A for this state is

ρex
A(ϕA,−

0 , ϕA,+
0 )

= 1
Z EX

1

∫
M

Dψ O†(τl, x)O(τe, x)e−SE [ψ]δ(ψ(−ζ, x) − ϕA,−
0 (x))δ(ψ(ζ, x) − ϕA,+

0 (x)),

(2.45)

where we have introduced the regulator Z EX
1 defined as

Z EX
1 =

∫
M

Dψ O†(τl, x)O(τe, x)e−SE [ψ]. (2.46)

In the same way as discussed in the last section, the n-th power of the reduced

density matrix becomes

trA (ρex
A)n = 1

(Z EX
1 )n

∫
M(n)

Dψ
(

n∏
k=1

O†(τl, x, k)O(τe, x, k)
)
e−SE [ψ], (2.47)

where M(n) is again the manifold which consists of n connected copies of M, and k

denotes the number of the copy on which the operators O and O† are located.

2.3 The Growth of Rényi EE

Here, we give the definition of the Rényi EE growth ∆S(n)
A . The Rényi EE growth

∆S(n)
A is defined by the difference of the n-th vacuum Rényi EE S

(n),vac
A and the n-th

Rényi EE of a locally excited state S(n),ex
A , i.e.

∆S(n)
A = S

(n),ex
A − S

(n),vac
A , (2.48)

15



where S(n),ex
A is the n-th Rényi EE of locally excited state defined in (2.35). The

definitions (2.18), (2.33) and (2.47), lead ∆S(n)
A to the form

∆S(n)
A = − 1

n− 1
log trA (ρex

A)n + 1
n− 1

log trA (ρvac
A )n

= − 1
n− 1

log
[

(ρex
A)n

(ρvac
A )n

]

= − 1
n− 1

log

∫M(n) Dψ
(∏n

k=1 O†(τl, x, k)O(τe, x, k)
)
e−SE [ψ]

(Z EX
1 )n

( Zn
(Z1)n

)−1

= − 1
n− 1

log

∫M(n) Dψ
(∏n

k=1 O†(τl, x, k)O(τe, x, k)
)
e−SE [ψ]

Zn


(∫

M Dψ O†(τl, x)O(τe, x)e−SE [ψ]

Z1

)−n

= − 1
n− 1

log
⟨0|

(∏n
k=1 O†(τl, x, k)O(τe, x, k)

)
|0⟩M(n)

(⟨0|O†(τl, x)O(τe, x)|0⟩M)n
.

(2.49)

In the last line, ⟨0|
(∏n

k=1 O†(τl, x, k)O(τe, x, k)
)

|0⟩M(n) is the 2n-point function on

M(n), and ⟨0|O†(τl, x)O(τe, x)|0⟩M is the 2-point function on M. Therefore, we end

up with the expression

∆S(n)
A = − 1

n− 1
log

⟨0|
(∏n

k=1 O†(τl, x, k)O(τe, x, k)
)

|0⟩M(n)

(⟨0|O†(τl, x)O(τe, x)|0⟩M)n
. (2.50)

Strictly speaking, the expression (2.48) is defined only at n ∈ {x ∈ N | x > 1}.

However, we have seen in (2.19), when we can take the limit n → 1, ∆S(n)
A becomes

the difference of EE.

2.4 Analytic Continuation to Real Time

In this method, the 2n-point function of O in M(n) and the 2-point function of

O in M(1) give ∆S(n)
A in Euclidean spacetime. In order to study the dynamics of

entanglement in Minkowski spacetime, we perform the analytic continuation to the
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real time as in the articles [18, 19, 25, 26, 27, 28, 21]. The analytic contiunation to

the real time is performed by

τe = it− ϵ

τl = it+ ϵ
(2.51)

where ϵ acts as a smearing parameter which keeps the norm of the locally excited

state finite. During the calculation, we keep ϵ finite, but in the end we take the limit

ϵ → 0.

Note that in the analytic continuation in Maxwell theory, the time direction of

gauge connection Aµ and derivative ∂µ = ∂
∂xµ also change due to covariance. They

transform as

Aτ = −iAt

∂τ = −i∂t
(2.52)

where Aτ , ∂τ are the connection and derivative in Euclidean spacetime, and At, ∂t

are the connection and derivative in Minkowski spacetime, respectively.
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Chapter 3

Rényi EE Growth of Scalar Fields

In this thesis, our goal is to understand the characteristics of Rényi EE growth ∆S(n)
A

in flat spacetime caused by an insertion of a spacetime local operator.

3.1 Space Decomposition

In this chapter, we start by considering the case of free scalar fields. The spacetime

M here is flat d+ 1-dimension with Minkovski signature:

M = Rd+1, (3.1)

and for the metric, we use the spacelike signature convention:

gµν = ηµν =


−1 µ = ν = 0

δµν else
. (3.2)

The coordinate of a point p ∈ M is given by a map x,

x : M−→Rd+1

∈ ∈

p 7−→x(p) = (x0(p), x1(p), · · · , xd(p)),

(3.3)
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and the submanifold M0 is chosen as the time slice of x0 = 0:

M0 = {p ∈ M | x0(p) = 0}. (3.4)

We divide M0 into two subregions A and B as

A = {p ∈ M0 | x1(p) ≥ 0},

B = {p ∈ M0 | x1(p) < 0}.
(3.5)

Figure (3.1) shows how we have divided the subspace M0. Since the entangling

B

x0

A

xi

x1

Figure 3.1: The way to choose the regions A and B on M0. xi describes any direction other than

x0 or x1, thus i ∈ {2, 3, · · · n}.

surface Σ is given by x1 = 0, the system has remaining symmetries. One is a

translational symmetry along the surface Σ, and a rotational symmetry SO(d − 1)

with rotation axes orthogonal to the entangling surface Σ.

The QFT we are considering here is the free massless scalar field theory, which

has the simple Lagrangian

L = −1
2
∂µϕ

†∂µϕ. (3.6)
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We consider the insertion of the spacetime local operator to generate the excited

state |ψex⟩ at the point x0 = −t, x1 = −ℓ and xi = 0 for i > 1, as shown in Figure

3.2. The locally excited state we consider here is therefore described as

x0

x1

O ℓ

t

Figure 3.2: Insertion point of the spacetime local operator in Minkovski spacetime.

|ψex⟩ = N O(−t,−ℓ)|0⟩ (3.7)

where N is a normalization constant. The coordinate xi for i ≧ 2 is suppressed,

since we can set them to zero without loss of generality due to the translational

symmetry.

As mentioned in the previous section, we take a Wick rotation to Euclidean time.

For convenience, we will take the polar coordinates for the x0 and x1 direction, (r, θ).

Figure 3.3 shows the insertion points of the local operators in Euclidean spacetime

using polar coordinates (r, θ).

3.2 Rényi EE Growth ∆S(n)
A for Scalar Fields

3.2.1 Single Operator Insertion

We discuss here the insertion of one scalar field ϕ, i.e. we choose the local operator

to be O = ϕ. As we explained in the previous section (see equation (2.50)), the
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x0

x1

O ℓ

ϵ r

θ

Figure 3.3: Insertion point of the operator in Euclidean spacetime.

Aϕ
ϕ†

M(1)

a

Aϕ
ϕ†

Aϕ
ϕ†

Aϕ
ϕ†

M(n)

b

Figure 3.4: The sketch of inserted operators on a) M(1) and b) M(n).

corresponding Rényi EE growth ∆S(n)
A is

∆S(n)
A = 1

1 − n
log

⟨0|
(∏n

k=1 ϕ
†(τl, x, k)ϕ(τe, x, k)

)
|0⟩M(n)

(⟨0|ϕ†(τl, x)ϕ(τe, x)|0⟩M(1))n
. (3.8)

Thus, we need the 2n-point function on M(n), and the 2-point function on M(1).

The insertion points of the scalar field on the manifold M(n) is shown in figure 3.4.

The 2-point function on M(n) is known [18] as

21



G
(n)
d (r, r′, θ, θ′, x, x′)

=
Γ
(
d−1

2

)
4nπ(2

√
π)d−1

1
2πi

∞∑
l=0

dl

∫ ∞+iπ

∞−iπ
dt

4 d−1
2 e− l

n
tcos

(
l(θ−θ′)
n

)
(
(x− x′)2 + r2 + r′2 − 2rr′ cosh t

) d−1
2

(3.9)

where dl = 1 for l = 0 and dl = 2 for l ≧ 1, (r, θ, x) and (r′, θ′, x′) are the coordinates

of the scalar operators on M(n) in polar coordinates.

In the following, we give an explicit example for the case d = 3, where we can

perform this integral. The 2-point function is obtained as

G
(n)
3 (r, r′, θ, θ′) = 1

4nπ2rr′(a− a−1)
a

1
n − a− 1

n

a
1
n + a− 1

n − 2 cos
(
θ−θ′

n

) (3.10)

where a is given by

a

1 + a2 = rr′

(x− x′)2 + r2 + r′2
. (3.11)

In this way, we have determined the propagator.

x0

x1

ϕ ℓ

ϵ r

θ1

ϕ†
ℓ

ϵ r
θ2 A

Figure 3.5: Insertion points of the operators in Euclidean coordinates.

In order to understand how to determine the 2n-point function, we need to

explain some more details. Figure 3.5 shows the insertion points of scalar operators

on each copy M of M(n) in figure 3.4 (b). By the definition of the replica method,

the insertion points of the scalar field ϕ and its hermitian conjugate ϕ† are symmetric

with respect to the x1 axis. In terms of polar coordinates, this means θ1 + θ2 = 2π.
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The angle dependence of the Green’s function (3.10) appears only in the form of

a difference, which is θ − θ′. The angle difference of scalar operators ϕ and ϕ† is

θ1 − θ2 + 2πk, where k is an integer. If k = 0, this is the relative angle for operators

on the same sheet, and if k ̸= 0, this is the relative angle for operators on different

sheets.

Therefore, the 2-point function relevant now can be simplified from equation

(3.10), and has the form

G
(n)
3 (r, r, θ1 − θ2 + 2πk) = 1

4nπ2r2(a− a−1)
a

1
n − a− 1

n

a
1
n + a− 1

n − 2 cos
(
θ1−θ2+2πk

n

) , (3.12)

where k is an integer between 0 and n− 1.

After the analytic continuation to the real time, the leading term in the ϵ expan-

sion of the 2-point functions depends on the two parameters t and ℓ, which play an

important role in the time evolution later. For the region t ≧ ℓ, the 2-point function

ϵ dependence is

G
(1)
3 (r, r, θ1 − θ2) = 1

16π2ϵ2 +O(ϵ−1) (3.13)

G
(n)
3 (r, r, θ1 − θ2 + 2πk) =


t+(1−2k)ℓ

32π2tϵ2
+O(ϵ−1) k = 0, 1

O(ϵ−1) k = 2, · · · , n
. (3.14)

where n ≧ 2. For the region t < ℓ, the 2-point funcion ϵ dependence is

G
(n)
3 (r, r, θ1 − θ2 + 2πk) =


1

16π2ϵ2
+O(ϵ−1) k = 0, 1

O(ϵ0) k = 2, · · · , n
(3.15)

where n ≧ 1.

