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Abstract

The Standard Model (SM) is almost consistent with the current experimental

data and completed by the discovery of a Higgs boson at the Large Hadron Collider

(LHC). It is constructed by the gauge theory with SU(3)C×SU(2)L×U(1)Y gauge

symmetries. However, there are still open questions which cannot solve in the SM.

This means that it is needed to consider a model beyond the SM.

One of the interesting and promising extensions is a supersymmetric (SUSY)

grand unified theory (GUT). In this framework, there are two types of unification.

First one is a unification of interactions which means that three SM gauge couplings

are unified into a single one. Second one is a unification of matters, which is occurred

by embedding the SM particles in a few multiplets. For these types of unification,

there are quantitative and qualitative supports from experimental results. Moreover,

some of the problems or questions in the SM can be solved, e.g. the hierarchy

problem, charge quantization and explanation of the fermion mass hierarchies.

On the other hand, SUSY GUT models cause new problems which are not

induced in the SM. One of these is an undesired Yukawa relation. Because of the

matter unification, it predicts that Yukawa couplings are also unified at the GUT

scale. Although this is one of the attractive predictions of GUT, observed SM

fermion masses and the Cabibbo-Kobayashi-Maskawa (CKM) matrix are hard to

obtain. Another problems are flavor-changing neutral current (FCNC) and CP-

violating processes induced by SUSY particles. Since parameters in a SUSY model

can be arbitrary numbers or structures, there are sizable contributions from SUSY

particles to these processes in general. Such contributions, however, are strongly

constrained by the experimental observables.

In this thesis, we focus on SO(10) and E6 SUSY GUT models which can realize

the SM fermion mass spectrum and CKM matrix. In our SO(10) model, there are

flavor-violating couplings with new gauge boson only for the 5̄ fields because of a

mixing with additional matter fields. As a result, we obtain predictions specific to

our model. In addition, we consider E6 model with a flavor SU(2)F and anomalous

U(1)A gauge symmetries, in which almost all problems caused in a SUSY GUT

model are solved in a natural assumption. In this model, there are non-vanishing

D-term contributions which destroy the degeneracy of the sfermion mass spectrum,

and these contributions are constrained by FCNC processes. We investigate the

upper bound of these contributions and find that D-terms are allowed to be sizable.

The sfermion mass spectrum predicted in the E6×SU(2)F ×U(1)A SUSY GUT

model is natural SUSY-type sfermion spectrum. This type of spectrum suffers from

bounds of chromo-electric dipole moment (CEDM). Therefore, we also search lower

bounds of sfermion masses in different types of Yukawa structure. We find that if

up-type Yukawa couplings are real at the GUT scale, CEDM bounds are satisfied

even when the stop mass is O(1) TeV.
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1 Introduction

The Standard Model (SM) of particle physics is completed by the discovery of a Higgs

boson at the Large Hadron Collider (LHC), whose mass is 125 GeV [1, 2]. It is well-

known that the predictions of the SM for various observables are almost consistent with

the experimental data. However, there are still open questions which should be solved.

Some of these questions cannot solve in the framework of the SM. For example, there are

the questions about the reason why the masses of the SM fermions have rich hierarchical

structures, massless neutrinos which conflict with the neutrino oscillation experiments

[3–16], charge quantization which is why the electron charge Qe and proton charge Qp

have the relation Qe = −Qp [17], the hierarchy problem which is the fine-tuning between

a bare parameter and the observed value of the Higgs mass [18] and no dark matter

candidates in the SM. These questions mean that a model beyond the SM is needed.

One of the interesting and promising extensions of the SM is supersymmetric (SUSY)

grand unified theory (GUT). GUTs [19] predict two types of unification: unification of

interactions and unification of matters. The unification of interactions means that three

gauge couplings in the SM are unified into a single one. For this unification, there is

a quantitative support from the observed gauge couplings. The unification of matters

is realized by embedding quarks and leptons into a few multiplets, e.g. 10 and 5̄ of

SU(5). For this unification, we have qualitative support from the observed masses of

quarks and leptons, which means that the fermion mass hierarchies can be explained by

assuming that 10 fields have stronger hierarchies than 5̄ fields in the Yukawa couplings.

Moreover, the charge quantization is also explained by the symmetry breaking SU(5) →
SU(3)C×SU(2)L×U(1)Y . In addition, SUSY particles introduced in a SUSY model solve

the hierarchy problem and provide dark matter candidates in the models with R-parity.

However, SUSY GUT models suffer from the another problems which are not caused

in the SM. In the point of the view of a GUT model, new particles which are new gauge

bosons and a color-triplet Higgs induce proton decays, e.g. p → eπ and p → Kν. We

expect that their mass scales are much higher than the weak scale from the constraints of

the proton lifetime. In SU(5) GUT, the color-triplet Higgs and the doublet Higgs which

is regarded as the SM Higgs doublet are belonging to a single multiplet, 5H . Therefore,

a huge fine-tuning is needed to realize both of the masses. In addition, because of the

matter unification, the Yukawa couplings are also unified at the GUT scale as Yd = Y T
e in

SU(5) GUT and Yu = Yd = Y T
e = YνD in SO(10) GUT, where YνD is a Yukawa interaction

for Dirac neutrinos. Although these relations which are called Yukawa relations in this

thesis are one of the attractive hypotheses, they are inconsistent with the observed fermion

masses.

In a SUSY model, a lot of parameters are introduced in order to break SUSY softly.
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Some of these parameters, especially scalar cubic couplings and mass matrices for scalar

fermions (sfermions), induce flavor-violating and CP-violating processes and are strongly

constrained from the experimental observables. Another problem is known as the µ-

problem [20] which is a question about the size of the Higgsino mass parameter µ in

the Higgs sector for a minimal SUSY SM (MSSM). Therefore, we should consider these

problems when one constructs a realistic model in the framework of SUSY GUT.

In this thesis, we mainly focus on the Yukawa relations and flavor and CP processes

in SO(10) and E6 SUSY GUT models. As mentioned above, the Yukawa relations in

the SO(10) GUT are very strong since the SM fermions of one generation are unified

into a single spinor multiplet, 16 [21, 22]. Therefore, it is hard to obtain the realistic

fermion mass spectrum without some extension. There are mainly 3 types of solutions:

to add higher-dimensional operators [23], to introduce additional Higgs fields [24,25] and

to introduce additional matter fields [26]. We proposed one of the solutions, introducing

the additional matter fields, 10 of SO(10) [27, 28]. In such a case, the SM modes for 5̄

fields are given by linear combinations of the fields coming from 16 and 10 of SO(10).

Therefore, the Yukawa couplings for 5̄ fields are modified from the unified one. In addition,

by considering higher-dimensional operators, realistic Yukawa structures can be obtained.

Note that in this thesis, a model in which realistic Yukawa structures are realized is called

realistic model.

The elements of the mixing matrix for the 5̄ fields affect the couplings of gauge bosons

and 5̄ fields. Because of the rank of SO(10), there is additional gauge boson in the model

and this gauge boson induces flavor-violating processes at the tree-level. This is because

5̄ fields from 16 and 10 have different charges under the additional U(1)′ symmetry. We

investigate predictions of this model and discuss the bounds from flavor-changing neutral

current (FCNC) processes [28]1. Note that since these flavor-violating couplings are only

for 5̄ fields, we expect that some predictions specific to this model can be obtained.

In a E6 SUSY GUT model [22, 33–39], on the other hand, its fundamental multiplet

27 has not only 16 spinor multiplet but also 10 vector multiplet of SO(10) as we will

show in Sec. 3.3.2. This 10 field plays the same role as an extra matter field in the SO(10)

GUT model. Therefore, the observed fermion masses and Cabibbo-Kobayashi-Maskawa

(CKM) matrix can be obtained in a natural way.

Moreover, if one consider E6 GUT with SU(2)F flavor symmetry [40–49] and anoma-

lous U(1)A gauge symmetry [50–59], more attractive model can be obtained, in which

almost all the problems caused in SUSY GUT models are solved in a natural assumption:

all the interactions which are allowed by symmetries are introduced with O(1) coefficients.

1Once additional matter fields are introduced at the low energy, proton decay mediated by X boson is
enhanced since the gauge couplings at the GUT scale become larger [29–32]. If proton decay is discovered
in future experiments, it is the clear evidence of a GUT.

2



In such a model, a sfermion mass spectrum in which all the sfermion masses except for a

scalar top (stop) mass are universal is obtained. We call this spectrum modified universal

sfermion masses (MUSM). If one consider the MUSM, suppressing the SUSY contributions

to FCNC processes and stabilizing the weak scale can be realized at the same time. This

type of sfermion mass spectrum is nothing but the natural SUSY-type one [41,60–62].

However, in the E6×SU(2)F×U(1)A SUSY GUT model, the degeneracy of the MUSM

is destroyed because of non-vanishing D-term contributions which are dependent on the

flavor [63–66]. Therefore, these contributions are constrained by FCNC processes [67]. We

investigate the upper bound of its size from the most strongest constraint in the FCNC

processes, which is the CP-violating parameter ϵK in K0-K0 mixing [68]. In this model,

there is a novel relation about the differences of the squared sfermion masses as we will

mention in Sec. 5.3, which is specific to this model. We will discuss the testability of this

model by using not only the allowed size of D-terms but also this novel relation [68].

In fact, the natural SUSY-type sfermion spectrum is severely constrained by chromo-

electric dipole moments (CEDMs) because of the smallness of the stop mass [69–71].

Especially, the constraint from up quark CEDM is severe even if all SUSY-breaking pa-

rameters are taken to be real. This is because in such a case, this process depends on

the imaginary part of diagonalizing matrices for up-type Yukawa couplings. Therefore, in

order to avoid the constraints, one can consider a scenario with spontaneously CP viola-

tion [72–75], in which the up-type Yukawa couplings are real at the GUT scale. In this

scenario, the down-type Yukawa couplings are complex at the GUT scale, that induces

non-vanishing Kobayashi-Maskawa (KM) phase. Since the bound of mercury electric

dipole moment (EDM) is recently improved [76, 77], we investigate the lower bounds of

the sfermion masses from the EDM bounds in different structures of Yukawa couplings

for comparison [78]. We also discuss the effects of the structure of Yukawa couplings to

the CEDM.

This thesis is organized as follow. In Secs. 2 and 3, we provide a brief review of the SM

and the models beyond the SM, especially SUSY and GUT. Then we will discuss specific

predictions of the SO(10) GUT model in Sec. 4. Next, we will discuss the size of D-term

in the E6 model and the CEDM constraints to the MUSM in Secs. 5 and 6. Finally, we

will conclude this thesis in Sec. 7.
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2 The Standard Model

In this section, we will briefly review the properties of the Standard Model (SM). The

SM which has GSM = SU(3)C × SU(2)L × U(1)Y gauge symmetry contains three types

of particle: fermions, vectors and scalar. In Table 1, we summarize the particle contents

and their quantum numbers. In this table, i denotes the generation, i = 1, 2, 3. Qi, uR i,

spin SU(3)C SU(2)L U(1)Y

Qi =

(
uL i
dL i

)
3 2 1

6

uR i 3 1 2
3

dR i 1/2 3 1 −1
3

Li =

(
νL i
eL i

)
1 2 −1

2

eR i 1 1 −1

g 8 1 0

W 1 1 3 0

B 1 1 0

H =

(
H+

H0

)
0 1 2 1

2

Table 1: Particle contents of the SM. i = 1, 2, 3 denotes the generation.

uR i, Li and eR i are quark doublet, right-handed up-type quarks, right-handed down-type

quarks, lepton doublet and right-handed charged leptons, respectively. These are the

fermion as a matter. g, W and B are the gauge bosons corresponding to SU(3)C , SU(2)L

and U(1)Y , respectively, and H is Higgs doublet.

The Lagrangian for the SM can be written as

LSM = Lfermion + Lgauge + LHiggs + LYukawa. (2.1)

In Lfermion, the terms of covariant derivatives for the fermions are included:

Lfermion = Q′
i(iγ

µDµ)Q
′
i + u′R i(iγ

µDµ)u
′
R i + d′R i(iγ

µDµ)d
′
R i

+ L′
i(iγ

µDµ)L
′
i + e′R i(iγ

µDµ)e
′
R i, (2.2)

where ψ′ shows the flavor eigenstate and Dµ is the covariant derivative which is defined

4



for each field as

DµQ
′
i =

(
∂µ − ig3G

α
µT

α
C − ig2W

a
µT

a
L − ig′BµTY

)
Q′
i, (2.3)

Dµu
′
R i =

(
∂µ − ig3G

α
µT

α
C − ig′BµTY

)
u′R i, (2.4)

Dµd
′
R i =

(
∂µ − ig3G

α
µT

α
C − ig′BµTY

)
d′R i, (2.5)

DµL
′
i =

(
∂µ − ig2W

a
µT

a
L − ig′BµTY

)
L′
i, (2.6)

Dµe
′
R i = (∂µ − ig′BµTY ) e

′
R i. (2.7)

Here, g3, g2 and g′ are gauge couplings and TαC = λα/2, T aL = σa/2, TY are generators of

SU(3)C , SU(2)L and U(1)Y , respectively. G
α
µ,W

a
µ and Bµ are gauge bosons corresponding

to SU(3)C , SU(2)L and U(1)Y , respectively. Note that λα is the Gell-Mann matrices

(α = 1, · · · , 8) and σa is the Pauli matrices (a = 1, 2, 3).

Lgauge are the kinetic terms for the gauge bosons:

Lgauge = −1

4
Gα
µνG

αµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (2.8)

where

Gα
µν = ∂µG

α
ν − ∂νG

α
µ + g3f

αβγ
C Gβ

µG
γ
ν , (2.9)

Wα
µν = ∂µW

a
ν − ∂νW

a
µ + g3f

abc
L W b

µW
c
ν , (2.10)

Bα
µν = ∂µBν − ∂νBµ. (2.11)

fabcL and fαβγC are the structure constant of SU(2)L and SU(3)C , respectively.

The Lagrangian of Higgs LHiggs can be written as

LHiggs = |DµH|2 − V (H), DµH = (∂µ − ig2W
a
µT

a
L − ig′BµTY )H, (2.12)

where V (H) is Higgs potential and written as

V (H) = µ2H†H +
λ

2

(
H†H

)2
, (2.13)

where λ > 0. If µ2 > 0, this potential has minimum at |H| = 0, and the VEV of H is

zero. However, if µ2 < 0, there is local minimum at |H| ̸= 0. This value can be easily

computed as

0 =
∂V (H)

∂H
=
(
−|µ2|+ λH†H

)
H† ⇒ |H|2 = |µ2|

λ
≡ v2

2
(2.14)
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Note that H† = 0 which is another solution of the stationary condition Eq. (2.14) is at

local maximum of V (H). By using suitable SU(2)L × U(1)Y gauge transformations, we

can take the VEV of H as

⟨H⟩ = 1√
2

(
0

v

)
, v =

√
2|µ2|
λ

, (2.15)

where v = 246.22 GeV [79]. This VEV breaks all SU(2)L × U(1)Y transformation other

than one transformation which is corresponding to phase transformation for upper com-

ponent of SU(2)L doublet:

(T 3
L + TY )⟨H⟩ =

(
1 0

0 0

)
1√
2

(
0

v

)
=

(
0

0

)
, (2.16)

where T 3
L+TY is regarded as the generator of U(1)em as seen below. As a result, the VEV

of Eq. (2.15) can cause the symmetry breaking, SU(2)L × U(1)Y → U(1)em.

