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Abstract

Nature is often described by non-linear equations with complicated dynamics.
Therefore, in order to understand the system, it is instructive to focus on their
universal properties. “Critical behavior” is one of the universal properties which
often appears in non-linear equations. It is often observed around boundaries
between two different phases in phase space of the dynamical system. The critical
behavior in gravitational collapse, which is called “critical collapse”, is a typical
example of the critical behavior in dynamical systems with gravity. Let us prepare
a one-parameter family of initial data sets which is parametrized by p and has a
threshold p∗ of black hole formation. Time evolution of the initial data around the
threshold has universal behavior which does not depend on the parametrization of
details of the initial data. In particular, the black hole mass obeys the scaling law
for the initial parameter, and the index does not change even if other families of
the initial data sets are used. These universal behaviors in gravitational collapse
are the critical collapse.

The purpose of this study is to reveal the non-trivial phase space structure
in the Einstein-scalar field theory with double-well potential by using critical be-
haviors. Since the scalar field with double-well potential might exist in the early
universe, many researchers have been studied the effect of the scalar field on cos-
mology, from various viewpoints. Therefore, to understand fundamental dynamical
properties of the scalar field is important. The scalar field with the double well
potential without gravity has longevity localized solutions, which are called “oscil-
lon”. The oscillons have many different phases in which its typical behaviors are
qualitatively different. It is known that the critical behavior appears around the
boundary of the phases. It is expected that the oscillons and its critical behavior
appear in the Einstein-scalar field theory with double-well potential. Therefore,
the system also is interesting as a research of the critical behavior.

Firstly, we examine the critical behavior in gravitational collapse of a spheri-
cally symmetric domain wall, which is a boundary between the two different vac-
uum regions, and discuss the effect of the potential on the behavior. As a result,
we find that the critical behavior appears in the domain wall collapse, and the
behavior is similar to that in the gravitational collapse in a massless scalar field,
in our parameter region. The index of the mass scaling also takes a similar value
to the index of the critical behavior in a massless scalar field.

Secondly, we analyze the critical behavior in oscillons. The oscillons are longevity,
localized, and time-dependent solution of the scalar field with double-well poten-
tial. Since it is possible that the oscillons were produced during the reheating after
the inflation, it is meaningful to understand the fundamental properties of oscil-
lons. It is known that there are many phases of the oscillons in the phase space.
The lifetime of the oscillons diverges logarithmically around the boundary between
the phases, and the time scale of the divergent behavior does not depend on the
details of the initial data. In this study, we construct the oscillons in relatively



weak gravity cases, and examine the properties and the effect of the self-gravity on
the critical behavior. As a result, we show that modulations appear in the lifetime
of the oscillon around the boundary between the phases due to self-gravity, and a
new type of the critical behavior appears.
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Notation

• metric of spacetime: g(= (−,+,+,+)).

• 3-metric : γ

• covariant derivative of the metric g : ∇
In this thesis, we use a covariant derivative associated with Levi-Civita con-
nection, which has the following properties.

1. linearity :

∇µ(αv
ν···
··· + βuν······) = α∇µv

ν···
··· + β∇µu

ν···
···. (1)

2. Leibnitz rule :

∇µ(v
ν···
···u

ρ···
···) = (∇µv

ν···
···)u

ρ···
··· + vν······∇µu

ρ···
···. (2)

3. action for scalar quantity:

∇µf = ∂µf, (3)

where f is a scalar function.

4. torsion free :
∇µ∇νf = ∇ν∇µf. (4)

5. metric condition:
∇µgαβ = 0. (5)

From above conditions, we have

∇µv
ν = ∂µv

ν + Γν
µρv

ρ, (6)

∇µvν = ∂µvν − Γρ
µνvρ, (7)

where Γν
µρ is a Levi-Civita connection, which is given as

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν). (8)

• covariant derivative of the 3-metric γ : D
D also satisfies above five conditions.
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• Riemann tensor associated with g

Rγ
ναβ = ∂αΓ

γ
βν − ∂βΓ

γ
αν + Γγ

µαΓ
µ
βν − Γγ

µβΓ
µ
αν (9)

• Ricci tensor
Rαβ = Rµ

αµβ (10)

• Ricci scalar
R = Rµνg

µν (11)

• We denote the Riemann tensor, Ricci tensor and Ricci scalar in 3-dim hyper-
surface as 3Ri

jkl,
3Rij, and

3R.

• Einstein tensor : Gµν

Gµν := Rµν −
1

2
gµνR, (12)

• Energy momentum tensor

Tµν = − 2√
−g

δSm

δgµν
(13)

• Einstein equations
Gµν = 8πTµν , (14)

• Greek indices α, β · · · run over 0, 1, 2, 3, and the Latin indices i, j · · · run
over 1, 2, 3.

vii



Chapter 1

Introduction

Many important equations describing gravity and elementary particles are non-
linear. The non-linearity often plays an important role in non-trivial solutions of
the non-linear equations. In general, the solutions are complicated, and analyses
of them are difficult. Their universal properties give us many vital clues to un-
derstanding the non-linear equations. Some of non-linear equations have many
phases in their phase space, which are classified by typical time evolution of the
equations. “Critical behavior” is one of the universal properties which often is
observed around the boundary between two different phases. Critical behavior in
gravitational collapse, which is called “critical collapse” is a typical example of the
critical behavior.

Gravitational collapse is one of the most important phenomena predicted in
general relativity (GR). Gravity affects all objects and is an attractive force which
is proportional to the mass of the object. Gravitational collapse is the process in
which a large mass object implodes due to the self-gravity. If a repulsive force which
is stronger than the self-gravity does not effectively work during the gravitational
collapse, a black hole is formed. A black hole is a strong gravity region from
which nothing can escape, and it is a distinctive object in GR. Physics of black
hole gives us many guides to understand the properties of GR, test the theory,
and so on. Therefore, to study a black hole is important. Gravitational collapse
is one of the black hole formation processes. The time evolution is described by
non-linear equations, and the analysis is complicated. Since critical collapse is
universal feature of the non-linear equations, it gives us useful insights into the
dynamics.

Critical collapse often is observed in several systems with gravity. In general,
evolution equations describing gravitational collapse has two typical phases in the
phase space. One is a black hole formation phase, and another is a no black hole
formation phase. The critical collapse observed around the boundary between
the two phases. It was firstly discovered in gravitational collapse of a massless
scalar field by Choptuik [3]. Let us consider a one-parameter family of initial data
sets which is parametrized by p. We assume that the parameter p characterizes
the initial energy of the scalar field, and there is a threshold p∗ of a black hole
formation. That is, if p is larger than p∗, the final state of the gravitational collapse
is a black hole. On the other hand, if p is less than p∗, after the gravitational
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collapse, the black hole is not formed, and the scalar field dissipates. Under this
setup, Choptuik examined the behavior of the gravitational collapse around the
threshold and found the following remarkable properties: (1)The intermediate
state of the gravitational collapse around the threshold p∗ does not change, even
if other one-parameter families of initial data sets with the threshold are used.
This universal intermediate state is called a “critical solution”. (2)In the massless
scalar field case, the critical solution has a discrete self-similarity. The definition
of a discrete self-similarity is given in Sec.2. (3)Around the threshold p∗, the black
hole mass M obeys the scaling law;

M ∝ |p− p∗|ν , (1.1)

where ν is about 0.374 and this value is independent of choice of the one-parameter
family of the initial data sets. After the Choptuik’s discovery, similar behaviors
were found in many gravitational systems. It is shown that the critical behavior
of the gravitational collapse is associated with the existence of a co-dimension one
attractor in the phase space of the system, and there are a few types of the critical
collapse.

If a system has a co-dimension one attractor in the phase space, the critical
behavior appears in the system even without gravity. The typical example is
the critical behavior of an oscillon. Oscillons are localized, longevity, and time-
dependent solutions of a scalar field with some non-linear potential. A typical
example of the potential is a double-well potential. Oscillons of the scalar field
with the double-well potential can be formed from the initial data which has a
large energy of the scalar field. Here, let us prepare a family of the initial data
set which is parametrized by p. When the initial parameter p is tuned around the
critical value p∗, the critical behavior of the oscillon appears, and the lifetime τ of
the oscillon obeys the following scaling law;

τ ≃ −γ ln |p− p∗|+ C, (1.2)

where γ and C are constants. p∗ corresponds to the boundary at which the typical
dynamical behavior changes, that is, it is a boundary between two phases in the
phase space. Since the critical behavior appears in not only the gravitational
collapse but also the system without gravity, the classification of the type of the
critical behavior and understanding which system shows the critical behavior gives
us much insight into the non-linear equations.

The purpose of this study is to reveal the non-trivial phase space structure
in the Einstein-scalar field theory with double-well potential by using critical be-
haviors. The scalar field with the double-well potential might exist in the early
universe, and many researchers have been studied the effect of the scalar field on
the universe, from various viewpoints. To discuss the effect of the scalar field, we
must understand fundamental dynamical properties of the scalar field. Further-
more, since it is expected that the theory has a complicated phase space structure,
and the system is instructive to understand the critical behavior. It is expected
that at least two critical behaviors appear in the system. The first critical behavior
is that in the gravitational collapse. The second critical behavior is that of the os-
cillon under the weak gravity case. In this thesis, we focus on the following points
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in each critical behavior. For the critical behavior of the gravitational collapse, we
focus on the influence of the double well potential on the critical collapse. For the
critical behavior of the oscillon, we focus on the effect of self-gravity of the oscillon
on the critical behavior of the oscillon.

Firstly, we examine the critical behavior in the gravitational collapse. We use
spherically symmetric domain wall solutions as a family of an initial data set.
The domain wall is an object which appears on a boundary of two spatial regions
in which the scalar field stays different vacua of the potential. The spherically
symmetric domain wall which radius is large has large energy. On the other hand,
one which radius is small has small energy. If the initial radius of the domain
wall is very large, after the collapse, a black hole is formed. If the initial radius of
the domain wall is small, after the collapse, the black hole is not formed, and the
scalar field dissipates. Therefore, there is a threshold of the black hole formation
for the radius of the domain wall, and it is expected that the critical collapse
appears around the threshold. In this study, we examine the gravitational collapse
of the spherically symmetric domain wall around the threshold of the black hole
formation and show that the critical collapse appears. Furthermore, it is shown
that the critical collapse of the spherically symmetric domain wall is similar to
the one of the Einstein-massless scalar field theory. The result means that the
structure of phase space which is related to the critical collapse is similar to the
one in the case of the Einstein-massless scalar filed theory, at least in our parameter
region.

Secondly, we focus on critical behavior in an oscillon of the Einstein-scalar field
theory with the double-well potential. As is mentioned above, the oscillon solution
exists in the scalar field theory with the double-well potential in the Minkowski
background, and when the initial parameter is fine-tuned to critical value, the
critical behavior in the lifetime of the oscillon appears. Therefore, it is expected
that in the weak gravity case of the Einstein-scalar field theory with the double well
potential, the oscillon solutions exist, and the critical behavior appears. In this
study, we examine the oscillon in the Einstein-scalar field theory with the double-
well potential, and the critical behavior, and show that the oscillon naturally
appears in the theory. Furthermore, it is shown that a new type of the critical
behavior may appear. The result means that the gravity changes the structure of
the phase space which is associated with the critical behavior of the oscillon.

This thesis is organized as follows: In chap.2, we review the fundamental prop-
erties of the critical behavior, the standard picture by using the phase space, and
other developments. Chap.3 is devoted to the critical behavior in the domain wall
collapse. and chap.4 is devoted to the critical behavior of the oscillon.
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Chapter 2

Fundamental properties of critical
behavior

In this chapter, we review fundamental properties of the critical behavior in non-
linear dynamical systems [1, 2].

2.1 Critical behavior in gravitational collapse

Critical behavior in gravitational collapse, which is often called “critical collapse”,
is firstly discovered with sophisticated numerical simulations of the Einstein-massless
scalar field theory in a spherically symmetric spacetime by M.Choptuik in 1993 [3].
After the Choptuik’s discovery, many researchers observed similar behavior. Let
us introduce the Choptuik’s original work.

He considered a spherically symmetric gravitational collapse in the Einstein-
massless scalar field theory and used the areal radius as a radial coordinate (the
polar-radius coordinates). Then, the line element is

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2d2Ω, (2.1)

where α is the lapse function. α and a are functions of t and r. The Einstein
equations are expressed as

(Φ′)· =
(α
a
Π
)′
, (2.2)

Π̇ =
1

r2

(
r2
α

a
Φ′
)′
, (2.3)

α′

α
=

a′

a
− 1− a2

r
, (2.4)

a′

a
= −a

2 − 1

2r
+ 2πr(Π2 + Φ′2), (2.5)

where the dot and the prime denote the t-derivative and the r-derivative, respec-
tively. Π is defined as Π ≡ aΦ̇/α, where Φ is the scalar field. His numerical method
consists of two steps : (1) The scalar field Φ is evolved forward in time by using
Eqs.(2.2-2.3). (2) The lapse function α and a in next time step are determined
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by solving Eqs.(2.4-2.5) along the radial direction from the center. When Eq.(2.5)
is solved, the regularity condition a(r = 0, t) = 1 is imposed. The scheme, in
which the constraint equations are solved in each time step is so called a “fully
constrained” scheme. As will be discussed in App.A.2.1, the origin in spherically
symmetric spacetime often becomes a source of numerical instability, and we must
pay the attention to numerical schemes for stability in the origin. He overcame
the numerical instability by using the above fully constrained scheme.

Let us prepare a one-parameter family of initial data sets which has a parameter
p characterizing the strength of the initial energy of the scalar field, and suppose
that p has a threshold p∗ of a black hole formation, that is, a black hole finally
is formed for p > p∗ (supercritical region) and the black hole is not formed and
the scalar field dissipates for p < p∗ (subcritical region). Under this setup, he
examined the gravitational collapse of the family of initial data set and discovered
the following interesting phenomena: (1) Near the threshold, the intermediate
state of the time evolution does not change, even if other one-parameter family of
initial data sets with the threshold is used. This intermediate state is a so called
“critical solution”. The profile of the scalar field of the critical solution is denoted
by Φ∗. (2)The critical solution has a discrete self-similar symmetry, that is, the
profile of the scalar field Φ∗(t, r) satisfies

Φ∗(t, r) = Φ∗(e
∆t, e∆r), (2.6)

where ∆ ≃ 3.44. (3)In the supercritical region, the black hole mass MBH obeys
the scaling law

MBH ∝ |p− p∗|ν , (2.7)

where ν ≃ 0.374, and this value does not also change, even if other one-parameter
family of initial data sets with the threshold is used. Above three properties were
founded by Choptuik, and are called “critical collapse”.

After the Choptuik’s discovery, many researchers have analyzed the critical
collapse, and there are a lot of progress. Here, we explain three developments of
them. The first development is that the critical behavior was found in gravitational
collapse of many other matter coupled to gravity. Abraham et al. [4] observed
the critical behavior of a vacuum axisymmetric gravitational collapse. Recently,
E.Sorkin [5] also studied the critical collapse in the system, in more detail. Evans
et al. [6] discovered the critical behavior in gravitational collapse of a radiation
fluid. According to their studies, the index of the mass scaling is about 0.37, which
is close to the observed value in the massless scalar case. On the other hand, the
property of the critical solution is different. Although the critical solution of the
critical behavior in the massless scalar collapse has a discrete self-similarity, the
critical solution in a radiation fluid has a continuous self-similarity. Furthermore,
Maison [7] showed that in the perfect fluid collapse case, the index of the mass
scaling depends on the parameter of the equation of state. In addition, Garfinkle
et al. [8] and Sorkin [9] showed that the index of mass scaling depends on the
spacetime dimension, in the massless scalar case.

The second development is that a fine structure of mass scaling for the critical
collapse of the massless scalar theory was found. C.Gundlach predicted the fine
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structure from the discrete self-similarity of the critical solution [10] and Hod at
al [11] checked it numerically. The mass behavior which was predicted by them is

lnMBH = ν ln |p− p∗|+ f(ln |p− p∗|) + C, (2.8)

where f(x) is a periodic function satisfying f(x+ϖ) = f(x), and C is a constant.
The period ϖ is about 4.6, and this value also does not change, even if other
one-parameter family of initial data sets with the threshold is used. The third
development is to clarify the reason why the behavior does not change even if the
one-parameter family of initial data sets changes. We will explain it in the next
section.