Let us recall the Rényi EE growth ∆S(n)
A given in (3.8). The numerator of the

Rényi EE growth is given by the 2n-point function on M(n), which can be evaluated

by the Wick contraction rule using the above 2-point function (3.14). On the other

hand, the denominator is the n-th power of the 2-point function on M1, and thus
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Aϕ
ϕ†

Aϕ
ϕ†

Aϕ
ϕ†

Aϕ
ϕ†

M(4) ϕ†

ϕϕ†

ϕ

ϕ†

ϕ ϕ†

ϕ

Figure 3.6: The schematic sketch of M(4). The dashed lines represent the cuts on manifold M(n),

which correspond to the subregion A.

the leading ϵ dependence of the denominator is ϵ−2n. As a result, only the 2n-point

function constructed by propagators of k = 0, 1 contribute to the Rényi EE growth

after taking the limit ϵ → 0. There are two types of contaction, one is only using

the propagator with k = 0, and the other is only using the propagator with k = 1.

This can be understood by the following diagramatic method.

Let us represent the manifold M(n) as one disk. Note that we are not performing

any coordinate transformation here, but just rewriting the topological structure of

the manifold M(n) with inserted operators and cuts. Figure 3.6 shows the case for

n = 4. The two diagrams corresponding to the case k = 0 and k = 1 are obtained

by contracting two neighboring operators ϕ and ϕ†.

Figure 3.7 shows the diagrams which contribute to 4th Rényi EE growth ∆S(4)
A .

In the diagram, the line connecting two insertion points represents the contraction

of the corresponding two operators. The propagator k = 0 corresponds to the line

which does not cross the cuts, and the propagator k = 1 corresponds to the line

24



ϕ†

ϕϕ†

ϕ

ϕ†

ϕ ϕ†

ϕ

ϕ†

ϕϕ†

ϕ

ϕ†

ϕ ϕ†

ϕ

Figure 3.7: Diagrams which contributes to ∆S
(4)
A .

which crosses the cut. Explicitly, for n = 4 we obtain,

⟨0|ϕ†ϕϕ†ϕϕ†ϕϕ†ϕ|0⟩
(⟨0|ϕ†ϕ|0⟩)4 =

G(4)
3 (θ1 − θ2)

G
(1)
3 (θ1 − θ2)

4

+

G(4)
3 (θ2 − θ1 + 2π)
G

(1)
3 (θ1 − θ2)

4

(3.16)

where the propagators are given in (3.13) and (3.14) with the arguments r sup-

pressed. We can show that in the limit ϵ → 0 the terms G(n)(θ1−θ2)
G(1)(θ1−θ2) and G(n)(θ2−θ1+2π)

G(1)(θ1−θ2)

are exactly the same for n = 2, 3, 4. Thus, we assume that these two functions are

the same for arbitrary n. Then we get the Rényi EE growth ∆S(n)
A for t ≧ ℓ,

∆S(n)
A = 1

1 − n
log

G(2)
3 (θ1 − θ2)

G
(1)
3 (θ1 − θ2)

n +

G(2)
3 (θ2 − θ1 + 2π)
G

(1)
3 (θ1 − θ2)

n
= 1

1 − n
log

((
t+ ℓ

2t

)n
+
(
t− ℓ

2t

)n) (3.17)

For n = 2 case,

∆S(2)
A = − log

(t+ ℓ

2t

)2

+
(
t− ℓ

2t

)2
 (3.18)

is the result for t ≧ ℓ. Figure 3.8 is the plot of Rényi EE growth ∆S(2)
A . We can

see that the Rényi EE growth is zero until t = ℓ, which means that until this point

the Rényi EE is equivalent with the vacuum Rényi EE, and then it starts growing.
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0.1
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0.4

0.5

0.6

0.7

ΔSA
2

Figure 3.8: The growth of 2nd Rényi EE. The vertical axis is ∆S
(2)
A , and the horizontal axis is t/ℓ.

This behaviour is consistent with causality, which we discuss in detail in the next

chapter.

In the late time limit t → ∞, the Rényi EE growth is

∆S(n)
A = 1

1 − n
log 21−n = log 2, (3.19)

for arbitrary n.

3.2.2 Composite Operator Insertion

We give an example for the case of inserting a composite operator ϕ2(−t,−ℓ). We

use the same diagramatic description as figure 3.7. There are now three types of

diagrams that contribute to the Rényi EE growth ∆S(n)
A , which are shown in figure

3.9. We have one more diagram than in the previous case, since we have the square

of scalar field at each point. The Rényi EE growth for t > ℓ has the form:

∆S(n)
A = 1

1 − n
log

(t+ ℓ

2t

)2n

+
(
t− ℓ

2t

)2n

+ 2n
(
t+ ℓ

2t

)n (
t− ℓ

2t

)n . (3.20)

where for t ≦ ℓ the Rényi EE growth is zero. Figure 3.10 is the plot of 2nd Rényi

EE growth. The late time value is

lim
t→∞

∆S(n)
A = 1

1 − n
log

[
2−2n+1 + 2−n

]
. (3.21)
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Figure 3.9: Diagrams which contributes to ∆S
(4)
A .
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Figure 3.10: The Rényi EE growth ∆S
(2)
A for ϕ2 insertion. The horizontal axis is time t

ℓ , the

vertical axis is Rényi EE growth ∆S
(2)
A .

In the limit n → 1, this becomes 3
2 log 2, which is the three half of the value of that

in the single operator insertion case.
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Chapter 4

Quasi-Particle Description of

Scalar Fields

In this section, we study the Rényi EE growth ∆S(n)
A for locally excited states in

d + 1 dimensional spacetime with odd d, d ≧ 3. The late time algebra is defined,

that gives the Rényi EE growth ∆S(n)
A of half space in the late time limit t → ∞.

The Rényi EE growth ∆S(n)
A at late time has been studied in refs. [18, 19, 26, 25,

27, 28, 21]. In 4 dimensional spacetime, the behaviour of EE of half space can be

described by a model with a quasi-particle propagating spherically. An interesting

correspondence between an analytic-continued propagator and the probability of a

propagating quasi-particle is found.

We will first describe the late time algebra, which describes the late time be-

haviour of the Rényi EE growth ∆S(n)
A in terms of the quasi particle picture. After

that, the particle propagating model is explained as an extension of the quasi-particle

picture.
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4.1 Physics of Entanglement Growth

As in the example of the scalar field given in the previous section, the growth of

Rényi EE of half space reaches a finite value in every case. This behaviour can be

understood physically in the following way, schematically shown in figure 4.1:

By the insertion of a spacetime local operator ϕ(−t,−ℓ), the operator starts to

influence the spacetime entanglement structure from that time on. Since we are

inserting a massless scalar field, the effect caused by this operator travels at the

speed of light c. For simplicity, we set the speed of light to c = 1. Since the distance

between the inserted operator ϕ and the entangling surface Σ is ℓ, for the time t ≦ ℓ,

the operator changes only the structure of the region in the subregion B, and thus

there is no change of Rényi EE. After time t = ℓ, the effect of the operator reaches

the region A, thus the Rényi EE between A and B starts to increase.

At the time t = ∞, the effect of insertion is now spread all over the space, and

thus each subregion A and B divides the effect exactly into half. At this stage the

entanglement reaches its maximum, and so does the Rényi EE.

4.2 Late Time Value and Late Time Algebra

We now introuce the Late Time Algebra (LTA). LTA is an algebra that gives a quasi-

particle description to the Rényi EE growth ∆S(n)
A in the late time limit t → ∞.

The quasi-particle description for scalar, fermions and Maxwell fields was already

found in [18, 20, 21]. However, they were given in a somehow ad hoc manner. Here,

we introduce a systematical way to determine the LTA.

LTA is an algebra that consists of operators and their commutation relations.

We define two operators and their hermite conjugate for the scalar case as follows,

ϕ̂L, ϕ̂L†, ϕ̂R, ϕ̂R†, (4.1)
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where L and R stands for Left and Right mover, respectively. This is in analogy

with QFT:

Recall the momentum description of a scalar operator ϕ(x). We can separate

the scalar operator ϕ(x) with respect to the sign of k1, the momentum along the x1

axis,

ϕ(x) =
∫ ddk

(2π)d2k0

(
ϕ̃ (ki) eikµxµ + ϕ̃†(ki)e−ikµxµ

)
=
∫ dd−1k

(2π)d−1

[∫ ∞

0

dk1

(2π) 2k0

(
ϕ̃ (ki) eikµxµ + ϕ̃†(ki)e−ikµxµ

)
+
∫ 0

−∞

dk1

(2π) 2k0

(
ϕ̃ (ki) eikµxµ + ϕ̃†(ki)e−ikµxµ

)]
. (4.2)

Then, we define the left moving part ϕL(x), ϕL,†(x) and right moving part ϕR(x), ϕR,†(x)

as

ϕR(x) =
∫ ∞

0

dk1

2π

∫ dd−1k

(2π)d−12k0 ϕ̃ (kµ) eikµxµ

,

ϕR†(x) =
∫ ∞

0

dk1

2π

∫ dd−1k

(2π)d−12k0 ϕ̃
† (kµ) e−ikµxµ

,

ϕL(x) =
∫ 0

−∞

dk1

2π

∫ dd−1k

(2π)d−12k0 ϕ̃ (kµ) eikµxµ

,

ϕL†(x) =
∫ 0

−∞

dk1

2π

∫ dd−1k

(2π)d−12k0 ϕ̃
† (kµ) e−ikµxµ

,

(4.3)

where kµkµ = 0 and k0 > 0. In this way, we can decompose the scalar operator ϕ

into

ϕ(x) = ϕL(x) + ϕL†(x) + ϕR(x) + ϕR†(x). (4.4)

We expect the physics in the late time t → ∞ can be expressed by the corresponding

operators ϕ̂L, ϕ̂L†, ϕ̂R, ϕ̂R†, where ϕ̂ is defined by their linear combination as

ϕ̂ = ϕ̂L + ϕ̂R + ϕ̂L† + ϕ̂R†. (4.5)
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Their commutation relations are proposed as[
ϕ̂L, ϕ̂L†

]
= C[

ϕ̂R, ϕ̂R†
]

= C
(4.6)

where C is a constant, and the other combinations are zero.

The Hilbert space on which these operators act is defined as the Fock state of

the operators ϕ̂L†, ϕ̂R†. We call the Hilbert spaces for each ϕ̂L and ϕ̂R as HL and HR,

respectively, and define them as follows,

HL = Span{|0⟩L, ϕ̂
L†|0⟩L, · · · },

HR = Span{|0⟩R, ϕ̂
R†|0⟩R, · · · },

(4.7)

where the vacuum states |0⟩L and |0⟩R satisfy

ϕ̂L|0⟩L = 0,

ϕ̂R|0⟩R = 0.
(4.8)

The total Hilbert space is then their tensor product HL ⊗ HR, and the normalized

n-particle states are defined as follows,

|n⟩L = 1√
n!Cn

(
ϕ̂L†
)n

|0⟩L,

|n⟩R = 1√
n!Cn

(
ϕ̂R†

)n
|0⟩R.

(4.9)

To calculate the late time value of Rényi EE growth of the locally excited state which

we have determined in the previous section, we have to choose a corresponding state

in LTA. We call this state in HL ⊗ HR as the “effective state” |ψeff⟩:

As is expected, as far as the insertion point is in a finite region near the entangling

surface Σ, the late time value does not depend on the location of insertion, but only

on the number of inserted operators. Thus, we obtain the “effective state” by acting

with the same number of the operator ϕ̂ as one has inserted at the point (−t,−l).