Before this symmetry breaking, four gauge bosons corresponding to SU(2)L and U(1)Y

are all massless because of the gauge symmetries. After symmetry breaking, some of the

gauge bosons get masses. Substituting Eq. (2.15) into the covariant derivative of the

Higgs, gauge boson masses are obtained as

|Dµ⟨H⟩|2 =

∣∣∣∣∣12
(
−ig2W 3

µ − ig′Bµ −ig2(W 1
µ − iW 2

µ)

−ig2(W 1
µ + iW 2

µ) +ig2W
3
µ − ig′Bµ

)
1√
2

(
0

v

)∣∣∣∣∣
2

=
g22v

2

8

∣∣W 1
µ − iW 2

µ

∣∣2 + v2

8

∣∣g2W 3
µ − g′Bµ

∣∣2
=

g22v
2

4
W+
µ W

−µ +
(g22 + g′ 2)v2

8
ZµZ

µ, (2.17)

where W±
µ ≡ W 1

µ∓iW 2
µ√

2
and Zµ ≡ g2W 3

µ−g′Bµ√
g22+g

′ 2
are the W bosons and the Z boson. Therefore,

the three of four gauge bosons in the SM get masses as [79]

MW ≡ 1

2
g2v = 80.385± 0.015GeV, (2.18)

MZ ≡ 1

2

√
g22 + g′ 2v = 91.1876± 0.0021GeV, (2.19)

and the remaining one mode, Aµ ≡ g′W 3
µ+g2Bµ√
g22+g

′ 2
, which is the photon is massless. This

is known for the Higgs mechanism. Note that Zµ and Aµ can be written by using the
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Weinberg angle, sin θW = g′√
g22+g

′ 2
, as

(
Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
. (2.20)

In terms of the mass eigenstates of gauge bosons, W±
µ , Zµ and Aµ, the covariant

derivative for the fermions can be rewritten as

∂µ − ig2W
a
µT

a
L − ig′BµTY

= ∂µ − i
g2√
2

(
W+
µ T

+ +W−
µ T

−)− i
g2

cos θW
Zµ(T

3
L −Qe sin

2 θW )− ieAµQe, (2.21)

where T± = T 1
L ± iT 2

L, Qe = T 3
L + TY is the generator of U(1)em and e = g2 sin θW is the

positron electric charge. Therefore, we can obtain the fermion-gauge boson couplings as

LYukawa ⊃ g2
(
W+
µ J

µ+
W +W−

µ J
µ−
W + ZµJ

µ
Z

)
+ eAµJ

µ
EW, (2.22)

where

Jµ+
W =

1√
2
(νL iγ

µe′L i) +
1√
2

(
u′L iγ

µd′L i
)
, (2.23)

Jµ−
W =

1√
2

(
e′L iγ

µνL i
)
,+

1√
2

(
d′L iγ

µu′L i
)

(2.24)

JµZ =
1

cos θ

∑
ψ

[
ψ′
L iγ

µgfLψ
′
L i + ψ′

R iγ
µgfRψ

′
R i

]
, (2.25)

JµEW = e′iγ
µ(−1)e′i + u′iγ

µ

(
+
2

3

)
u′i + d′iγ

µ

(
−1

3

)
d′i. (2.26)

Note that gfI = T 3 f
L − Qf

e sin
2 θW (I = L,R). T 3 f

L is +1/2, −1/2 and 0 for f = u′L i, νL i,

for f = d′L i, e
′
L i and for the right-handed particles, respectively. Qf

e is the electric charge

for the fermion f .

After symmetry breaking SU(2)L×U(1)Y → U(1)em, moreover, the fermions also get

masses through Yukawa couplings. In the SM, the Yukawa couplings are

LYukawa = (Yu)ijQ
′
iu
c ′
RjH + (Yd)ijQ

′
id
c ′
RjH

† + (Ye)ijL
′
ie
c ′
RjH

† + h.c., (2.27)

where ψcR ≡ (ψc)L = (ψR)
c. Therefore, the SM matters get masses as Mψ = 1√

2
Yψv (ψ =

u, d, e) where Mψ is a mass matrix. By diagonalizing these mass matrices, the mass

eigenvalues and eigenstates are obtained. In this thesis, the mass eigenstates of the SM
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fermion are defined by

ψL = L†
ψψ

′
L, ψ

c
R = R†

ψψ
c ′
R . (2.28)

In this definition, diagonalization of the Yukawa matrix is realized as Y diag
ψ = LTψYψRψ.

In this definition, the CKM matrix is obtained from Eq. (2.23) as

VCKM ≡ L†
uLd ≡

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2.29)

VCKM is unitary matrix, V †
CKMVCKM = 1 = VCKMV

†
CKM. In general, 3 × 3 unitary matrix

has three rotational angles and six phases. For VCKM, since five phases can be absorbed by

the redefinition of the quark phases, the physical degrees of freedom are three rotational

angles and one phase. Therefore, VCKM can be parameterized by sij ≡ sin θij, cij ≡ cos θij

and KM phase δ as [80–82]

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.30)

or

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.31)

The latter one is known as the Wolfenstein parametrization [83]. Two parametrizations

are related as

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ , (2.32)

s13e
iδ = V ∗

ub = Aλ3(ρ+ iη) =
Aλ3(ρ̄+ iη̄)

√
1− A2λ4√

1− λ2[1− A2λ4(ρ̄+ iη̄)]
. (2.33)

From these relations, one can obtain ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb). Note that ρ̄ and η̄ are

defined as ρ̄ = ρ(1− λ2

2
) +O(λ4) and η̄ = η(1− λ2

2
) +O(λ4).
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Figure 1: An example of one-loop correction for the Higgs mass.

Although the SM can explain almost all of the experimental data, there are some

problems which should be solved in both of theoretical and experimental points of view.

We will list some of these problems below:

• Hierarchy problem [18]

As the gauge bosons get the masses by the Higgs mechanism, the Higgs boson also

gets the mass of order of its VEV, v. This scale is experimentally known as O(100)

GeV. In the SM, there are some quantum corrections which contribute to the Higgs

mass. These corrections are dominated by the top quark contributions because of

the largeness of the Yukawa coupling. Its size can be calculated by the loop diagram

in Fig. 1 as

∆m2
H = −3y2t

8π2
Λ2 + · · · , (2.34)

where yt is the Yukawa coupling of the top quark and Λ is the cutoff scale of

the theory. By considering these contributions, the Higgs mass is obtained by the

sum of its bare parameter m2
H bare and ∆m2

H . If one assume that the new physics

appears at higher scale, e.g. the GUT scale, than the weak scale, it needs huge

cancellation between m2
H bare and ∆m2

H in order to obtain the proper size of m2
H ∼

(O(100)GeV)2.

• Neutrino masses

In the SM, three left-handed neutrinos are all massless because there are no right-

handed neutrinos. However, it has been shown that neutrinos have a small but non-

zero masses in many neutrino oscillation experiments [3–16]. This is a clear evidence

for the physics beyond the SM. One of the famous solutions is to introduce the SM

singlet fermions as right-handed neutrinos. In this case, Majorana mass termsMij in

addition to Yukawa couplings with the left-handed neutrinos can be introduced. If

Mij are much heavier than the weak scale, neutrino masses are suppressed by M−1
ij ,

and thus tiny masses for neutrinos can be obtained. This is known as the seesaw

9



mu = 2.2+0.6
−0.4 × 10−3 mc = 1.28± 0.03 mt = 160.0+4.8

−4.3

md = 4.7+0.5
−0.4 × 10−3 ms = 9.6+0.8

−0.4 × 10−2 mb = 4.18+0.04
−0.03

me = 5.109989× 10−4 mµ = 0.10566 mτ = 1.77686± 0.00012

Table 2: The SM quarks and charged leptons masses in GeV [79]. We show the MS mass
for the quark masses and pole mass for the lepton masses. We omit the uncertainties of
me and mµ.

mechanism [84, 85]. If one consider a GUT model, the right-handed neutrinos can

be naturally introduced in the model.

• Charge quantization

From Table 1, U(1)Y charges of the SM particles are quantized. Accidentally, these

charges can cancel the gauge anomalies for U(1)Y and U(1)3Y . It is natural to

consider that there is some mechanism behind the theory. However, this charge

quantization cannot be explained in the SM. This quantization can be explained in

the GUT.

• The origin of Yukawa hierarchy

The current experimental values of the quark and lepton masses are quite hierar-

chical. For example, the masses of top, charm and up quark are O(100) GeV, O(1)

GeV and O(1) MeV, respectively. In addition, the down-type quarks and charged

leptons have different hierarchies and the neutrinos are almost degenerated. We

summarized the masses of the quarks and charged leptons in Table 2. However, the

Yukawa couplings of the SM Eq. (2.27) are just parameters and cannot be deter-

mined their values theoretically. Therefore, we must consider how we obtain this

variety of hierarchies. Many models which can solve Yukawa hierarchy problem are

proposed. Especially, in some SUSY GUT models, these hierarchies can be obtained

in the natural assumption.

• No dark matter candidates

There are no dark matter (DM) candidates in the SM particle contents. However,

many experiments show that the DM is needed in order to explain the observable.

Therefore, we should construct the models in which there are the DMs. In the SUSY

models, the lightest SUSY particles can be the DM if R-parity is conserved.

10



Figure 2: An example of one-loop correction for the Higgs mass in the SUSY model.

3 Models beyond the SM

In the previous section, we showed some of the problems in the SM. These problems can

be solved by extending the SM. One of the most interesting and promising candidates for

the model beyond the SM is a SUSY GUT. In this section, we will introduce its features

and how we solve the SM problems.

3.1 Supersymmetry

The SUSY is the symmetry between bosons and fermions. There is a bosonic partner

for a fermion and vice versa. These new particles are called SUSY particles. One of the

important features in a SUSYmodel is cancellation of the quadratic divergence of quantum

corrections in the Higgs mass. Because of the contributions of the SUSY particles, one-

loop correction for the Higgs mass in the SUSY model can be obtained by calculating the

sum of the loop diagrams in Fig. 2 as

∆m2
H ≃ −3y2t

8π2
Λ2 +

[
3y2t
8π2

Λ2 − 3y2t
4π2

m2
t̃ ln

(
Λ

mt̃

)]
= −3y2t

4π2
m2
t̃ ln

(
Λ

mt̃

)
, (3.1)

where mt̃ is the mass of the bosonic partners for the top quark, which is called stop. Note

that a stop-Higgs four point coupling is y2t because of the SUSY. Therefore, Λ
2 correction

is canceled at one-loop level. This cancellation is caused by the difference of statistic

property between the fermion and scalar fermion (sfermion).

The quantum number of SUSY particle is the same as that of corresponding SM

particle. Moreover, SUSY particle and its partner have equal mass. Therefore, SUSY

should be broken at the low energy since there are no signals of the SUSY particles in

the experiments. This means that the Lagrangian for a SUSY model can be divided

into two parts: SUSY-conserving part and SUSY-breaking part. However, if one breaks

SUSY completely, the cancellation shown in Eq. (3.1) cannot occur. In order to maintain

this cancellation, SUSY should be broken softly. We will explain this breaking in the

framework of the minimal SUSY model.

11



3.1.1 Minimal Supersymmetric Standard Model

We will summarized the particle content for minimal SUSY SM (MSSM) in Table 3 (and

notation is defined here). In SUSY models, two Higgs doublets are needed because of

superfiled scalar or vector fermion quantum number

Qi Q̃i =

(
ũL
d̃L

)
i

Qi =

(
uL
dL

)
i

(
3,2, 1

6

)
Li L̃i =

(
ν̃eL
ẽL

)
i

LL =

(
νeL
eL

)
i

(
1,2,−1

2

)
Ui ũ∗R i ucR i

(
3̄,1,−2

3

)
Di d̃∗R i dcR i

(
3̄,1, 1

3

)
Ei ẽ∗R i ecR i (1,1, 1)

G g g̃ (8,1, 0)

W W W̃ (1,3, 0)

B B B̃ (1,1, 0)

Hu Hu =

(
H+
u

H0
u

)
H̃u =

(
H̃+
u

H̃0
u

) (
1,2, 1

2

)
Hd Hd =

(
H0
d

H−
d

)
H̃d =

(
H̃0
d

H̃−
d

) (
1,2,−1

2

)
Table 3: Particle contents for the MSSM. The particles with tilde show the SUSY particles.
The quantum number is (SU(3)C , SU(2)L, U(1)Y ).

two reasons: to write the Yukawa couplings and to cancel the gauge anomaly. Since

we consider the model by holomorphic function of superfield rather than Lagrangian,

which is called as superpotential, we cannot use the hermitian conjugation of the Higgs

superfield, H†
u. In addition, there are additional contributions to the gauge anomaly from

the superpartners of the Higgs bosons, called Higgsinos. Therefore, the additional Higgs

doublet whose U(1)Y charge is opposite sign to the other one must be introduced.

In the MSSM, three gauge couplings of the SM are accidentally unified around 1016

GeV. This is because the beta-functions of the gauge couplings are modified because of the

SUSY particles. More explicitly, the coefficients of the beta-functions bi are modified from

(41/10,−19/6,−7) (the SM one) to (33/5, 1,−3) (the MSSM one), which bi is defined as

dgi
dt

=
bi

16π2
g3i (i = 1, 2, 3), (3.2)
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Figure 3: The SM gauge coupling running in both case of the MSSM (solid lines) and
the SM (dashed line). The input parameters are the gauge couplings at MZ scale [79]:

α1(MZ)
−1 = 59.04, α2(MZ)

−1 = 29.60 and α3(MZ)
−1 = 8.47, where αi ≡ g2i

4π
. We assume

that the SUSY contributions appear at 1 TeV.

where t = ln(µ/MZ). We show the running of the SM gauge couplings in Fig. 3. Here,

solid and dashed lines are the running of the MSSM and SM, respectively. In this case,

the GUT scale at which three gauge couplings meet is about 1016 GeV. In this sense, the

SUSY model is compatible with GUTs.

Next, we will show the Lagrangian in SUSY models. Note that a Lagrangian is divided

by two parts as we mentioned above. The first part, SUSY conserving terms, is written

as

LSUSY =
[
K(Φi,Φ

∗j)
]
D
+

([
1

4
fab(Φi)ŴaŴb +W (Φi)

]
F

+ h.c.

)
, (3.3)

where K(Φi,Φ
∗j) is Kähler potential, W (Φi) is superpotential, fab(Φi) is a gauge kinetic

function and Ŵa is field-strength superfield.

From the first term in Eq. (3.3), we obtain the kinetic terms for matter fields and

D-terms defined as

LSUSY ⊃ −1

2

∑
a

DaDa, Da = −ga
∑
ϕ

(ϕ∗T aϕ). (3.4)

For the summation, a runs all gauge symmetry imposed in the model and ϕ runs all

scalar components lived in the model. ga and T a are gauge coupling and generators of

each gauge symmetry, respectively. Importantly, this D-term contributes to the sfermion

13



masses. These contributions are generated as

∆m2
f̃
=
∑
a

g2aq
a
f̃
qaϕH ⟨ϕH⟩

2 (3.5)

after some Higgs fields get VEV, ⟨ϕH⟩. Note that qaf̃ and q
a
ϕH

are the charges of U(1) factor

for a scalar f̃ and Higgs ϕH in the gauge symmetry, and therefore different U(1) charges

cause different contributions. In particular, if one considers the GUT model whose rank

of the gauge symmetry is larger than that of GSM, for example SO(10) and E6, there

are non-vanishing D-term contributions which are usually flavor-independent and we can

obtain some signature of the GUT scenario from these contributions through scalar mass

relations [63–66]. However, these contributions become flavor-dependent ones when we

consider a model in which there are mixings of fields, like the mixing of 5̄ of SU(5) in the

E6 GUT model. Their sizes are constrained by the FCNC processes [67, 68] as we will

discuss in Sec. 5.

The Yukawa interactions are obtained from the superpotential. For the MSSM, the

superpotential is

WMSSM = ϵab

[
(Yu)ijQa

iHb
uUj − (Yd)ijQa

iHb
dDj − (Ye)ijLaiHb

dEj + µHa
uHb

d

]
, (3.6)

where ϵ12 = +1. Note that µ is the Higgsino mass parameter.

The second part of the Lagrangian is written by softly SUSY-breaking terms:

Lsoft
MSSM = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−
(
(Au)ijQ̃iũ

∗
RjHu − (Ad)ijQ̃id̃

∗
RjHd − (Ae)ijL̃iẽ

∗
RjHd + h.c.