2.2 Renormalization group approach

Koike et al. [12] showed that the universality of the critical collapse is related to
a structure of the phase space in the case of a radiation fluid. In this section, we
summarize their statement.

Let us consider spherically symmetric gravitational collapse of a radiation fluid.
Firstly, we prepare a one-parameter family of initial data sets which is labeled by
p, and focus on the critical solution which appears as the intermediate state of
the gravitational collapse around the threshold of black hole formation p∗. Since
the critical solution of this system has a continuous self-similar solution, there is
a homothetic vector field ξ, which satisfies Lξgµν = −2gµν (see App.C). There
is a coordinate (τ, x, θ, ϕ) adopted to the homothety. In the coordinate, the τ
dependence of the metric is determined as gµν(τ, x, θ, ϕ) = l2e−2τ ḡµν(x, θ, ϕ), where
l is the constant which has a length scale, and the homothetic vector is given as
ξ ≡ ∂

∂τ
. Let us introduce another coordinate (t, r, θ, ϕ), which is defined as

t ≡ −le−τ , (2.9)

r ≡ −tx. (2.10)

From the definition of t, the region which is spanned by the coordinate (τ, x, θ, ϕ)
corresponds to the region of t < 0. The line element can be expressed as

ds2 = l2e−2τ (Adτ 2 + 2Bdτdx+ Cdx2 + F 2dΩ2), (2.11)

= (A+ 2xB + x2C)dt2 + 2(B + xC)dtdr + Cdr2 + t2F 2dΩ2, (2.12)

where A,B,C, F are functions of x. Furthermore, we can take the areal-polar
gauge after an appropriate coordinate transformation of (t, r). In the areal-polar
gauge, we can get the final state of the spacetime. On the other hand, since the
region which is spanned by the coordinate (τ, x, θ, ϕ) corresponds to the region of
t < 0, the coordinate does not cover the final state, in general. If we can set p = p∗
exactly, the spacetime approaches the critical solution as τ → ∞ which is t = 0.
On the other hand, the spacetime around the threshold p∗ approaches the critical
solution, and after that, the spacetime starts to go away from the critical solution.

Here, we denote the dynamical variables as Z(t, r) = {“metric function”, “matter”}
or Z(τ, x), and consider a perturbation around the critical solution which is spanned
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Figure 2.1: The phase space structure.

by the coordinate (τ, x, θ, ϕ). The spherically symmetric gravitational collapse of
the radiation fluid has following important properties.

• The equations of motion do not have a typical scale.

• The linear perturbations around the critical solution has a unique grow-
ing mode, and other modes are decaying modes. That is, when the per-
turbation modes which are determined from the linear homogeneous dif-
ferential equations under the appropriate boundary conditions is denoted
as δZ(i) = eκ(i)τZp(i)(x), Re(κ1) > 0, and Re(κi) < 0 for i > 1. Re(κ1)
is called “Lyapunov exponent”. This means that the critical solution is a
co-dimension one attractor in the phase space. The attractor plane of the
critical solution is called “critical surface” or “stable manifold”.

Focusing on these properties, we consider the time evolution of the initial data
around the threshold. Since the intermediate state approaches the critical solution,
the state in this stage can be approximated as a sum of the critical solution and
the perturbation around it;

Z(τ, x) ≃ ZCS(x) +
∑
i

Ci(p)e
κ(i)τZp(i)(x), (2.13)

where ZCS(x) denotes the critical solution, and Ci(p) is a coefficient of each pertur-
bation mode which depends on the initial parameter. From the second property,
i = 1 mode grows and dominates later, that is, total variable Z(τ, x) is given as
follows:

Z(τ, x) ≃ ZCS(x) + C1(p)e
κ(1)τZp(1)(x). (2.14)

If the initial parameter p is exactly equal to p∗, the spacetime approaches the
critical solution, and the perturbation mode Zp(1)(x) does not dominate. Therefore,
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when p = p∗, the coefficient Ci(p) must vanish, and we have

C1(p) = C̄1(p− p∗) +O((p− p∗)
2), (2.15)

where C̄1 is a constant. By using this expression, we get

Z(τ, x) ≃ ZCS(x) + C̄1(p− p∗)e
κ(1)τZp(1)(x). (2.16)

Let us define τp as a typical time in which the second term dominates, that is;

|C̄1(p− p∗)|eRe(κ(1))τp = ϵ, (2.17)

where ϵ is a fixed small constant. From this equation, τp is given as

τp = −Re(κ(1))
−1 ln |p− p∗|+ const. (2.18)

The state at τ = τp is of the form

Z(τp, x) ≃ ZCS(x)± ϵZp(1)(x), (2.19)

where the plus sign corresponds to the supercritical case, and the minus sign
corresponds to the subcritical case. Going back to the coordinate (t, r), we have

Z(t(τp), r) ≃ ZCS(
r

Lp

)± ϵZp(1)(
r

Lp

), (2.20)

where Lp is defined as

Lp ≡ le−τp . (2.21)

The important point of Eq.(2.20) is that the profile depends on only r/Lp. From
the first property, the equation of motion does not have the typical length scale
and the time evolution after this stage can be described as

Z(t, r) = f±(
t

Lp

,
r

Lp

), (2.22)

where the subscript ± denotes a supercritical (+) and a subcritical (−). In the
supercritical region, a black hole appears after the intermediate state. Because the
black hole mass M has a length scale, it is proportional to Lp, that is

M ∝ Lp ∝ |p− p∗|Re(κ(1))
−1

. (2.23)

This is just a scaling law, and we have

ν =
1

Re(κ(1))
. (2.24)

Therefore, the index of the mass scaling law is related to the Lyapunov exponent
of the system, and this is the origin of the universality of the index of the mass
scaling.

In [12], in order to check that the above picture is correct, they constructed
the critical solution in the gravitational collapse of radiation fluid and calculated
the Lyapunov exponent, and finally, showed that the index which was given in [6]
is related to the Lyapunov exponent in Eq.(2.24). In the case of the other system,
the validity of above picture also has discussed (see App.D).
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2.3 Further developments

In this subsection, the further developments are discussed.

2.3.1 Curvature scaling in subcritical region

The above picture of the critical behavior shows that the several quantities which
have a length scale obey the scaling law. Therefore, it is expected that the scaling
law of such quantities in a subcritical region also obeys the scaling law. In fact,
in Ref. [13], Garfinkle et al. examined the critical collapse in massless scalar field,
and showed that the maximal value of the curvature at the center Rmax obeys the
scaling law;

Rmax(p) = −2ν ln |p∗ − p|+ f(ln |p− p∗|), (2.25)

where ν is about 0.374 and the function f(x) is a periodic function with the period
about 4.6.

2.3.2 Type of critical behavior

In Sec.2.2, it was shown that the critical behavior deeply is related to the structure
of the phase space in the system. In particular, Eq.(2.20) means that the symme-
try of the critical solution is associated with the time evolution after the critical
solution. In Einstein-massless scalar field theory, the critical solution has a discrete
self-similarity and the behavior of the black hole mass obeys the scaling law with
a wiggle. These points are different from the radiation fluid case and it implies
that the discrete self-similarity is related to the wiggle around the mass scaling.
In Ref. [10], Gundlach examined the critical collapse in a massless scalar field, and
showed that the discrete self-similarity is associated with the wiggle around the
mass scaling. Furthermore, he derived the following relation between the period
of the wiggle ϖ and the period of the discrete self-similarity ∆;

ϖ =
∆

2ν
. (2.26)

In fact, this relation is satisfied in the case of critical collapse in massless scalar
field. We discuss the detail of the relation in App.D.2.

Today, it is known that there are mainly two types of the critical collapse, and
these are called “type I critical behavior” or “type II critical behavior” from the
analogy of the phase transition. In the case of “type I critical behavior”, the black
hole mass does not converge to zero at the threshold, and the time τ until the
black hole formation obeys the scaling law;

τ = ν ln |p− p∗|+ C, (2.27)

where ν is a constant which is universal with respect to the parameterization of
a family of the initial data set, and C is a constant (see App.D.1). The critical
solution of type I critical behavior is a static solution, time-periodic solution, or
long lifetime solution.
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On the other hand, type II critical behavior can be divided into two cases.
In the gravitational collapse of the perfect fluid, the black hole mass around the
threshold obeys the scaling law;

MBH ∝ |p− p∗|ν , (2.28)

and, the critical solution has a continuous self-similarity. In this case, these behav-
iors are called type II critical behavior associated with the continuous self-similar
solution. In the Einstein-massless scalar field theory, the black hole mass obeys
scaling law with wiggle, that is

lnMBH = ν ln |p− p∗|+ f(ln |p− p∗|), (2.29)

where f(x) is a periodic function satisfying f(x+ϖ) = f(x). The critical solution is
a discrete self-similar solution. This is called the type II critical behavior associated
with the discrete self-similar solution.

2.3.3 Phase diagram

As is mentioned in the above subsection, it is known that there are type I and type
II critical behaviors. In the case of type II critical behavior, it is important that
the equation of motion does not contain the typical scale parameter. Therefore,
it is expected that type II critical behavior does not appear in Einstein-massive
scalar field theory. However, actually, in the Einstein-massive scalar field theory,
the type of the critical collapse depends on the family of the initial data set, and
we can get a nontrivial phase diagram for the critical behavior [15,16]. Generally,
even if a theory has a typical length scale, when the scale becomes the dynamically
irrelevant, type II critical behavior can appear.

Here we summarize the result of [15, 16]. They considered the gravitational
collapse in the Einstein-massive scalar field theory, and assumed that the initial
data have two parameters w and A. w is a typical width of the profile of the
scalar field, and A is an amplitude of it. Then, the type of the critical behavior
for initial parameter A depends on the ratio of the Compton wavelength of the
scalar field to w. When the Compton wavelength is larger than w, the type II
critical behavior appears. On the other hand, when the Compton wavelength is
shorter than w, type I critical behavior appears. Furthermore, it is known that
the oscilaton in this system plays an important role in this phase diagram. The
oscilaton is a solution which is a longevity and localized solution in the Einstein
massive scalar field theory [17]. It is known that the critical collapse in a SU(2)
Yang-Mills field also have such a non-trivial phase diagram [18].

2.3.4 Non-spherically symmetric spacetime

As was mentioned in Sec.2.2, an important point of the critical behavior is that
the critical solution has only one growing perturbation mode. Therefore, even
if the critical collapse appears in a spherically symmetric spacetime, the question
whether the critical collapse appears in a non-spherically symmetric spacetime is a
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non-trivial problem. In order to resolve the time evolution of the critical collapse,
high-resolution numerical simulation is needed, and it is hard to calculate the time
evolution of the critical collapse beyond the spherically symmetric spacetime.

J.M.Martin-Garcia et al. [19] constructed the critical solution of the critical
collapse of a massless scalar field and examined non-spherical perturbations around
the critical solution. As a result, they showed that all non-spherical perturbation
modes around the critical solution are decaying modes. Therefore, the critical
solution in the spherically symmetric spacetime is also the critical solution of the
critical collapse in the non-spherically symmetric spacetime. After their analysis,
the numerical simulation of the critical collapse in axisymmetric spacetime was
performed by Choptuik, at al. [20]. Their numerical simulation predicted that an
unstable non-spherical perturbation mode exits. The existence of such a mode
is conflict with the result of [19]. Although they discuss whether the unstable
non-spherical perturbation mode is a numerical artifact, they did not conclude it.
Furthermore, the numerical simulation of the critical collapse in the axisymmetric
spacetime with angular momentum was examined in Ref. [21]. The critical collapse
beyond axisymmetric spacetime were also studied [22].

2.4 Critical behavior of the oscillon

In Sec.2.2, the origin of the critical collapse is the non-trivial structure of the
phase space. Therefore, if the non-linear system without gravity has a similar
phase structure, the system also has the critical behavior. In this section, as such
an example, we introduce a critical behavior of a ocsillon in a scalar field with
double well potential in the Minkowski background.

Oscillons are a localized, time-dependent and longevity solutions of a scalar
field with a non-linear potential on the Minkowski background [48, 49]. Although
the lifetime of these solutions is long, it is finite. The simple form of the potential
of the scalar field is a double-well potential1:

V (Φ) =
1

4
(Φ2 − 1)2. (2.34)

1In general, the double-well potential of a scalar field Φ̃ is given as

V (Φ̃) =
λ

4
(Φ̃2 − σ2)2, (2.30)

where λ and σ are constants. Here, the dimensionful polar coordinate of Minkowski spacetime
is denoted as (t̃, r̃, θ, ϕ). We have Eq.(2.34) and Eq.(2.35) by the following redefinition:

t = mt̃, (2.31)

r = mr̃, (2.32)

Φ = Φ̃/σ, (2.33)

where m is defined as m =
√
λσ2. In this section, we use the dimensionless quantities t, r,Φ.

Each dimensionful quantities are given by using Eqs.(2.31)-(2.33).
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The equation of motion of the scalar field is given as

∂2

∂t2
Φ =

(
∂2

∂r2
+

2

r

∂

∂r

)
Φ− V ′(Φ), (2.35)

where V ′(Φ) is the Φ derivative of the potential. The lifetime of oscillons of this
potential has about 103 − 104. When the scalar field inside and outside of the
closed region are different vacuum, the boundary of the region is called a bubble.
Oscillons generally can be formed by the bubble collapse. Therefore, after the
inflation, the fluctuation of the inflaton field might lead to form the oscillons.

Here, to explain the fundamental properties of the oscillon, let us consider the
time evolution of the oscillon. The initial data on which we focus here is a Gaussian
bubble, as follows:

Φ(t = 0, r) = −1 + 2e−r2/r20 , (2.36)

where r0 is a radius of the Gaussian bubble. For the purpose of comparison of
the oscillon with a solution of a massive scalar field, we solve the time evolution
of the Gaussian bubble in the massive scalar field. In this case, we can solve the
equation, analytically, and have an envelope of the scalar field at the origin decay
as t−3/2. Therefore, in the massive scalar field, the amplitude of the scalar field
decreases monotonically.

On the other hand, we numerically examine the evolution of the Gaussian
bubble of the scalar field with the double-well potential. In order to understand
the typical evolution, let us focus on the time evolution of the energy of the scalar
field inside the sphere which has the large radius and of the scalar field at the
origin (see Fig.2.2). From the left panel of Fig.2.2, the amplitude of the scalar
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Figure 2.2: The evolution of the scalar field the origin, and the energy inside the
sphere.

field does not decrease monotonically but modulates. This behavior is one of the
features of the oscillons. From the right panel of Fig.2.2, there are three phases in
the time evolution. In the first phase, the energy of the scalar field in the sphere
decrease. After the energy is reduced, the second phase appears. Here, this phase
is called an “oscillon phase”. In the second phase, the energy is almost conserved,
and is about 44. This value is the oscillon’s energy, and it does not depend on r0.
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After the oscillon phase, the scalar field dissipates, soon. Even if the initial data is
the Gaussian bubble, there are the cases in which the oscillon does not appear (see
Fig.2.3). The necessary condition for oscillon formation is that the initial energy
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Figure 2.3: The evolution of the scalar field the origin, and the energy inside the
sphere.

of the scalar field is larger than the oscillon energy.
Next, let us explain the critical behavior of the oscillon. The critical behavior

of the oscillon was found in Ref. [50,51]. They examined the relation between the
oscillon’s lifetime and the initial bubble radius, in detail. As a result, they found
the resonant behavior in the relation. That is, when r0 is tuned to some value r0∗,
the lifetime τ of the oscillon obeys the scaling law:

τ ≃ −γ ln |r0 − r0∗|. (2.37)

Around the r0∗, the number of the modulation of the scalar field changes. That
is, if the number of modulation is n in r0 < r0∗, it is n + 1 or n − 1 in r0 > r0∗.
The critical solution corresponds to r0 = r0∗. It is known that the fine structure
appears repeatedly. Since the powers of the scaling are different in each resonant
behavior, the critical solutions are different.