For example, if we choose as locally excited state (2.35),

|ψex⟩ = ϕ(−t,−ℓ)|0⟩, (4.10)
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the corresponding “effective state” is obtained by acting with the same number of

operator ϕ̂ in LTA (Note that we take C = 1 in the following for simplicity.)

|ψeff⟩ = 1√
2

: ϕ̂ : |0⟩L ⊗ |0⟩R

= 1√
2

(|1⟩L ⊗ |0⟩R + |0⟩L ⊗ |1⟩R) .
(4.11)

where the constant 2− 1
2 is for normalization. The double dot means normal ordering,

which is not necessary in this case, but we need it in the case of multiple operator

insertion. We can define the effective density matrix ρeff for the effective state |ψeff⟩

as

ρeff = N |ψeff⟩⟨ψeff| (4.12)

where N is a normalization constant.

Since the total Hilbert space of LTA is decomposed as HL ⊗ HR, we can define

the effective reduced density matrix ρeff
R by tracing over the Hilbert space HL,

ρeff
R = trL (ρeff) . (4.13)

Therefore, the Rényi EE of the effective reduced density matrix ρeff
R is given by

S(n),LTA
R = 1

1 − n
trR [(ρeff

R )n] . (4.14)

We can easily see that this Reńyi EE of LTA, S(n),LTA
R , coincides with the late time

value of Rényi EE growth in QFT obtained in section 3.2:

S(n),LTA
R = lim

t→∞
∆S(n)

A . (4.15)

4.3 Finite Time Algebra

The LTA introduced in the previous section, gives the late time entanglement struc-

ture. We found that this algebra can be extended to the algebra on each time slice
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after the insertion. The extension is to define the commutation relation at each time

slice between 0 ≦ t < ∞.

However, we should be careful when we consider a quantum mechanical model

with time dependent commutation relation, since such a theory does not have a

unitary time development in general.

The algebra we introduce in the following should be considered to be defined on

each time slice. We propose the commutation relation,
[
ϕ̂L, ϕ̂L†

]
= lim

ϵ→0
2G

(n)(θ1 − θ2)
G(1)(θ1 − θ2)

≡ fL(t),

[
ϕ̂R, ϕ̂R†

]
= lim

ϵ→0
2G

(n)(θ1 − θ2 + 2π)
G(1)(θ1 − θ2)

≡ fR(t),
(4.16)

where, the function G(n)(θ) is the Green’s function we obtain in the calculation

of the corresponding scalar QFT. The angles θ1 and θ2 are the same quantities as

described in figure 3.5. G(n)(θ1 − θ2) is the Green’s function of the neighbouring

scalar operator on the same sheet, and G(n)(θ1 − θ2 + 2π) is the Green’s function of

the neighbouring scalar operators on different sheets.

We call this algebra here, the Finite Time Algebra (FTA). We can show that in

the late time limit t → ∞, FTA is identical with the commutation relation of LTA

given previously (4.6) for C = 1 case. Thus, FTA is an extension of LTA to finite

time.

Correspondingly in the FTA the normalization for n-particle states must be

changed as 1

|n⟩L = (n!fL(t)n)− 1
2
(
ϕ̂L†
)n

|0⟩L,

|n⟩R = (n!fR(t)n)− 1
2
(
ϕ̂R†

)n
|0⟩R.

(4.18)

1 The normalization for |1⟩L and |2⟩L for example is:

L⟨0|ϕ̂Lϕ̂L†|0⟩L = fL(t),

L⟨0|ϕ̂Lϕ̂Lϕ̂L†ϕ̂L†|0⟩L = 2!fL(t)2.
(4.17)
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The Rényi EE of the effective density matrix with this commutation relation

for each time slice is equivalent to the calculation performed by using the replica

method in QFT at the same time slice.

Let us consider an effective state in FTA with one scalar operator, which corre-

sponds to (4.11) in LTA,

|ψeff⟩ = N : ϕ̂ : |0⟩L ⊗ |0⟩R

=

( fL(t)
fL(t) + fR(t)

) 1
2

|1⟩L ⊗ |0⟩R +
(

fR(t)
fL(t) + fR(t)

) 1
2

|0⟩L ⊗ |1⟩R

 . (4.19)

The effective reduced density matrix becomes

ρeff
R = trL (|ψeff⟩⟨ψeff|)

= 1
fL(t) + fR(t)

(fL(t)|0⟩RR⟨0| + fR(t)|1⟩RR⟨1|) ,
(4.20)

and thus the Rényi EE is

S(n),LTA
R = 1

1 − n
log trR [(ρeff

R )n]

= 1
1 − n

log
[
(fL(t) + fR(t))−n (fL(t)n + fR(t)n)

]
.

(4.21)

which is exactly the same as we obtained from the QFT calculation for the excited

state

|ψex⟩ = ϕ (−t,−ℓ) |0⟩. (4.22)

Moreover, if we have a density matrix ρ in the form

ρ = P1|1⟩⟨1| + P0|0⟩⟨0| (4.23)

where |n⟩ is an n-particle state, P1 and P2 is the probability for the 1-particle state

and 0-particle state, respectively.

34



Thus, the effective reduced density matrix in (4.20) suggests that we can describe

this as a density matrix of a one-quasi-particle system. If we define PL and PR as

PL =
(

fL(t)
fL(t) + fR(t)

)
,

PR =
(

fR(t)
fL(t) + fR(t)

)
,

(4.24)

then the effective reduced density matrix is expressed as

ρeff
R = PL|0⟩RR⟨0| + PR|1⟩RR⟨1|. (4.25)

Therefore, we can understand PL and PR as the probability that we observe the

quasi-particle on the left or right half of the system, respectively.

These functions PL, PR have an interesting geometrical understanding in 4 dimen-

sional spacetime, and that will be explained in the following section as the particle

propagating model .

Another example using FTA for the operator insertion : ϕ̂k : is presented in the

Appendix A.1.

4.4 Particle Propagating Model

In this section, we restrict the spacetime to 4 dimension and introduce the Particle

Propagating Model (PPM).

Let us recall here the space decomposition that we defined for the QFT discussion

in section 3.1. We have 4 dimensional spacetime R4, and the subspaces A and B

are defined on the time slice M0 = {p ∈ M|x0(p) = 0} as

A := {p ∈ R4 | x1(p) ≧ 0, x0(p) = 0}

B := Ac = {p ∈ R4 | x1(p) < 0, x0(p) = 0}
(4.26)
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where B is the complement of the subspace A on the time slice M0. The entangling

surface Σ is the boundary of the subspaces A and B,

Σ := {p ∈ R4|x0(p) = 0, x1(p) = 0}. (4.27)

In the QFT calculation, we have inserted a spacetime local field operator ϕ at

the point (−t,−ℓ). On the other hand in the PPM, we assume that a free massless

quasi-particle is created at the point (−t,−ℓ) with the operator insertion. Since the

quasi-particle is massless, it propagates at the speed of light. Thus, the propagation

of the particle is on the sphere with radius t in M0. We define this sphere as K,

K := {p ∈ R4|
(
x1(p) + ℓ

)2
+
(
x2(p)

)2
+
(
x3(p)

)2
= t2, x0(p) = 0}. (4.28)

As in the case for QFT, according to the insertion time t there are 4-cases as

follows,

(i) At the time t < ℓ, where K ⊂ B.

(ii) At the time t = ℓ, where the sphere K touches the entangling surface Σ.

(iii) At the time t > ℓ, where K is shared with A and B.

(iv) At the time t = ∞, where the two subspaces A and B divide the sphere K

into half.

The labels (i) and (iii) corresponds to the labels in figure 4.2 (a) and (b), respectively.

We assume here that the probability to find the particle at some point on the

sphere K is equal everywhere on it. Then, the probability PA, PB to detect the

particle in the subregion A, B, respectively, can be evaluated from the surface area

of the sphere K: The total surface area of the sphere is 4πt2. The area of the sphere
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K included in B at t ≧ ℓ is 2πt(t− ℓ). Thus the probability of PA and PB to detect

the particle becomes,

(PA(t, ℓ), PB(t, ℓ)) =


(0, 1) t < ℓ

( t+ℓ2t ,
t−ℓ
2t ) t ≧ ℓ

. (4.29)

We found that these probabilities PA and PB are equivalent with PL and PR in

equation (4.25) of 4 dimensional free scalar QFT.

To generalize this PPM for multi-particle case, we assume that:

• One local operator creates one quasi-particle.

• Quasi-particles created at the same point of spacetime cannot be distinguished.

Note that the second assumption also means that we distinguish quasi-particles

created at different points in spacetime. The basis of the Hilbert space is labeled

by the number of particles found in subregions A and B. For example, if we have n

different insertion points, that means we have n kinds of particle to distinguish. Then

we write the number of these particles located in subregion A as (a1, a2, · · · , an) and

subregion B as (b1, b2, · · · , bn), where the lower indices are the label for the kind of

quasi particle. Then, we write such a state as |a1, a2, · · · , an; b1, b2, · · · , bn⟩, with an

appropriate normalization. The Hilbert space is spanned by these states:

HPPM = Span{|a1, a2, · · · , an; b1, b2, · · · , bn⟩}. (4.30)

Under these assumptions, we define the density matrix ρPPM and the Rényi En-

tropy S(n),PPM as follows. The Rényi Entropy S(n),PPM is defined by

S(n),PPM =


1

1−n log tr ((ρPPM)n) n ≧ 2

−tr (ρPPM log ρPPM) n = 1
. (4.31)

as usual, where ρPPM is constructed depending on the number and location of the

particles (see examples below and in the appendix A.2).
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As a result, the obtained Rényi Entropy S(n),PPM is equivalent to the Rényi EE

growth ∆S(n)
A in 4 dimensional spacetime free scalar QFT:

S(n),PPM = ∆S(n)
A . (4.32)

Let us give the example with one scalar operator insertion at (−t,−l). In this

case, the density matrix ρPPM is

ρPPM = PA(t, ℓ)|1; 0⟩⟨1; 0| + PB(t, ℓ)|0; 1⟩⟨0; 1|, (4.33)

since the probability to find the quasi-particle in subregion A or B is PA(t, ℓ) or

PB(t, ℓ), respectively. The Rényi Enropy of this density matrix for n ≧ 2 is then

S(n),PPM = 1
1 − n

log (PA(t, ℓ)n + PB(t, ℓ)n) (4.34)

=


0 t < ℓ

1
1−n log

((
t−ℓ
2t

)n
+
(
t−ℓ
2t

)n)
t ≧ ℓ

, (4.35)

which agrees with the QFT result perfectly.

By using this model, we can evaluate the Rényi EE growth ∆S(n)
A or other

quantities such as the growth of mutual information in more complicated space

decompositions that are difficult to handle in QFT. More examples can be found in

Appendix A.2.
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AB
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AB
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ϕ

AB

iv)

Figure 4.1: Schematic picture of the propagation of the effect by an inserted operator. The line in

the middle is the entangling surface Σ that divides the space into subregions A and B, the circle

is the front of the propagating effect by the inserted operator, and the position of the inserted

operator is shown as ϕ. The 4 figures decribes the picture at the following time: i) 0 ≦ t < ℓ, ii)

t = ℓ, iii) t > ℓ, iv) t = ∞.
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(a)

x1
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x3
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(b)

x1
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K

Figure 4.2: Picture of the sphere K at two parameter regions. Figure (a) shows the sphere K at

t < ℓ, figure (b) shows the sphere K at t ≧ ℓ. The orange and green part of sphere K belongs to

subregion A and B, respectively.
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Chapter 5

Growth of Rényi EE for Maxwell

Theory

In this chapter, we study the Rényi EE growth ∆S(n)
A for Maxwell theory in 4 and

higher even dimensional spacetime. The EE of gauge theory is not well defined

since it is not gauge invariant. However, as we discuss in this section, the Rényi EE

growth ∆S(n)
A for locally excited states can be defined in a gauge invariant manner.