)
−
(
m2
q̃

)
ij
Q̃†
iQ̃j −

(
m2
ũ

)
ij
ũ∗R iũRj −

(
m2
d̃

)
ij
d̃∗R id̃Rj

−
(
m2
l̃

)
ij
L̃†
i L̃j −

(
m2
ẽ

)
ij
ẽ∗R iẽRj

−m2
HuH

∗
uHu −m2

Hd
H∗
dHd − (bHuHd + h.c.), (3.7)

where Mi (i = 1, 2, 3) is the gaugino mass, (Af )ij (f = u, d, e) is the 3 × 3 scalar cubic

matrix and (mf̃ )ij is the 3 × 3 sfermion mass squared matrix. m2
Hu

, m2
Hd

and b are

the squared mass terms which contribute to the Higgs potential. Therefore, the Higgs

potential in the MSSM becomes

VH = (|µ|2 +m2
Hu)(|H

0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd
)(|H0

d |2 + |H−
d |

2)

+
[
b(H+

u H
−
d −H0

uH
0
d) + h.c.

]
(3.8)

+
1

8
(g22 + g′

2
)
(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |

2
)2

+
1

2
g22|H+

u H
0
d
∗
+H0

uH
−
d

∗|2,
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together with the terms from Eq. (3.6). Similar to the SM, the VEVs of the Higgs doublets

can be

⟨Hu⟩ =

(
0

vu

)
, ⟨Hd⟩ =

(
vd

0

)
, (3.9)

by the SU(2)L symmetry. Note that the relation between these VEVs and the SM Higgs

VEV v is v2u + v2d = v2, and the ratio of vu and vd can be defined as

tan β ≡ vu
vd
. (3.10)

The stationary conditions from Eq. (3.8), which are ∂VH/∂H
0
u = 0 = ∂VH/∂H

0
d
2, lead to

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (3.11)

M2
Z =

|m2
Hd

−m2
Hu

|√
1− sin2(2β)

−m2
Hu −m2

Hd
− 2|µ|2. (3.12)

In the MSSM, there are two complex Higgs doublets as we explained above. Therefore,

after breaking SU(2)L × U(1)Y → U(1)em, five physical modes exist: 2 CP-even neutral

scalars (h0 and H0), 1 CP-odd neutral scalar (A0) and charged scalars (H±). The masses

for these modes are

m2
A0 = 2|µ|2 +m2

Hu +m2
Hd
, (3.13)

m2
h0,H0 =

1

2

(
m2
A0 +M2

Z ∓
√
(m2

A0 −M2
Z)

2 + 4M2
Zm

2
A0 sin

2(2β)

)
, (3.14)

m2
H± = m2

A0 +m2
W . (3.15)

Note that the lighter mode h0 is regarded as the SM Higgs boson. Therefore, these masses

cause the following undesired relation at tree-level:

mh0 < MZ | cos(2β)|. (3.16)

Therefore, large contributions to the Higgs mass from the quantum corrections are needed

to achieve the observed Higgs mass.

2Because of the SU(2)L gauge transformations, we can take H+
u = 0 at the minimum of the potential,

without loss of generality. This means that ∂VH/∂H+
u = 0 leads to the result H−

d = 0. Equations (3.11)
and (3.12) are obtained by using H+

u = 0 = H−
d .
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3.1.2 Problems in the MSSM

Although some problems in the SM are solved by extending a model with SUSY, new

problems are caused by this extension. We will summarize main problems below:

• µ-problem [20]

In the Higgs sector of the Lagrangian for MSSM, four dimension-full parameters

exist. One of them is Higgsino mass parameter, µ. Since this is a SUSY-conserving

parameter, the size is thought to be order of cutoff scale, Λ ≫ ΛEW. On the other

hand, since the VEV of the SM Higgs boson is O(100) GeV, the size of µ must be

the same order unless there is no miracle cancellation between parameters. This

problem about the size of µ is called the µ-problem.

• SUSY FCNC problem

In the MSSM, there are a lot of new parameters which are not in the SM in order to

break SUSY softly. However, these parameters can cause flavor-changing processes.

This is because the scalar cubic couplings and soft sfermions masses are 3 × 3

matrix and the off-diagonal element is not suppressed in general. Even if the off-

diagonal elements are absent, non-zero off-diagonal elements are obtained when one

takes a basis, called as super-CKM basis, in which the quarks and leptons are mass

eigenstates. These off-diagonal elements are constrained by the FCNC processes

and should be small to satisfy the experimental bounds. However, this smallness of

the off-diagonal elements cannot be explained in the MSSM. This problem is called

the SUSY FCNC problem.

• SUSY CP problem

As same as the SUSY FCNC problem, there are a lot of new phases in the Lagrangian

for MSSM since the new parameters of MSSM are generally complex. Therefore,

there are CP-violating phases which are constrained by the CP-violating observables.

Examples of such a observable are electric dipole moments (EDMs) and CEDMs.

These observables show that some of the phases of new parameters are needed to be

small for satisfying the experimental bounds. Similar to the SUSY FCNC problem,

these smallness of the phases cannot be explained in the MSSM. This problem is

called the SUSY CP problem.

3.2 Grand Unified Theory

Another interesting candidate for the model beyond the SM is a GUT. This predicts two

types of unification. One is the unification of gauge interactions, and another one is the

unification of matter fields.
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In GUT models, we consider the gauge group whose rank is larger than or equal to

the rank of GSM. In addition, we choose the group which has complex representations.

In this thesis, we focus on SU(5), SO(10) and E6 as examples of such a group. In this

subsection, we review the general properties of the SU(5) GUT. We will introduce SO(10)

and E6 GUT in the next subsection as a context of the SUSY GUT model.

3.2.1 Properties of SU(5) GUT

SU(5) is the smallest group for GUT models and it is useful to know its features in

discussing other GUT theories. First of all, we introduce basic properties of SU(5) algebra.

The rank of SU(5) is 4 which is the same as that of the SM gauge group. Therefore, one

has to keep the rank when the SU(5) symmetry is broken. This can be realized by a

VEV of the adjoint Higgs, 24A. If ⟨24A⟩ is proportional to diag(2, 2, 2,−3,−3)vA, a

proper symmetry breaking SU(5) → SU(3)× SU(2)× U(1) is realized. This fact can be

understood by considering the generators of SU(5). In SU(5), there are 24 generators

denoted as TA. Some of these generators are remaining unbroken after symmetry breaking.

By checking whether a commutator [TA, ⟨24A⟩] is zero, the remaining generators are3

Tα3 =

(
1
2
λα 03×2

02×3 02×2

)
, (α = 1, · · · , 8) (3.17)

T a2 =

(
03×3 03×2

02×3
1
2
σa

)
, (a = 1, 2, 3) (3.18)

T1 =

√
3

5

(
−1

3
× 13×3 03×2

02×3
1
2
× 12×2

)
=

√
3

5
TY , (3.19)

Therefore, Tα3 and T a2 are corresponding to the generators of the SU(3)C and SU(2)L,

respectively. TY can be regarded as the generator of U(1)Y .

By using Eqs. (3.17), (3.18) and (3.19), decompositions of some representations of

SU(5) can be obtained as follows:

5 →
(
3,1,−1

3

)
+

(
1,2,

1

2

)
, (3.20)

5̄ →
(
3̄,1,

1

3

)
+

(
1,2,−1

2

)
, (3.21)

3T 3
2 and TY are obtained by linear combination of two of Cartan matrices, Hi. These are H3 ≡

1
2
√
6
diag(1, 1, 1,−3, 0) and H4 ≡ 1

2
√
10
diag(1, 1, 1, 1,−4). By using these Cartan matrices, one can obtain

the following generators: T 3
2 = −1

4 (
√
6H3 −

√
10H4) and TY = −1

4 (
√
10H3 +

√
6H4).
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10 →
(
3,2,

1

6

)
+

(
3̄,1,−2

3

)
+ (1,1, 1) , (3.22)

24 → (1,1, 0) + (1,3, 0) + (8,1, 0) +

(
3,2,−5

6

)
+

(
3̄,2,

5

6

)
, (3.23)

where the number in each parenthesis shows the quantum number as (SU(3), SU(2), U(1)).

Therefore, 5̄ and 10 can be used as the matter fields, and the SM matter fields are par-

tially unified as dcR, L → 5̄ and Q, ucR, e
c
R → 10. Interestingly, the proper hypercharges

of the SM fields are automatically obtained (see Table 1). Therefore, the charge quanti-

zation can be explained in the SU(5) GUT. From here, we denote 5̄i and 10i as matter

fields. i = 1, 2, 3 is a index of the generation. The remaining SM fields are the gauge

and Higgs bosons. We can unify the SM gauge bosons into 24 with new bosons whose

charges are
(
3,2,−5

6

)
and

(
3̄,2, 5

6

)
which are known as X and Y bosons. These new

fields are one of the predictions of the SU(5) GUT scenario. The Higgs doublet lives in 5

with new color-triplet scalar field, denoted as HT whose quantum number is
(
3,1,−1

3

)
.

In this thesis, we denote 24G and 5H as gauge boson field and Higgs field in SU(5) GUT,

respectively.

As we mentioned above, we should introduce another new field 24 as an additional

Higgs to break SU(5) to GSM. Its VEV is

⟨24A⟩ =


2

2

2

−3

−3

 vA, (3.24)

where vA is SU(5) breaking scale. This VEV can be obtained by computing the minima

of a scalar potential for 24A, which is written as

VA = −|m2
A|tr

[
242

A

]
+ λ1

(
tr
[
242

A

])2
+ λ2tr

[
244

A

]
. (3.25)

Here, we assume Z2 parity for the 24A. Since 24 is an hermitian matrix in special

unitary group, ⟨24A⟩ can be diagonalized by proper SU(5) transformation. Because of
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the condition of the traceless, ⟨24A⟩ can be

⟨24A⟩ =


a1

a2

a3

a4

a5

 ,

5∑
i=1

ai = 0. (3.26)

For the VEV calculation, one should compute the local minimum of VA,

VA|VEV = −|m2
A|

5∑
i=1

a2i + λ1

(
5∑
i=1

a2i

)2

+ λ2

5∑
i=1

a4i − κ
5∑
i=1

ai, (3.27)

where κ is a Lagrange multiplier. Therefore, one obtain the following conditions:
∂VA|VEV

∂ai
= −2|m2

A|ai + 4λ1ai

5∑
j=1

a2j + 4λ2a
3
i − κ = 0,

∂VA|VEV

∂κ
= −

5∑
i=1

ai = 0.

(3.28)

Equation 3.28 leads to the solution in which the potential is minimized when a1 = a2 =

a3 = 2 and a4 = a5 = −3. As a result, the solution for SU(5) → GSM can be obtained

when

λ2 > 0, λ1 > − 7

30
λ2, (3.29)

and vA in Eq. (3.25) is

v2A =
2|m2

A|
30λ1 + 7λ2

. (3.30)

In order to write down Yukawa interactions for the SU(5) GUT, one must know

irreducible decompositions of the multiple for 10× 10 and 10× 5̄:

10× 10 = 5̄+ 4̄5+ 50, (3.31)

10× 5̄ =5+ 45. (3.32)

Therefore, Yukawa interactions for the SU(5) GUT is obtained by

LY = (Yu)ij10i10j5H + (Yd,e)ij10i5̄j5̄H . (3.33)
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From this, the hierarchies of Yukawa interactions are explained by an assumption that 10

fields have stronger hierarchy than 5̄ fields. Moreover, if one introduces SU(5) singlet fields

1i as right-handed neutrinos, extra Yukawa couplings for the neutrinos can be written as

LνY = (YνD)ij5̄i1j5H + (MνR)ij1i1j, (3.34)

where (MνR)ij is the Majorana mass matrix. When (MνR)ij ≫MZ , right-handed neutri-

nos 1i are integrated out and the neutrino Yukawa couplings are obtained as

−
(
YνDM

−1
νR
Y T
νD

)
ij
5̄i5̄j5H5H . (3.35)

From the above assumption, it is understood that the hierarchy of neutrino masses is the

weakest. Therefore, not only tiny but also almost degenerated masses for neutrinos can

be explained. Note that extra singlets considered here is naturally introduced in SO(10)

GUTs.

In SU(5) GUT, gauge coupling unification is predicted: three gauge couplings in the

SM are unified into one gauge coupling, g5, as like√
5

3
g′ = g2 = g3 ≡ g5. (3.36)

Note that the relation between g′ and g5 is determined by Eq. (3.19):

g5T1 = g5

√
3

5
TY = g′TY ⇒ g5 =

√
5

3
g′ (3.37)

after SU(5) breaking. Since SU(2), SU(3) and SU(5) are the same normalization, rela-

tions between the gauge couplings are g2 = g3 = g5. In fact, the gauge coupling unification

is not realized in a non-SUSY minimal model as shown in Fig. 3 (dashed lines).

3.2.2 Problems in SU(5) GUT

Although the SU(5) GUT is the interesting extension of the SM, there are some problems

which should be solved. We will list some of these below:

• Unification of the Yukawa couplings for down-type quarks and charged leptons

From Eq. (3.33), an interesting relation at the GUT scale, Yd = Y T
e , is obtained.

This is one of predictions of the SU(5) GUT. This relation leads to the following

relations at the low energy because of the renormalization group equation (RGE)
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effects:

3me ≃ md, 3mµ ≃ ms, 3mτ ≃ mb. (3.38)

However, current experimental observables show the different relations, 9me ∼ md、

mµ ∼ ms、3mτ ∼ mb. There are some methods to avoid undesired relation

Eq. (3.38). The examples are to introduce the extra Higgs fields and extra matter

fields.

• Proton decay [19,86]

In the SU(5) GUT, there are new particles which couple both of the quarks and

leptons. These are X, Y bosons and the color-triplet Higgs HT . These particles

cause the proton decay at the tree-level. On the other hand, the current bound of

the proton lifetime τp is very long (for p→ eπ mode, τp > 8.2×1033 years [79]). This

bound implies that the masses of new gauge bosons are needed to be larger than

the GUT scale, ΛGUT. However, the mass of X (Y ) boson is generated by the VEV

of 24A in a similar way to the Higgs mechanism in the SM, so that mX(Y ) ≃ ΛGUT

and the bound of the proton lifetime is not satisfied. The lower bound for mass of

HT is weaker than that for masses of X and Y bosons since the decay width of the

proton decay induced by HT is evaluated by the Yukawa couplings rather than the

gauge coupling. However, its bound is much higher than the weak scale. Therefore,

the bound from the proton lifetime is one of the strong constraints for SU(5) GUT

models.

• Doublet-triplet splitting (DTS) problem (see [87] for a review)

The Higgs potential related to 5H can be written as

V5H = m2
5H
|5H |2 + |λ5H |(|5H |2)2 + α|5H |2tr

[
242

A

]
+ β5†

H24
2
A5H , (3.39)

where α and β are the couplings between 5H and 24A. By substituting ⟨24A⟩ in

Eq. (3.24), the masses of HT and the SM Higgs doublet are

m2
HT

= m2
5H

+ (30α + 4β) v2A, (3.40)

m2
H = m2

5H
+ (30α + 9β) v2A. (3.41)

For the proton lifetime, mHT must be much larger than the weak scale, while mH

should be O(100) GeV because of the observed Higgs mass, 125 GeV. Therefore,

there is a fine-tuning between m2
HT

and m2
H to realize both of the values. This

fine-tuning is known as the doublet-triplet splitting (DTS) problem.
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3.3 SUSY GUT models

The supersymmetric extension of the GUT models can be straightforwardly done. One of

the interesting features is the realization of gauge coupling unification as shown in Fig. 3.

In this subsection, we will introduce the SO(10) and E6 SUSY GUT and focus on the

method for obtaining the realistic Yukawa couplings.

3.3.1 SO(10) SUSY GUT

In SO(10) GUTs, one can construct models with less number of fields since the rep-

resentations of SU(5) are unified. Low-dimensional representations of SO(10) are 10

(vector), 16 (spinor) and 45 (adjoint), and the decompositions of these fields under

SO(10) → SU(5)× U(1)V are

10 → 5−2 + 5̄2,

16 → 101 + 5̄−3 + 15, (3.42)

45 → 240 + 10−4 + 104 + 10.

Interestingly, the matter fields of SU(5), 10i and 5̄i, can be unified into one spinor field,

16i in SO(10) GUT models. In addition, since 16i has a singlet of SU(5) which is the

SM singlet, right-handed neutrinos are naturally introduced. These are the features of

the SO(10) GUT. In SUSY GUT models, two Higgs doublets Hu and Hd belong to 5H

and 5̄H of SU(5). Therefore, from Eq. (3.42), these two Higgs doublets can be unified

in one 10H of SO(10). Clearly, the gauge boson field 24G in SU(5) GUT are in 45G of

SO(10). The other Higgs field in SU(5) GUT 24A can be embedded in 45A.