2.5 Einstein-scalar field theory with double-well

potential

In this study, we consider the Einstein-scalar field theory with a double-well po-
tential, which action is given as:

S =

∫
d4x

√
−g
{
R

16π
− 1

2
∇µΦ∇µΦ− V (Φ)

}
, (2.38)

where Φ is a scalar field, and gµν is the metric of the spacetime. R is the scalar
curvature with respect to gµν . V (Φ) is the double-well potential, which is given as
follows:

V (Φ) =
λ

24
(Φ2 − σ2)2, (2.39)

13



where λ and σ are constants. In this system, there are two remarkable solu-
tions. The first solution is a domain wall solution. The domain wall is one of the
topological defects which may play an important role in the early universe. The
fundamental properties of the domain wall are summarized in Sec.2.5.1. The sec-
ond solution is the oscillon which is a longevity time-dependent localized solution.
As was mentioned in Sec.2.4, the scalar field with the double-well potential in
Minkowski background allows an oscillon profile. Therefore, at least, in the weak
gravity limit, it is expected that the oscillon can appear after the bubble collapse.

The Einstein-scalar field theory with the double-well potential is similar to
the Einstein massive scalar field theory in following two points. The first similar
point is that there is a typical length scale in the action, which is 1/σ

√
λ. The

second similar point is an existence of a longevity localized solution. In the case
of the scalar field with double-well potential, the solution is the oscillon, and in
the case of the massive scalar field, the solution is an oscillaton [17]. As was
mentioned in Sec.2.3.3, the oscillaton and the typical length scale of the system
play an important role in the nontrivial phase diagram for the critical collapse in
the massive scalar field. Therefore, in the Einstein-scalar field theory with the
double-well potential, the nontrivial phase diagram also may appear in the critical
behavior of the gravitational collapse.

The goal of this study is to clarify the characteristic structure of the phase
space of this system through the critical behavior of the gravitational collapse and
the oscillons. As a first step, we examine the critical collapse of this system in
Chap.3. Secondly, we analyze the properties of the oscillons in weak gravity case
and its critical behavior in Chap.4.

In the following, we summarize the fundamental behavior of the domain wall
in flat spacetime.

2.5.1 Domain wall in flat spacetime

A domain wall is one of topological defects. Other examples of topological defects
are a cosmic string, monopole, and texture. Topological defects are solutions of
the scalar field which has a nontrivial vacuum structure. The homotopy of the
vacuum manifold of the potential determines which topological defect appears.
Such a scalar field is often suggested in the field theory beyond the standard model
of the particle physics. Therefore, the topological defect may exist in the early
universe, and in order to understand the role of the domain wall in the universe, it
is important to understand the dynamical properties of topological defects coupled
with gravity.

Here, we summarize the fundamental properties of the domain wall. When the
potential of the scalar field has two disconnected vacua, the domain wall profile
may exist. A typical example of the potential is a double-well potential:

V (Φ) =
λ

24
(Φ2 − σ2)2, (2.40)

where λ and σ are the parameters. ±σ correspond to the vacua of the potential.
When the scalar field stays different vacuum in two spatial regions, the boundary
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of the regions become the domain wall. Ignoring the effect of the gravity for
simplicity, we have the field equation as follows:(

− ∂2

∂t2
+∇2

)
Φ = V ′(Φ). (2.41)

Let us focus on the domain wall which is static and spread along x and y-direction.
Then, the scalar field satisfies

∂2

∂z2
Φ = V ′(Φ). (2.42)

The solution of this equation is

Φ(x, y, z, t) = σ tanh

(
z − z0
l

)
, (2.43)

where l is the width of the domain wall, which is given by

l =
2

σ

√
3

λ
. (2.44)

This profile expresses the static planar domain wall which spreads along x and
y-axis. The energy-momentum tensor of the scalar field is given as

Tµν = −
(σ
l

)2
diag(−1, 1, 1, 0). (2.45)

In the above discussion, the effect of the self-gravity is neglected. However,
when the energy of the domain wall is large, the self-gravity of the domain wall
cannot be neglected. Then, we must analyze the time evolution of the Einstein-
scalar field theory with the double-well potential.
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Chapter 3

Critical behavior of domain wall
collapse

In this chapter, we consider the critical collapse of the domain wall in the Einstein-
scalar field theory with the double well potential, and examine the influence of the
double well potential on the critical collapse.

3.1 Numerical scheme

In this section, we explain the formulation and the numerical scheme which are
used in the study.

3.1.1 Formulation

We consider the Einstein-scalar field theory with double-well potential. The La-
grangian of this system is given as Eq.(2.38). From the Lagrangian, we have the
equation of motion;

Gµν = 8πG

(
−1

2
gµν(∇Φ)2 +∇µΦ∇νΦ− gµνV (Φ)

)
, (3.1)

∇2Φ = V ′(Φ), (3.2)

where V (Φ) is the double-well potential Eq.(2.39).
The line element of the spherically symmetric spacetime based on the ADM

formalism can be rewritten as:

ds2 = −α2dt2 + γrr(dr + βrdt)(dr + βrdt) + γθθd
2Ω, (3.3)

where α, βr, γrr and γθθ are the lapse function, the radial component of the shift
vector, the (r, r) component of the spatial metic, and (θ, θ) component of the
spatial metric, respectively. These variables are the function of t and r. The solid
angle element dΩ2 is defined as

dΩ2 = dθ2 + sin2 θdϕ2. (3.4)
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In this study, we do not use the variable α, βr, γrr and γθθ as the numerical
variable, but we decompose these variables referring to BSSN formulation. By
using the conformal decomposition, ψ is defined as

ψ(t, r) =

(
det(γij)

det(γ̄ij)

) 1
12

, (3.5)

where γ̄ij is defined as:

γ̄ij = diag(1, r2, r2 sin2 θ). (3.6)

By using ψ, the conformal metric is defined as:

γ̃ij = ψ−4γij. (3.7)

From Eqs.(3.6)(3.7), the determinant of γ̃ij becomes;

det(γ̃ij) = r4 sin2 θ. (3.8)

Therefore, the component of γ̃ij can be parameterized as follows:

γ̃ij = diag(γ−2, γr2, γr2 sin2 θ), (3.9)

where γ is a function of t and r. Therefore, the line element of the spacetime can
be expressed as

ds2 = −α2(t, r)dt2 + ψ4(t, r)
{
γ(t, r)−2(dr + rβ(t, r)dt)2 + γ(t, r)r2dΩ2

}
,

(3.10)

where β is defined as β ≡ βr/r. The extrinsic curvature Kij of the spherically
symmetric spacetime has two independent components, that is Krr and Kθθ. I use
the following variables as the numerical variables:

K ≡ γijKij, (3.11)

A ≡
Kθθ − 1

3
Kγθθ

ψ4r2
, (3.12)

From Einstein equations, we get the following evolution equations:

(∂t − rβ∂r)ψ =
1

6
ψ(3β + rβ′ − αK), (3.13)

(∂t − rβ∂r)K = α

{
1

3
K2 + 6

A2

γ2
+ 8πΠ2 − 8πV (Φ)

}
−ψ−4γ2

{
∆α + 2α′(

ψ′

ψ
+
γ′

γ
)

}
, (3.14)

(∂t − rβ∂r)γ = −2αA− 2

3
rγβ′, (3.15)

(∂t − rβ∂r)A = αKA− 2α
A2

γ
− 2

3
rAβ′ + ψ−4

{
−1

6
γ3(∆α− 3α′′)− 1

3
αγ3(

∆ψ

ψ
− 3

ψ′′

ψ
)
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−1

6
α(1 + γ)∆γ +

1

6
α(1 + γ + γ2)γ′′ − 1

3
α(1 + γ + γ2)(−γ − 1

r2
+
γ′

r
)

+
1

6
α′γ2γ′ −4

3
α′γ3

ψ′

ψ
+

1

3
αγ2γ′

ψ′

ψ
− 2αγ3

ψ′2

ψ2
+

8

3
παγ3Φ′2

}
, (3.16)

where a prime denotes the derivative with respect to r. From the equation of
motion of the scalar field, we have

(∂t − rβ∂r)Φ = −αΠ, (3.17)

(∂t − rβ∂r)Π = αΠK − ψ−4αγ2
{
∆Φ+ 2Φ′(

γ′

γ
+
ψ′

ψ
+
α′

2α
)

}
+ αV ′(Φ),

(3.18)

where Π is the conjugate momentum of Φ. The Hamiltonian constraint and the
momentum constraint are written as

∆ψ

ψ
+

1

8
(5
∆γ

γ
− 3

γ′′

γ
) + πΦ′2 + 2πγ−2ψ4V (Φ)

+
(γ2 + γ + 1)(γ − 1)

4γ3r2
+
γ′

γ
(2
ψ′

ψ
+

3

16

γ′

γ
) +

ψ4

γ2
(
3A2

4γ2
+ πΠ2 − 1

12
K2) = 0,

(3.19)

A′ +
γ

3
K ′ + 4πγΠΦ′ +

3A

r
+
Aγ′

2γ
+ 6A

ψ′

ψ
= 0.

(3.20)

As is discussed in App.A.2.1, we must pay attention to the boundary condition
at the origin. The 1/r and 1/r2 terms in the evolution equations and constraint
equations are regularized by the boundary condition. However, even if the bound-
ary conditions are imposed, these terms may become the origin of the numerical
instabilities at the center. In this study, in order to avoid the numerical instability,
we evaluate the Hamiltonian constraint Eq.(3.19) by using the following auxiliary
field;

Γ ≡ γ′ +
3

r
(γ − 1). (3.21)

By using Γ, the Hamiltonian constraint becomes

∆ψ

ψ
+

1

8
(5
∆γ

γ
− 3

γ′′

γ
) + πΦ′2 + 2πγ−2ψ4V (Φ) +

γ2 + γ + 1

8γ3
(∆γ − 1

3
γ′′ − 2

3
Γ′)

+
γ′

γ
(2
ψ′

ψ
+

3

16

γ′

γ
) +

ψ4

γ2
(
3A2

4γ2
+ πΠ2 − 1

12
K2) = 0.

(3.22)

Furthermore, the evolution equation for Γ is

(∂t − rβ∂r)Γ = α
γ′

γ
A+ 8παγΠΦ′ + 12αA

ψ′

ψ
+

2

3
αγK ′ − 2α′A− 8

3
γβ′

+
1

3
rγ′β′ − 2

3
rγβ′′ + βΓ. (3.23)
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We monitor the violation of Hamiltonian constraint (3.19) and (3.21) during the
time evolution. Furthermore, we do not solve the Eq.(3.16), but solve the Momen-
tum constraint Eq.(3.20) for A at each time step.

3.1.2 Boundary condition

To calculate the time evolution, the boundary condition must be imposed. The
boundary conditions of the spherically symmetric spacetime are discussed in Sec.A.2.1.
In this study, the boundary condition at the outer region is asymptotically Minkowski
spacetime. As was mentioned in Sec.A.2.1, we must pay attention to the boundary
condition at the origin. At first, in order that the fields are smooth at the origin,
the Neumann boundary conditions are imposed on several variables:

ψ′|r=0 = K ′|r=0 = γ′|r=0 = A′|r=0 = Φ′|r=0 = Π′|r=0 = 0. (3.24)

Furthermore, in order that the metric is conformally flat around the center, we
have

γ(t, r = 0) = 1, A(t, r = 0) = 0. (3.25)

The right-hand side of the evolution equations and constraint equations are regu-
larized by the local flatness conditions Eq.(3.25). Therefore, these conditions make
1/r, 1/r2 terms finite value. If these conditions are imposed on the initial data,
and evolution equations can be exactly solved, the local flatness condition is kept
for every time step. However, when the evolution equations are solved, numeri-
cally, these conditions can be violated due to the numerical error. Then, the 1/r,
1/r2 terms may become the origin of numerical instability. As was discussed in
the previous subsection, in order to avoid this instability, we define Γ and use the
momentum constraint instead of the evolution equation of A.

3.1.3 Gauge conditions

In order to calculate the time evolution, we must impose the gauge conditions for
the lapse function and the shift vector. In this subsection, we impose them.

For the shift vector, we use the normal coordinate:

β(t, r) = 0. (3.26)

For the lapse function, we choose the Maximal slice condition. The maximal slice
condition implies that the extrinsic curvature vanishes at all time;

K(t, r) = 0. (3.27)

Imposing this equation on the evolution equation of K, we have the condition for
the lapse function:

∆α + 2α′(
ψ′

ψ
+
γ′

γ
) = αψ4γ−2

{
6
A2

γ2
+ 8πΠ2 − 8πV (Φ)

}
. (3.28)

This equation is solved with the boundary condition α′|r=0 = 0 at each time
step. Since this equation is invariant under the transformation: α → kα, we can
normalize α so that α is unity at the outer region.
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3.1.4 Numerical scheme

As was mentioned in above subsection, we use the maximal slice condition and
normal coordinate condition. Therefore, from Eq.(3.13), ψ does not evolve. In our
numerical code, evolution equations Eqs.(3.15)(3.16)(3.17)(3.18)(3.23) are solved
by using the iterative Crank-Nicolson scheme. Furthermore, in order to overcome
the numerical instability, the spatial derivatives in r < 0.01/µ are evaluated by
using the 2nd order central difference, and the spatial derivatives in r < 0.01/µ are
evaluated by using the 4th order central difference. Since the Laplacian is singular
around the center, following method is used:

∇2u =
u(x+∆h, y, z)− 2u(x, y, z) + u(x−∆h, y, z)

∆h2

+
4

∆h2
(ũ(

√
x2 +∆h2, y, z)− u(x, y, z)), (3.29)

for 2nd order accuracy, and

∇2u =
−u(r + 2∆) + 16u(r +∆)− 30u(r) + 16u(r −∆)− u(r − 2∆)

12∆2

+
−ũ(

√
r2 + 4∆2) + 16ũ(

√
r2 +∆2)− 15u(r)

3∆2
, (3.30)

for 4th order accuracy. The value ũ is evaluated by using the Lagrange interpola-
tion.

3.2 Initial data

In this section, we discuss the construction of the initial data.
In this study, we use the spherically symmetric, static domain wall as the initial

data. Then, the profile of a scalar field is assumed to be the following form:

Φ(r, t = 0) = σ tanh

(
r − r0
l

)
+ σ

{
−1− tanh

(
r − r0
l

)}
exp

{
−
(r
l

)4}
,

(3.31)

where r0 is the initial radius of the domain wall, and l is the width of the domain
wall which is given as

l =
2

σ

√
3

λ
=

√
2

µ2
. (3.32)

Fig.3.1 shows the schematic picture of the profile of the scalar field. The first term
in Eq.(3.31) corresponds to the domain wall profile. As r0 becomes large, the first
term approaches to the planar domain wall solution. The second term regularizes
the scalar field at the origin: ∂rΦ(t = 0, r = 0) = 0. The static condition of the
initial data means that

K(t = 0, r) = A(t = 0, r) = Π(t = 0, r) = 0. (3.33)
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Figure 3.1: Initial profile of the scalar field.

The spatial components of the metric is assumed to be conformally flat, that is

dh2 = ψ4
(
dr2 + r2dΩ2

)
. (3.34)

In other words, γ is unity on the initial data;

γ(t = 0, r) = 1. (3.35)

Since the initial data is momentary static, the momentum constraint equation
Eq.(3.20) is trivially satisfied. The profile of the conformal factor ψ is determined
from the Hamiltonian constraint Eq.(3.19)

3.3 Inhomogeneous grid

It is expected that the critical collapse appears around the threshold of black hole
formation. Since the curvature in the visible region becomes very large during the
critical collapse, the high numerical resolution is needed. There are some methods
for high-resolution numerical simulation. In this study, we use the inhomogeneous
grid method. Inhomogeneous grid method is a coordinate transformation from
original coordinate to new coordinate in which the region where high-resolution
needed is zoomed up. We use the following coordinate transformation from original
coordinate r̃ to new coordinate r:

r =

{
r̃ (0 < r̃ < R),

r̃ +
(
r̃−R
w

)ρ
(R < r̃),

(3.36)

where R, w and ρ are constant parameters (see Fig.3.2). The following parameters
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Figure 3.2: Inhomogeneous grid.

in the inhomogeneous grid are used:

Param− 1 : R = 0.1/µ, w = 0.05/µ, ρ = 6, 0 < rµ < 0.2, (3.37)

Param− 2 : R = 0.03/µ, w = 0.01/µ, ρ = 6, 0 < rµ < 0.05, (3.38)

In both cases, the maximum value of the areal radius is abount 60/µ.