Thus, in spite of the problem of defining the Rényi EE for gauge fields, we are able

to discuss the entanglement of gauge fields in terms of its growth.

We will first formally derive the Rényi EE growth ∆S(n)
A for Maxwell fields, and

then discuss the gauge independence.

5.1 Space Decomposition and Lagrangian

The spacetime and its decomposition are the same as we have performed for scalar

fields. We consider a d + 1-dimensional flat spacetime M = Rd+1, where d is an

odd number that is 3 or larger. The subregions A,B are taken in the same way as
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previously:

A = {p ∈ M0|x1(p) ≧ 0}, (5.1)

B = Ac. (5.2)

The Lagrangian we consider here is the free Maxwell theory with Faddeev-Popov

ghosts b, c,

L = −1
4
F µνFµν − ∂µbAµ + α

2
b2 − i∂µc̄∂µc, (5.3)

where Fµν = ∂µAν − ∂νAµ, and Aµ is real valued (i.e. Aµ ∈ R). This is the

Lagrangian for a free Maxwell field with gauge fixing parameter α. The equations

of motion for the fields are

∂ν∂νAµ = (1 − α)∂µb, (5.4)

∂µ∂µb = 0. (5.5)

We choose the gauge fixing parameter α = 1, which means that we take the Feynman

gauge. Then, Aµ obeys the Klein-Gordon equation of motion, and the Green’s

function of Aµ is proportional to that of scalar field.

5.2 The Green’s Function

The locally excited state we want to discuss, should be gauge invariant. Thus the

operator we want to insert is Fµν . In 4 dimensional Euclidean spacetime, they are

combinations of the electric field Ei and magnetic field Bi,

Ei = −iF0i (5.6)

Bi = −1
2
εijkF

jk, (5.7)

where i, j, k ∈ {1, 2, 3}, and εijk is the completely antisymmetric tensor with ε123 =

1. The operator are inserted at the same point like in the scalar field case, as

described in figure 3.5.
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The Green’s function for the gauge invariant operators are derived as the deriva-

tives of Green’s functions of Aµ. For example in 4-dimensional spacetime, Ei is

derived from the propagator ⟨AµAν⟩ as

⟨E†
iEj⟩ = −⟨F0iF0j⟩

= −⟨(∂0Ai − ∂iA0) (∂0Aj − ∂jA0)⟩

= −⟨∂0Ai∂0Aj⟩ − ⟨∂iA0∂jA0⟩ + ⟨∂iA0∂0Aj⟩ + ⟨∂0Ai∂jA0⟩

= −∂0∂0⟨AiAj⟩ − ∂i∂j⟨A0A0⟩ + ∂i∂0⟨A0Aj⟩ + ∂0∂j⟨AiA0⟩

(5.8)

where in the last line, the order of differential operator acts on each vector field Aµ,

as ∂µ∂ν⟨AρAσ⟩ = ∂
∂xµ

∂
∂yν ⟨Aρ(x)Aσ(y)⟩. The Green’s function for the magnetic field

Bi is obtained by,

⟨B†
iBl⟩ = 1

4
εijkεlmn⟨

(
∂jAk − ∂kAj

)
(∂mAn − ∂nAm)⟩

= 1
4
εijkεlmn

(
∂j∂m⟨AkAn⟩ + ∂k∂n⟨AjAm⟩ −

(
∂j∂n⟨AkAm⟩ + ∂k∂m⟨AjAn⟩

))
(5.9)

where in the last line we use again the notation ∂µ∂ν⟨AρAσ⟩ = ∂
∂xµ

∂
∂yν ⟨Aρ(x)Aσ(y)⟩.

The leading term in the ϵ dependence of the Green’s functions for d = 3, 5 are

summarized in the Appendix B.1.

5.3 Gauge Fixing and Gauge Invariance

The EE of gauge theory depends on the regularization scheme [8, 29, 30, 31]. It was

pointed out that in lattice gauge theory [17] this is due to the assumption that we

can decompose the Hilbert space. The gauge invariant Hilbert space does not admit

the decomposition into a tensor product of two gauge invariant subspaces associated

with subregions A and B:

H inv ̸= H inv
A ⊗ H inv

B , (5.10)
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due to the Gauss law constraint. This makes it impossible to define the reduced

density matrix in a gauge invariant way. The so-called extended Hilbert space was

introduced, that is an extension of the Hilbert space H inv that also includes non

gauge invariant states, and admits the tensor product decomposition. In [17], it was

also mentioned that in 1 dimensional lattice, if we fix the gauge on the entangling

surface Σ, the result depends on gauge choice.

In continuum theory, it was shown that the difference in the results can be

understood as the EE of edge modes that are living on the entangling surface Σ

[16].

Here, we discuss the gauge dependence of the Rényi EE growth ∆S(n)
A . We

assume, that the subtlety in gauge theory is due to the decomposition of Hilbert

space, and the effect of gauge choice appears on the boundary as the boundary

condition. Under this assumption, we show that the Rényi EE growth ∆S(n)
A does

not depend on the boundary condition and thus we have not to worry about this

subtlety.

We start by considering the following path integral,

ZBC
1 =

∫
Dϕ e−

∫
d4x(∂µϕ∂µϕ)δ(ϕ− ϕ0), (5.11)

where ZBC
n is the partition function on M(n) with boundary condition, ϕ0 is the

boundary condition at the entangling surface Σ. We can exponentiate the delta

function and include it in the path integral as

ZBC
1 =

∫
DϕDcDc̄ e−

∫
d4x(∂µϕ†(x)∂µϕ(x))+i

∫
d3x̃[c(x̃)(ϕ(x̃)−ϕ0(x̃))+c̄(x̃)(ϕ†(x̃)−ϕ†

0(x̃))],

(5.12)

where x̃(k) is the coordinate on Σ on the k-th sheet.

We are interested in the 2n-point functions on the n-sheeted manifold M(n).

With this new action, the 2n-point function in the case with boundary condition
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⟨
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
⟩BC becomes

⟨
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
⟩BC

=
∫

Dϕ
∫

DncDnc̄
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
e−
∫
d4x∂µϕ†∂µϕ+

∑n

k=1 ck(x)(ϕ(x)−ϕ0(x))+c̄k(x)(ϕ†(x)−ϕ†
0(x))

=
∫

DϕDncDnc̄
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
e−
∫
d4x∂µϕ†∂µϕ+

∫
d3x̃

∑n

k=1 ck(x̃)(ϕ(x̃)−ϕ0(x̃))+c̄k(x̃)(ϕ†(x̃)−ϕ†
0(x̃))

=
∫

Dϕ
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
e−
∫
d4x∂µϕ†∂µϕ−

∫
d3(x̃(k)ck(x̃)ϕ0+c̄k(x̃)ϕ†

0)(
1 +

∞∑
s=1

1
s!

:
(∫

d3x̃(k)
n∑
k=1

ck(x̃(k))ϕ(x̃(k)) + c̄k(x̃(k))ϕ†(x̃(k))
)s

:
)

= Cn⟨
(
ϕ† (−t,−ℓ)ϕ (−t,−ℓ)

)n
⟩ +

∞∑
s=1

1
s!

⟨
Cn
(
ϕ†ϕ

)n
:
∫
d3sx̃F (s)

(
ϕ(x̃), ϕ†(x̃)

)
:
⟩
,

(5.13)

where C =
∫

DcDc̄e
∫
d3x̃c(x̃)ϕ0(x̃)+c̄(x̃)ϕ0(x̃) on each sheet, and F (s) is a homogeneous

polynomial function of order s in c(x̃(k))ϕ(x̃(k)) and c̄(x̃(k))ϕ†(x̃(k)) with combinato-

rial factors. In the last line of equation (5.13), the second term on the right hand side

can be understood as the correction to the result without boundary condition. The

first term is identical with the result without boundary condition, and the second

term works as the correction to it.

By an explicit calculation, this correlation function of the operator on the bound-

ary ϕ(x̃) with the inserted operator ϕ (−t,−ℓ) is not divergent in the limit ϵ → 0.

Thus, for example in d = 3 case, where we have 4 spacetime dimensions, we get

⟨
(
O†O

)n
⟩BC = Cn⟨

(
O†O

)n
⟩ +O(ϵ−3n), (5.14)

where the leading term’s divergence is O(ϵ−4n), and all the corrections are included

in O(ϵ−3n).

This means that the effect of boundary does not affect the result. As we have
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seen in (2.50), the final result is

∆S(n)
A = − 1

1 − n
log ⟨(O†O)n⟩Σn , BC

(⟨O†O⟩Σ1,BC)n

= − 1
1 − n

log
Cnϵ4n⟨

(
O†O

)n
⟩Σn + ϵ4nO(ϵ−3n)

ϵ4n (C⟨O†O⟩Σ1 +O(ϵ−3))n

(5.15)

and since the corrections from the boundary are all depending weaker on ϵ than

−4n, in the limit ϵ → 0 all the correction terms vanish and C cancels. Thus these

corrections do not appear in the final result.

5.4 Time Evolution of the Rényi EE Growth ∆S(n)
A

We have analyzed the time evolution of ∆S(n)
A in several cases. We will summarize

the results here. In this section, we denote the Rényi EE growth for the inserted

operator O as ∆S(n)
A [O],

We start with the most simple case, when only one operator Ei or Bi is inserted.

The resulting Rényi EE growth ∆S(n)
A for E1 and E2 are,

∆S(n)
A [E1] = 1

1 − n
log

((
−(t+ ℓ)2(2t− ℓ)

4t3

)n
+
(

(t− ℓ)2(2t+ ℓ)
4t3

)n)
, (5.16)

∆S(n)
A [E2] = 1

1 − n
log

((
4t3 − 3ℓt2 − ℓ3

8t3

)n
+
(

4t3 + 3ℓt2 + ℓ3

8t3

)n)
, (5.17)

respectively. For the other operators we find the following relations,

∆S(n)
A [E1] = ∆S(n)

A [B1] , (5.18)

∆S(n)
A [E2] = ∆S(n)

A [E3] = ∆S(n)
A [B2] = ∆S(n)

A [B3] . (5.19)

We plotted their 2nd Rényi EE growth in figure 5.1, where the horizontal axis is t
ℓ
,

and the vertical axis is ∆S(2)
A . We can see that for both functions the growth is zero

until t = ℓ, but differs after t = ℓ. Just after t = ℓ, the Rényi EE for E2 or E3 grows

faster than the one for E1.
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Figure 5.1: Plot of ∆S
(2)
A [E1] and ∆S

(2)
A [E2] which correspond to red and blue lines, respectively.

This behaviour can be understood from classical electromagnetism. Classically,

electromagnetic waves are transverse waves and thus have no component in the

direction they travel. In the present case, an electromagnetic wave that is traveling

towards the entangling surface Σ has no component in E1. It can only have non-zero

components in E2 or E3.

In QFT on the other hand, by acting with an operator such as E1 or E2 on the

vacuum, we are exciting the field in a specific direction. Thus the change of Rényi

EE by inserting E1 is growing slower than the one by inserting E2 or E3. See figure

5.1, where the blue line is the E2 insertion and red line is the E1 insertion. The time

evolution for E1 and B1 are the same, and the time evolution for E2, E3, B2, B3

are the same. This shows that the result has the rotation symmetry as expected,

and also the electromagnetic duality is preserved.