Since the rank of SO(10) is 5, an extra Higgs fields are needed. For this reason,

16H and 16H are introduced to break SO(10) to SU(5). Therefore, a minimal model in

SO(10) GUT has three 16i as the matter fields, 45G as the gauge field and 10H , 16H ,

16H and 45A as Higgs fields.

In the minimal model, Yukawa interactions can be written as

WYukawa = Yij16i16j10H , (3.43)

where i, j = 1, 2, 3 are the indices for the generations. Because of the matter unification,

the Yukawa couplings are also unified, and in the SO(10) GUT case, the following relation

are obtained at the GUT scale:

Yu = Yd = Y T
e = YνD . (3.44)
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Here, YνD is a Yukawa interaction for Dirac neutrinos. This relation is an attractive

hypothesis, although this cannot realize the observed fermion masses.

The Yukawa relation Eq. (3.44) can be avoided by introducing extra fields as a matter.

In the SO(10) GUT, one can use 10 fields as the extra matter field. In this case, the

extra Yukawa couplings and mass term for 10 are

Wex = Y ′
i 16i1016H +M101010. (3.45)

After the symmetry breaking SO(10) → SU(5) by the VEV of the SM singlet in 16H ,

matter fields in 16i and 10 mix with each other. Since 10 is decomposed to 5 + 5̄ in

SU(5), only 5̄ fields mix. To see this explicitly, we will write down the mass matrix for

the down-type quarks as an example. After breaking the symmetry, the mass matrix for

the down-type quarks becomes 4× 4 matrix:

Ld =
(
d
(16)
R i d

(10)
R

)(Yijvd Y ′
i ⟨1H⟩

0 M10

)(
d
(16)
L j

d
(10)
L

)
, (3.46)

where d
(16)
L(R) i and d

(10)
L(R) are the down-type quarks from 16i and 10, respectively. 1H in

Eq. (3.46) is coming from 16H and its VEV breaks SO(10) to SU(5). It is clear that

d
(16)
L(R) i and d

(10)
L(R) mix with each other when SO(10) is broken. Therefore, the mass of one

linear combination of d
(16)
L(R) i and d

(10)
L(R) is order of M10 (or ⟨1H⟩) which is expected to be

superheavy, and the other three linear combinations have small masses (O(vd)). These

modes are defined by the mixing matrices which diagonalize the 4 × 4 mass matrix in

Eq. (3.46). Important point is that the down-type Yukawa couplings Yd are obtained by

multiplying these mixing matrix to Yij. There is similar mixing in the charged lepton

sector, while up-type quark does not mix, Yu ∼ Yij. In addition, if one consider the

effects of higher-dimensional operators to Yukawa couplings, unrealistic Yukawa relation

Eq. (3.44) can be avoided and it is able to obtain the realistic Yukawa couplings which

can realize the observed fermion masses. More detailed discussion is applied in Sec. 4.

3.3.2 E6 SUSY GUT

E6 GUT models have interesting features. Its fundamental representation, 27, is decom-

posed as

27 = (10, 1, 1) + (5̄, 1,−3) + (1, 1, 5) + (5,−2,−2) + (5̄′,−2, 2) + (1′, 4, 0) (3.47)

in E6 ⊃ SU(5) × U(1)V ′ × U(1)V notation. (5̄′,−2, 2) from 10 of SO(10) plays an

important role in obtaining realistic mass hierarchy and mixings of the SM, as we explained
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in Sec. 3.3.1. From the E6 algebra, E6 singlet can be constructed by the product of three

27s. Therefore, Higgs field is introduced as 27Φ in E6 GUT models and the Yukawa

interactions are

WY = Yij27i27j27Φ. (3.48)

However, another Higgs field 27C is needed to break E6 → GSM because the rank of E6

is 6. Thus, the Yukawa interactions become the sum of the two Yukawa terms:

WY = Y Φ
ij 27i27j27Φ + Y C

ij 27i27j27C . (3.49)

Note that we assume that 27Φ and 27C breaks E6 → SO(10) and SO(10) → SU(5)

respectively. Therefore, 1Φ ∈ 27Φ and 16C ∈ 27C get non-zero VEVs. More interestingly,

in the E6 GUT, the assumption that 10 field has stronger hierarchy than 5̄ of SU(5) is

obtained by the mixing of 5̄ fields and by assuming the hierarchy of Y Φ,C
ij . From Eq. (3.47),

three generations of 27 have six 5̄s of SU(5), and the SM modes are obtained as the light

modes of the mixing of these 5̄ fields. On the other hand, there are three 10s of SU(5) in

three generations of 27. Therefore, all 10 fields are regarded as the SM modes, and we

expect that Y Φ,C
ij have the hierarchical structures which realize the up-type quark mass

hierarchy. For this reason, we assume

Y Φ
ij ∼ Y C

ij ∼

λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

 , (3.50)

where λ = 0.22. Because of the VEVs of 27Φ and 27C , Yukawa matrix for 5-5̄ sector

becomes


5̄′
1 5̄′

2 5̄′
3 5̄1 5̄2 5̄3

51 λ6 λ5 λ3 λ6+r λ5+r λ3+r

52 λ5 λ4 λ2 λ5+r λ4+r λ2+r

53 λ3 λ2 1 λ3+r λ2+r λr

, (3.51)

where λr ≡ ⟨16C⟩/⟨1Φ⟩ and 0 < r < 1 because of ⟨16C⟩ < ⟨1Φ⟩. From this matrix,

roughly speaking, 5̄′
2, 5̄

′
3 and 5̄3 become superheavy with 5i fields. If r = 0.5, the realistic

down-type Yukawa hierarchy is obtained as

Yd ∼

λ6 λ5.5 λ5

λ5 λ4.5 λ4

λ3 λ2.5 λ2

 , (3.52)
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and the SM modes denoted as 5̄0
i become

(5̄0
1, 5̄

0
2, 5̄

0
3) ∼ (5̄1, 5̄

′
1, 5̄2). (3.53)

Therefore, in E6 GUTs, the assumption Eq. (3.51) and the ratio of VEVs, λ0.5, lead to

realistic mass hierarchy for the SM fermions. If one considers E6 GUT with anomalous

U(1)A gauge symmetry which is considered in Sec. 5, the hierarchy in Eq. (3.51) is obtained

by the charge assignment of U(1)A.
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4 Flavor physics induced by Z ′ from SO(10) SUSY

GUT model

In this section, we will show predictions of a realistic SO(10) SUSY GUT model. As we

mentioned above, some methods to avoid the unrealistic relation Eq. (3.44) are needed

in SO(10) GUT models. In this thesis, we adopt the method that extra matter fields are

introduced and some of the SM modes are obtained by linear combinations of the matter

fields [27,28].

We assume that SO(10) is broken to GSM×U(1)′ at the GUT scale by SO(10)-adjoint

chiral superfields, 45 and 45′, and U(1)′ symmetry is broken around 100 TeV by an extra

Higgs fields, 16H and 16H . In this model, the SUSY-breaking scale is also O(100) TeV

to achieve the 125 GeV Higgs mass [88–96], if the SUSY spectrum is not unique [97–100].

On the other hand, the gaugino masses (and Higgsino masses) are small to be around 1

TeV because of the gauge coupling unification. Therefore, there are three scales in this

model, the U(1)′ breaking scale, gaugino mass scale and weak scale.

4.1 Setup

4.1.1 Requirements for the realistic Yukawa couplings

As we explained in Sec. 3.3.1, the matter superfields belong to the 16 representation, and

the Yukawa couplings in the minimal SO(10) SUSY GUT are described by one 3 × 3

matrix, hij:

Wmin = hij16i16j10H , (4.1)

where 10H is the chiral superfield for the Higgs. In addition to 16i, three 10-representational

chiral superfields, 10i, are introduced as matter fields [27, 28]. Therefore, additional

Yukawa couplings and mass terms for 10i can be written as

Wex = gij16i10j16H + µ10 ij10i10j. (4.2)

Note that 16H is an extra Higgs field to break the remaining U(1)′ symmetry, and µ-term

is just omitted. In order to sketch the idea, let me focus on the down-type quark sector.

Because of the decompotisions in Eq. (3.42), there are two kinds of down-type quarks in

this setup. We denote these as d
(16)
L,R i and d

(10)
L,R i which are originated from the 16i and

10i, respectively. As a result, we find the 6× 6 mass matrix for the down-type quarks as
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follow:

Ld = −
(
d
(16)
R i d

(10)
R i

)(hijvd gij⟨1Φ⟩
0 µ10 ij

)(
d
(16)
L j

d
(10)
L j

)
, (4.3)

where vd denotes the nonzero VEV of the down-type Higgs doublet and 1Φ is the scalar

component of the SM singlet in 16H . As seen in Eq. (4.3), d
(16)
i and d

(10)
i mix with each

other once 1Φ gets VEV. Therefore, the lightest modes for linear combinations of d
(16)
i

and d
(10)
i can be interpreted as the SM down-type quarks. Note that at the same time,

U(1)′ is broken spontaneously.

We define the mixing of the right-handed down-type quarks as(
dR i

dHR i

)
= (Ud)ij

(
d
(16)
Rj

d
(10)
Rj

)
=

(
(Ûd

16)ij (∆Ud)ij

(∆U ′
d)ij (Ûd

10)ij

)(
d
(16)
Rj

d
(10)
Rj

)
, (4.4)

where dR and dHR are the right-handed SM quarks and extra heavy quarks, respectively.

Ud is a 6 × 6 unitary matrix, and Ûd
16,10 and ∆U

(′)
d are 3 × 3 matrices. Because of the

unitarity of Ud, these 3× 3 matrices satisfy the following conditions:

(Ûd
16)ik(Û

d
16)

∗
jk + (∆Ud)ik(∆Ud)

∗
jk = δij, (4.5)

(Ûd
16)ik(∆U

′
d)

∗
jk + (∆Ud)ik(Û

d
10)

∗
jk = 0, (4.6)

(∆U ′
d)ik(∆U

′
d)

∗
jk + (Ûd

10)ik(Û
d
10)

∗
jk = δij. (4.7)

Ud is fixed by the parameters in the Wex, following Eqs. (4.3) and (4.4). In this section,

we simply focus on the mixing in the limit that hijvd are much smaller than gij⟨1Φ⟩ and
µ10 ij. In this case, the left-handed SM quarks dL i are given by d

(16)
L j . Thus, in order

to diagonalize the mass matrix for down-type quarks in Eq. (4.3), there are additional

conditions for the elements of mixing matrix:

(Ûd
16)ikgkj⟨1Φ⟩+ (∆Ud)ikµ10 kj = 0. (4.8)

As a result, the Yukawa couplings for the SM down-type quarks, hdij, is obtained by

using the Ûd
16 parameters as

hdij = (Ûd
16)ikhkj. (4.9)

hij is the Yukawa couplings in the minimal case (Eq. (4.1)) and it is expected to explain

the up-type SM quark mass matrix because the up-type quarks are belonging to 10 of

SU(5) and there are no mixing with the additional matter fields. Therefore, one can use
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Ûd
16 to realize the mass hierarchy between the up-type and down-type quarks. However,

since the relation in Eq. (4.5) means that the elements of Ûd
16 cannot be larger than 1,

it is difficult to obtain the realistic hierarchy. In order to achieve it in this setup, one

can introduce higher-dimensional operators involving 45H and 45′
H fields, as discussed in

Ref. [27]. Thus, Eq. (4.9) can be modified as

hdij = (Ûd
16)ik(h

u
kj + ϵ cdkj), (4.10)

where huij are the Yukawa couplings for the up-type SM quarks and slightly deviated from

hij by the higher-dimensional operators. ϵ is the suppression factor from the ratio between

the VEVs of 45H and 45′
H and the unknown cutoff scale at which the higher-dimensional

operators are appeared. cdij are the free parameters in our model and assumed to be O(1).

Since the lepton doublets also belong to 5̄ of SU(5), the similar relation of the Yukawa

couplings are obtained in the same manner. The Yukawa couplings for the charged lepton

are

hℓij = (Û ℓ
16)ik(h

u
kj + ϵ cℓkj), (4.11)

where Û ℓ
16 is the 3× 3 matrix which is defined as(

ℓL i

ℓHL i

)
= (Uℓ)ij

(
ℓ
(16)
L j

ℓ
(10)
L j

)
=

(
(Û ℓ

16)ij (∆Uℓ)ij

(∆U ′
ℓ)ij (Û ℓ

10)ij

)(
ℓ
(16)
L j

ℓ
(10)
L j

)
. (4.12)

Therefore, the realistic Yukawa couplings are achieved by Ud,ℓ
16 and cd,ℓij .

The up-type quark Yukawa couplings huij can be diagonalized without loss of generality

and therefore we can write it as

huij =
mu
i

vu
δij, (4.13)

where vu is the VEV of the up-type Higgs doublet and mu
i are the up-type quark masses.

In this case, the Yukawa couplings Eqs. (4.10) and (4.11) can be described as

hdij =
md
i

vd
(V ∗

CKM)ji = (Ûd
16)ik

(
mu
k

vu
δkj + ϵ cdkj

)
, (4.14)

hℓij =
mℓ
i

vd
(V ∗

R)ji = (Û ℓ
16)ik

(
mu
k

vu
δkj + ϵ cℓkj

)
, (4.15)

where mf
i (f = d, ℓ) are the SM fermion masses and VCKM is the CKM matrix. VR is the

unitary matrix and identical to VCKM in the SU(5) limit.
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me 0.5110 MeV [17] λ 0.22543+0.00042
−0.00031 [101]

mµ 105.7 MeV [17] A 0.8227+0.0066
−0.0136 [101]

mτ 1.777 GeV [17] ρ 0.1504+0.0121
−0.0062 [101]

md(2 GeV) 4.8+0.5
−0.3 MeV [17] η 0.3540+0.0069

−0.0076 [101]

ms(2 GeV) 95±5 MeV [17] MZ 91.1876(21) GeV [17]

mb(mb) 4.18±0.03 GeV [17] MW 80.385(15) GeV [17]
2ms

(mu+md)
(2 GeV) 27.5±1.0 [17] sin2 θW 0.23126(5) [17]

mc(mc) 1.275±0.025 GeV [17] GF 1.1663787(6)×10−5 GeV−2 [17]

mt 173.21±0.51± 0.71 GeV [17] α 1/137.036 [17]

αs(MZ) 0.1193(16) [17]

Table 4: The input parameters used in our analysis. The CKM matrix, VCKM, is written
in terms of λ, A, ρ and η [17].

Note that hd,ℓij in Eqs. (4.10) and (4.11) are generated after integrating out the heavy

modes around the U(1)′ breaking scale. Therefore, we must consider the RGE corrections

from the U(1)′ breaking scale (O(100) TeV) to the low energy scale (MZ) in order to

compare the predictions with the quark and lepton masses and mixing observed at low

energy scale.

We obtain the realistic Yukawa couplings at the U(1)′ breaking scale as follow. First,

we calculate the Yukawa couplings at the MZ scale from the central values of the ex-

perimental measurements summarized in Table 4. In this stage, Mathematica package

RunDec [102] are used to evaluate the running quark masses. Lepton pole masses are

translated to MS running masses at the MZ scale, following Ref. [103]. Next, we evolve

the Yukawa couplings at the MZ scale into the ones at 1 TeV by using the SM RGE run-

ning at the two-loop level [103]. Here, we assume that all gaugino masses reside around

1 TeV. Then, we convert the MS scheme into the DR scheme at 1 TeV according to

Ref. [104]. Finally, we obtain the Yukawa couplings at 100 TeV from the ones at 1 TeV

by the RGE running including the gaugino contributions. As a result, we obtain the SM

fermion masses and CKM matrix at 100 TeV as

(mu
i ) = (8.4× 10−4GeV, 0.43GeV, 1.2× 102 GeV),

(md
i ) = (1.9× 10−3GeV, 3.8× 10−2GeV, 1.9GeV), (4.16)

(mℓ
i) = (5.0× 10−4GeV, 0.11GeV, 1.8GeV),
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and

VCKM =

 9.7× 10−1 2.3× 10−1 1.5× 10−3 − 3.6× 10−3i

−2.3× 10−1 − 1.6× 10−4i 9.7× 10−1 4.4× 10−2

8.5× 10−3 − 3.5× 10−3i −4.3× 10−2 − 8.2× 10−4i 1.0

 .