3.4 Result

In this section, we summarize the convergence check of our numerical code and
our numerical results.

3.4.1 Convergence

Let us discuss the convergence of our numerical code. Here, we focus on the
convergence of the value of the scalar field at the origin. If it obeys the n-th order
convergence, we have

Φ0(t,∆) = Φt(t) + η∆n, (3.39)

In our numerical code, time evolution is calculated by using the iterative Crank-
Nicolson scheme and the spatial derivatives are determined by using 2nd or 4th
order central difference. Therefore, our numerical code is totally 2nd order accu-
racy, and it is expected that at least n is greater than 2. The convergence of our
numerical code is plotted in Fig.3.3 From Fig.3.3, we have n ≃ 3.5.

3.4.2 Threshold of black hole formation

As was mentioned above, the initial data is the static spherically symmetric domain
wall. This initial data has one parameter which is a radius of the domain wall.
Additionally, the double-well potential of this system has two parameters: λ, σ.
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Figure 3.3: The convergence of Φ0(t,∆) for each time step.

The width l of the domain wall is naturally given as l = (2/σ)
√
3/λ =

√
2/µ2,

where µ ≡
√

2λ/3σ. In this study, all variables are expressed in the unit of µ.
Therefore, the relevant parameter in the potential is λ.

We examine dynamics around the black hole formation threshold in the case of
λ = 1000µ2 and λ = 2000µ2. As a result of the numerical simulation, the threshold
r∗ in each case are as follows:

r∗ ≃ 1.4556243366/µ for λ = 1000µ2, (3.40)

r∗ ≃ 2.199078357/µ for λ = 2000µ2. (3.41)

Table 3.1 shows the parameter setting for each simulation.
There is a parameter region in which the final state cannot be determined for

λ = 2000µ2. In this region, the lapse function diverges at the origin during the
time evolution. This behavior may be resolved by using the other slice condition.
Since this region is not near the threshold, it is not important to investigate the
critical behavior.

3.4.3 Mass scaling and the fine structure

In this study, the black hole mass MBH is defined as the half of the apparent
horizon at the moment of the apparent horizon formation. As a result of our
numerical simulation, we have a relation between the initial domain wall radius
and the black hole mass, which is shown in Fig.3.4. Fig,3.4 implies that the relation
between obeys the scaling law, which index is close to one in the massless scalar
case. This means that the critical collapse appears in the domain wall collapse,
and the behavior is similar to one of the Einstein-massless scalar system.
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λ = 1000µ2

Sub/Super critical Initial domain wall radius [µ−1] Grid interval [µ−1] Param-1/2
Super 2.500000000 ∼ 1.455625000 5.0× 10−5 Param-1
Super 1.455624950 ∼ 1.455624600 2.5× 10−5 Param-1
Super 1.455624500 ∼ 1.455624350 1.0× 10−6 Param-2

Sub 1.455624200 ∼ 1.455624000 1.0× 10−6 Param-2
Sub 1.455623500 ∼ 1.440000000 5.0× 10−5 Param-1

λ = 2000µ2

Sub/Super critical Initial domain wall radius [µ−1] Grid interval [µ−1] Param-1/2
Super 4.200000000 ∼ 2.216000000 5.0× 10−5 Param-1
Super 2.206000000 ∼ 2.199162000 5.0× 10−5 Param-1

Terminated 2.215000000 ∼ 2.207000000 Terminated
Super 2.199160000 ∼ 2.199078380 2.0× 10−5 Param-1
Super 2.199078377 ∼ 2.199078367 5.0× 10−6 Param-2

Sub 2.199078332 ∼ 2.199077000 5.0× 10−6 Param-2
Sub 2.199076000 ∼ 2.199010000 2.5× 10−5 Param-1
Sub 2.199000000 ∼ 2.194000000 5.0× 10−5 Param-1

Table 3.1: Table of the parameter region and the grid interval of our numerical sim-
ulation. The leftmost column shows whether the parameter is in the supercritical
region or the subcritical region. The rightmost column represents the parameter
of the inhomogeneous grid (see Eq.(3.37)).
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Figure 3.4: The relation between the black hole mass which is defined by using
the apparent horizon and the initial domain wall radius. The horizontal line is
the initial parameter around the threshold, and the vertical line is the black hole
mass in log scale. The result of λ = 1000µ2 is plotted in the left panel, and the
result of λ = 2000µ2 is plotted in the right panel. In both panels, the numerical
data corresponds to red points. The black line corresponds to the scaling law
MBH = ζ|(r0 − r∗)µ|ν , which index ν is determined by using the least squares
fitting in the region ln |(r0 − r∗)µ| < −5. As a result, for λ = 1000µ2, ζ ≃ 0.564,
ν ≃ 0.370 and for λ = 2000µ2, ζ ≃ 0.905, ν ≃ 0.388.

Furthermore, the fine structure around the scaling law is observed. In order to
see the fine structure, the difference between the black hole mass and the scaling
law is shown in Fig. 3.5. Fig.3.5 shows that MBH oscillates around the scaling
law. The period of the fine structure is about 4.5 in log scale, which is also close
to the one of the massless scalar case.

3.4.4 Mass discontinuity

As is shown in Fig.3.5, the black hole mass discontinuously changes with respect
to the initial domain wall radius. In order to understand this behavior, let us focus
on the time evolution of the trapped region (see Fig.3.6). Fig.3.6 shows the time
evolution of the trapped region for the initial data which initial parameter is close
to the one of mass discontinuity point. Apparent horizon is an outermost boundary
of the trapped region in each time. Fig.3.6 implies that there are two disconnected
trapped regions at the moment of the apparent horizon formation. In this study,
since black hole mass is defined from the areal radius of the apparent horizon at
the moment of the apparent horizon formation, the black hole mass depends on
which trapped region appears first. In the case of r0 = 2.1991670/µ (upper panel
in Fig.3.6), the apparent horizon at the moment of the formation is given from
the upper shaded region. On the other hand, in the case of r0 = 2.1991700/µ
(lower panel in Fig.3.6), the apparent horizon at the moment of the formation
is given from the lower shaded region. This dependence is the origin of the mass
discontinuity. The mass discontinuity of the critical collapse is reported in massless
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Figure 3.5: The difference between MBH which is given from our numerical sim-
ulations and the scaling relation ζ|(r0 − r∗)µ|ν . The left panel shows the case
λ = 1000µ2, and the right panel shows the case λ = 2000µ2. We can observe the
periodic behaviors in ln |(r0 − r∗)µ| ≲ −9. The periods are about 4.5 in the log
scale.
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Figure 3.6: Time evolution of the trapped region in the case of r0 = 2.1991670/µ
(upper), and in the case of r0 = 2.1991700/µ (lower). These two initial parameters
correspond to the boundary of the discontinuity change. The vertical black line
on the each graph corresponds to the moment of the apparent horizon formation.
These graph shows that there are two disconnected trapped region (shaded region).
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Figure 3.7: The relation between |R|max and the initial radius of the domain wall.
The horizontal line is the initial parameter around the threshold, and the vertical
line is |R|−1/2

max in log scale. The red points are the numerical data and the black
line denotes the fitting function ζ|(r∗ − r0)µ|ν .

scalar case [31].

3.4.5 Scaling behavior in the subcritical region

We examine the scaling behavior in the subcritical region. As is reported in [13],
it is expected that the maximal absolute value of scalar curvature |R|max and
|RµνR

µν |max also obeys the scaling law in subcritical region. Fig.3.7 shows the
relation between |R|max and the initial parameter. As is shown in Fig.3.7, |R|max

obeys the following scaling law:

ln |Rmax(p)| = −2ν ln |p∗ − p|+ f(ln |p− p∗|), (3.42)

where ν is about 0.376 for λ = 1000µ2 and 0.371 for λ = 2000µ2. f(ln |p− p∗|) is
a periodic function. The index of the scaling law in the subcritical region is close
to one in the case of a massless scalar system.

So far, it has been shown that the mass scaling in the supercritical region and
the curvature scaling in the subcritical region are close to them in the case of the
gravitational collapse of a massless scalar field. In order to understand why these
behaviors are close to them in the case of a massless scalar field, let us focus on
the absolute maximal value of the conjugate momentum of the scalar field |Π|max

in the subcritical region. The relation between the initial parameter and |Π|max

is depicted in Fig.3.8. From Fig.3.8, |Π|max obeys the following scaling law:

ln |Π|−1
max = ν ln |p− p∗|+ f(ln |p− p∗|), (3.43)

where f(x) is a periodic function, and ν is about 0.37. It implies that |Π|max is
very large around the threshold. This means that the temporal derivative of a
scalar field becomes large, and the kinetic term of the scalar field is larger than
the potential term during the critical collapse. Since the kinetic term dominates
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Figure 3.8: The relation between the absolute maximum value of the conjugate
momentum of the scalar field and the initial radius of the domain wall. The case
of λ = 1000µ2 is plotted in the left panel. The case of λ = 2000µ2 is plotted in
the right panel. In both panel, the horizontal line is the initial parameter around
the threshold, and the vertical line is |Π|−1

max in log scale. Each red(green) point
corresponds to a case in which the maximum absolute value is realized by a positive
(negative) value of the conjugate momentum. |Π|max can be fitted by the function
ζ|(r∗ − r0)µ|−ν (black line). By using the least squares fitting, ν is given by 0.374
for λ = 1000µ2, and 0.370 for λ = 2000µ2.

over the potential term during the critical collapse, the critical behavior is close
to the massless scalar case.

3.5 Result

Here, we summarize the critical behavior of the domain wall collapse. In this
study, we examined the gravitational collapse of the domain wall in the case of
λ = 1000 and λ = 2000. As a result, in supercritical region, scaling law of the
black mass and the fine structure around the scaling law were observed (see Fig.3.4,
Fig.3.5, and Eq.(2.29)). Furthermore, in the subcritical region, we showed that
the absolute maximum value of the scalar curvature obeys the scaling law with the
wiggle (see Fig.3.7 and Eq.(3.42)). In these behaviors, the index of the scaling and
the period of the fine structure are close to them in the gravitational collapse of the
massless scalar field. In order to understand why these values are similar to them
in the gravitational collapse of the massless scalar field, we focus on the absolute
maximum value of the momentum conjugate of the scalar field at the origin, and
show that this value also obeys the scaling law (see Fig.3.8 and Eq.(3.43)). As
a result, during the critical collapse, the kinetic term of the scalar field becomes
large, and the potential term can be neglected. Therefore, the critical behavior of
domain wall collapse is similar to the critical behavior of the gravitational collapse
of a massless scalar field.
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Chapter 4

Critical behavior of
self-gravitating oscillon

In this chapter, we examine the critical behavior of the oscillon in Einstein-scalar
field theory with double-well potential in weak gravity case. In this thesis, we call
the oscillon of this theory as self-gravitating oscillon.

4.1 Numerical scheme

4.1.1 Formulation

In this section, we explain the numerical scheme to calculate the time evolution
of self-gravitating oscillon. In order to determine the lifetime of the oscillon,
long time numerical simulation is needed. Thus, we use the G-BSSN (general-
ized Baumgarte-Shapiro-Shibata-Nakamura) formulation which is stable for free
evolution numerical scheme. G-BSSN formulation is the generalization of BSSN
formulation to the case of curvilinear coordinate, and it is known that this for-
mulation is powerful method [32]. G-BSSN formulation in general curvilinear
coordinate is summarized in App. E. In this section, G-BSSN formulation in
spherically symmetric spacetime is discussed.

The metric of general spherically symmetric spacetime can be expressed as:

γij = e4ϕγ̃ij = e4ϕdiag(a, br2, br2 sin2 θ), (4.1)

where a and b depend on t and r. ϕ is defined with the evolution of γ̃(= det(γ̃ij))
and its initial condition. As is summarized in App.E, there are two standard
choices of the evolution of it. The first choice is the Lagrangian type, and the
second choice is the Eulerian type. Furthermore, we use the flat metric under
the polar coordinate (t, r) as a reference metric. As will be mentioned below, we
introduce the inhomogeneous grid. Since the reference metric is also transformed
as a tensor, we assume the following general form:

γ̄ij = diag(ā, b̄r2, b̄r2 sin2 θ), (4.2)
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where ā and b̄ depend on r. Since the reference metric is flat metric, ā and b̄ are
given from the spatial coordinate transformation;

ā = (
∂r

∂rf
)2, (4.3)

b̄ = (
r

rf
)2, (4.4)

where rf is an areal radius of flat metric, that is, the spatial line element of the
reference metric is given as

dl̄2 = ādr2 + b̄r2d2Ω (4.5)

= dr2f + r2f d
2Ω. (4.6)

In the G-BSSN formulation, the extrinsic curvature is decomposed into the
trace part of it which is denoted as K, and the conformal traceless part of it which
is denoted as Ãij. These quantities are defined as

Kij = e4ϕÃij +
1

3
γijK, (4.7)

where K is defined as K ≡ γijKij. From the spherical symmetry, the conformal
traceless part of the extrinsic curvature can be expressed as:

Ãij = diag(A,Br2, Br2 sin2 θ), (4.8)

where A and B are functions of t and r. Nontrivial component of the shift vector
βi and the auxiliary field Λ̃i is a radial component:

βi = (β, 0, 0), (4.9)

Λ̃i = (Λ̃, 0, 0). (4.10)

Λ̃ is defined as

Λ̃ =
a′

2a2
− 1

a
(
b′

b
+

2

r
)− ā′

2aā
+

b̄

āb
(
b̄′

b̄
+

2

r
). (4.11)

The evolution equations of the G-BSSN formulation under this coordinate are
expressed as:

∂tϕ = βϕ′ − 1

6
αK + σ

1

6
B, (4.12)

∂ta = βa′ + 2aβ′ − 2αA− σ
2

3
aB, (4.13)

∂tb = βb′ + 2β
b

r
− 2αB − σ

2

3
bB, (4.14)

∂tK = βK ′ −D + α

(
1

3
K2 +

A2

a2
+ 2

B2

b2

)
+ 4πα(E + S), (4.15)

∂tA = βA′ + 2Aβ′ + e−4ϕ
{
−DTF

rr + α(RTF
rr − 8πSTF

rr )
}
+ α

(
KA− 2

A2

a

)
− σ

2

3
AB,
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(4.16)

∂tB = βB′ +
e−4ϕ

r2
{
−DTF

θθ + α(RTF
θθ − 8πSTF

θθ )
}
+ α

(
KB − 2

B2

b

)
+ 2

β

r
B − σ

2

3
BB,

(4.17)

∂tΛ̃ = βΛ̃′ − Λ̃β′ +
1

a
β′′ +

1

ā

(
b̄′

b
+
ā′

2a

)
β′ +

(
ā′′

2aā
− ā′2

2aā2
+

ā′b̄

2ā2b
(
b̄′

b̄
+

2

r
)

)
β

− b̄′

2āb

(
b̄′

b̄
+

4

r

)
β +

2b̄

āb

1

r

(
β′ − β

r

)
− 2

A

a2
α′ + α

(
(
a′

a
− ā′

ā
)
A

a2
+ 2(−b

′

a
+
b̄′

ā
)
B

b2

−4(
b

a
− b̄

ā
)
B

b2
1

r

)
+ 2α

(
6
A

a2
ϕ′ − 2

3

K ′

a
− 8π

1

a
p

)
+
σ

3

(
2Λ̃B +

1

a
B′
)
, (4.18)

where Rrr and Rθθ are the (r, r) and (θ, θ) components of the spatial Ricci tensor,
and Dij, D and B are defined by Dij := DiDjα, D := γijDiDjα and B := D̃kβ

k,
respectively. A superscript TF is the trace-free part of a tensor with respect to
γij, therefore, for a tensor Xij, we have