In the late time limit t → ∞, all the cases of single operator insertion considered

above converge to the same value log 2. In fact, this is true for all integers n in this

case, even for the limit n → 1, where we obtain the EE growth:

lim
t→∞

∆S(n)
A [Ei] = log 2 , (5.20)

lim
t→∞

∆S(n)
A [Bi] = log 2 , (5.21)
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Figure 5.2: Rényi EE growth for E2
1 and E2

2 insertion. The red and blue lines are ∆S
(2)
A
[
E1

2] and

∆S
(2)
A
[
E2

2], respectively.

where i = 1, 2, 3.

Figure 5.2 shows the 2nd Réyni EE growth for the insertion of E2
1 and E2

2. Their

explicit functions look as follows;

∆S(n)
A

[
E2

1

]
= 1

1 − n
log

((2t− ℓ) (t+ l)2

4t3

)2n

+
(

(2t+ ℓ)(t− l)2

4t3

)2n

+2n
(

(2t− ℓ) (t+ ℓ)2

4t3

)n ((2t+ ℓ)(t− l)2

4t3

)n]
,

(5.22)

∆S(n)
A

[
E2

2

]
= 1

1 − n
log

(4t3 + 3ℓt2 + ℓ3

8t3

)2n

+
(

4t3 − 3ℓt2 − ℓ3

8t3

)2n

+ 2n
(

4t3 + 3ℓt2 + ℓ3

8t3

)n (4t3 − 3ℓt2 − ℓ3

8t3

)n]
,

(5.23)

where the Rényi EE growth for B2
i insertion is the same as the growth for E2

i

insertion. Here, we can see again that the behaviour is similar to an insertion of a

single operator like E1 or E2. However, their late time limit is more complicated,
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and depends on n:

lim
t→∞

∆S(n)
A

[
E2
i

]
= 1

1 − n
log

(
21−2n + 2−n

)
(5.24)

where n ≧ 2. In the limit n → 1 this gives

lim
t→∞

∆S(1)
A

[
E2
i

]
= 3

2
log 2. (5.25)

They agree with the result of free scalar field ϕ2 insertion.

5.5 Late Time Algebra and Finite Time Algebra

In this section, we introduce the Late Time Algebra (LTA) for the Maxwell theory.

The construction of LTA for Maxwell theory works in the same way as for scalar

field theory. First, we introduce the following LTA operators

ÊL
i , Ê

L†
i , ÊR

i , Ê
R†
i , B̂L

i , B̂
L†
i , B̂R

i , B̂
R†
i (5.26)

and their linear combinations

Êi = ÊL
i + ÊL†

i + ÊR
i + ÊR†

i , (5.27)

B̂i = B̂L
i + B̂L†

i + B̂R
i + B̂R†

i . (5.28)

where L and R corresponds to the left and right moving mode. The commutation

relations are defined from the Green’s function of the corresponding fields. They

are obtained as [
ÊL
i , Ê

L†
j

]
= lim

t→∞
2 ⟨EiEj⟩M(n) (θ1 − θ2)

⟨E1E1⟩M(1) (θ1 − θ2)
,

[
ÊR
i , Ê

R†
j

]
= lim

t→∞
2⟨EiEj⟩M(n) (θ1 − θ2 + 2π)

⟨E1E1⟩M(1) (θ1 − θ2)
,

[
B̂L
i , B̂

L†
j

]
= lim

t→∞
2⟨BiBj⟩M(n) (θ1 − θ2)

⟨E1E1⟩M(1) (θ1 − θ2)
,

[
B̂L
i , B̂

L†
j

]
= lim

t→∞
2⟨BiBj⟩M(n) (θ1 − θ2 + 2π)

⟨E1E1⟩M(1) (θ1 − θ2)
,

(5.29)
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where ⟨EiEj⟩M(n)(θ1 − θ2) is the propagator of neighboring operators on the same

sheet, and ⟨EiEj⟩M(n) (θ1 − θ2 + 2π) is the propagator of neighboring operators on

different sheets, similar to the schematic picture given in figure 3.7. A remarkable

property in the LTA of Maxwell theory is the non-zero commutators of Ê2, B̂3 and

Ê3B̂2. This mixing in the commutator is the most significant difference from the

LTA of scalar fields:

[
ÊL

2, B̂
L†
3

]
= lim

t→∞
2⟨E2B3⟩M(n) (θ1 − θ2)

⟨E1E1⟩M(1) (θ1 − θ2)
̸= 0 (5.30)

[
ÊR

2 , B̂
R†
3

]
= lim

t→∞
2⟨E2B3⟩M(n) (θ1 − θ2 + 2π)

⟨E1E1⟩M(1) (θ1 − θ2)
̸= 0 (5.31)

[
ÊL

3, B̂
L†
2

]
= lim

t→∞
2⟨E3B2⟩M(n) (θ1 − θ2)

⟨E1E1⟩M(1) (θ1 − θ2)
̸= 0 (5.32)

[
ÊR

3 , B̂
R†
2

]
= lim

t→∞
2⟨E3B2⟩M(n) (θ1 − θ2 + 2π)

⟨E1E1⟩M(1) (θ1 − θ2)
̸= 0 (5.33)

The Hilbert space is defined as the Fock space of these operators,

HL = Span{|0⟩L, ÊL†
i |0⟩L, B̂L†

i |0⟩L, ÊL†
i B̂L†

j |0⟩L, · · · }, (5.34)

HR = Span{|0⟩R, ÊR†
i |0⟩R, B̂R†

i |0⟩R, ÊR†
i B̂R†

j |0⟩R, · · · }. (5.35)

where the corresponding vacuum states |0⟩L and |0⟩R satisfy

ÊL
i |0⟩L = B̂L

i |0⟩L = ÊR
i |0⟩R = B̂R

i |0⟩R = 0. (5.36)

The total Hilbert space is then

HL ⊗ HR (5.37)

Their normalized n-particle states are denoted as

|ÊL
1⟩ = N ÊL†

1 |0⟩L (5.38)

where N is a normalization constant.
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The effective state we need to evaluate the Rényi EE in LTA, is the one where we

replace the field operator with the corresponding the LTA operator. For example,

if we have inserted (E1)2 in QFT, then the corresponding effective state is

|ψeff⟩ = N
(
Ê1
)2

|0⟩L ⊗ |0⟩R (5.39)

with a normalization constant N . By using this LTA, we are able to reproduce the

Rényi EE growth ∆S(n)
A for Lorentz invariant operator insertions, such as

F̂µνF̂µν , Ê2 + B̂2, (5.40)

and the ones where the operators Ê2, Ê3, B̂2, B̂3 are mixed symmetrically as

Ê2B̂3 − Ê3B̂2, (5.41)

which is the Poynting vector towards the entangling surface Σ.

We now propose the commutation relations for finite time. For the gauge theory

case, there is no geometrical understanding like in scalar field yet.

We show here the explicit expression for 4 dimensional spacetime at finite time

and correspondingly in the late time limit. In 4-dimensional spacetime:
[
ÊL

1, Ê
L†
1

]
= (2t− ℓ) (t+ ℓ)2

2t3
−→
t→∞

1 (5.42)
[
ÊR

1 , Ê
R†
1

]
= (2t+ ℓ) (t− ℓ)2

2t3
−→
t→∞

1 (5.43)[
ÊL
i , Ê

L†
j

]
= δij

4t3 + 3ℓt2 + ℓ3

4t3
−→
t→∞

δij (5.44)[
ÊR
i , Ê

R†
j

]
= δij

4t3 − 3ℓt2 − ℓ3

4t3
−→
t→∞

δij (5.45)[
ÊL

2, B̂
L†
3

]
= 3 (t− ℓ) (t+ ℓ)

4t2
−→
t→∞

3
4

(5.46)[
ÊR

2 , B̂
R†
3

]
= −3 (t− ℓ) (t+ ℓ)

4t2
−→
t→∞

−3
4

(5.47)[
ÊL

3, B̂
L†
2

]
= −3 (t− ℓ) (t+ ℓ)

4t2
−→
t→∞

−3
4

(5.48)[
ÊR

3 , B̂
R†
2

]
= 3 (t− ℓ) (ℓ+ t)

4t2
−→
t→∞

3
4

(5.49)
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where i, j ∈ {2, 3}. By using this LTA, we get the following effective density matrix

ρeff
A for example:

E1 or E2 :

 1
2 0

0 1
2

 (5.50)

F 2 : 1
192



30

30

16

16

49

49

1

1



(5.51)

Let us conclude this section with some remarks. The Rényi EE growth ∆S(n)
A for

locally excited states is invariant under the S-duality transformation Ei → −Bi and

Bi → Ei. Since the Rényi EE growth ∆S(n)
A reflects the electric-magnetic duality,

the entropy for Bi is equal to that for Ei. On the other hand, the Rényi EE growth

∆S(n)
A depends on the direction relative to the entangling surface Σ. The Rényi EE

growth ∆S(n)
A for the fields vertical to the entangling surface Σ increases slower than

those parallel to it. However, there are no differences of the Rényi EE growth ∆S(n)
A

between inserting one electromagnetic field Ei or Bi and that of one scalar insertion

in the late time limit t → ∞.

We can find the difference in late time of Maxwell field and scalar field by con-

sidering the case for composite operators, namely the combinations of E2,B3 and

E3,B2. This is encoded into the LTA and FTA as nonzero commutation relation

in Ê2, B̂3 and Ê3, B̂2. These are corresponding to the combinations of electric and

magnetic operators parallel to the entangling surface Σ.
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Chapter 6

Conclusion

Quantum Entanglement is one of the properties at the heart of the quantum theory,

and is an indispensable concept in modern physics. Though this property was

realized from the very beginning of quantum theory, it has often been the source

of controversial issues. Recently it is rediscovered to be related to the phenomena

of hot research topics like black hole entropy and information loss, increasing its

importance again.

In this thesis, we have discussed the Rényi EE growth which is the difference of

Rényi entanglement entropy of a locally excited state compared to the one of the vac-

uum state. The Late Time Algebra is an algebra describing the Rényi entanglement

entropy growth in the limit t → ∞, and gives a quasi-particle picture to it. First we

gave a method to define the commutation relation of the Late Time Algebra from the

corresponding Quantum Field Theory in a systematical way. Then, we introduced

the Finite Time Algebra by extending the Late Time Algebra to each time slice.

This gives a quasi-particle picture at every time slice for the Rényi entanglement

entropy growth in Quantum Field Theory.

We also presented the Particle Propagating Model, which is a new model for

4-dimensional free scalar field theory. It provides an intuitive understanding to
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the Rényi entanglement entropy growth. In this model, the Rényi entanglement

entropy growth is obtained as the Rényi entropy of a quasi-particle that propagates

isotropically in space. The Rényi entanglement entropy growth is defined by the

area ratio of the two surfaces into which the sphere is divided by the entangling

surface, where the sphere is the position of particle propagating at the speed of

light. Therefore, the Rényi entanglement entropy growth is a kind of measure for

the degree of freedom of this quantum mechanical system.

The second topic we addressed in this thesis is about the Rényi entanglement

entropy growth in gauge theory. There are still discussions on how to define the

entanglement entropy for gauge theories, since a naïve definition leads it to be gauge

dependent. However, the Rényi entanglement entropy growth in this thesis is defined

uniquely without gauge dependence, as far as the assumption holds that the effect

of gauge choice appears on the boundary as the boundary condition. We have also

shown that the Rényi entanglement entropy growth in Maxwell theory respects the

causality, as it is in the case for scalar field theory.