(4.17)

Note that the fermion masses at 100 TeV in Eq. (4.16) are obtained by just multiplying

the running Yukawa couplings by the Higgs VEV v = 174 GeV and we use tan β = 3 for

Eqs. (4.16) and (4.17). hfij at 100 TeV are given by Eqs. (4.13), (4.14) and (4.15), taking

tan β into account.

Before discussing the Z ′ couplings, we would like to mention about the neutrino masses.

In the SO(10) GUT, because of the matter unification including right-handed neutrinos

which are regarded as 1 of SU(5), Yukawa couplings for the neutrinos can be also written

by hij in Eq. (4.1). Unfortunately, tiny neutrino masses and large mixing cannot be

realized from this Yukawa couplings. In order to obtain these tiny masses, we usually

consider a seesaw mechanism [84, 85]. However, in this model, U(1)′ remains up to the

SUSY-breaking scale (O(100) TeV), so that the Majorana mass terms which is Mij1i1j

are forbidden by the U(1)′ symmetry and thus, we could not use the conventional seesaw

mechanism.

Here, we can use another mechanism for the neutrino masses, according to the inverted

hierarchy [105–107]. We introduce three SO(10) singlet fields denoted as Si. Therefore,

we can write Yukawa couplings in addition to Eqs. (4.1) and (4.2) as

Wadd = fij16i16HSj + µ1616H16H + µH10H10H + µS ijSiSj. (4.18)

Here, we assume that µ16 and µH are around the SUSY-breaking scale and µS is much

smaller than µ16 and µH
4. In one generation of matter fields of this model, there is four

neutral particles which belongs to following multiplets:

SU(5) SO(10)

ν
(16)
L i ∈ 10i ∈ 16i

ν
(16)
R i ∈ 1i ∈ 16i

ν
(10)
L i ∈ 5i ∈ 10i

ν
(10)
L i ∈ 5̄′

i ∈ 10i

, (4.19)

in addition to Si. After the EW symmetry breaking, the mass matrix for these neutral

4The hierarchy between µS and the other mass parameters can be explained by assigning the global
U(1)PQ symmetry [108,109] and introducing the other SO(10) singlet fields.
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particles is given from Eqs. (4.1), (4.2) and (4.18) as

Mν =


0 hijvu 0 gij⟨1Φ⟩ 0

hijvu 0 0 0 fij⟨1̄Φ⟩
0 0 0 µ10 ij 0

gij⟨1Φ⟩ 0 µ10 ij 0 0

0 fij⟨1̄Φ⟩ 0 0 µS,ij

 , (4.20)

where this matrix is in the basis of (ν
(16)
L i , ν

(16)
R i , ν

(10)
L i , ν

(10)
L i , Si), and ⟨1̄Φ⟩ is the VEV of

the scalar component of the SM singlet in 16H . Therefore, the neutrino mass matrix is

obtained as

(mν)ij =
(
hf−1µSf

−1h
)
ij

(
vu
⟨1̄Φ⟩

)2

, (4.21)

following Refs. [105–107]. By assuming that h and f are O(1), ⟨1̄Φ⟩ = O(100) TeV,

vu = O(100) GeV and µS = O(1) MeV, the neutrino masses becomes O(1) eV and

the masses of other neutral particles are around the SUSY-breaking scale. Therefore,

the realistic mass spectrum for the neutrinos can be obtained in this model. We expect

that the other observables in neutrino sector can be obtained since there are enough

parameters to fit it. We do not consider the neutrino masses and mixing further because

our arguments are independent of the neutrino sector.

4.1.2 Flavor-violating Z ′ couplings

As shown in Eqs. (4.4) and (4.12), the SM right-handed down-type quarks and left-handed

leptons are given by the linear combinations of the parts of 16i and 10i in this setup.

Important point is that 5̄ fields from 10 and 16 have different U(1)′ charges, as like in

Eq. (3.42):

10 → 52 + 5̄−2, (4.22)

16 → 10−1 + 5̄3 + 1−5, (4.23)

where subscripts show the U(1)′ charges. Therefore, after the U(1)′ symmetry breaking

and mixing of the 5̄ fields, Z ′ interactions become flavor-violating as follows. Before the
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U(1)′ symmetry breaking, the Z ′ interactions are5

LZ′ = g′Ẑ ′
µ

(
3 ℓ

(16)
L i γ

µℓ
(16)
L i − 2 ℓ

(10)
L i γ

µℓ
(10)
L i − 3 d

(16)
R i γ

µd
(16)
R i + 2 d

(10)
R i γ

µd
(10)
R i

−Q′
iγ
µQ′

i + u′R iγ
µu′R i + e′R iγ

µe′R i
)
, (4.24)

where Q′
i, u

′
R i and e

′
R i are the flavor eigenstates of the left-handed quarks, right-handed

up-type quarks and right-handed charged leptons, respectively. Once 1Φ gets VEV, the

field mixings Eqs. (4.4) and (4.12) are induced. Thus, the Z ′ interactions with the SM

modes become

LZ′ = g′Ẑ ′
µ

(
AℓijℓL iγ

µℓL j − AdijdR iγ
µdRj −Qiγ

µQi + uR iγ
µuR i + eR iγ

µeR i
)
, (4.25)

where Qi, uR i and eR i are the mass eigenstates of the left-handed quarks, right-handed

up-type quarks and right-handed charged leptons, respectively. Note that Ẑ ′
µ is not the

mass eigenstate. We will mention the mixing of Z ′ below. Ad,lij are the flavor-violating

couplings and defined as

Adij = 5(Ûd
16)ik(Û

d
16)

∗
jk − 2δij, A

ℓ
ij = 5(Û ℓ

16)
∗
ik(Û

ℓ
16)jk − 2δij. (4.26)

Note that the unitary condition Eq. (4.5) is used. Figures 4 and 5 show our predictions

for the flavor-violating couplings, Addd, A
d
sd, A

d
bd and Adbs. For these predictions, we use

tan β = 3 and the SM fermion masses and CKM matrix at 100 TeV in Eqs. (4.16) and

(4.17). The red (blue) points correspond to arbitrary complex values of ϵ cdij satisfying

|ϵ cdij| < 10−2 (|ϵ cdij| < 10−3).

Note that we found that the SM mode for the down quark dR 1 are mainly coming

from 10is of SO(10) since the prediction that Addd ≃ −2 obtained from the left panel

of Fig. 4 leads to |(Ûd
16)1i|2 ≪ 1. This is because (1, 1)-element of the contributions

of higher-dimensional operators vuϵ c
d
11 is larger than the up quark mass. Therefore,

(Ûd
16)11 should be small in order to obtain the down quark mass because of the relation in

Eq. (4.14). Roughly speaking, (Ûd
16)12 and (Ûd

16)13 are also suppressed by md(V
∗
CKM)21/mc

and md(V
∗
CKM)31/mt, respectively. From Figs. 4 and 5, on the other hand, the strange

and bottom quarks seem to consist of both of 16i and 10i, depending on the size of the

coefficients of higher-dimensional operators.

Equation 4.14 says that (Û
d(ℓ)
16 )ij is proportional to the down-type quark (charged

lepton) mass of i-th generation. This leads to Ad,ℓij ∝ md,ℓ
i m

d,ℓ
j (i ̸= j) from Eq. (4.26), so

that flavor-violating couplings involving 3rd generation, especially (2, 3)-element, tend to

5Since the right-handed fields are embedded in the GUT multiplets as the charge conjugation fields,
there is additional minus sign for their U(1)′ charges.
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Figure 4: Our predictions for Addd (left) and Adsd (right) [28]. The coefficients of higher-
dimensional operators satisfy |ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue).

Figure 5: Our predictions for Adbd (left) and Adbs (right) [28]. The coefficients of higher-
dimensional operators satisfy |ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue).

be large in this model. This is one of our predictions. By using the expressions of Ûd,ℓ
16

from Eqs. (4.14) and (4.15), Ad,ℓij are obtained by the observables and model parameters,

ϵ cd,ℓij . When ϵ is small, the approximate expressions for the flavor-violating couplings are

Re(Adsd) ∼ 5 tan2β
md
dm

d
s∣∣vuϵ cd11∣∣2 λ, Im(Adsd) ∼ 5 tan2β

md
dm

d
s∣∣vuϵ cd11∣∣2 Im

(
vuϵ c

d∗
12

mu
c

)
,

Adbd ∼ 5 tan2β
md
dm

d
b∣∣vuϵ cd11∣∣2
(
vuϵ c

d∗
12

mu
c

)
Aλ2,

Re(Adbs) ∼ 5 tan2β
md
sm

d
b

(mu
c )

2
λ2, Im(Adbs) ∼ 5 tan2β

md
sm

d
b∣∣vuϵ cd11∣∣2 Im

(
vuϵ c

d∗
12

mu
c

)
Aλ3, (4.27)
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where A and λ are the parameters for the CKM matrix in the Wolfenstein parametrization

[83]. In the SU(5) limit, the approximate expressions for Aℓij are obtained by replacing d

with ℓ.

Note that Ẑ ′
µ in Eq. (4.25) is not the mass eigenstate, and mixes with Z boson denoted

by Ẑµ. The mass mixing is generated by the U(1)′-charged Higgs doublets [27]:(
Ẑµ

Ẑ ′
µ

)
=

(
cos θ − sin θ

sin θ cos θ

)(
Zµ

Z ′
µ

)
, (4.28)

where sin θ is approximately estimated as

tan 2θ ≃ 4
g′

gZ

M2
Z

M2
Z′
. (4.29)

We have to include this effect, when we discuss the phenomenology in our model.

4.2 Flavor physics

In this subsection, we investigate the predictions of the SO(10) GUT model discussed

above from flavor physics. One of the important features of this model is that some of the

FCNC processes involving Z ′
µ and Zµ are induced at the tree-level. Moreover, all elements

of the flavor-violating couplings could be O(1), corresponding to the higher-dimensional

operators. Therefore, we have to check the consistency with the flavor-violating processes,

especially concerned with the first and second generations, e.g. K0-K0 mixing and µ→ 3e.

These processes are the most sensitive to the new physics contributions. Furthermore,

since the flavor-violating coupling Adbs tends to be larger than the other flavor-violating

couplings, we investigate not only K physics but also B physics and search the specific

prediction of this model.

4.2.1 ∆F = 2 processes

First, we start to investigate the constraints from the ∆F = 2 processes in K and B(s)

systems. In the SM, the source of the CP violation is only come from the CP phase in the

CKM matrix. The SM predictions for CP and flavor-violating processes are usually tiny

because of the suppression caused by the Glashow-Iliopoulos-Maiani mechanism. In fact,

the SM prediction of K0-K0 mixing is quite small but consistent with the experimental

observations, although theoretical uncertainties in the SM predictions are still sizable.

That is, the size of new physics contributions to the K physics is strongly constrained

in order to satisfy the experimental results. Similar to K0-K0 mixing, we can obtain

the constraints to new physics contributions from B meson mixings, B0-B0 and B0
s -B

0
s
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mixings.

In this model, the ∆F = 2 processes, like the meson mixing, are caused by Z ′ and Z

interactions at tree-level. The induced operators are

H∆F=2 =
1

2

∑
q=K,B,Bs

C̃q
1Q̃

q
1 (4.30)

where the each operator and Wilson coefficient are given by

Q̃K
1 = (sRγµdR)(sRγ

µdR), C̃K
1 =

(Adsd)
2

Λ2
Z′

,

Q̃B
1 = (bRγµdR)(bRγ

µdR), C̃B
1 =

(Adbd)
2

Λ2
Z′

,

Q̃Bs
1 = (bRγµsR)(bRγ

µsR), C̃Bs
1 =

(Adbs)
2

Λ2
Z′

,

(4.31)

where ΛZ′ is defined as
1

Λ2
Z′

≡
(
g′2 cos2 θ

M2
Z′

+
g′2 sin2 θ

M2
Z

)
. (4.32)

Note that the operators which consist of left-handed quarks, such as (sLγµdL)(sLγ
µdL),

contribute the meson mixing in the SM. As we mentioned above, the CP phase appears in

the (t, d)-element of the CKM matrix in the SM. On the other hand, the flavor-violating

couplings Adij are generally complex in this model. Therefore, Z ′ interactions are strongly

constrained by the CP-violating processes.

Hereafter, we set ΛZ′ = 1.4 × 103 TeV (500 TeV), which corresponds to MZ′ = 100

TeV (36 TeV) and g′ ≃ 0.073 [27]. In order to achieve the 125 GeV Higgs mass, we take

tan β = 3 [88–96].

• ∆S = 2 processes

Based on Ref. [110], we investigate the upper bound on the Z ′ interaction from the K0-K0

mixing. The physical observables on the mixing are the CP-violating parameter ϵK and

mass difference ∆MK . These observables can be expressed as

ϵK =
κϵe

iφϵ

√
2(∆MK)exp

Im(MK
12), ∆MK = 2Re(MK

12), (4.33)

where κϵ and φϵ are given by the observations: κϵ = 0.94 ± 0.02 and φϵ = 0.2417 × π.

MK
12 can be decomposed as follows in this model:

MK
12 =

(
MK

12

)
SM

+∆MK
12 . (4.34)
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mK 497.611(13) MeV [17] mBs 5.3663(6) GeV [17]

FK 156.1(11) MeV [114] mB 5.2795(3) GeV [17]

B̂K 0.764(10) [114] FBs 227.7 ± 6.2 MeV [114]

(∆MK)exp 3.484(6)×10−12 MeV [17] FB 190.6 ± 4.6 MeV [114]

|ϵK | (2.228(11))× 10−3 [17] B̂Bs 1.33(6) [114]

BR(K+ → π0 e+ ν) 5.07(4) % [17] B̂B 1.26(11) [114]

τ(K+) (1.238(2))×10−8 s [17] ηB 0.55 [112]

τ(KL) (5.116(21))×10−8 s [17] ηY 1.012 [115]

η1 1.87(76) [111] Γ−1
µ 2.1969811(22)× 10−6 s

η2 0.5765(65) [112]

η3 0.496(47) [113]

Table 5: The input parameters relevant to our analyses in flavor physics.

∆MK
12 is the Z ′ contribution. It is given by the matrix element ⟨Q̃K

1 ⟩ as

∆MK
12 =

1

2
C̃K

1 (µ)⟨Q̃K
1 ⟩. (4.35)

Note that ⟨Q̃K
1 ⟩ can be extracted from the SM prediction, because the only difference

is the chirality. C̃K
1 (µ) is the Wilson coefficient derived from Eq. (4.31) and the RGE

correction. The running correction is shown in Appendix B.

The SM prediction is described as

(MK
12)SM =

G2
F

12π2
F 2
KB̂KmKM

2
W

{
λ2cη1S0(xc) + λ2tη2S0(xt) + 2λcλtη3S(xc, xt)

}
. (4.36)

xi and λi denote m
2
i /M

2
W and (VCKM)∗is(VCKM)id, respectively. η1,2,3 correspond to the

Next-Leading-Order and Next-to-Next-Leading-Order QCD corrections [111–113]. The

values we adopt are summarized in Table 5. The functions, S0(xt) and S(xc, xt), are

shown in Appendix C.

The physical observables in K0-K0 mixing are experimentally measured well, while

there is the large uncertainty from the matrix element and the CKM matrix in the SM

predictions. We use the central values in Tables 4 and 5 and calculate the predictions of

this model as the deviations from the SM predictions, which are defined as

δϵK ≡ ϵK
(ϵK)SM

− 1 and δ(∆MK) ≡
∆MK

(∆MK)SM
− 1. (4.37)

Due to the large uncertainties of the SM predictions, it is difficult to obtain the explicit
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Figure 6: Our predictions for δϵK and δ(∆MK) with ΛZ′ = 1400 TeV (left panel) and
ΛZ′ = 500 TeV (right panel) [28]. The coefficients of higher-dimensional operators satisfy
|ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue). Black dashed, solid and dotted line show the
deviation from SM by 10%, 20% and 30%, respectively.

exclusion limits of |δϵK | and |δ(∆MK)|. In Ref. [116], the CKM fitter group shows that

the experimental upper bounds on |δϵK | and |δ(∆MK)| are at most O(30) %. It will be

developed up to O(20) % at the Belle II experiment [116].