XTF
rr =

2

3
(Xrr −

a

br2
Xθθ), (4.19)

XTF
θθ =

br2

2a
XTF

rr . (4.20)

B, Drr, Dθθ, Rrr and Rθθ can be expressed as:

B = D̃kβ
k = β′ +

(
a′

2a
+
b′

b
+

2

r

)
β, (4.21)

Drr = α′′ −
(
a′

2a
+ 2ϕ′

)
α′, (4.22)

Dθθ = rα′ b

a
+
r2

2
α′
(
b′

a
+ 4

b

a
ϕ′
)
, (4.23)

Rrr = −4ϕ′′ + 2ϕ′
(
a′

a
− b′

b

)
− 1

2

(
a′′

a
− ā′′

ā

)
+

(
5

4

ā′

ā
− a

2ā

b̄′

b

)(
a′

a
− ā′

ā

)
+

1

2

(
ab̄

āb
− 1

)
b̄′2

b̄2

+a

(
Λ̃′ +

a′

2a
Λ̃

)
+

3

4

(
a′

a
− ā′

ā

)2

+
b̄

b

(
b′

b
− b̄′

b̄

)(
−b

′

b̄
+
ab̄′

āb̄

)
+

1

2

(
b′

b
− b̄′

b̄

)2

+
1

r

(
−4ϕ′ − ab̄

āb
(
a′

a
− ā′
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4ā

b̄′2

b̄

(
1− ab̄

āb
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(4.25)

Furthermore, the constraint equations can be written as{
ϕ′′

a
+
ϕ′2

a
−
(
a′

2a2
− b′

ab
− 2

ar

)
ϕ′
}
eϕ − eϕ

8
R̃ +

e5ϕ

8

(
A2

a2
+ 2

B2

b2

)
− e5ϕ

12
K2 + 2πe5ϕE = 0,

(4.26)

6ϕ′A

a
+
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− a′A

a2
+
b′

b

(
A

a
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b

)
+

2

r

(
A

a
− B

b

)
− 2

3
K ′ − 8πp = 0.

(4.27)

E, p and Sij are energy density, momentum and stress tensor of the matter sector,
respcetively. In our case, these quantities are expressed as:

E := Tµνn
µnν = e−4ϕΠ

2 + Φ′2

2a
+ V (Φ), (4.28)

p := Tνµγ
ν
rn

µ = − ΠΦ′

e2ϕ
√
a
, (4.29)

Srr := Tµνγ
µ
r γ

ν
r =

Π2

2
+

Φ′2

2
− e4ϕaV (Φ), (4.30)

Sθθ := Tµνγ
µ
θ γ

ν
θ = −br

2

2a
(−Π2 + Φ′2)− e4ϕbr2V (Φ). (4.31)

R̃ is the Ricci tensor with respect to γ̃ij, and the expression of R̃ is given as

R̃ =
3a′2

4a3
+

b′2

2ab2
+ Λ̃′ +
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2a
Λ̃− a′′
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− b′′

ab
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b
Λ̃ +
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r
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ab
+ 2Λ̃

)
. (4.32)

The evolution equation of the scalar field Φ and the momentum conjugate of the
scalar field Π can be given as:

∂tΠ = βΠ′ +

(
2

3
αK + 2α

B

b
+ β′

)
Π

+

(
α′

e2ϕ
√
a
+

2αϕ′

e2ϕ
√
a
− α

2e2ϕ
√
a3
a′

+
α

e2ϕ
√
a

b′

b
+

2α

re2ϕ
√
a

)
Φ′ +

α

e2ϕ
√
a
Φ′′ − αe2ϕ

√
a
dV

dΦ
(Φ), (4.33)

∂tΦ = βΦ′ +
α

e2ϕ
√
a
Π. (4.34)

4.1.2 Gauge condition

In order to determine the time evolution, we must impose the gauge conditions for
the lapse function α and the shift vector β. In this study, we impose the harmonic
gauge condition for the lapse function:

∂tα = Lβα−Kα2. (4.35)

For shift vector, we use the normal coordinate:

β = 0. (4.36)
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4.1.3 Boundary condition

In this subsection, we mention the boundary condition.
As was mentioned in Sec.A.2.1, it is necessary to pay attention to the bound-

ary condition at the center of the spherically symmetric spacetime. Firstly, the
condition for the smoothness of the field can be written as:

α′|r=0 = ϕ′|r=0 = K ′|r=0 = Λ̃|r=0 = Φ′|r=0 = Π′|r=0 = 0, (4.37)

a′|r=0 = b′|r=0 = A′|r=0 = B′|r=0 = 0. (4.38)

On the other hand, the following additional conditions for a, b, A and B are
needed;

a|r=0 − 1 = b|r=0 − 1 = A|r=0 = B|r=0 = 0. (4.39)

These conditions guarantee the regularity of left hand side in evolution equations
for A,B, Λ̃. (see Eqs.(4.16)(4.17)(4.18)). As was discussed in Sec.A.2.1, if second
conditions Eq.(4.39) are satisfied on the initial data, evolution equation guarantees
this condition in arbitrary time. However, in the case that the evolution equation
is numerically solved, even if the boundary condition is satisfied initially, numer-
ical error violate this condition, and its violation may be origin of the numerical
instability. In this study, in order to avoid the numerical instability, Eq.(4.37) and
Eq.(4.39) are imposed. In order to explain the boundary condition for a,b, A and
B at r = 0, let us focus on the even function of r at the origin f(r). The boundary
condition of this function is the Neumann boundary condition: f ′|r=0 = 0 (∀t).
Therefore, we have ∂tf

′|r=0 = 0. Using the forward finite differencing, we get the
following formula:

fn+1
1 =

1

3
(4fn+1

2 − fn+1
3 − 3fn

1 + 4fn
2 − fn

3 ), (4.40)

where fn
i denotes the value at the n’s time step and i’s grid number. The grid

i = 0 corresponds to r = 0. Since the boundary conditions Eq.(4.38) for a,b, A
and B are the Neumann boundary condition, the time evolution of these variables
is determined from Eq.(4.40).

Since the spacetime is asymptotically flat, following outer boundary conditions
are imposed:

ϕ(t, rmax) = log

(
1 +

MADM

2rmax

)
, (4.41)

α(t, rmax) = a(t, rmax) = b(t, rmax) = 1, (4.42)

A(t, rmax) = B(t, rmax) = K(t, rmax) = Λ̃(t, rmax) = Π(t, rmax) = 0,(4.43)

Φ(t, rmax) = σ, (4.44)

where MADM is an ADM mass, and rmax is the coordinate value at the outer
boundary.
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Figure 4.1: r and ∂r/∂r̃ are schematically depicted as functions of r̃.

4.1.4 Inhomogeneous grid

Since the oscillon is a longevity dynamical profile, it is necessary to perform the
long-time numerical simulation. In order that the outer numerical boundary does
not affect the properties of the self-gravitating oscillon, we use the inhomogeneous
grid, such that physical radius of the outer boundary is large. In this study, the
following radial coordinate transformation is performed:

∂r

∂r̃
=


1 (0 < r̃ < r̃1)

1 + (−1 + η) {∆4 − (r̃1 +∆− r̃)4}4∆−16 (r̃1 < r̃ < r̃1 +∆)
η (r̃1 +∆ < r̃ < r̃2)

1 + (−1 + η) {∆4 − (r̃2 − r̃)4}4∆−16 (r̃2 < r̃ < r̃2 +∆)
1 (r̃2 +∆ < r̃),

(4.45)

where r̃ is the new radial coordinate, and ∆ and η are parameters of the inhomo-
geneous grid spacing (See Fig. 4.1).

4.1.5 Definition of the Kodama mass and lifetime

In order to examine the relation between the oscillon’s lifetime and the initial
parameter, we define the oscillon’s lifetime. In this study, the lifetime of the oscillon
is defined by using the Kodama mass. Kodama mass is a conserved energy of the
spherically symmetric spacetime. [52,53] In order to define the Kodama mass, let us
introduce the Kodama vector. We focus on the two dimensional manifold charted
by (t, r) whom angular coordinates in four-dimensional manifold are constant.
GAB is a two dimensional metric in the two dimensional manifold. This surface is
a time like surface. The following vector KA in this surface is introduced:

KA = ϵAB∂BR, (4.46)
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where the index A,B denote the coordinate t and r. R is the areal radius of the
2-sphere with constant t and r. ϵAB is defined by ϵAB =

√
−GεAB with the Levi-

Civita tensor εAB, and G is a determinant of GAB. The vectorK
A can be naturally

extended to Kµ in four dimensional manifold. Kµ is called Kodama vector. By
using Kodama vector, we define Sµ as follows:

Sµ = T µνKν , (4.47)

where T µν is the energy momentum tensor of the matter sector. Sµ satisfies the
following conservation law:

∂µ(
√
−gSµ) = 0. (4.48)

This conservation law means that the following quantity M is conserved energy of
this system:

M(t, r0) =

∫
sphere

Stα
√
γdx3, (4.49)

where St is expressed as follows:

St = E
1
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√
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a
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(
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b′

2b
+

1

r

)
− p

1

α

√
b

a
r

(
1

3
K +

B

b

)
. (4.50)

M(t, r0) is called the Kodama mass inside the sphere which radius is r0. Eq.(4.48)
can be expressed as:

∂

∂t
{M(t, r0) + P (t, t0, r0)} = 0, (4.51)

where P (t, t0, r0) is the integrated energy flux though the sphere of the radius r0,
defined by

P (t1, t2; r0) =

∫ t2

t1

dt4παe6ϕa1/2br20S
r|r0 . (4.52)

Sr is given as follows:
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)
(4.53)

In this study, by using the Kodama mass which is defined above, we define the
oscillon’s lifetime. Since the oscillon is a localized profile of the scalar field, r0 can
be assumed to be a larger than the typical radius of the oscillon. The lifetime τ
of the oscillon is defined as:

M(τ ; r0)

M(0; r0)
= ϵ≪ 1. (4.54)

This means that before the lifetime τ , almost energy of the system is confined
inside the sphere of the radius r0, and the energy radiates away from the sphere by
the lifetime τ . We set r0 = 10(λσ2)−1/2 and ϵ = 0.01 and checked that our results
do not depend on the specific value r0 and ϵ.
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Figure 4.2: Convergence check of the L2 norm of Hamiltonian constraint violation
(left panel) and the conservation of the Kodama mass.

4.1.6 Numerical scheme and convergence check

In order to solve the equations of G-BSSN formulation numerically, we develop the
numerical code, which is written in C++. Our temporal integration scheme is iter-
ative Crank-Nicolson scheme, which is 2nd order accuracy. The spatial derivative
is evaluated by using the 2nd order finite difference.

We have performed a test simulation of our numerical code by using the mass-
less scalar collapse. The initial data of the test simulation is as follows:

a(t = 0, r) = b(t = 0, r) = 1, (4.55)

Φ(t = 0, r) = Ae−r2/w2

, (4.56)

where A = 0.2 and w = 0.5. Fig.4.2 shows the convergence of L2 norm of Hamil-
tonian constraint and the conservation of the Kodama mass.

4.1.7 Initial data

In this study, we use the momentary static Gaussian bubble and spatially confor-
mal flat initial data, which is given as:

Φ(t = 0, r) = −σ + 2σe−r2/R2
0 , (4.57)

a(t = 0, r) = b(t = 0, r) = 1, (4.58)

where R0 is a radius of the initial Gaussian bubble. Since the momentary static
condition is imposed on the initial data, the momentum constraint is trivially
satisfied. Solving the Hamiltonian constraint for ϕ numerically, we have the initial
profile of ϕ.

4.2 Numerical result

Under the above ansatz, we have examined the self-gravitating oscillon formation
and its dissipation.
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Figure 4.3: Time evolution of the scalar field Φ(t, r = 0) at the origin. The
left panel shows the envelope of the time evolution of Φ(t, r = 0) in the case of
σ2G = 1.0× 10−3. The right panel shows the time evolution of Φ(t, r = 0) in the
shaded region in the left panel.

This system has one independent parameter σ2G which characterize the strength
of the coupling between the gravity and scalar field. In this study, we have exam-
ined the critical behavior for the oscillon’s lifetime in the case of σ2G = 1.0×10−4,
5.0×10−4, 1.0×10−3 and 2.0×10−3. These values of σ2G correspond to relatively
weak gravity case. Although it is expected that the behavior of the self-gravitating
oscillon in the case of larger value σ2G is different from one of the oscillon in
Minkowski spacetime, as a first step, we have examined the weak gravity case.

In this section, we discuss the typical behavior of the self-gravitating osciillon
and its critical behavior.

4.2.1 Typical behavior

We found that even if the self-gravity of the scalar field is considered, the oscillon
can be formed, generally. In this subsection, the typical behaviors of the oscillon
are discussed.

Although we show the result for σ2G = 1.0 × 10−3, the typical behavior dis-
cussed in this subsection is same as the other value of σ2G. The time evolution of
the scalar field at the origin is depicted in Fig.4.3. Fig.4.3 implies that the scalar
field oscillates with a high-frequency basic oscillating mode, and the envelop of the
scalar field at the origin

In order to examine the time evolution of the high-frequency mode, we define
the period T as the time interval between two neighboring times of Π = 0 and
Π̇ > 0. Fig.4.4 implies that the period of the oscillation of the scalar field decreases,
and when T (λσ2)1/2 becomes about 4.6, the oscillon disappears and the scalar field
dissipates.

Next, let us focus on the time evolution of the Kodama mass inside the sphere
which radius is r0. The time dependence of the Kodama mass is depicted in Fig.4.5.
Fig.4.5 implies that there are mainly three stages. First, after the bubble starts to
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collapse, the Kodama mass rapidly decreases with the scalar field radiation. After
this stage, oscillon forms, and the energy inside the sphere is almost constant
Mosicllon. In this stage, the scalar field is not radiated during this phase. Finally,
the oscillon disappears and the scalar field dissipates.

The energy Mosicllon during the oscillon phase almost does not depends on the
initial bubble radius, and depends on σ2G. The dependence is given in Table.4.1.
Table.4.1 shows that MOscillon is smaller for the larger σ2G. The typical lifetime

Table 4.1: The dependence of MOscillon on σ2G.

σ2G MOscillon(λ
−1/2σ)−1

1.0× 10−4 43
5.0× 10−4 41
1.0× 10−3 40
2.0× 10−3 38

of the oscillon is 103-104(λσ2)−1. Furthermore, when the bubble radius is smaller
than a certain value, the oscillon does not appear. The initial data which initial
bubble radius is smaller than the value has the initial energy which is smaller than
MOscillon. These behavior of the time evolution of the energy and the lifetime are
similar to the ones in the Minkowski background.

4.2.2 Fine structure of the lifetime

In [50], Honda et al. found the critical behavior of the oscillon on Minkowski
background. Their statement is that when the initial bubble radius R0 is fine-
tuned to some value R∗, the lifetime of the oscillon becomes long and obeys the
following scaling law:

τ = −γ ln |R−R∗|+ C, (4.59)

where C and γ are constants. The difference between R0 < R∗ and R0 > R∗
appears in the number of the modulation of the envelope. That is, when the
number of the modulation in R0 < R∗ is n, the number of the modulation in
R0 > R∗ is n+ 1 or n− 1. Since the lifetime of the oscillon obeys the scaling law,
this behavior is an analogy with type I critical behavior of gravitational collapse.