The late time algebra and finite time algebra show that Maxwell theory also

admits a quasi-particle description. We can see that there is a different property

in entanglement from that of a scalar field. The mixing of the operators associated

to different directions in the algebras distinguishes the Maxwell fields from scalar

fields.

The definition of entanglement entropy in gauge theory is a very subtle issue,

and some modification is needed to make it compatible with gauge invariance. From

our point of view, it would be very interesting to construct the particle propagating

model for gauge theory and discuss the difference of time development of Rényi

entanglement entropy from the scalar theory case. Our discussion presented in this

thesis is free from this gauge invariance problem, and therefore it may shed some

light on understanding the entanglement of gauge fields.
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Appendix A

Examples of Scalar fields

A.1 Example of Scalar FTA

Here we demonstrate the FTA calculation to obtain the Rényi EE growth ∆S(n)
A for

the insertion of : ϕk :. The FTA given in the main part for 4 dimension is:
[
ϕ̂L, ϕ̂L†

]
= lim

ϵ→0
32π2ϵ2G(n)(θ1 − θ2),[

ϕ̂R, ϕ̂R†
]

= lim
ϵ→0

32π2ϵ2G(n)(θ1 − θ2 + 2π),
(A.1)

We also have the relation

lim
ϵ→0

ϵ2G(1)(θ1 − θ2) = lim
ϵ→0

ϵ2
(
G(n)(θ1 − θ2) +G(n)(θ1 − θ2 + 2π)

)
. (A.2)

from the explicit calculation.

We evaluate the LTA for the locally excited state:

|ψex⟩ = N : ϕk(−t,−l,x) : |0⟩ (A.3)

where N is a normalization constant, that is given by

N = 1
k!(32π2ϵ2)k(G(n)(θ1 − θ2) +G(n)(θ1 − θ2 + 2π))k

, (A.4)
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and x is the coordinate for the 2 and 3 direction. The effective reduced density

matrix of this excited state is given by1

ρeff
A = trL (ρ) =

k∑
s=0

kCs
(
G(n) (θ1 − θ2)

)k−s (
G(n) (θ1 − θ2 + 2π)

)s
(G(n)(θ1 − θ2) +G(n)(θ1 − θ2 + 2π))k

|s⟩RR⟨s|. (A.5)

Then S
(n)
A for this density matrix in (A.5) is given by

∆S(n)
A = 1

1 − n
log

 k∑
s=0

kCs
(
G(n) (θ1 − θ2)

)k−s (
G(n) (θ1 − θ2 + 2π)

)s
(G(n)(θ1 − θ2) +G(n)(θ1 − θ2 + 2π))k


n

= 1
1 − n

log
[
k∑
s=0

(
kCs(PL(t))k−s(PR(t))s

)n]
.

(A.6)

where we use the identity in (A.2). The entropy in the late time limit is given by

∆S(n)
A = 1

1 − n
log

[
2−kn

k∑
s=0

(kCs)n
]
. (A.7)

These results in (A.6 ) and (A.7) are consistent with the results in the replica

method[18, 19].

A.2 Example for PPM

Here, we give examples of calculations using the particle propagating model. We

compute the Rényi EE growth ∆S(n)
A by using this model. Recall the assumptions

of PPM:

• One local operator creates one quasi-particle.

• Quasi-particles created at the same point of spacetime cannot be distinguished.

Note that the spacetime is 4-dimensional and flat : M = R4.

1
kCs is a binomial coefficient defined by kCs := (k)!

s!(k−s)! .
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A.2.1 Example.1: Composite operator O =: ϕk(−t,−ℓ,x) :

We start with the example of a local operator : ϕk : located at (x0, x1, x2, x3) =

(−t,−ℓ, 0, 0) acts on the ground state. Then in t > ℓ, the s particles and k − s

particles are included in A and B with the probability kCs (PA(t, ℓ))k−s (PB(t, ℓ))s.

Thus the probability distribution ρ is given by

ρPPM =
k∑
s=0

kCs (PA(t, ℓ))k−s (PB(t, ℓ))s |s; k − s⟩⟨s; k − s|, (A.8)

where |l; k−l⟩ is the state where l and k−l particles are included in A and B, respec-

tively. The Rényi EE S(n) of this reduced density matrix ρPPM (A.8) is consistent

with the Rényi EE growth ∆S(n)
A in (A.6).

A.2.2 Example.2 : Two operators at different point in space-

time O = ϕ(−T,−L,x1)ϕ(−t,−ℓ,x2)

The second example is a state where two scalar fields are acting at different points

in spacetime. The corresponding excited state |ψex⟩ is with the operator insertion

O = ϕ(−T,−L,x1)ϕ(−t,−ℓ,x2),

|ψex⟩ = Nϕ(−T,−L,x1)ϕ(−t,−ℓ,x2)|0⟩, (A.9)

where ℓ, L, t, T > 0, N is a normalization constant, and x1,x2 are the coordinates

for 2, 3 direction which are constants. Since we distinguish the particles created at

different points in spacetime, the density matrix ρPPM at t = 0 is defined by

ρPPM =
∑
a,b;c,d

Pa,cP̃b,d|a, b; c, d⟩⟨a, b; c, d|

= P1,0P̃1,0|1, 1; 0, 0⟩⟨1, 1; 0, 0| + P0,1P̃1,0|0, 1; 1, 0⟩⟨0, 1; 1, 0|

+ P0,1P̃0,1|1, 0; 0, 1⟩⟨1, 0; 0, 1| + P0,1P̃0,1|0, 0; 1, 1⟩⟨0, 0; 1, 1|,

(A.10)

where |a, b; c, d⟩ is the state where a (b) and c (d) particles created by ϕ(−T,−L,x1)

(ϕ(−t,−ℓ,x2)) are included in A and B, respectively. Pa,b and P̃c,d is the probability
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for each quasi-particle created at (−T,−L,x1) and (−t,−ℓ,x2), respectively. They

are given by

P1,0 =


0 T < L

(T−L)
2T T ≧ L

, P0,1 =


1 T < L

(T+L)
2T T ≧ L

,

P̃1,0 =


0 t < ℓ

(t−ℓ)
2(t) t ≧ ℓ

, P̃0,1 =


1 t < ℓ

(t+ℓ)
2(t) t ≧ ℓ

.

(A.11)

Thus, when we compute the Rényi EE S(n),PPM of the density matrix (A.10), we

obtain

S(n>1),PPM = 1
1 − n

log
[(
P1,0P̃1,0

)n
+
(
P0,1P̃1,0

)n
+
(
P1,0P̃0,1

)n
+
(
P0,1P̃0,1

)n]
.

(A.12)

In the limit n → 1 where we recover the EE, we get

lim
n→1

S((n)),PPM = −
(
P1,0P̃1,0

)
log

(
P1,0P̃1,0

)
−
(
P0,1P̃1,0

)
log

(
P0,1P̃1,0

)
−
(
P1,0P̃0,1

)
log

(
P1,0P̃0,1

)
−
(
P0,1P̃0,1

)
log

(
P0,1P̃0,1

)
.

(A.13)

It is straight forward to check that in the late time limit, this Rényi EE S(n),PPM

converges and we get S((n≥1)),PPM = log 4. This is consistent with the result in [19].

A.2.3 Example.3: Space Decomposition with a Finite Inter-

val

In the third example, we insert one scalar operator at (−t,−ℓ) where t > 0, ℓ > 0.

This is the same as the first example, however we change the definition of subregions

A and B in this example. The subregions A and B are defined as

A = {p ∈ M0|0 ≤ x1(p) < L}

B = Ac,
(A.14)
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where Ac is the complement of A in M0. We denote the probability that the created

quasi-particle is included in the subregion A, B as PA(t), PB(t), respectively. They

are given by

PA(t) =



0 0 ≦ t < ℓ

t−ℓ
2t 0 < ℓ ≦ t < L+ ℓ

L
2t L+ ℓ+ ℓ ≤ t

, PB(t) =



1 0 ≦ t < ℓ

t+ℓ
2t 0 < ℓ ≦ t < L+ ℓ

2t−L
2t L+ ℓ ≦ t

. (A.15)

The probability PA(t) and PB corresponds to the area of sphere K, that is included

in each subregion A and B, respectively. The Rényi EE S(n),PPM and EE is given by

S(n),PPM =



0 0 < t < ℓ

1
1−n log

[
( t−ℓ2t )n + ( t+ℓ2t )n

]
0 < ℓ ≦ t < L

1
1−n log

[
(2t−L

2t )n + ( L2t)
n
]

L ≦ t

,

lim
n→1

S(n),PPM = S(1),PPM =



0 0 < t < ℓ

−
(
t−ℓ
2t

)
log

(
t−ℓ
2t

)
−
(
t+ℓ
2t

)
log

(
t+ℓ
2t

)
0 < ℓ ≦ t < L+ ℓ

−
(

2t−L
2t

)
log

(
2t−L

2t

)
−
(
L
2t

)
log

(
L
2t

)
L+ ℓ ≦ t

.

(A.16)

The plot of EE S(1),PPM shows an increases after t = ℓ and decreases after t = L+ ℓ

(Fig.A.1) before it reaches the value log 2. This is because the probability PA(t)

increases in ℓ < t < L + ℓ but it does not reach the value 1
2 and starts to decrease.

The EE does not reach the maximally entangled state that we obtained in the case

of two infinite subsystems and vanishes at the late time.

A.2.4 Example.4: Infinite Subsystems

In the forth example, we divide the space into infinite subregions in an more com-

plicated way than that one discussed in the main part. We consider two patterns to
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Figure A.1: The plot of EE S(1),PPM.The horizontal axis is t, and the vertical axis is S. The values

of (ℓ, L) = (10, 20).

divide the space into two infinite subregions, A1, B1 and A2, B2. They are defined

as follows,

A1 = {x1 ≥ l, x2 ≥ 0},

B1 = Ac
1,

A2 = {x1 ≥ l, x2 ≥ 0, x3 ≥ 0},

B2 = Ac
2,

(A.17)

where the complement is defined in M0. The local operator is ϕ and located at

(−t,−ℓ). The density matrix for each case ρPPM
i is given by

ρPPM
i := PBi

(t)|0; 1⟩⟨0; 1| + PAi
(t)|1; 0⟩⟨1; 0|, (i = 1 ∼ 2) (A.18)

where i = 1, 2, the probabilities are given by

PA1 (t) = 1
4

(
1 − ℓ

t

)
, PB1 (t) = 1

4

(
3 + ℓ

t

)
,

PA2 (t) = 1
8

(
1 − ℓ

t

)
, PB2 (t) = 1

8

(
7 + ℓ

t

)
,

(A.19)
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and the state |s; k−s⟩ is describing the state where s and k−s particles are included

in Ai and Bi respectively.

As in the other cases, their entropy in t ≦ ℓ vanishes. Their Rényi Entropy

S(n),PPM in t > ℓ is

S(n),PPM(ρ1) =


1

1−n log
[(

1
4

(
1 − ℓ

t

))n
+
(

1
4

(
3 + ℓ

t

))n]
n ≧ 2,

−1
4

(
1 − ℓ

t

)
log

[
1
4

(
1 − ℓ

t

)]
− 1

4

(
3 + ℓ

t

)
log

[
1
4

(
3 + ℓ

t

)]
n = 1,

S(n),PPM(ρ2) =


1

1−n log
[(

1
8

(
1 − ℓ

t

))n
+
(

1
8

(
7 + ℓ

t

))n]
n ≧ 2,

−1
8

(
1 − ℓ

t

)
log

[
1
8

(
1 − ℓ

t

)]
− 1

8

(
7 + ℓ

t

)
log

[
1
8

(
7 + ℓ

t

)]
n = 1.