In Fig. 6, the predictions of δϵK and δ(∆MK) are shown in the cases with ΛZ′ = 1400

TeV (left panel) and ΛZ′ = 500 TeV (right panel). The black dashed, solid and dotted

line show the deviation from SM by 10%, 20% and 30%, respectively. Clearly, ϵK largely

deviates from the SM prediction, even if ΛZ′ is O(103) TeV. Therefore, the consistency

with ϵK should be considered whenever we discuss the other observables. Note that one

can find that δ(∆MK) tends to be positive from Fig. 6. This is because the real part of

the flavor-violating coupling Adsd tends to be positive from Fig. 4. This tendency is one of

the predictions of this model, although its deviation is very small and almost dominated

by the SM prediction.

• ∆B = 2 processes

Next, we derive predictions of B0-B0 and B0
s -B

0
s mixings in a similar way of K0-K0

mixing. In the case of the B meson mixings, relevant observables are mass differences,

∆MB and ∆MBs . These are written by C̃
Bd,s
1 as follow:

∆MBq = 2

∣∣∣∣(MBq
12 )SM +

1

6
C̃
Bq
1 mBqFBqB̂Bq

∣∣∣∣ (q = d, s), (4.38)
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Figure 7: Our predictions for δ(∆MBs) and δ(∆MB) with ΛZ′ = 1400 TeV (left) and
ΛZ′ = 500 TeV (right) [28]. The coefficients of higher-dimensional operators satisfy
|ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue). In these figures, we only show the points
that |δϵK | ≤ 0.3 is satisfied.

where (M
Bq
12 )SM is given by the top-loop contribution:

(M
Bq
12 )SM =

G2
F

12π2
F 2
BqB̂BqmBqM

2
Wλ

2
BqηBS0(xt). (4.39)

The input parameters are listed in Table 5 and λBq = (VCKM)∗tb(VCKM)tq. As the K
0-K0

mixing, there are still large uncertainties in the SM predictions, coming mainly from the

errors of hadronic mixing matrix elements and the CKM matrix elements, and therefore,

the new physics constraints would be not so easy to obtain. Recently, the Fermilab

and MILC Collaborations have shown their results on the SM predictions of ∆MB and

∆MBs [117] and about 10 % errors are still inevitable. The LHCb and Belle II experiments

will improve the measurement, as discussed in Ref. [116].

As shown in Fig. 5, Adbs tends to be large compared to the other flavor-violating

couplings. Therefore, we may obtain the important predictions of this model from ∆MBs ,

although the deviation is relatively smaller than the K0-K0 mixing because of the size

of the SM prediction. Figure 7 shows our predictions for the deviations of ∆MB and

∆MBs in the cases with ΛZ′ = 1400 TeV (left panel) and ΛZ′ = 500 TeV (right panel).

δ(∆MBd,s) are defined as the same manner in Eq. (4.37). In these figures, all points

satisfy |δϵK | ≤ 0.3. If mZ′ is around O(10) TeV, δ(∆MB) could reach 10 %, which maybe

cause the tension with the current measurement [116]. Note that the distribution of the

predictions in Fig. 7 can be understood from Fig. 5. We would like to emphasize that the
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features of the flavor-violating couplings are specific to this model, so that not only the

K0-K0 mixing but also B0-B0 mixing is important to test this model.

4.2.2 ∆F = 1 processes

In addition to ∆F = 2 processes, the Z ′ interactions of this model contribute to ∆F = 1

processes, including the rare decays of K and B mesons. We study the semi-leptonic and

leptonic decays of K and the leptonic decays of B and Bs. In this thesis, we focus on

the processes such as K0
L → πνν, K0

L → ℓ+i ℓ
−
j and B0

d,s → µ+µ−. For these decays, some

experiments, for example the KOTO, Belle II and LHCb, will develop their measurements.

Therefore, we can expect that some hints to new physics will be given in the near future.

• ∆S = 1 processes

To begin with, let us study the ∆S = 1 processes which play a crucial role in testing this

model. For the rare K meson decays which is caused at the tree-level in this model, the

effective Hamiltonian is given by the Z ′ exchanging and Z boson exchanging through the

Z-Z ′ mixing caused by Eq. (4.29):

H∆S=1 = (Cf
I )ij(sRγµdR)(f

i
Iγ

µf jI ), (4.40)

where f denotes f = ν, ℓ, u, d and I = L, R is the chirality of the fermions. (Cf
I )
ij at

µ =MZ′ is obtained as

(Cf
I )ij = −Adsd

{
(Qf

I )ij
Λ2
Z′

+
δij
Λ2
Z

(
T 3 f
I −Qf

e sin
2 θW

)}
, (4.41)

where Λ2
Z is defined as

1

Λ2
Z

≡ g′gZ sin θ cos θ

(
1

M2
Z

− 1

M2
Z′

)
, (4.42)

and can be approximately evaluated as Λ2
Z ≃ Λ2

Z′/2 according to Eq. (4.29) in the limit

MZ′ ≫MZ . From Eq. (4.25), we obtain each (QF
I )ij as(

(Qν,l
L )ij, (Q

l
R)ij

)
= (Alij, +δij), (4.43)(

(Qu,d
L )ij, (Q

u
R)ij, (Q

d
R)ij

)
= (−δij, +δij, −Adij). (4.44)

T fI and Qf
e are defined in Sec. 2.
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K0
L → π0 ν ν and K+ → π+ ν ν

The rare decay of neutral K meson, e.g. K0
L → π0 ν ν, is one of the important mea-

surements of the CP-violating processes. For this mode, the SM predicts very small

branching ratio which the current experimental bound does not reach yet: BR(K0
L →

π0νν) < 2.6× 10−8 [118]. The KOTO experiment at the J-PARC will cover the region in

the near future. On the other hand, the decay of the charged K meson, K+ → π+ ν ν,

has been already measured as BR(K+ → π+νν) = 1.73+1.15
−1.05 × 10−10 [119]. The NA62

experiment at the CERN will update this result.

In the SM, the branching ratio for the both modes are given by the following operators:

H∆S=1
SM = CSM(sLγµdL)(νL

iγµνiL). (4.45)

CSM is given by the Z penguin diagram and the box diagram involving W boson, and

described as6

CSM =
GF√
2

2α

π sin2 θW
(λcXc + λtX(xt)) . (4.46)

Xc/λ
4 = (0.42± 0.03) is proposed in Ref. [110]. X(xt) is the short-distance contribution

given by the Z-penguin diagrams and box diagrams involving top quark respectively. In

Appendix C, we summarize the LO description. In this model, there are the Z ′ con-

tribution to this process, as we shown in Eqs. (4.40) and (4.41). By using the isospin

symmetry and taking the ratio to K+ → π0 e+ ν, one can estimate the branching ratio of

K0
L → π0 ν ν as

BR(K0
L → π0 ν ν) =

AijA∗
ij

8|(VCKM)us|2G2
F

× τ(K0
L)

τ(K+)
× rK0

L
× BR(K+ → π0 e+ ν), (4.47)

where Aij is defined as

Aij ≡
1√
2

{
δij(CSM − C∗

SM) + (Cν
L)ij − (Cν

L)
∗
ji

}
, (4.48)

τ(K0
L) and τ(K

+) are the lifetime of K0
L and K+ and rK0

L
is the isospin breaking effect

which is estimated as rK0
L
≃ 0.955 according to Ref. [121]. Note that the SM prediction

is BR(K0
L → π0νν) = 2.43(39)(6)× 10−11 [122].

Since K0
L → π0 ν ν is the CP-violating process, the decay depends on the imaginary

part of the tree-level FCNCs. It is expected that the Z ′ contribution to K+ → π0 e+ ν is

small in this model. Therefore, we use the well measured experimental value for BR(K+ →
π0 e+ ν) as the input parameter. Note that the contribution from penguin diagram in

CSM is also modified by cos2 θ defined in Eq. (4.28) (or Eq. (4.29)), but we ignore such

6One can see the current status of the calculations in Ref. [120].
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Figure 8: Our predictions for BR(K0
L → π0 ν ν) and BR(K+ → π+ ν ν) with ΛZ′ = 1400

TeV (left) and ΛZ′ = 500 TeV (right) [28]. The coefficients of higher-dimensional operators
satisfy |ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue). Black solid lines show each SM
prediction. The all points satisfy |δϵK | ≤ 0.3.

a contribution because this modification is for the contribution of the one loop diagram

and cos2 θ ≃ 1 in the limit MZ′ ≫MZ .

Similar to BR(K0
L → π0 ν ν), the branching ratio of K+ → π+ ν, ν can be estimated

as

BR(K+ → π+ ν ν) =
A+
ijA+ ∗

ij

8|(VCKM)us|2G2
F

× rK+ × BR(K+ → π0 e+ ν), (4.49)

where A+
ij is given by

A+
ij =

√
2 {δijCSM + (Cν

L)ij} . (4.50)

The isospin breaking effect, rK+ , is estimated as rK+ ≃ 0.978 [121]. Note that the SM

prediction is BR(K+ → π+ ν ν) = 7.81(75)(29)× 10−11 [122].

Figure 8 shows our predictions of BR(K0
L → π0 ν ν) and BR(K+ → π+ ν ν). We show

the points which satisfy |δϵK | ≤ 0.3. Black solid lines show the SM predictions, calculating

from the central values in Table 5. One can see that BR(K+ → π+ ν ν) tends to be larger

than the SM prediction, while BR(K0
L → π0 ν ν) becomes both larger and smaller than

the SM prediction. These tendencies are caused by the property of the flavor-violating

coupling Adsd. The deviations of BR(K
+ → π+ ν ν) and BR(K0

L → π0 ν ν) are roughly pro-

portional to Re(CSMA
d
sd) ∼ Re(CSM)Re(Adsd) and Im(CSM)Im(Adsd), respectively. From

Fig. 4, therefore, the deviations in Fig. 8 can be understood. In any case, the predictions

do not largely depart from the SM prediction, as far as ΛZ′ = 1400 TeV. Even if ΛZ′ is

around 500 TeV, the deviation is at most 10 %, compared to the SM prediction.

41



K0
L → ℓi ℓj and K

0
L → π0 ℓi ℓj

The leptonic decays ofK0
L are also induced by the Z ′ contribution and may be important in

this model. There is a large long-distance contribution in the decay width of K0
L → µ+µ−.

By extracting the short-distance part, the new physics constraint from K0
L → µ+µ− is

proposed in Ref. [123]: BR(K0
L → µ+µ−) < 2.5 × 10−9. In this model, it is predicted

that there is extra contribution in the branching ratio of K0
L → µ+µ−, which is described

by (C l
L,R)µµ defined in Eq. (4.40). We can estimate the deviation of this decay mode

by following Refs. [110,124,125], although the prediction of this model cannot be largely

depart from that of the SM as far as ΛZ′ = O(103). As a result, the ratio of BR(K0
L →

µ+µ−) between predictions of this model and the SM is estimated as∣∣∣∣ BR(K0
L → µ+µ−)

BR(K0
L → µ+µ−)SM

− 1

∣∣∣∣ ≤ 0.019, (4.51)

when ΛZ′ = 1400 TeV. We conclude that in the high-scale SUSY scenario, this model is

safe from the bound of this decay mode.

The flavor-violating decay of K0
L has been experimentally investigated as well: K0

L →
µ+e− < 4.7 × 10−12 [126]. This decay causes at the tree-level in this model, but the

prediction cannot be large. By using typical values of Adsd and Alµe, this branching ratio

is calculated as

BR(K0
L → µ+e−) ≃ 4.0× 10−19

(
1400TeV

ΛZ′

)4(
Re(Adsd)

0.1

)2
(
|Alµe|
0.04

)2

, (4.52)

which is much below the experimental bound.

For the semi-leptonic decay of K0
L, such as K0

L → π0 ℓi ℓj, the current experimental

upper bounds are [127,128]

BR(K0
L → π0e+e−) < 2.8× 10−10, (4.53)

BR(K0
L → π0µ+µ−) < 3.8× 10−10, (4.54)

which are about 10 times bigger than the SM predictions [129]. Therefore, large new

physics effects are still allowed in these decay modes and we expect that these may be

relevant to this model. However, similar to the case of K0
L → µ+µ−, BR(K0

L → π0 ℓ ℓ) is

dominated by SM contribution when ΛZ′ = O(103) TeV. Therefore, predictions of these

modes are also below the experimental bounds.

42



There is also experimental constraint of the LFV decay of K0
L, e.g. K

0
L → π0 e∓ µ±.

The current bound is [130]

BR(K0
L → π0e∓µ±) < 7.6× 10−11. (4.55)

In this mode, BR(K0
L → π0e−µ+) is estimated by typical values of Adsd and A

l
µe as

BR(K0
L → π0e−µ+) ≃ 2.0× 10−20

(
1400TeV

ΛZ′

)4(
Im(Adsd)

0.1

)2
(
|Alµe|
0.04

)2

. (4.56)

Thus, we conclude that this model is also safe and cannot be tested in this decay mode

unless ΛZ′ is smaller than O(10) TeV.

• B0 → µ+µ− and B0
s → µ+µ−

As we mentioned in Sec. 4.1.2, the flavor-violating Z ′ couplings involving the third gen-

eration, especially Adbs, become large. Therefore, this model would be constrained by the

rare B decay and we expect that we can obtain some specific predictions to this model.

B0
s → µ+µ− and B0 → µ+µ− have been measured at the LHC, although the errors are

large: BR(B0
s → µ+µ−) = 2.8+0.7

−0.6 × 10−9 and BR(B0
d → µ+µ−) = 3.9+1.5

−1.4 × 10−10 [131].

The SM predictions are almost consistent with the experimental results as BR(Bs →
µ+µ−) = (3.66 ± 0.23) × 10−9 and BR(B → µ+µ−) = (1.06 ± 0.09) × 10−10 [132]. In

this model, the deviation of these leptonic decays from the SM predictions are estimated

as [110]

BR(B0
s → µ+µ−)

BR(B0
s → µ+µ−)SM

=

∣∣∣∣1− (C l Bs
L )µµ

g2SMηY Y0(xt)(VCKM)∗tb(VCKM)ts

∣∣∣∣2 , (4.57)

where g2SM =
√
2GFα/(π sin

2 θW ) and ηY = 1.012 [115]. (C l B
L )µµ is given by replacing Adsd

with Adbs in (C l
L)µµ. BR(B → µ+µ−) is estimated in a similar expression to Eq. (4.57) by

replacing Adbs and (VCKM)ts to A
d
bd and (VCKM)td. Note that, as we can see in Eq. (4.41),

(C l Bs
L )µµ is also dependent on Alµµ.

Figure 9 shows our predictions for the deviation of BR(B0
s → µ+µ−) and BR(B0 →

µ+µ−) in the each case with ΛZ′ = 1400 TeV (left) and ΛZ′ = 500 TeV (right). Because

of the difference between the size of Adbs and Adbd, the deviation of BR(Bs → µ+µ−) is

slightly larger than that of BR(B → µ+µ−). However, its deviation is at most a few %

even when ΛZ′ = 500 TeV.
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Figure 9: Our predictions for the deviation of BR(B0
s → µ+µ−) and BR(B0 → µ+µ−)

with ΛZ′ = 1400 TeV (left) and ΛZ′ = 500 TeV (right) [28]. The coefficients of higher-
dimensional operators satisfy |ϵ cdij| < 10−2 (red) and |ϵ cdij| < 10−3 (blue). In these figures,
the constraint, |δϵK | ≤ 0.3, is assigned.

4.2.3 Flavor-violating processes in µ decay

There are also the Z ′ interactions which induce the LFV decays. It depends on the

coefficients of higher-dimensional operators cℓij, its couplings could be O(1). Therefore,

in addition to ∆F = 1, 2 processes, the LFV processes are important in this model. In

this thesis, we focus on µ → 3 e and µ-e conversion which are induced at the tree-level.