In this study, we examine the critical behavior of the oscillon in Einstein-scalar
theory with double-well potential. Let us focus on the first three fine structures
in each value of σ2G. The relation between the lifetime of the oscillon and the
initial bubble radius is depicted in the left panel of Fig.4.6. The right panel of
Fig.4.6 shows the behavior of the scalar field at the origin which initial parameter
is around the third fine structure. These behavior is similar to the one of the
Minkowski background. We also can found the scaling law (see Fig.4.7). The
relation between the index of the each fine structure and σ2G is depicted in Fig.4.8.
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4.2.3 Fine structure of the scaling law

In the previous subsection, we discuss the scaling law of the lifetime of the oscillon.
Furthermore, we found the fine structure around the scaling law in the case of
σ2G = 2.0 × 10−3. The relation between the lifetime τ and the initial bubble
radius, and the deviation between the lifetime and the scaling law are depicted in
Fig.4.9-4.11. These figures imply that the lifetime of the oscillon oscillates around
the scaling law. The deviation of the lifetime from the scaling law can be fitted
by the following function:

A cos(−2π

T̃
log |(R0−R∗)(λσ

2)1/2|+φ) ≡ τ(R0(λσ
2)1/2)−(−γ log |(R0−R∗)(λσ

2)1/2|)−δ,
(4.60)

where γ and δ are fixed with the fitting with the original scaling relation τ =
γ ln |R0 −R∗|+C, and A and φ are additional fitting parameters, which are fixed
with the least square fitting with fixed γ and δ.

In relation to these oscillations of lifetime, we found a small modulation in the
plateau of the envelope of the scalar field at the center. (see Fig.4.12 and Fig.4.13)
The period T of the oscillation of the scalar field at the origin, the period T̃ of
the fine structure of the scaling law and γ are given as follows;

T̃ ≃ 5.2 T ≃ 380 γ ≃ 73 (for the first peak),

T̃ ≃ 5.2 T ≃ 340 γ ≃ 59 (for the second and third peaks).

These properties are not observed in the case of Minkowski background. Therefore,
the origin of these behaviors is the gravitational effect. These behavior suggest that
the oscillation of the lifetime and the envelop of the critical solution are associated
with a new type of type I critical behavior.

4.2.4 Strong gravity case

In the case of σ2G = 1.0 × 10−4, 5.0 × 10−4, 1.0 × 10−3 and 2.0 × 10−3, after the
oscillon disappears, the scalar field energy does not return to the scalar field at
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Figure 4.10: The left panel shows the relation between the lifetime τ and the
initial bubble radius near the second peak for σ2G = 2.0× 10−3. The right panel
shows the deviation between the lifetime and the scaling law. In order to check
the convergence of the oscillation behavior, we plot the two numerical results with
different grid intervals ∆r.
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Figure 4.11: The left panel shows the relation between the lifetime τ and the
initial bubble radius near the third peak for σ2G = 2.0 × 10−3. The right panel
shows the deviation between the lifetime and the scaling law. In order to check
the convergence of the oscillation behavior, we plot the two numerical results with
different grid intervals ∆r.
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Figure 4.12: The left upper panel shows the time evolution of the envelop of the
scalar field at the origin for the first peak for σ2G = 2.0 × 10−3. The left lower
panel shows the oscillation of the envelope of the scalar filed at the origin in the
shaded region of the upper panel. The right panel represents the convergence of
the modulation in the plateau for different gird intervals ∆r.
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Figure 4.13: The left upper panel shows the time evolution of the envelop of the
scalar field at the origin for the second peak for σ2G = 2.0× 10−3. The left lower
panel shows the oscillation of the envelop of the scalar filed at the origin in the
shaded region of the upper panel. The right panel represents the convergence of
the modulation in the plateau for different gird intervals ∆r.

least until the time when the Kodama mass becomes 0.001 times smaller than the
initial data. On the other hand, in the case of σ2G > 0.002, these are the cases in
which the scalar field returns to center after the oscillon disappears. The example
of the time evolution are depicted in Fig.4.14. Fig,4.14 shows that the energy of
the scalar field return to the center after the oscillon disappear. Since the scalar
field becomes once near the potential minimum after the oscillon disappears, the
nonlinearity of the potential of the scalar field can be neglected. Therefore, the
reason for the return of the energy is the gravitational attraction.

4.3 Result

Here, we summarize the properties of self-gravitating oscillon.
In this study, we considered the oscillon solution in the Einstein-scalar field

theory with double well potential, in weak gravity case. Firstly, we showed that
the self-gravitating oscillon generally can appear after the bubble collapse, and
discussed the time evolution of the osciilon. These typical properties of the self-
gravitating oscillon is similar to one of the oscillon in Minkowski background. Sec-
ondly, the critical behavior of the oscillon was discussed. As a result, we observed
the type I critical behavior in the case of σ2G = 1.0× 10−4, 5.0× 10−4, 1.0× 10−3.
Furthermore, it was shown that the fine structure of the scaling law appears in the
case of 2.0× 10−3 (see Fig.4.9-4.11). This behavior may imply that there is a new
type of the critical behavior.
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Figure 4.14: The time evolution of the envelope of the scalar filed for σ2G =
3.0× 10−3. The upper panel shows the envelope the scalar field at the origin. The
lower panel shows the time evolution of the Kodama mass in the sphere of the
radius r0.
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Chapter 5

Summary

In this study, in oder to reveal the universal properties of time dependent solutions
of the Einstein-scalar field theory with double well potential, we focus on two
different types of the critical behavior in this theory. In Chap.2, we reviewed the
fundamental properties of the critical behavior. Furthermore, we have seen that
the critical collapse reflects to the non-trivial structure of the phase space, and it
appears even in systems without gravity.

In Chap.3, and Chap.4, we have examined that the two critical behaviors in the
Einstein-scalar field theory with double well potential. In Chap.3, gravitational
collapse of a spherically symmetric domain wall was examined, and the critical col-
lapse appears around the threshold of black hole formation. This critical behavior
is similar to one of the gravitational collapse of a massless scalar field. That is,
in the supercritical region, the black hole mass obeys the scaling law with wiggle
around the threshold of the black hole formation. Furthermore, in the subcritical
region, the maximal value of the curvature also obeys the scaling law with wiggle.
The values of the index in the scaling law and the period of the wiggle are close
to them of the massless scalar collapse, respectively.

In Chap.4, we discussed the critical behavior of the self-gravitating oscillons in
relatively weak gravity case. The typical properties of oscillons in the system are
similar to one in the Minkowski background. Furthermore, it was shown that it is
possible that the new type of type I critical behavior appears.

There are two important future works in this study. The first is to investigate
whether the behavior observed in Chap.4 is universal, or not. The critical behavior
is universal behavior which does not depend on the details of the initial data.
Therefore, we must check the universality of the behavior which is observed in
Chap.4. Furthermore, constructing the critical solution, we must confirm that the
solution is a co-dimension one attractor solution, and the critical exponent relates
to the Lyapunov exponent.

The second point is the behavior of the oscillon in the strong gravity case. In
Chap.4, we examined the behavior of the oscillon in relatively week gravity case.
On the other hand, the behavior of the oscillon in strong gravity case may be
interesting. This is because it is possible that the oscillon with the strong self-
gravity may collapse to a black hole, just like the critical behavior of the Einstein-
massive scalar field theory. In the Einstein-massive scalar field theory, the soliton
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star [17] which is a longevity localized solution in the theory can collapse to black
hole, which phase is called delayed collapse phase [16]. There also exits the prompt
collapse phase, and the type I critical collapse appears on the boundary between
the prompt collapse and the delayed collapse. Therefore, if the oscillon in the
Einstein scalar field theory with double well potential can collapse to a black hole,
it is expected that the type I critical collapse appears on the boundary between
the phase in which the oscillon collapse to a black hole and scalar field promptly
collapse to a black hole. The existence of these non-trivial phase may imply the
existence of the non-trivial phase diagram.

These future works are interesting, we expect that they characterize the dy-
namical solution of the Einstein-scalar field theory with double well potential.
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Appendix A

ADM decomposition and the
spherically symmetric spacetime

ADM formulation is a important formulation for numerical simulation of general
relativity. In this appendix, we summarize the ADM formalism.

A.1 ADM formalism

A.1.1 Definition of geometrical quantities

Einstein equations is written as covariant form. On the other hand, in order to
calculate the time evolution, we impose the initial spatial profile at initial data, and
examine the time evolution. Since the general relativity is a gauge theory, Einstein
equations contains the time evolution parts and constraint parts. ADM formalism
gives a method to decompose the Einstein equations into them. This procedure is
called ADM decomposition. Schematic picture of ADM decomposition is given in
Fig.A.1.

We denote M and g as the spacetime and the metric of M, and assume that
M is a globally hyperbolic spacetime. Then, M can be decomposed into a family
of spacelike hypersurfaces Σt with is labeled by t ∈ R. The constant t surface in
the spacetime is a 3-dimensional spatial hypersurface. Σt denotes a 3-dimensional
spatial hypersurface which corresponds to t = const. The initial data is a profile of
physical quantities on Σt0 , and time evolution determine a profile on Σt. Since Σt

is a 3 dimensional spatially hypersurface, it has a metric γ, and the all eigenvalue
of the metric is positive, that is det(γ) > 0. The normalized normal vector n of
Σt is timelike vector, which is given as

nµ = −(∇µt∇µt)−1/2∇µt, (A.1)

where ∇µ is covariant derivative in M.
The projection operator from the vector in M to the vector in Σt is

γαβ = δαβ + nαnβ. (A.2)
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Figure A.1: ADM decomposition of spacetine

γαβ satisfies the following properties;

nαγ
α
β = 0, (A.3)

vαγ
α
β = vβ, (A.4)

where v is a vector on Σt, which is orthogonal to n. 1 These properties show that
γαβ is a projection operator. The following properties show that γαβ is a projection
operator. By using this operator, we can get a relation between 3-metric γ and
4-metric g, that is,

γαβ = γµαγ
ν
βgµν (A.5)

= gαβ + nαnβ. (A.6)

The extrinsic curvature Kαβ which is tensor on Σt and characterize how Σt is
embedded in M is defined as follows;

Kαβ := −γµαγνβ∇µnν . (A.7)

Above definition means that the extrinsic curvature is a derivative of the normal
vector along Σt. From simple calculation, we have

Kαβ = −∇βnα − aαnβ, (A.8)

where aµ is defined as
aµ := nν∇νnµ. (A.9)

The relation between the covariant derivative ∇ associated with g and the
covariant derivative D associated with γ is given as

Dρv
α···
β··· = γαµγ

ν
βγ

σ
ργ · · · ∇σv

µ···
ν···, (A.10)

1In order to define the inner product between v and n, v which is a 3-vector in Σt is extended
to 4-vector in M. We can do it, naturally.
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where v is a tensor in Σt. The derivative D which is written as above definition
satisfies six condition for covariant derivative associated with Levi-Civita connec-
tion; that is, linearity, Leibniz rule, commutativity with contraction, action for
scalar, torsion free, and metric condition for γ. Conversely, we can show that
the derivative which satisfies above condition is unique, and it is just a covariant
derivative associated with Levi-Civita connection.

Original form of Einstein equations composes the curvature of spacetime M.
On the other hand, to calculate the time evolution, it is useful to write the equa-
tions in terms of the curvature of Σt and the extrinsic curvature. The relation
between the curvature of M and the curvature of Σt is called Gauss relation and
Codazzi relation. Gauss relation is

γµαγ
ν
βγ

γ
ργ

σ
δR

ρ
σµν = 3Rγ

δαβ +Kγ
αKδβ −Kγ

βKαδ, (A.11)

γµαγ
ν
βRµν + γαµn

νγρβn
σRµ

νρσ = 3Rαβ +KKαβ −KαµK
µ
β , (A.12)

R + 2Rµνn
µnν = 3R +K2 −KijK

ij, (A.13)

where K is a trace part of Kij. Codazzi relation is

γγρn
σγµαγ

ν
βR

ρ
σµν = DβK

γ
α −DαK

γ
β, (A.14)

γµαn
νRµν = DαK −DµK

µ
α. (A.15)

A.1.2 ADM decomposition of Einstein equations

In this subsection, we decompose Einstein equations into the time evolution part
and the constraint equation part. Since the spacetime M is assumed to be globally
hyperbolic, M can be covered by {Σt}t∈R. Then, we assume that t is a time
coordinate, and ∇µt does not vanish at all point in spacetime. This assumption
means that the different hypersurfaces Σt and Σt′ (t ̸= t′) do not have intersection.
The normalized normal vector n of Σt is

nµ = −α∇µt, (A.16)

where α is defined as
α := (−∇µt∇µt)−1/2. (A.17)

α is called the lapse function. By using the lapse function, we have

aµ := nν∇νnµ = Dµ lnα, (A.18)

Kαβ = −∇βnα −Dα lnαnβ. (A.19)

Next, let us define the normal evolution vector m, which is defined as

mµ := −αnµ. (A.20)

This vector has a following properties;

mµ∇µt = 1, (A.21)

t(p+ δt m) = t(p) + δt (A.22)
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mµ∇µt = t(p) + δt for p ∈ R. (A.23)

From above properties, m corresponds to the temporal development. We can
rewrite the eq.A.19 as

αKα
β = −∇βm

α −Dααnβ + nα∇βα, (A.24)

and we have
Lmγαβ = −2αKαβ, (A.25)

and

Kαβ = −1

2
Lnγαβ. (A.26)

By using m, the components of Riemann tensor and Ricci tensor of M which
are not contained in Gauss relation and Codazzi relation can be written in terms
of the curvature in Σt. The relation is called Ricci equation, and it is of the form

γαµn
ργνβn

σRµ
ρνσ =

1

α
LmKαβ +

1

α
DαDβα +KαµK

µ
β, (A.27)

γµαγ
ν
βRµν = − 1

α
LmKαβ −

1

α
DαDβα +3 Rαβ +KKαβ − 2KαµK

µ
β.

(A.28)

Combing the Gauss-Codazzi equations with Ricci equation, we have

R +Rµνn
µnν = 3R +K2 − 1

α
LmK − 1

α
DiDiα, (A.29)

R = 3R +K2 +KijK
ij − 2

α
LmK − 2

α
DiDiα. (A.30)

Before the decomposition of Einstein equations, we will decompose the energy
momentum tensor Tµν of matter fields. The energy momentum tensor contains the
matter energy density, matter momentum density, and matter stress tensor, and
these quantities are defined as follows;

E := Tµνn
µnν , (A.31)

pα := −Tµνnµγνα, (A.32)

Sαβ := Tµνγ
µ
αγ

ν
β. (A.33)

By definition, pα and Sαβ are tangent to the hypersurface.
By using the above quantities, we can decompose the Einstein equations into

the time evolution part and the constraint part. Firstly, both two indexes of
Einstein equations are contracted with the projection tensor γ β

α , and using the
Ricci equations, we have

LmKij = −DiDjα + α{Rij +KKij − 2KikK
k
j + 4π((S − E)γij − 2Sij)}, (A.34)

where S is a trace part of Sij. This equation is a evolution equation which deter-
mine the time evolution of the extrinsic curvature.
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Next, one of two indexes of Einstein equations is contracted with the projection
tensor, the other index is contracted with the normalized normal vector n, and
Codazzi equation is used, we have

DjK
j
i −DiK = 8πpi. (A.35)

Since this equation does not have time derivative of variables, it is a constraint
equation. It is called the Momentum constraint.

Furthermore, both two indexes of Einstein equations are contracted with n,
and using the Gauss relation, we have

R +K2 −KijK
ij = 16πE. (A.36)

Since this equation also does not have the time derivative, it is a constraint equa-
tion. It is called the Hamiltonian constraint.