(A.20)

The Rényi Entropy S(n),PPM in the late time limit t → ∞ is finite.

S(n),PPM(ρ1) =


1

1−n log
[(

1
4

)n
+
(

3
4

)n]
n ≧ 2,

−1
4 log

[
1
4

]
− 3

4 log
[

3
4

]
n = 1,

S(n),PPM(ρ2) =


1

1−n log
[(

1
8

)n
+
(

7
8

)n]
n ≧ 2,

−1
8 log

[
1
8

]
− 7

8 log
[

7
8

]
n = 1.

(A.21)

This is due to the fact that the particle created by local operator ϕ has non-zero

probability to be found in the subregions A1,2 in the late time limit. For the n = 1

case where we obtain the EE, they are both smaller than the entropy for an EPR

state log 2, which was the case discussed in the main text.
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Appendix B

Rényi EE Growth of Maxwell

theory

We will give here the leading term in ϵ dependence of the Green’s functions, and

examples of the Rényi EE growth ∆S(n)
A for Maxwell fields.

B.1 Green’s Functions

The leading term in ϵ dependence for each fields in 4 and 6-dimensional spacetime

are as follows.

In 4 space time dimension, we recall that the operators Ei,Bi are defined in

Euclidean space as

Ei = −iF0i,Bi = −εijkF jk (B.1)

where i, j, k ∈ {1, 2, 3}, and εijk is the completely antisymmetric tensor. The ana-
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lytic continued Green’s functions on manifold M(n) are defined by

⟨E1(θ)E1(θ′)⟩M(n) = F
(n)
E1E1(θ − θ′),

⟨E2(θ)E2(θ′)⟩M(n) = ⟨E3(θ)E3(θ′)⟩M(n) = F
(n)
E2E2(θ − θ′),

⟨B1(θ)B1(θ′)⟩M(n) = F
(n)
B1B1(θ − θ′),

⟨B2(θ)B2(θ′)⟩M(n) = ⟨B3(θ)B3(θ′)⟩M(n) = F
(n)
B2B2(θ − θ′),

⟨E2(θ)B3(θ′)⟩M(n) = F
(n)
E2B3(θ − θ′),

⟨B3(θ)E2(θ′)⟩M(n) = F
(n)
B3E2(θ − θ′),

⟨E3(θ)B2(θ′)⟩M(n) = F
(n)
E3B2(θ − θ′),

⟨B2(θ)E3(θ′)⟩M(n) = F
(n)
B2E3(θ − θ′).

(B.2)

If the limit ϵ → 0 is taken, their leading terms for n = 1 are given by

F
(1)
E1E1(θ1 − θ2) ∼ 1

16π2ϵ4 ,

F
(1)
E2E2(θ1 − θ2) ∼ 1

16π2ϵ4 ,

F
(1)
B1B1(θ1 − θ2) ∼ 1

16π2ϵ4 ,

F
(1)
B2B2(θ1 − θ2) ∼ 1

16π2ϵ4 .

(B.3)

The leading terms in the limit ϵ → 0 of two-point functions are more complicated

in the case n ≧ 2. If 0 < t < l, they are the same as given in (B.3). If 0 < l ≤ t,
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they are given by

F
(n)
E1E1(θ1 − θ2) = F

(n)
E1E1(θ2 − θ1) ∼ −(l − 2t)(l + t)2

64π2t3ϵ4 ,

F
(n)
E2E2(θ1 − θ2) = F

(n)
E2E2(θ2 − θ1) ∼ l3 + 3lt2 + 4t3

128π2t3ϵ4 ,

F
(n)
B1B1(θ1 − θ2) = F

(n)
B1B1(θ2 − θ1) ∼ −(l − 2t)(l + t)2

64π2t3ϵ4 ,

F
(n)
B2B2(θ1 − θ2) = F

(n)
B2B2(θ2 − θ1) ∼ l3 + 3lt2 + 4t3

128π2t3ϵ4 ,

F
(n)
E2B3(θ1 − θ2) = F

(n)
E2B3(θ2 − θ1) ∼ 3(t− l)(l + t)

128π2t2ϵ4 ,

F
(n)
B3E2(θ1 − θ2) = F

(n)
B3E2(θ2 − θ1) ∼ 3(t− l)(l + t)

128π2t2ϵ4 ,

F
(n)
E3B2(θ1 − θ2) = F

(n)
E3B2(θ2 − θ1) ∼ 3(l − t)(l + t)

128π2t2ϵ4 ,

F
(n)
B2E3(θ1 − θ2) = F

(n)
B2E3(θ2 − θ1) ∼ 3(l − t)(l + t)

128π2t2ϵ4 ,

(B.4)
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and

FE1E1(θ1 − θ2 + 2π) = FE1E1(θ2 − θ1 − 2π)

= FE1E1(θ1 − θ2 − 2(n− 1)π) = FE1E1(θ2 − θ1 + 2(n− 1)π) ∼ (l − t)2(l + 2t)
64π2t3ϵ4 ,

FE2E2(θ1 − θ2 + 2π) = FE2E2(θ2 − θ1 − 2π)

= FE2E2(θ1 − θ2 − 2(n− 1)π) = FE2E2(θ2 − θ1 + 2(n− 1)π) ∼ − l3 + 3lt2 − 4t3

128π2t3ϵ4 ,

FB1B1(θ1 − θ2 + 2π) = FB1B1(θ2 − θ1 − 2π)

= FB1B1(θ1 − θ2 − 2(n− 1)π) = FB1B1(θ2 − θ1 + 2(n− 1)π) ∼ (l − t)2(l + 2t)
64π2t3ϵ4 ,

FB2B2(θ1 − θ2 + 2π) = F
(n,l)
B2B2(θ2 − θ1 − 2π)

= FB2B2(θ1 − θ2 − 2(n− 1)π) = F
(n,l)
B2B2(θ2 − θ1 + 2(n− 1)π) ∼ − l3 + 3lt2 − 4t3

128π2t3ϵ4 ,

FE2B3(θ1 − θ2 + 2π) = FE2B3(θ2 − θ1 − 2π)

= FE2B3(θ1 − θ2 − 2(n− 1)π) = FE2B3(θ2 − θ1 + 2(n− 1)π) ∼ 3(l − t)(l + t)
128π2t2ϵ4 ,

FB3E2(θ1 − θ2 + 2π) = FB3E2(θ2 − θ1 − 2π)

= FB3E2(θ1 − θ2 − 2(n− 1)π) = FB3E2(θ2 − θ1 + 2(n− 1)π) ∼ 3(l − t)(l + t)
128π2t2ϵ4 ,

FE3B2(θ1 − θ2 + 2π) = FE3B2(θ2 − θ1 − 2π)

= FE3B2(θ1 − θ2 − 2(n− 1)π) = FE3B2(θ2 − θ1 + 2(n− 1)π) ∼ 3(t− l)(l + t)
128π2t2ϵ4 ,

FB2E3(θ1 − θ2 + 2π) = FB2E3(θ2 − θ1 − 2π)

= FB2E3(θ1 − θ2 − 2(n− 1)π) = FB2E3(θ2 − θ1 + 2(n− 1)π) ∼ 3(t− l)(l + t)
128π2t2ϵ4 .

(B.5)

The ϵ dependence of the other propagators are of order O(ϵ−3), therefore they do

not give an effect to the Rényi EE growth.

In the case of 6 spacetime dimensions, we denote the analytic continued Green’s

functions on M(n) as

⟨Fij(θ)Flm(θ′)⟩M(n) = F
(n)
FijFlm

(θ − θ′). (B.6)
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In the ϵ → 0 limit, their leading terms are as follows.

For the case of n = 1 in t > 0,

F
(1)
F0iF0i

(θ1 − θ2) ∼ 1
16π3ϵ6 ,

F
(1)
FijFij

(θ1 − θ2) ∼ 1
32π3ϵ6 (i, j ̸= 0).

(B.7)

For the case of n ≧ 2, if l > t > 0 they are the same as in (B.7). In t ≥ l, they

are as follows, with i, j = 2, 3, 4, 5 and i ̸= j:

F
(n)
F01F01(θ1 − θ2) ∼ 1

256π3
(t+ l)3(3l2 − 9lt+ 8t2)

t5ϵ6 ,

F
(n)
F01F01(θ1 − θ2 + 2π) ∼ 1

256π3
(t− l)3(3l2 + 9lt+ 8t2)

t5ϵ6 ,

F
(n)
F0iF0i

(θ1 − θ2) ∼ 1
1024π3

(l + t)2(32t3 − 19lt2 + 6l2t− 3l3)
t5ϵ6 ,

F
(n)
F0iF0i

(θ1 − θ2 + 2π) ∼ 1
1024π3

32t5 − 45lt4 + 10l3t2 + 3l5

t5ϵ6 ,

F
(n)
F1iF1i

(θ1 − θ2) ∼ 1
1024π3

16t5 + 15lt4 + 10l3t2 − 9l5

t5ϵ6 ,

F
(n)
F1iF1i

(θ1 − θ2 + 2π) ∼ 1
1024π3

16t5 − 15t4l − 10t2l3 + 9l5

t5ϵ6 ,

F
(n)
FijFij

(θ1 − θ2) ∼ 1
512π3

(t+ l)3(3l2 − 9lt+ 8t2)
t5ϵ6 ,

F
(n)
FijFij

(θ1 − θ2 + 2π) ∼ 1
512π3

(t− l)3(8t2 + 9lt+ 3l2)
t5ϵ6 ,

F
(n)
F0iF1i

(θ1 − θ2) = F
(n)
F1iF0i

(θ1 − θ2) ∼ 15
1024π3

(t2 − l2)2

t4ϵ6 ,

F
(n)
F0iF1i

(θ1 − θ2 + 2π) = F
(n)
F1iF0i

(θ1 − θ2 + 2π) ∼ − 15
1024π3

(t2 − l2)2

t4ϵ6 .

(B.8)

They have the property F (n)
IJ (θ) = F

(n)
IJ (−θ), and due to the periodicity of the n-

sheeted Riemann surface, they all satisfy F (n)
IJ (θ) = F

(n)
IJ (θ±2πn). The ϵ dependence

of the other propagators are of order O(ϵ−5), therefore they do not give an effect to

the Rényi EE growth.
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O ∆S(n)
A

E1 or B1
1

1−n log
((

− (ℓ+t)2(ℓ−2t)
4t3

)n
+
(

(t−ℓ)2(ℓ+2t)
4t3

)n)
E2,3 or B2,3

1
1−n log

((
−ℓ3−3ℓt2+4t3

8t3
)n

+
(
ℓ3+3ℓt2+4t3

8t3
)n)

Table B.1: ∆S(n)
A [O] in the region 0 < l ≤ t

They are related as,

F
(n)
FijFij

(θ1 − θ2) + F
(n)
FijFij

(θ1 − θ2 + 2π) = F
(1)
FijFij

(θ1 − θ2),

F
(n)
F0iF1i

(θ1 − θ2) + F
(n)
F0iF1i

(θ1 − θ2 + 2π) = 0,

F
(n)
F1iF0i

(θ1 − θ2) + F
(n)
F1iF0i

(θ1 − θ2 + 2π) = 0,

(B.9)

where n ≥ 2, i, j = 2, 3, 4, 5.