Note that µ → e γ is one of the important processes for the new physics model, but it is

suppressed in this model due to the largeness of the Z ′ mass and loop suppression.

µ→ 3 e

We will begin with the discussion of µ → 3 e. This process is induced by the following

four-Fermi interactions:

Hµ→3 e = C3 e
L (eLγµµL)(eLγ

µeL) + C3 e
R (eLγµµL)(eRγ

µeR), (4.58)

where the coefficients are given by

C3 e
L = Aleµ

{
Alee
Λ2
Z′

− cos 2θW
2

1

Λ2
Z

}
, (4.59)

C3 e
R = Aleµ

{
1

Λ2
Z′

+ sin2 θW
1

Λ2
Z

}
. (4.60)
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Figure 10: Our predictions for the deviation of BR(µ → 3 e) with ΛZ′ = 1400 TeV
(left) and ΛZ′ = 500 TeV (right) [28]. The coefficients of higher-dimensional operators
satisfy |ϵ cℓij| < 10−2 (red) and |ϵ cℓij| < 10−3 (blue). The green region is excluded by the
SINDRUM experiment [133] and the green dashed line is the future prospected bound
[134].

By using these coefficients, one can evaluate the branching ratio of µ→ 3 e as

BR(µ→ 3 e) =
m5
µ

1536 π3 Γµ

(
2
∣∣C3 e

L

∣∣2 + ∣∣C3 e
R

∣∣2) (4.61)

≃ 5.8× 10−18

(
1400TeV

ΛZ′

)4
(
|Alµe|
0.04

)2

, (4.62)

where mµ and Γµ are mass and total decay width for µ, respectively. We show the typical

value of BR(µ→ 3 e) in Eq. (4.62). Note that the Z ′ contribution to µ→ e ν ν are ignored

here.

µ → 3 e has been investigated at the SINDRUM experiment: BR(µ → 3 e) < 1.0 ×
10−12 [133]. This bound will be improved at the level of O(10−16) [134]. We show the

results of this model in Fig. 10, with the correlation with δ(ϵK). In the left (right) panel

of Fig. 10, we take ΛZ′ = 1400 (500) TeV. The green region is excluded by the SINDRUM

experiment [133], and the green dashed line corresponds to the expected upper bound in

the Mu3e experiment [134]. From these results, we find that BR(µ→ 3 e) < 10−15 as far

as ΛZ′ > 500 TeV. In the case of ΛZ′ = 500 TeV which corresponds to MZ′ ≃ 36 TeV,

BR(µ→ 3 e) can be typically estimated as 3.5×10−16 from Eq. (4.62) and becomes larger

than the future expected sensitivity. In such a case, |δϵK | is also enhanced by 1/Λ2
Z′ as

shown in Fig. 6.
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µ-e conversion

Next, we focus on the µ-e conversions in nuclei. In this thesis, we assume that the coherent

conversion in which the nuclei in the final state is the same as one in the initial state is

dominant and therefore, we concentrate on the contributions derived from the operators,

Hµ-e = Cµ-e
q (qγµq)(eLγ

µµL), (4.63)

where the coefficients are given by

Cµ-e
u = Aleµ

{(
1

4
− 2

3
sin2 θW

)
1

Λ2
Z

}
, (4.64)

Cµ-e
d = −Aleµ

{
Addd + 1

2Λ2
Z′

+

(
1

4
− 1

3
sin2 θW

)
1

Λ2
Z

}
. (4.65)

The conversion rate of muon, denoted as ωconv, is

ωconv = 4m5
µ

∣∣(2Cµ-e
u + Cµ-e

d )V (p) + (Cµ-e
u + 2Cµ-e

d )V (n)
∣∣2 , (4.66)

where V (p) and V (n) are overlap integrals which depend on the nucleus species. The

branching ratio of the µ-e conversion is

BR(µN → eN) =
ωconv

ωcapt

≃ 4.0× 10−17 (1.4× 10−17)

(
1400TeV

ΛZ′

)4
(
|Alµe|
0.04

)2

, (4.67)

where ωcapt is the muon capture rate. V (p) and V (n) and ωcapt have been calculated

in Ref. [135] for the each nucleus species. In Eq. (4.67), we show the typical value of

BR(µAu → eAu) (BR(µAl → eAl)).

Figure 11 shows the results of this model and correlations on δϵK and the µ-e conver-

sions. The green region is excluded by the SINDRUM experiment, BR(µAu → eAu) <

7 × 10−13 [136]. The green dashed lines are the future prospects of the COMET experi-

ment for BR(µAl → eAl): < 7.2×10−15 (phase-I) and < 2.6×10−17 (phase-II) [137,138].

It is clear that BR(µAu → eAu) is much smaller than the current bound. There is no

constraint for BR(µAl → eAl) which is slightly smaller than BR(µAu → eAu), but there

is possibility to reach the future sensitivity, depending on ΛZ′ and suppression factor ϵ

introduced in Eqs. (4.10) and (4.11).
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Figure 11: Our predictions for BR(µAu → eAu) (upper panels) and BR(µAl → eAl)
(lower panels) [28]. We set ΛZ′ = 1400 TeV in left two panels and ΛZ′ = 500 TeV in
right two panels. The coefficients of higher-dimensional operators satisfy |ϵ cd,ℓij | < 10−2

(red) and |ϵ cd,ℓij | < 10−3 (blue). In the upper panels, green region shows the experimental
bound [136]. In the lower panels, two green dashed lines show future sensitivity from
COMET-I (upper one) and COMET-II (lower one) experiment [137,138].

4.2.4 Contributions to LFV τ decays

Finally, we discuss LFV τ decays, especially τ → ℓi ℓj ℓ̄k and τ → ℓ π0, ℓK0
S, although the

current constraints for these modes is still weak.
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τ → ℓi ℓj ℓ̄k

Similar to µ→ 3 e, τ → ℓi ℓj ℓ̄k is caused by the following 4-Fermi interactions:

Hτ→3 ℓ = C3 ℓ
L ijk(ℓLiγµτL)(ℓLjγ

µℓLk) + C3 ℓ
R ijk(ℓLiγµτL)(ℓRjγ

µℓRk), (4.68)

where the coefficients are given by

C3 ℓ
L ijk = Aℓiτ

{
Aℓjk
Λ2
Z′

− cos 2θW
2

δjk
Λ2
Z

}
, (4.69)

C3 ℓ
R ijk = Aℓiτδjk

{
1

Λ2
Z′

+ sin2 θW
1

Λ2
Z

}
. (4.70)

There are six modes in LFV τ decays. The branching ratio for the decay modes τ →
e− µ+ µ− and τ → µ− e+ e− is described as [139]

BR(τ → ℓi ℓj ℓ̄k) =
m5
τ

1536π3 Γτ

(∣∣∣C3 ℓ
L ijk + C3 ℓ

L jik

∣∣∣2 + ∣∣∣C3 ℓ
R ijk

∣∣∣2 + ∣∣∣C3 ℓ
R jik

∣∣∣2) . (4.71)

For the other case, the branching ratio is obtained by changing mµ → mτ , Γµ → Γτ

and C3e
L,R → C3l

L,Rijk
in Eq. (4.61). We summarize the typical values of these branching

ratios in Table 6 with the current experimental bounds [17, 140]. It is obvious that the

predictions of this model are extremely smaller than the current experimental bounds.

Even if one takes ΛZ′ = 500 TeV, the enhancement is only (1400/500)4 ≃ 61.5. Therefore,

this model is completely safe in these decay modes.

τ → ℓ π0, ℓK0
S

Next, we discuss the decays of τ → ℓ π0 and τ → ℓK0
S. This type of decay is induced by

the following interactions:

Hτ→ℓ P 0

= Cℓ P 0

L ijk(ℓLiγµτL)(qLjγ
µqLk) + Cℓ P 0

R ijk(ℓLiγµτL)(qRjγ
µqRk), (4.72)

where P 0 = π0, K0
S and the coefficients are similar to Eq. (4.41):

Cℓ P 0

I ijk = Aℓiτ

{
(Qq

I)jk
Λ2
Z′

+
δjk
Λ2
Z

(
τ qI −Qq

e sin
2 θW

)}
. (4.73)
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τ decay mode value of BR exp. bound (×10−8) [17,140]

e−e+e− 1.2× 10−18 < 2.7

e−µ+µ− 4.2× 10−19 < 2.7

e+µ−µ− 1.5× 10−18 < 1.7

µ−e+e− 3.7× 10−15 < 1.8

µ+e−e− 2.8× 10−22 < 1.5

µ−µ+µ− 2.7× 10−15 < 2.1

e−π0 2.2× 10−19 < 8.0

µ−π0 1.2× 10−15 < 11

e−K0
s 1.2× 10−21 < 2.6

µ−K0
s 6.6× 10−18 < 2.3

Table 6: The typical values of each τ decay mode. In this table, we use ΛZ′ = 1400 TeV
and typical values of Adij and A

l
ij.

The branching ratios of τ → ℓi π
0 and τ → ℓiK

0
s can be described by Cℓ P 0

I ijk as [139]

BR(τ → ℓi π
0) =

BR(τ → ντπ
−)

16 |(VCKM)ud|2G2
F

×
(
|Cℓ P 0

L iuu − Cℓ P 0

R iuu − Cℓ P 0

L idd + Cℓ P 0

R idd|2
)
, (4.74)

BR(τ → ℓiK
0
S) =

BR(τ → ντK
−)

16 |(VCKM)us|2G2
F

×
(
|Cℓ P 0

R isd − Cℓ P 0

R ids|2
)
. (4.75)

For the discussion of the predictions of this model, we use BR(τ → ντπ
−) = 0.1083 and

BR(τ → ντK
−) = 0.007 [17].

The results are shown in Table 6 as typical values of the branching ratios. The current

experimental bounds [17] are also summarized in Table 6. As expected from the results

of τ → ℓi ℓj ℓ̄k, these decay modes are also smaller than the experimental bounds. Note

that BR(τ → ℓi P
0) is proportional to |Aliτ |2 because of Eqs. (4.73), (4.74) and (4.75).

Therefore, BR(τ → µP 0) becomes larger than BR(τ → e P 0) in this model since roughly

speaking, |Aℓeτ | < |Aℓµτ |.

4.3 Summary of the section

In this section, we studied the realistic SO(10) SUSY GUT model in which the realistic

Yukawa couplings are obtained by the mixing of the matter fields caused by introducing

the extra matter fields, 10i of SO(10). In this model, the flavor-violating Z ′ couplings

are generated after the U(1)′ symmetry breaking. These couplings can be O(1) and cause

the flavor-violating processes at the tree-level. Therefore, the flavor-violating processes
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induced by Z ′ are important for this model even if MZ′ is around 100 TeV. Moreover,

since only 5̄ fields of SU(5) have the flavor-violating Z ′ couplings Ad,ℓij , we can expect that

there are some specific predictions of this model. One of the important features of Ad,ℓij
is Ad,ℓij ∝ md,ℓ

i m
d,ℓ
j , so that (b, s) and (µ, τ) elements tends to be larger than the other

elements.

As a result, we found that ϵK is the most sensitive to this model even if MZ′ = 100

TeV. On the other hand, the mass differences of neutral meson are almost dominated

by the SM prediction. When MZ′ = O(10) TeV, the deviation of ∆MBs from the SM

prediction can reach 10 %, while those of ∆MK and ∆MB are O(1) %. In addition, ∆MK

and ∆MBs tend to depart from the SM prediction in the positive direction. These features

are due to the predictions of Adij.

The other important predictions are obtained from the LFV µ decays, although these

predictions are much smaller than the current bounds. Since it is expected that these

bounds are improved near future, this model could be tested in some experiments, e.g.

the COMET and Mu2e experiments. As shown in Figs. 10 and 11, this model predicts

that BR(µ → 3 e) and BR(µAl → eAl) can reach the future experimental prospects

without conflict with ϵK , when MZ′ is O(10 - 100) TeV. Now, other future experiments

for µ-e conversion are planned [141–143]. If their sensitivities reach O(10−15) level, we

can test our model.

In this section, we consider that the Z ′ scale is O(100) TeV to realize the 125 GeV

Higgs mass in the high-scale SUSY scenario by assuming that the U(1)′ symmetry is

broken around the SUSY scale. Important point is that although such a high scale cannot

reach even at the LHC, this model can be tested indirectly by using the observables in

the flavor physics.
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5 D-term contributions in E6 × SU(2)F × U(1)A SUSY

GUT

In this section, we introduce an E6 SUSY GUT model with SU(2)F family symmetry and

anomalous U(1)A gauge symmetry. This GUT model is based on a natural assumption

in which all the interactions allowed by the symmetries are introduced. This model can

solve almost all the problems which are caused in the SUSY GUT models, e.g. SUSY

FCNC, SUSY CP, µ-problem and DTS problem.

5.1 SU(2)F family and anomalous U(1)A gauge symmetries

First of all, we will shortly introduce some features of SU(2)F family and anomalous U(1)A

gauge symmetries. Under SU(2)F family symmetry, the first two generations are doublet,

while the third generation is SU(2)F singlet. Therefore, soft SUSY-breaking mass terms

for sfermions can be written as m2
0|Ψa|2 + m2

3|Ψ3|2, where Ψa (Ψ3) is E6 fundamental

and SU(2)F doublet (singlet) field. Therefore, in this model, there are mainly 2 mass

parameters for sfermion masses. Because of Eq. (3.53), the sfermion mass matrix for light

modes becomes

m̃2
10 =

m2
0

m2
0

m2
3

 , m̃2
5̄0 =

m2
0

m2
0

m2
0

 . (5.1)

Therefore, the MUSM is naturally obtained in a E6×SU(2)F GUT. Note that the degen-

eracy of the MUSM is destroyed by the effects of the symmetry breaking. We will discuss

these effects for this model later.

The anomalous U(1)A is a gauge symmetry whose anomalies are canceled by the Green-

Schwarz mechanism [144]. In this framework, the Fayet-Iliopoulos term denoted as ξ2 are

introduced in the theory and its magnitude is assumed as ξ = λΛ, where Λ is cutoff scale.

Hereafter, we set Λ = 1. Let us consider the theory with gauge symmetry Gother×U(1)A.

A system consisting all the interactions which are allowed by Gother ×U(1)A has a SUSY

vacuum where all negatively charged fields get VEVs as follow:⟨Z+
i ⟩ = 0 (z+i > 0)

⟨Z−
i ⟩ = λ−z

−
i (z−i < 0)

(5.2)

Note that Z±
i is a singlet under Gother, while charged under U(1)A with charge z±i . There-

fore, the VEV of Higgs is determined by its U(1)A charge in the U(1)A GUT model. The
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important point is that all interactions allowed by the symmetry are introduced in the

theory, including the non-renormalizable operators.

Note that the VEVs Eq. (5.2) can restrict operators in the superpotential. Usually,

we introduce the superfield whose U(1)A charge is −1 in U(1)A GUTs. By using this

superfield denoted as Θ, superpotential can be written by the following operators

Θx+y+zXY Z, (5.3)

if XY Z is Gother invariant. Note that x, y and z are the U(1)A charges of the superfields

X,Y and Z, respectively. As we explained in Sec. 3.1.1, since we cannot use Θ† in

the superpotential, the operator with x + y + z < 0 is forbidden by U(1)A symmetry.

Therefore, we can control interactions by choosing U(1)A charges. This is called the

SUSY-zero mechanism [54–58,147].