A.1.3 ADM decomposition of the metric and Einstein equa-
tions

In order to get the representation of the evolution equation which explicitly has a
time derivative, let us introduce the basis ∂t associated with t. The inner product
between ∂t and its dual ∇t(= dt) is unity:

∇µt(∂t)
µ = 1. (A.37)

Because ∂t is not m generally, the difference between them is denoted as β, which
is called shift vector:

(∂t)
µ = mµ + βµ, (A.38)

= αnµ + βµ. (A.39)

From eq.(A.21), the shift vector is tangent to Σt:

nµβµ = 0. (A.40)

Furthermore, we have
∂t · ∂t = −α2 + β · β. (A.41)

This means that if β · β < α2, ∂t is a time like vector, if β · β = α2, ∂t is a null
vector, and if β · β > α2, ∂t is a space like vector. Additionally, the component of
the normalized norm vector is as follows:

nα = (
1

α
,−β

i

α
), (A.42)

nα = (−α, 0). (A.43)

The spacetime metric can be expressed in terms of α, βi, and γij. Eq.(A.41)
gives the (t, t) component of the metric. Furthermore, (t, i) component and (i, j)
component are given from the following equations:

(∂t)
µgµνγ

ν
α(∂i)

α = βi, (A.44)
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(∂i)
µγαµgαβγ

β
ν(∂j)

ν = γij. (A.45)

Therefore, the metric is

gαβ =

(
−α2 + βkβ

k βj
βi γij

)
, (A.46)

and its inverse is

gαβ =

(
− 1

α2
βj

α2

βi

α2 γij − βiβj

α2

)
. (A.47)

The Lie derivative of γij and Kij along to m can be expressed as follows:

Lmγij =

(
∂

∂t
− Lβ

)
γij, (A.48)

LmKij =

(
∂

∂t
− Lβ

)
Kij. (A.49)

By using these equations, rewriting the evolution equations of γij and Kij, we have

(
∂

∂t
− Lβ)γij = −2αKij, (A.50)

(
∂

∂t
− Lβ)Kij = −DiDjα + α{Rij +KKij − 2KikK

k
j + 4π((S − E)γij − 2Sij)}.

(A.51)

Since general relativity is a gauge theory, the time evolution cannot be deter-
mined by only the hamiltonian constraint Eq.(A.36), the momentum constraint
Eq.(A.35), and evolution equations Eq.(A.50),Eq.(A.51). Hence, in addition to
these equations, the gauge fix condition which determines the lapse function and
shift vector, must be imposed.

A.2 spherically symmetric spacetime

So far, we have discussed the ADM decomposition of general spacetime. In this
subsection, the metric which is given in above subsection is applied to the general
spherically symmetric spacetime.

If the line element in an appropriate coordinate is given as

ds2 = γABdx
AdxB + γθθd

2Ω, (A.52)

where γAB (A,B = 0, 1) and γθθ are function of x, and d2Ω is the line element of S2,
then the spacetime has a spherical symmetry. In particular, when the coordinates
x0 and x1 are the time coordinate t and radial coordinate r, we have

ds2 = γttdt
2 + 2γtrdtdr + γrrdr

2 + γθθd
2Ω. (A.53)
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Therefore, the 3-metric of general spherically symmetric spacetime is

γij =

 γrr 0 0
0 γθθ 0
0 0 γθθ sin

2 θ

 , (A.54)

and the shift vector βi is
βi = (β, 0, 0). (A.55)

Furthermore, from the spherical symmetry, the extrinsic curvature form is

Kij =

 Krr 0 0
0 Kθθ 0
0 0 Kθθ sin

2 θ

 . (A.56)

The lapse function α, shift vector β, γrr, γθθ, Krr, and Kθθ are functions of t and
r.

Under the above anzats, we can write the Einstein equations. Firstly, the time
evolution equations eqs.(A.50),(A.51), become

γ̇rr = 2β′ − γ′rrβ − 2αKrr, (A.57)

γ̇θθ = γ′θθβ − 2αKθθ, (A.58)

K̇rr = βK ′
rr + 2β′Krr −

(
α′′ − 1

2

γ′rr
γrr

α′
)
+ α

{
−γ

′′
θθ

γθθ
+

1

2

γ′θθ(γθθγrr)
′

γ2θθγrr
− K2

rr

γrr

+2
KθθKrr

γθθ
+ 4π((S − E)γrr − 2Srr)

}
, (A.59)

K̇θθ = βK ′
θθ −

1

2

γ′θθ
γrr

α′ + α

{
1

4

γ′rrγ
′
θθ

γ2rr
− 1

2

γ′′θθ
γrr

+
KrrKθθ

γrr
+ 4π((S − E)γθθ − 2Sθθ)

}
.

(A.60)

The constraint equations are

−2
K ′

θθ

γrrγθθ
+

γ′θθ
γθθγrr

Krr +
γ′θθ
γ2θθ

Kθθ − 8πp = 0, (A.61)

−2
γ′′θθ
γrrγθθ

+
1

2

γ′θθ(γθθγrr)
′

γ2rrγ
2
θθ

+
1

2

γ′rrγ
′
θθ

γθθγ2rr
+ 4

KrrKθθ

γrrγθθ
+ 2

K2
θθ

γ2θθ
− 16πE = 0. (A.62)

A.2.1 boundary condition

In order to calculate the time evolution, we must impose the boundary conditions.
The boundary condition of the far boundary in spherically symmetric spacetime is
an asymptotically Minkowski, dS, or AdS spacetime. In this paper, we impose the
asymptotically Minkowski spacetime, and to impose this boundary condition is not
so difficult. On the other hand, it is necessary to pay attention to the boundary
condition around the center, that is, we must impose two boundary conditions
of each metric component at the center [39]. Around the center, since the areal
radius is proportional to r2, γθθ is expressed as:

γθθ(t, r) ≃ γ̄θθ(t, r)r
2, (A.63)
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where γ̄θθ is a function of t, r, and the value of γ̄θθ at the center is finite. We
impose the two boundary conditions on γrr, γ̄θθ, Krr and Kθθ. Firstly, in order
that the spacetime is smooth around the center, we have

γrr(t, r) = γrr(t, 0) +O(r2), (A.64)

γ̄θθ(t, r) = γ̄θθ(t, 0) +O(r2), (A.65)

Krr = Krr(t, 0) +O(r2), (A.66)

Kθθ = Kθθ(t, 0) +O(r2). (A.67)

In other word, the derivative of these variable must vanish at the center:

γ′rr(t, 0) = γ̄′θθ(t, 0) = K ′
rr(t, 0) = K ′

θθ(t, 0) = 0. (A.68)

Second condition is a local flatness condition, that is

γrr(t, 0) = γ̄θθ(t, 0), (A.69)

Krr(t, 0) = Kθθ(t, 0) = 0. (A.70)

These boundary condition corresponds to the regularization of the singular
term in equation of motion. To see this fact, let us focus on right hand side of
Eq.(A.59). The singular terms in right hand side of the equation are regularized
by boundary condition around the center as follows:

(RHS of eq.(A.59))|singular part = −γ
′′
θθ

γθθ
+

1

2

γ′θθ(γθθγrr)
′

γ2θθγrr
− K2

rr

γrr
+ 2

KθθKrr

γθθ

∣∣∣∣
singular part

< (finite). (A.71)

Similarly, the constraint equations are also regularized by the boundary conditions:

(Ham)|singular part = −2
γ′′θθ
γrrγθθ

+
1

2

γ′θθ(γθθγrr)
′

γ2rrγ
2
θθ

+
1

2

γ′rrγ
′
θθ

γθθγ2rr
+ 4

KrrKθθ

γrrγθθ
+ 2

K2
θθ

γ2θθ
< (finite). (A.72)

Therefore, boundary conditions regularize the singular terms in evolution equa-
tions, and constraint equations.
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Appendix B

Related topics of critical behavior

In this appendix, we introduce the two topics related to the critical collapse.

B.1 Primordial black hole

Primordial black hole (PBH) is a black hole which formed from the fluctuation
in the early universe [23, 24]. Since the large fluctuation collapse to PBH, the
distribution of PBH relates to the profile of the fluctuation. Therefore, the number
density of PBH reflects the fluctuation in the early universe. In order to calculate
the number density of PBH, we must know the relation between the strength
of the fluctuation and the mass of the black hole. The critical behavior of the
gravitational collapse gives us the relation around the threshold of the black hole
formation [25]. Furthermore, in the fluid collapse with angular momentum, the
spin parameter of Kerr black hole also obeys the scaling law. Gundlach et al.
considered the non-spherical perturbation around the critical solution of the perfect
fluid, which equation of state is given by p = κρ, and got the following formula;

γJ(κ) =
5(1 + 3κ)

3(1 + κ)
γM(κ),

(
1

9
< κ ≲ 0.49

)
(B.1)

where γM and γJ are the exponents of the mass scaling and angular momentum
scaling, respectively [34,40]. By using this fact, we can estimate the spin distribu-
tion of the primordial black hole [41].

B.2 AdS instability

Since maximally symmetric spacetime is the most fundamental spacetime, a sta-
bility of the spacetime is an important topic of gravitation. Recently, the nonlinear
instability of AdS spacetime of Einstein-massless scalar field theory with negative
cosmological constant was reported in [42] The instability means that the initial
arbitrarily small perturbation of the scalar field collapse to the black hole. The
important point of this instability is that the outer boundary of an asymptotically
AdS spacetime is the time-like boundary. In this spacetime, the massless scalar
field can reach the far boundary in finite time.
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In order to understand the process until the black hole formation, let us focus
on the spherically symmetric and asymptotically AdS spacetime, and consider the
time evolution of the initial data which has perturbation of the scalar field. Firstly,
the in-going mode of the initial perturbation of the scalar field reaches the origin. If
the energy of the in-going mode is large, the scalar field collapse to a black hole. On
the other hand, if the energy is small, the scalar field does not collapse, dissipates,
and reaches the outer boundary in finite time. Outer boundary reflects the scalar
field, and the field reaches the center again. This process is repeated. During
this process, the energy of the scalar field is transported to the short wavelength
mode by the resonance. Thus, the weak turbulence occurs, and finally, a black
hole appears.

In this behavior, it is reported that two critical behaviors appear. Now, we
consider the initial data, which has initial parameter ϵ. ϵ characterizes the initial
energy of the scalar field. In the case of the initial data which ϵ is large, the
scalar field promptly collapses to a black hole. In the case that ϵ is small, a
black hole appears after the reflection at the outer boundary. From the numerical
simulation, there are the sequences in which the black hole appears after the n
times reflections. The threshold of this sequence denotes as ϵn, that is, in the case
that the initial data within the range ϵn+1 < ϵ < ϵn, the black hole appears after
the n times reflections. Two critical behaviors appear around the threshold. First
critical behavior is the original Choptuik’s scaling, that is,

M(ϵ) ∝ |ϵ− ϵn|γ (B.2)

for ϵ = ϵn+0. M(ϵ) is a black hole mass which corresponds to the initial parameter
ϵ. γ is 0.37, and this value does not depend on n. The second critical behavior
appears in ϵ = ϵn − 0 From the numerical simulation, there is a mass gap between
n − 1 sequence and n sequence, that is, Mgap,n = M(ϵn) ̸= 0, and second critical
behavior is as follows:

M(ϵ)−Mgap,n ∝ |ϵn − ϵ|ξ, (B.3)

for ϵ = ϵn − 0. ξ is about 0.7, and this value is also universal with respect to the
parametrization of the initial data and independent of n [43].

There are many the generalization of AdS instability [44]. Furthermore, these
nonlinear instability can appear in not only AdS spacetime, but also confined
spacetime [45–47].
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Appendix C

Spacetime with a homothetic
vector field

The critical solutions play an important role in the critical collapse. The critical
solutions often have a symmetry. For example, the critical solution of the perfect
fluid collapse has a continuous self-similarity, and the critical solution of the mass-
less scalar collapse has a discrete self-similarity. Here, we summarize the properties
of spacetime which has a continuous self-similarity.

Firstly, when the spacetime has conformal Killing vector ξ which satisfy the
following equation, the spacetime has a conformal isometry;

Lξgµν = α(x)gµν , (C.1)

where α(x) is a function of spacetime. In particular, when α is a constant, by
normalizing ξ, we have

Lξgµν = −2gµν . (C.2)

If the solution of this equation in given metric exists, the spacetime has a contin-
uous self-similar symmetry. Then, the vector ξµ is a homothetic Killing vector.

Here, when the spacetime has a conformal isometry, we can prove the following
equation;

LξR
γ
αβδ =

1

2

(
∇δ∇γαgαβ −∇β∇γαgαδ −∇δ∇ααδ

γ
β +∇β∇ααδ

γ
δ

)
. (C.3)

Let us derive this equation. Firstly, we use the following well-known equations:

∇β∇γξα −∇γ∇βξα = −Rρ
αβγξρ, (C.4)

Rρ
αβγ +Rρ

βγα +Rρ
γαβ = 0. (C.5)

By using these equations, we have

∇γ(∇βξα −∇αξβ) +∇β(∇αξγ −∇γξα) +∇α(∇γξβ −∇βξγ) = 0. (C.6)

Furthermore, combing Eq.(C.1), we have

∇γ∇βξα +∇β∇αξγ +∇α∇γξβ =
1

2
(∇γαgαβ +∇βαgαγ +∇ααgβγ) . (C.7)
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After some calculations, we get

∇β∇αξγ = −Rµ
βγαξµ +

1

2
(−∇γαgαβ +∇βαgαγ +∇ααgβγ) . (C.8)

Acting the covariant derivative, we have

∇δ∇β∇αξγ = −∇δR
µ
βγαξµ −Rµ

βγα∇δξµ +
1

2
(−∇δ∇γαgαβ +∇δ∇βαgαγ +∇δ∇ααgβγ) .(C.9)

By using this equation, we get Eq.(C.3). In particular, when the spacetime has a
homothetic Killing vector, Eq.(C.3) becomes

LξR
γ
αβδ = 0. (C.10)

From this equation, the Lie derivative of Einstein tensor also vanish;

LξGαβ = 0. (C.11)

We can use the coordinate τ which is along ξ;

ξ =
∂

∂τ
. (C.12)

Then, the metric form is given as:

gµν(τ, x
i) = l2e−2τ ḡµν(x

i), (C.13)

where l is a constant which has length scale. Let us introduce the coordinate (t, ri),
which is defined as t ≡ −le−τ and ri ≡ (−t)xi. By using (t, ri) coordinate, the line
element is given as

ds2 = l2e−2τ (ḡ00dτ
2 + 2ḡ0idτdx

i + ḡijdx
idxj) (C.14)

= ḡ00dt
2 − 2tḡ0idtdx

i + t2ḡijdx
idxj (C.15)

= (ḡ00 + 2ḡ0ix
i + ḡijx

ixj)dt2 + 2(ḡ0i + ḡijx
j)dridt+ ḡijdr

idrj. (C.16)

From the definition of t, the region which is spanned by the coordinate (τ, xi)
corresponds to the region of t < 0. In the case of the spherically symmetric
spacetime, the line element is written by using coordinate (τ, x, θ, ϕ) and coordinate
(t, r, θ, ϕ) as follows;

ds2 = l2e−2τ (Adτ 2 + 2Bdτdx+ Cdx2 + F 2dΩ2), (C.17)

= (A+ 2xB + x2C)dt2 + 2(B + C)dtdr + t2F 2dΩ2, (C.18)

where t ≡ −le−τ , r ≡ −tx and A,B,C, F are functions of x.
Now, we consider on the spacetime which has a homothetic Killing vector, and

a perfect fluid as matter sector. From the Einstein equations, we have

LξGµν ∝ LξTµν

= Lξ ((ρ+ p)uµuν + pgµν)
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= Lξ(ρ+ p)uµuν + (ρ+ p)(Lξuµ)uν + (ρ+ p)uµLξuν + (Lξp− 2p)gµν ,

= 0. (C.19)

where uµ is a 4-velocity of fluid element. Therefore, we get following equations:

Lξρ = 2ρ, (C.20)

Lξp = 2p, (C.21)

Lξu
µ = 2uµ. (C.22)

Eqs.(C.20-C.21) imply that only equation of state p = kρ allows for continuous
self-similar solutions.

In the case of massless scalar field in continuous self-similar solution, the Lie
derivative of the energy momentum tensor is

LξTµν = (Lξ∇µΦ)∇νΦ +∇µΦ(Lξ∇νΦ)− gµν(Lξ∇ρΦ)∇ρΦ. (C.23)

Since this value must vanish under the continuous self-similar solutions, we have

Lξ((ξ
µ∇µΦ)

2) = 0. (C.24)

Therefore, the scalar field satisfy the following equation;

ξµ∇µΦ = κ, (C.25)

where κ is a constant. Finally, we have

Φ(τ, x) = f(x) + κτ, (C.26)

where τ is a coordinate which is along ξ.
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Appendix D

Type of the critical behavior

In this appendix, we summarize the type of the critical behavior, and discuss the
relation between the critical solution and the scaling law.