B.2 Examples of Rényi EE Growth in 4 Dimen-

sion

In the following sections, we give explicit examples of Rényi EE growth for Maxwell

theory in 4 spacetime dimensions.

B.2.1 Single Operator Excitation

We start with the case of excitation generated by single operator Ei or Bj. This is

the easiest and simplest gauge invariant case of excitation. The result for excitations

by inserting Ei or Bj is summarized in table B.1.

Due to the ϵ dependence of propagators, only the next neighbours’ propagators

contribute to the Rényi EE growth ∆S(n)
A . Therefore, we have only two patterns of

diagrams to evaluate Rényi EE growth ∆S(n)
A for integer n ≧ 2. This can be seen in

the resulting function, where we have only two terms with the power of n.
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The Rényi EE growth ∆S(n)
A that is summarized in the table B.1 is plotted in

figure B.1. The vertical axis is ∆S(2)
A , and the horizontal axis is t/ℓ. We can see

that, the Rényi EE growth ∆S(2)
A is zero until the point t/ℓ = 1. Then it starts to

increase and approaches a certain value in both cases, E1(B1) or E2,3(B2,3). The

late time limit (t/ℓ → ∞) of Rényi EE growth ∆S(n)
A gives

∆S(n)
A [E1] = ∆S(n)

A [B1] = − 1
n−1 log

(
1
2

)n−1
= log 2,

∆S(n)
A [E2,3] = ∆S(n)

A [B2,3] = − 1
n−1 log

(
1
2

)n−1
= log 2.

(B.10)

Thus, the limit t/ℓ → ∞ in Fig B.1 agrees in both cases, and they are log 2. Equation

(B.10) also shows that the late time limit (t/ℓ → ∞) of the EE ∆S(1)
A is

∆S(1)
A = log 2 (B.11)

for these cases.

The time dependence around t ∼ ℓ is also interesting as refered to in the main

text. As in figure B.1, the Rényi EE growth ∆S(n)
A of excitation with E2,3 or B2,3

increases faster then the excitation with E1 or B2. The behaviour of Rényi EE

growth ∆S(n)
A around t/ℓ = 1 ( for n ≧ 2 ) is as follows,

∆S(n)
A [E1] = ∆S(n)

A [B1] ∼ n
n−1

3
4

(
t
ℓ

− 1
)2
,

∆S(n)
A [E2,3] = ∆S(n)

A [B2,3] ∼ n
n−1

3
4

(
t
ℓ

− 1
)
,

(B.12)

where we omit the higher ϵ dependences. The physical understanding is explained

in the main text.

Note that the result respects the electric-magnetic duality, which is the replace-

ment of Ei → −Bi and Bi → Ei.

B.2.2 Composite Operators

Here we show the time dependence of the Rényi EE growth ∆S(n)
A in composite

operator case. First, we will give the case of combinations,

EiEi,EiEj,BiBi,BiBj,EiBi,EiBj (B.13)

69



2 4 6 8 10
t / l0.0

0.2

0.4

0.6

0.8

ΔSA
2

Figure B.1: The time evolution of the Rényi EE growth ∆S
(2)
A for E1(B1) and E2,3(B2,3). The

horizontal and vertical axes correspond to the time t/l and Rényi EE growth ∆S
(2)
A , respectively.

The lower line and upper line corresponds to the Rényi EE growth ∆S
(2)
A for the excitation with

field operator E1(B1) and E2,3(B2,3), respectively.

where i ̸= j.1 In this case, we get a higher value for the Rényi EE growth ∆S(n)
A in

the late lime limit t → ∞ than in the case of a single operator, and their value in

the limit is different.

The result is summarized in table B.2 and B.3. In all cases case except for E2B3

and B2E3, ∆S(n)
A is given in the form

∆S(n)
A = − 1

n− 1
log

[
N1 +N2 +N3

D1

]
, (B.14)

where Ni, i = {1, 2, 3} is given in the table B.2, and the functions f1, f2, f3, f4 in the

table are

f1 = −(ℓ− 2t)(ℓ+ t)2

64t3
,

f2 = (ℓ+ 2t)(ℓ− t)2

64t3
,

f3 = ℓ3 + 3ℓt2 + 4t3

128t3
,

f4 = −ℓ3 − 3ℓt2 + 4t3

128t3
.

(B.15)

1In the expression (B.13), no sum is taken over the repeated indexes.
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O D1 N1 N2 N3

E2
1 or B2

1

(
2
(

1
16

)2
)n (

2 (f1)2
)n (

2 (f2)2
)n

22n (f1f2)n

E2
2,3 or B2

2,3

(
2
(

1
16

)2
)n (

2 (f3)2
)n (

2 (f4)2
)n

22n (f3f4)n

E1E2,3 or E1B2,3

or B1E2,3 or B1B2,3
(

1
16

)2n
(f1)n (f3)n (f2)n (f4)n (f2)n (f3)n + (f1)n (f4)n

E2E3 or B2B3
(

1
16

)2n
(f3) 2n (f4) 2n 2 (f3) n (f4) n

E2B2 or E3B3

((
1
16

)2
)n

(f3) 2n (f4) 2n 2 (f3) n (f4) n

E1B1
(

1
16

)2n
(f1) 2n (f2) 2n 2 (f1) n (f2) n

Functions f1 = − (ℓ−2t)(ℓ+t)2

64t3 f2 = (ℓ+2t)(ℓ−t)2

64t3 f3 = ℓ3+3ℓt2+4t3
128t3 f4 = −ℓ3−3ℓt2+4t3

128t3

Table B.2: ∆S(n)
A [O] = 1

1−n log
[
N1+N2+N3

D1

]
in the region 0 < ℓ < t.

O D1 N1 N2 P1 P2 P3

E2B3 or B2E3
(
22
(

1
4·8

))
(2g2

1 + 2g2
3)n (22g2

2 + 2g2
4)n 22ngn2 g

n
3 22ngn1 g

n
4 0

Table B.3: ∆S(n)
A [O] = − 1

n−1 log
[
N1+N2+P1+P2+P3

D1

]
in the region 0 < ℓ < t.

We have again as the result a sum of functions in the power of n. The time evolution

of the Rényi EE growth for the excited state of E1E1 and E2E2 is shown in figure

B.2, as well as for E1E2, E2E3 and E1B1 in B.3. In both cases, we see that the time

evolution is slower if the excitation includes more operators in x1 direction.

For E2B3 and B2E3, we have the expression

∆S(n)
A = − 1

n− 1
log

[
N1 +N2 + P1 + P2 + P3

D1

]
, (B.16)

where the functions Ni, Pi are listed in the table B.3, using functions gi defined as

g1 = (ℓ+ t)3

4 · 64t3
,

g2 = (t− ℓ)3

4 · 64t3
,

g3 = (ℓ+ t) (l2 − 4ℓt+ 7t2)
4 · 64t3

,

g4 = (t− ℓ) (ℓ2 + 4ℓt+ 7t2)
4 · 64t3

.

(B.17)
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Figure B.2: The time evolution of ∆S
(2)
A for E1E1 and E2E2. The horizontal and vertical axes

correspond to time t/ℓ and the excess of ∆S
(2)
A , respectively. The lower curve represents the

evolution for E1E1, and the upper curve for E2E2. In the limit t → ∞, they are all log 8
3 .

The time evolution of E1E2,E2E3,E1B1 is shown in figure B.3, based on the

results listed in the table B.2. We can again see that ∆S(n)
A is 0 until the time t = ℓ,

and then its value starts to increase.

In the late late time limit t → ∞, ∆S(n)
A and ∆S(1)

A differs depending on how the

state is excited. For the excitation EiEj or BiBj, when i = j the value is

∆S(n)
A = − 1

1 − n
log 4n

2n + 2
, (B.18)

∆S(1)
A = 3

2
log 2 (B.19)

and when i ̸= j, it is

∆S(n)
A = ∆S(1)

A = 2 log 2 (B.20)

From this result, we observe again that Rényi EE growth ∆S(n)
A are invariant under

the transformation Ei → −Bi and Bi → Ei.

Finally, we evaluate the linear combination of composite operators, including the

Lorentz invariant combinations. The results are summarized in table B.4, where we

use the same expression in eq. (B.16) with the definition in eq. (B.17). The time

evolution of E2, FµνF µν and B2E3 − B3E2 are displayed in fig B.4. The late time
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Figure B.3: The time evolution of ∆S
(2)
A for E1E2, E2E3 (E2B2) and E1B1. The horizontal and

vertical axes correspond to time t/ℓ and the excess of ∆S
(2)
A , respectively. The curve in the middle

represents the evolution for E1E2, the upper curve for E2E3 (E2B2) and the lower curve for E1B1,

respectively. In the limit t/ℓ → ∞, they are all 2 log 2.

O D1 N1 N2 P1 P2 P3

B2orE2
(

2 · 3
(

1
16

)2
)n

(2f 2
1 + 2 · 2f 2

3 )n (2f 2
2 + 2 · 2f 2

4 )n 22nfn1 f
n
2 22nfn3 f

n
4 22nfn3 f

n
4

B2
1 + E2

1

(
2 · 2

(
1
16

)2
)n

(2 · 2f 2
1 )n (2 · 2f 2

2 )n 22nfn1 f
n
2 22nfn1 f

n
2 0

F µνFµν

(
2 · 2

(
1
16

)2
+ 2 · 42

(
1

4·8

)2
)n

(2 · 2f 2
1 + 2 · 42g1 · g3)n (2 · 2f 2

2 + 2 · 42g2 · g4)n 2 · 22n (f1)n (f2)n 2 · 42n (g1)n (g2)n 2 · 42n (g3)n (g4)n

or B · E

B2E3 −B3E2

(
4 · 2

(
1

4·8

)2
)n

(2 · 2g2
3 + 2 · 2g2

1)n (2 · 2g2
4 + 2 · 2g2

2)n 22n (g3)n (g2)n 22n (g1)n (g4)n 0

Functions g1 = (ℓ+t)3

4·64t3 g2 = (t−ℓ)3

4·64t3 g3 = (ℓ+t)(ℓ2−4ℓt+7t2)
4·64t3 g4 = (t−ℓ)(ℓ2+4ℓt+7t2)

4·64t3

Table B.4: ∆S(n)
A [O] = 1

1−n log
[
N1+N2+P1+P2+P3

D1

]
in the region 0 < l < t

value of them varies. For excitations E2
1 +B2

1 , the late time value is log 4. For E2B3

or E3B2, the late time value of ∆S(n)
A is given by

∆S(n)
A = − log(21−6n(7n + 25n)

n− 1
. (B.21)

When we have the excitations with B · E or FµνF µν ,

∆S(n)
A = 1

n− 1
log

(
26n−13n

16n + 30n + 49n + 1

)
, (B.22)

and for the case of B2E3 − B3E2,

∆S(n)
A = − log(21−7n(2 · 7n + 50n))

n− 1
. (B.23)
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Figure B.4: The time evolution of E2, F µνFµν and B2E3 −B3E2. The horizontal and vertical axes

correspond to time t/ℓ and the excess of ∆S
(2)
A respectively. The curve which is asymptotically

in the middle represents the evolution for E2, the one which is asymptotically on top for F µνFµν ,

and the one which is asymptotically lowest for B2E3 − B3E2, respectively.

We can see from fig B.4, that for each case we have a different late time value. The

excitation with B2E3 − E2B3 has the smallest late time value, but when we look at
t
ℓ

∼ 1 the same excitation has the strongest increase of entanglement. Physically,

this can be understood since that excitation is the Poynting vector towards the

entangling surface.
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