D.1 Type I critical behavior

In this section, we focus on the type I critical behavior. As was mentioned in
Sec.2.3.2, the critical solution of the type I critical behavior is a static solution
or time periodic solution. We assume that the critical solution is a co-dimension
one attractor. In other words, when the perturbation modes which is determined
from the linear homogeneous differential equations under the appropriate boundary
conditions is denoted as δZ(i) = eκ(i)tZp(i)(x), Re(κ1) > 0, and Re(κi) < 0 for i > 1.
Re(κ1) is called ”Lyapunov exponent”. Here, we consider the case that the critical
solution is a static solution. Since the static solution has a time like Killing vector
ξ, we can introduce the natural coordinate time t, which is defined as:

ξ =
∂

∂t
. (D.1)

The other coordinates are denoted as r. We express the variables of the system as
Z(r, t). Then, the profile of the critical solution can be written as ZCS(r). When
the initial parameter p is near the threshold of the black hole formation p∗, the
intermediate state can be rewritten as

Z(t, r) ≃ ZCS(r) +
∑
i

Ci(p)e
κ(i)tZp(i)(r), (D.2)

where the coefficients Ci(p) is a function of the initial parameter. After the inter-
mediate state, the growing mode dominates, and we have

Z(t, r) ≃ ZCS(r) + C1(p)e
κ(1)tZp(1)(r). (D.3)

Since the initial parameter p exactly is equal to p∗, the spacetime becomes the
critical solution. Therefore, we have

C1(p) = C̄1(p− p∗) +O((p− p∗)
2), (D.4)
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where C̄1 is a constant. Since the black hole formation means that the spacetime
leaves the critical solution, the black hole formation time can be estimated by
using τ which is defined as

C̄1(p− p∗)e
Re(κ(1))τ = ϵ, (D.5)

where ϵ is a fixed constant. Therefore, we have

τ = − 1

Re(κ(1))
ln |p− p∗|+ const. (D.6)

From the expression, the relation between the Lyapunov exponent and the index
of the scaling law becomes

ν = − 1

Re(κ(1))
. (D.7)

D.2 Type II critical behavior

The critical behavior of Type II associated with the continuous self-similar solution
is discussed in Sec.2.2. In this section, we discussed the critical behavior of Type
II associated with the discrete self-similar solution.

Firstly, let us introduce the discrete self-similarity of the spacetime. If the
spacetime has the discrete self-similarity, the metric satisfy the following condition
under the appropriate coordinate (σ, xi);

gµν(σ, x) = e2σg̃µν(σ, x), (D.8)

where g̃µν(σ, x) has a following property;

g̃µν(σ, x) = g̃µν(σ +∆, x), (D.9)

where ∆ is a real constant.
Here, we focus on the spherically symmetric spacetime. We use the coordinate

(σ, z, θ, ϕ) as the coordinate (σ, x). On the other hand, the line element under the
polar- radius coordinate can be rewritten as

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2d2Ω, (D.10)

where α is a lapse function, and a is a radial component of the metric. In order to
see the relation between the coordinate (σ, z, θ, ϕ) and (t, r, θ, ϕ), we consider the
following coordinate transformation;{

t = eσT (σ, z)
r = eσR(σ, z)

(D.11)

where T and R are the periodic function in σ with period ∆. Under this coordinate
transformation, we have

ds2 = e2σ
{
−α2((T + ∂σT )dσ + ∂zTdz)

2 + a2((R + ∂σR)dσ + ∂zRdz)
2 +R2d2Ω

}
.
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(D.12)

Therefore, if the spacetime has a discrete self-similarity, α and a satisfy the fol-
lowing periodic condition under the appropriate gauge condition of t;{

α(t, r) = α(en∆t, en∆r)
a(t, r) = a(en∆t, en∆r).

(D.13)

Here, we introduce the coordinate (τ, ζ), which is defined as{
τ = ln

(
t
r0

)
ζ = ln

(
r
t

)
− ξ0(τ),

(D.14)

where r0 is a constant which fix the scale. This coordinate is include in the class of
above (σ, xi). In the coordinate (τ, ζ), the periodic condition Eq.(D.15) is expressed
as {

a(ζ, τ + n∆) = a(ζ, τ)
α(ζ, τ + n∆) = α(ζ, τ).

(D.15)

We can construct the critical solution ZCS(τ, ζ) of the critical collapse of the
massless scalar field in this coordinate, which is a periodic with (see [10]).

Let us consider the 1-parameter family of the initial data, which is parame-
terized by p. We assume that p has a threshold p∗ of the black hole formation,
Furthermore, we assume that the critical solution is a co-dimension one attractor.
Since the intermediate state which initial data has an initial parameter around p∗
can be approximated as the critical solution, we have

Z(ζ, τ) ≃ ZCS(ζ, τ) +
∑
i

Ci(p)e
κ(i)τZp(i)(ζ, τ), (D.16)

where the second term is a sum of the perturbation modes. Each perturbation
mode is also periodic with respect to τ , its period is also ∆. Since the critical
solution has one growing mode (i = 1), we can neglect the other decaying modes,
and we have

Z(ζ, τ) ≃ ZCS(ζ, τ) + C1(p)e
κ(1)τZp(1)(ζ, τ). (D.17)

If p is equal to p∗, exactly, the spacetime approach to the critical solution. There-
fore, C1 must vanish for p = p∗, and we get the following expressions;

C1(p) = C̄1(p− p∗) +O((p− p∗)
2), (D.18)

where C̄1 is a constant. Let us define τp as a typical time in which the second term
becomes comparable to the first term, that is;

|C̄1(p− p∗)|eRe(κ(1))τp = ϵ, (D.19)

where ϵ is a fixed small value. From this equation, we have

τp = −Re(κ(1))
−1 ln |p− p∗|+ const, (D.20)
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and

Z(t(τp), r) ≃ ZCS(ln
r

Lp

, τp)± ϵZp(1)(ln
r

Lp

, τp), (D.21)

where

Lp ≡ r0e
τp+ξ0(τp). (D.22)

Since the black hole mass has a dimension length, it is proportional to Lp, we have

M ∝ Lpe
µ(τp), (D.23)

where µ(τ) is a periodic function of τ . Therefore, we get the following formula;

M ∝ r0(p− p∗)
γeµ̄(γ ln |p−p∗|), (D.24)

where µ̄(τ) is a periodic function of τ . The index γ is defined as

γ = − 1

λ1
. (D.25)

Since the scalar field oscillates with period ∆, the physical quantities which has
no length scale, like M/r oscillates with period ∆/2.
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Appendix E

G-BSSN formulation

E.1 G-BSSN formulation

In this appendix, G-BSSN formulation in general curvilinear coordinate is sum-
marized.

G-BSSN formulation is generalization of the BSSN formulation [35, 36], and
based on the ADM formulation. From the ADM formulation, we have following
metric ansatz :

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (E.1)

where α, βi and γij are a lapse function, a shift vector and 3-metric, respectively.
Substituting above metric ansatz for Einstein equations, we have evolution equa-
tions :(

∂

∂t
− Lβ

)
γij = −2αKij, (E.2)(

∂

∂t
− Lβ

)
Kij = −DiDjα + α{Rij +KKij − 2KikK

k
j + 4π((S − E)γij − 2Sij)},

(E.3)

and constraint equations :

R +K2 −KijK
ij = 16πE, (E.4)

DjK
j
i −DiK = 8πpi. (E.5)

Kij is the extrinsic curvature, Rij is the Ricci tensor associated with γij, Di is a
covariant derivative associated with γij, and Lβ is a Lie derivative of βi. Further-
more, E, ρi and Sij are energy density, momentum density and a stress tensor of
the matter sector, which are defined as follows: E ≡ Tµνn

µnν , pi ≡ Tνµγ
ν
i n

µ, and
Sij ≡ Tµνγ

µ
i γ

ν
j , respectively. S is a trace part of Sij.

In BSSN formulation, we do not use γij and Kij as numerical variables, but
use the following decomposed variables (ϕ, γ̃ij, K, Ãij):

γij = e4ϕγ̃ij, (E.6)
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Kij = e4ϕÃij +
1

3
γijK, (E.7)

where det(γ̃ij) = 1 and K = γijKij. Furthermore, the following auxiliary field:

Γ̃k = γ̃ijΓ̃k
ij, (E.8)

In BSSN formulation, (ϕ, γ̃ij, K, Ãij, Γ̃
i, α, βi) and dynamical variables of matter

sector are used. Although it is known that BSSN formulation is powerful method,
Γ̃i is not a vector under the coordinate transformation, and γ̃ij is not a tensor
under the transformation. In order to apply the BSSN formulation to the general
curvilinear coordinate, Brown generalize this formulation to G-BSSN formulation.
There are two main differences between BSSN formulation and G-BSSN formu-
lation. First point is a definition of γ̃ij. Although γ̃ij is defined such that the
determinant γ̃ is unity in BSSN formulation, γ̃ is determined from condition about
the evolution of γ̃ and initial data in G-BSSN formulation. There are two natural
condition which determines the evolution of γ̃, that is, ∂tγ̃ = 0 (Lagrangian type),
and ∂⊥γ̃ = 0 (Eulerian type), where ∂⊥ ≡ ∂t − Lβ. Furthermore, instead of Γ̃i,
the reference metric γ̄ij is introduced and the following auxiliary field Λ̃k is defined
such that

Λ̃k = γ̃ij(Γ̃k
ij − Γ̄k

ij) = γ̃ij∆Γ̃k
ij, (E.9)

where Γ̄k
ij is the Christoffel symbols associated with γ̄ij. (ϕ, γ̃ij, K, Ãij, Λ̃

i, α, βi)
and the variables of the matter sector are the variables of the G-BSSN formulation.
The evolution equations of this formalism are as follows:(

∂

∂t
− Lβ

)
ϕ = −1

6
αK + σ

1

6
D̃kβ

k, (E.10)(
∂

∂t
− Lβ

)
γ̃ij = −2αÃij − σ

2

3
γ̃ijD̃kβ

k, (E.11)(
∂

∂t
− Lβ

)
K = −γijDiDjα + α(ÃijÃ

ij +
1

3
K2) + 4πα(E + S), (E.12)(

∂

∂t
− Lβ

)
Ãij = e−4ϕ{−DiDjα + α(Rij − 8πSij)}TF + α(KÃij − 2ÃilÃ

l
j)− σ

2

3
ÃijD̃kβ

k,

(E.13)(
∂

∂t
− Lβ

)
Λ̃i = γ̃mnD̄mD̄nβ

i − 2Ãim∂mα + 2α(∆Γ̃i
jkÃ

jk + 6Ãij∂jϕ− 2

3
γ̃ij∂jK − 8πγ̃ijSj)

+
σ

3
{2Λ̃iD̃kβ

k + D̃i(D̃kβ
k)}, (E.14)

where Lβ is the Lie derivative respect with βi, a superscript TF means the traceless
part with respect to γij. The Ricci tensor in the equations can be expressed as:

Rij = Rϕ
ij + R̃ij, (E.15)

R̃ij = −1

2
γ̃lmD̄mD̄lγ̃ij +

1

2
(γ̃kiD̄jΛ̃

k + γ̃kjD̄iΛ̃
k) +

1

2
(Λ̃k∆Γ̃ijk + Λ̃k∆Γ̃jik)

+γ̃lm(∆Γ̃k
li∆Γ̃jkm +∆Γ̃k

lj∆Γ̃ikm +∆Γ̃k
im∆Γ̃klj), (E.16)
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Rϕ
ij = −2D̃iD̃jϕ− 2γ̃ijD̃

kD̃kϕ+ 4D̃iϕD̃jϕ− 4γ̃ijD̃
kϕD̃kϕ. (E.17)

The parameter σ depends on the evolution of γ̃. Lagragian option corresponds to
that σ = 1, and the Lorentzian choice corresponds to that σ = 0. Hamiltonian
constraint and the momentum constraint can be written as:

γ̃ijD̃iD̃je
ϕ − eϕ

8
R̃ +

e5ϕ

8
ÃijÃ

ij − e5ϕ

12
K2 + 2πe5ϕE = 0, (E.18)

D̃j(e
6ϕÃj

i)−
2

3
e6ϕD̃iK − 8πe6ϕpi = 0. (E.19)

In addition to these constraint equations, Eq.(E.9) is also constraint equation.

E.2 Spatial coordinate transformation of the vari-

ables in G-BSSN formulation in spherically

symmetric spacetime

In our study, we use the inhomogeneous grid method in spherically symmetric
spacetime. the inhomogeneous grid method in spherically symmetric spacetime
is a coordinate transformation for the radial coordinate. Here, we summarize the
coordinate transformation from rO to rN in each variables;

αN = αO, (E.20)

βN =
∂rN
∂rO

βO, (E.21)

ϕN = ϕO, (E.22)

aN = (
∂rO
∂rN

)2aO, (E.23)

bN = (
rO
rN

)2bO, (E.24)

AN = (
∂rO
∂rN

)2AO, (E.25)

BN = (
rO
rN

)2BO, (E.26)

Λ̃N =
∂rN
∂rO

Λ̃O, (E.27)

ΠN =
∂rO
∂rN

ΠO, (E.28)

EN = EO, (E.29)

prN =
∂rO
∂rN

prO. (E.30)
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Appendix F

Iterative Crank Nicolson scheme

In this appendix, we explain the iterative Crank Nicolson scheme.

F.1 Iterative Crank Nicolson scheme

Let us consider the following model equations for {u(t, x⃗)α}:

∂

∂t
u(t, x⃗)α = Mlβ

α(u(t, x⃗))
∂

∂xl
u(t, x⃗)β +Nα(u(t, x⃗)), (F.1)

where Mβ
α(u(t, x⃗)) and Nα(u(t, x⃗)) are functions of {u(t, x⃗)α}. This equation can

be solved with Crank Nicolson (CN) scheme. CN discretization is given as

(uα)
n+1
m⃗ = (uα)

n
m⃗+

∆t

2

(
M(un+1

m⃗ )e⃗lβα δe⃗l(uβ)
n+1
m⃗ +N (un+1

m⃗ )α +M(unm⃗)
e⃗lβ
α δe⃗l(uβ)

n
m⃗ +N (unm⃗)α

)
,

(F.2)

where (uα)
n
m⃗ := uα(t = n∆t, x⃗ = m⃗∆x), and δe⃗l(uα)

n
m⃗ =

1

2∆x
((uα)

n
m⃗+e⃗l

−(uα)
n
m⃗−e⃗l

).

Since {(uα)n+1
m⃗ }m⃗ is expressed by using {(uα)n+1

m⃗ }m⃗ and {(uα)nm⃗}m⃗ in CN discretiza-
tion, the profile of {(uα)n+1

m⃗ }m⃗ is obtained as a solution of simultaneous equations.
Iterative Crank-Nicolson scheme is a one of the scheme to solve the above

simultaneous equations. First, {(u(1)α )m⃗}m⃗ is calculated by following equations:

(u(1)α )m⃗ = (uα)
n
m⃗ +∆t(M(unm⃗)

e⃗lβ
α δe⃗l(uβ)

n
m⃗ +N (unm⃗)α), (F.3)

Next, by using the following recurrence formula interatively, ui is obtained until
ui is converged;

(u(i+1)
α )m⃗ = (uα)

n
m⃗+

∆t

2

(
M(u

(i)
m⃗ )e⃗lβα δe⃗l(uβ)

(i)
m⃗ +N (u

(i)
m⃗ )α +M(unm⃗)

e⃗lβ
α δe⃗l(uβ)

n
m⃗ +N (unm⃗)α

)
.

(F.4)

The maximal step of the iteration denote imax. (uα)
n+1
m⃗ is given as (uα)

(imax)
m⃗ ;

(uα)
n+1
m⃗ = (uα)

(imax)
m⃗ (F.5)

The numerical stability of ICN is discussed in [60].
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