By using these features, the DTS problem can be solved by the Dimopoulos-Wilczek

mechanism [145, 146]. In this mechanism, the VEV of adjoint Higgs of SO(10) becomes

the following form:

⟨45A⟩ ∼ iσ2 × diag(v, v, v, 0, 0). (5.4)

In SO(10) GUT, the doublet Higgs is belonging to the vector multiplet, 10, with the color-

triplet Higgs. Therefore, mass terms for these Higgs fields are obtained by the following

terms:

Wmass = mH10H10H +mH′10′
H10

′
H +mHH′10H10

′
H + 10H45A10

′
H . (5.5)

Note that we omit the coupling constant for 10H45A10
′
H . Here, since the 10 couples to the

45 anti-symmetrically, we need another vector multiplet, 10′
H . If the mass terms 10H10H

and 10H10
′
H are forbidden by the SUSY-zero mechanism and/or other symmetries like a

Z2 parity, the mass matrix for the Higgs fields are obtained as

Wmass =
(
5H 5′

H

)( 0 ⟨45A⟩
⟨45A⟩ mH′

)(
5̄H

5̄′
H

)
, (5.6)

where 10H → 5H+ 5̄H and 10′
H → 5′

H+ 5̄′
H in the SO(10) → SU(5) notation. Therefore,

one pair of the doublets are massless since the VEV of the adjoint Higgs Eq. (5.4) means

that ⟨45A⟩ = 0 for the doublet Higgs. On the other hand, the color-triplet Higgs gets

mass from ⟨45A⟩ (and mH′), so that heavy color-triplet Higgs and light doublet Higgs can

be realized.

If one consider E6×SU(2)F×U(1)A SUSY GUT, spontaneous CP violation is realized.
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Let us consider the following superpotential:

WS = λsS

[
nf∑
n=0

cnλ
(f+f̄)n(F̄F )n

]
, (5.7)

where S is E6 × SU(2)F singlet field with U(1)A charge s(> 0) and Fa and F̄ a are E6

singlet and SU(2)F doublet fields with U(1)A charge f(< −1) and f̄(< −1). Here, we

assume that cn are real O(1) coefficients and the theory is originally CP invariant. Thus,

we obtain the following condition from the F -flatness condition of Eq. (5.7) with respect

to S:

λs
[
c0 + c1λ

f+f̄⟨F̄F ⟩+ · · ·+ cnfλ
nf (f+f̄)⟨F̄F ⟩nf

]
= 0 (5.8)

Therefore, if nf ≥ 2, ⟨F̄F ⟩ acquires an imaginary part. It leads that CP is spontaneously

broken. By using SU(2)F symmetry and D-flatness condition, each VEV can be written

as

⟨Fa⟩ ∼

(
0

eiρλ−
f+f̄
2

)
, ⟨F̄ a⟩ ∼

(
0

λ−
f+f̄
2

)
. (5.9)

5.2 Contents of matters and Higgs

Table 7 shows contents of matters and Higgs and their charge assignment in the E6 ×
SU(2)F×U(1)A SUSY GUT model. In this section, we follow the notation in Ref. [148]. Φ

Ψa Ψ3 Fa F̄ a Φ Φ̄ C C̄ A Z3 Θ
E6 27 27 1 1 27 27 27 27 78 1 1

SU(2)F 2 1 2 2̄ 1 1 1 1 1 1 1
U(1)A 4 3

2
−3

2
−5

2
-3 1 -4 -1 −1

2
−3

2
-1

Z6 3 3 1 0 0 0 5 0 0 0 0

Table 7: Contents of chiral superfields for matters and Higgs and their charge assignment
in the E6 × SU(2)F × U(1)A SUSY GUT model. Note that the discrete Z6 symmetry is
imposed in order to prohibit undesired interactions.

and C are Higgs fields which break E6 into SO(10) and SO(10) into SU(5), respectively.

Note that Φ̄ and C̄ are introduced to retain the D-flatness conditions. As we explained

in Sec. 3.3.2, three 27 fundamental representations of E6 are introduced as matter fields.

The first two generations of matter fields are a doublet under SU(2)F , while the third

generation is a SU(2)F singlet.
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In this model, the superpotential for the Yukawa couplings is written as

WY =(aΨ3Ψ3 + bΨ3F̄
aΨa + cF̄ aΨaF̄

bΨb)Φ + d(Ψa,Φ, Φ̄, A, Z3,Θ)

+ f ′F̄ aΨaϵ
bcFbΨcC + g′Ψ3ϵ

abFaΦbC, (5.10)

where a, b, c, f ′ and g′ are O(1) coefficients. d(Ψa,Φ, Φ̄, A, Z3,Θ) is a gauge-invariant

function of Ψa,Φ, Φ̄, A, Z3 and Θ, which contributes to Ψ1Ψ2Φ. After developing VEVs

like ⟨ΦΦ̄⟩ ∼ λ2, ⟨CC̄⟩ ∼ λ5, ⟨A⟩ ∼ λ1/2 and Eq. (5.9) for ⟨F ⟩ and ⟨F̄ ⟩, the Yukawa

couplings for up-type quarks, down-type quarks and charged leptons can be obtained as

Yu =

 0 1
3
dqλ

5 0

−1
3
dqλ

5 cλ4 bλ2

0 bλ2 a

 , (5.11)

Yd =


−
(

(bg−af)2
ac−b2 + g2

)
βH
a
ei(2ρ−δ)λ6 − bg−af

ac−b2
2
3
d5βHe

i(ρ−δ)λ5.5 1
3
dqλ

5(
−dq

3
− bg−af

ac−b2
b 2
3
d5
g

)
λ5

(
fβHe

i(ρ−δ) − ( 2
3
d5)2

ac−b2
ab
g
e−iρ

)
λ4.5 cg−bf

g
λ4

− bg−af
ac−b2

a 2
3
d5
g
λ3

(
gβHe

i(ρ−δ) − ( 2
3
d5)2

ac−b2
a2

g
e−iρ

)
λ2.5 bg−af

g
λ2

 ,

(5.12)

Ye =

−
(

(bg−af)2
ac−b2 + g2

)
βH
a
ei(2ρ−δ)λ6 dlλ

5 0

0 fβHe
i(ρ−δ)λ4.5 gβHe

i(ρ−δ)λ2.5

−dlλ5 cg−bf
g
λ4 bg−af

g
λ2

 , (5.13)

at the GUT scale. Note that a, b, c, d5, dq, dl, f, g and βH are real O(1) coefficients, ρ and

δ are O(1) phases and λ ∼ 0.22 is taken to be the Cabibbo angle. Therefore, we have 9

real parameters and 2 CP phases in this model.

5.3 Mass spectrum of sfermions

From the charge assignment in Table 7, the SUSY-breaking potential can be written as

VSB =m2
0|Ψa|2 +m2

3|Ψ3|2 +m2
11|ϵabΨaFb|2 +m2

22|ΨaF̄
a|2

+ (m2
23Ψ

†
3ΨaF̄

a +m2
13λ

5Ψ†
3ϵ
abΨaF̄

†
b +m2

12λ
5(ΨaF̄

a)†ϵbcΨbF̄
†
c + h.c.)

+m2(Φ†Ψa†ΨaΦ) + (m′2
12λ

2C̄|Ψa|2Φ̄† +m′2
23λ

2C̄Ψ†
3ΨaF̄

aΦ̄† + h.c.), (5.14)

where the terms in the last line give the mass terms between 5̄ and 5̄′ after developing the

VEVs ⟨Φ⟩, ⟨Φ̄⟩, ⟨C⟩ and ⟨C̄⟩. One can obtain the sfermion mass matrices mainly from
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this potential. Another contributions are coming from the D-terms as Eq. (3.4):

∆m̃2
ψ =

∑
a

Qa(ψ)Da, (5.15)

where Qa(ψ) is the U(1) charge of the field ψ. In this model, there are four types of

D-term contributions: D6 for U(1)V ′ , D10 for U(1)V , DF for U(1)F and DA for U(1)A.

Here, U(1)F is the Cartan part of SU(2)F . We summarize the U(1) charges in Table 8.

Thus, the sfermion masses for 10, 5̄ and 5̄′ of SU(5) including the D-term contributions

ψ 101 101 103 5̄1 5̄2 5̄3 5̄′
1 5̄′

2 5̄′
3

U(1)V ′ 1 1 1 1 1 1 -2 -2 -2

U(1)V 1 1 1 -3 -3 -3 2 2 2

U(1)F
1
2

−1
2

0 1
2

−1
2

0 1
2

−1
2

0

U(1)A 4 4 3
2

4 4 3
2

4 4 3
2

Table 8: U(1) charges for 10i and 5̄
(′)
i fields. These charges can be understood by the

decomposition of 27 of E6 (Eq. (3.47)) and Table 7.

are given from Eqs. (5.14) and (5.15) as [68]

m̃2
10 =

m2
0 + λ4m2

11 λ9m2
12 λ7m2

13

λ9m2
12 m2

0 + λ4m2
22 λ2m2

23

λ7m2
13 λ2m2

23 m2
3

+D6

1

1

1


+D10

1

1

1

+DF

1

−1

0

+DA

4

4
3
2

 , (5.16)

m̃2
5̄ =

m2
0 + λ4m2

11 λ9m2
12 λ7m2

13

λ9m2
12 m2

0 + λ4m2
22 λ2m2

23

λ7m2
13 λ2m2

23 m2
3

+D6

1

1

1


+D10

−3

−3

−3

+DF

1

−1

0

+DA

4

4
3
2

 , (5.17)

m̃2
5̄′ =

m2
0 + λ2m2 + λ4m2

11 λ9m2
12 λ7m2

13

λ9m2
12 m2

0 + λ2m2 + λ4m2
22 λ2m2

23

λ7m2
13 λ2m2

23 m2
3

+D6

−2

−2

−2


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+D10

2

2

2

+DF

1

−1

0

+DA

4

4
3
2

 , (5.18)

where the contribution from m2Φ†Ψa†ΨaΦ to |16Ψa|2 is included in m2
0 by redefinition of

m2
0 and we just rewrite 1

2
DF → DF . Because of the mixing of the 5̄ fields like (5̄0

1, 5̄
0
2, 5̄

0
3) ∼

(5̄1, 5̄
′
1, 5̄2), the sfermion mass matrix for 5̄0

i becomes

m̃2
5̄0 ∼

m2
0 + λ4m2

11 λ5.5m′2
12 λ9m2

12

λ5.5m′2
12 m2

0 + λ2m2 + λ4m2
11 λ7.5m′2

23

λ9m2
12 λ7.5m′2

23 m2
0 + λ4m2

22

+D6

1

−2

1


+D10

−3

2

−3

+DF

1

1

−1

+DA

4

4

4

 . (5.19)

The sfermion mass matrices Eqs. (5.16) and (5.19) give interesting predictions of E6×
SU(2)F×U(1)A GUT. Even though the terms suppressed by the power of λ are dependent

on the explicit model, the dominant terms in sfermion mass matrices which are

m̃2
10 ∼

m2
0

m2
0

m2
3

 , m̃2
5̄0 ∼

m2
0

m2
0

m2
0

 , (5.20)

are one of the important signatures of E6 × SU(2)F GUTs. This spectrum is known as a

natural SUSY-type sfermion mass spectrum. Note that in general, the natural SUSY-type

sfermion mass spectrum suffers from the CEDM problem [69–71]. In the E6 × SU(2)F ×
U(1)A GUT, however, the CEDM problem can be solved by considering the spontaneous

CP violation [72–74] as mentioned above. We will discuss the CEDM problem in Sec. 6.

Hereafter, we neglect the terms suppressed by the power of λ. Therefore, Eqs. (5.16)

and (5.19) can be rewritten as [68]

m̃2
10 = (m2

0 +D6 +D10 +DF + 4DA)13×3 +

0

−2DF

−DF − 5
2
DA +m2

3 −m2
0


≡ (m2

10)11 13×3 +

0

(m2
10)22 − (m2

10)11

(m2
10)33 − (m2

10)11

 , (5.21)
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m̃2
5̄0 = (m2

0 +D6 − 3D10 +DF + 4DA)13×3 +

0

−3D6 + 5D10

−2DF


≡ (m2

5̄0)11 13×3 +

0

(m2
5̄0)22 − (m2

5̄0)11

(m2
5̄0)33 − (m2

5̄0)11

 , (5.22)

where 13×3 is a 3 × 3 unit matrix. From these rewrites, we find a non-trivial prediction

of this model, (m2
10)22 − (m2

10)11 = (m2
5̄0)33 − (m2

5̄0)11 [68]. If this relation is observed in

future experiments, strong evidence for this model is obtained, and we can know the size

of DF . Furthermore, the size of D6 and D10 can be determined when (m2
10)11−(m2

5̄0)11 and

(m2
5̄0)22 − (m2

5̄0)11 are observed. If these small modifications from Eq. (5.20) are observed

in addition to the relation (m2
10)22 − (m2

10)11 = (m2
5̄0)33 − (m2

5̄0)11, it is thought that the

E6 × SU(2)F × U(1)A model can be established.

However, these modifications are constrained by the FCNCs. In the next subsection,

we study the constraints to the D-terms from the FCNC processes. As we mentioned in

Sec. 4, the K0-K0 mixing is most sensitive to the new physics and gives the strongest

constraints. Therefore, we focus on the constraint from ϵK parameter in K0-K0 mixing.

5.4 FCNC constraints to D-terms

For the discussion of the size of the D-terms from the FCNC constraints, we focus on the

natural SUSY-type sfermion masses, i.e. m0 ≫ m3. Since the D-terms are expected to

be small for the FCNC constraints, we can fix |(m2
10)33 − (m2

10)11| = m2
0 from Eq. (5.21).

In order to obtain the 125 GeV Higgs mass, m3 must be larger than 1 TeV. Therefore we

take m3 ∼ O(1) TeV because of the naturalness. The upper bound for the ratio m0/m3

is known to be roughly 5 in order not to be negative stop mass square through two loop

RGE [61, 149]. Therefore, we expect that m0 ∼ O(10) TeV. Note that since the upper

bound of m0/m3 is dependent on the explicit models between the GUT scale and the

SUSY-breaking scale, we do not discuss it explicitly.

If the D-term contributions can be negligible, almost all experimental bounds from

FCNC processes are satisfied because of the sfermion mass spectrum in this model [150–

153]. When the D-terms become sizable, the strongest constraints can be given from

the CP-violating parameter ϵK in K0-K0 mixing. Since the other FCNC constraints are

basically satisfied if the constraints from K0-K0 mixing are satisfied, we consider the

constraints on the size of D-terms from the bounds of ϵK .

For the calculation of constraints from the FCNC processes with the basis in which

quarks and leptons are mass eigenstates, diagonalizing matrices for the Yukawa couplings
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are needed. we define it as follow:

ψ′
Li(Yψ)ijψ

′ c
Rj = (L†

ψψ
′
L)i(L

T
ψYψRψ)ij(R

†
ψψ

′ c
R )j ≡ ψLi(Y

D
ψ )ijψ

c
Rj, (5.23)

where ψ′ is a flavor eigenstate, ψ is a mass eigenstate and Y D
ψ is a diagonalized Yukawa

matrix of ψ. We show the rough expressions of the diagonalizing matrices for up-type

quarks, down-type quarks and charged leptons without O(1) coefficients, which are ob-

tained from Eqs. (5.11), (5.12) and (5.13):

Lu ∼

 1 1
3
λ 0

1
3
λ 1 λ2

1
3
λ3 λ2 1

 , Ru ∼

 1 1
3
λ 0

1
3
λ 1 λ2

1
3
λ3 λ2 1

 , (5.24)

Ld ∼

 1 (2
3
+ i 4

27
)λ 1

3
λ3

(2
3
+ i 4

27
)λ 1 λ2

(2
3
+ i 4

27
)λ3 λ2 1

 , Rd ∼

 1 2
3
(1 + i)λ0.5 2

3
λ

2
3
(1 + i)λ0.5 1 (1 + i)λ0.5

2
3
(1 + i)λ (1 + i)λ0.5 1

 ,

(5.25)

Le ∼

 1 (1 + i)λ0.5 0

(1 + i)λ0.5 1 (1 + i)λ0.5

λ (1 + i)λ0.5 1

 , Re ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (5.26)

Lν ∼

 1 (1 + i)λ0.5 (1 + i)λ

(1 + i)λ0.5 1 (1 + i)λ0.5

(1 + i)λ (1 + i)λ0.5 1

 . (5.27)

Note that the detailed expressions of these diagonalizing matrices with the explicit O(1)

coefficients are summarized in Appendix D. We have two types for the diagonalizing

matrices for 10 of SU(5) sfermions and for 5̄ sfermions as

UCKM-type ≡

 1 a12λ a13λ
3

a21λ 1 a23λ
2

a31λ
3 a32λ

2 1

 (for Lu, Ld, Ru and Re) (5.28)

UMNS-type ≡

 b11 b12λ
0.5 b13λ

b21λ
0.5 b22 b23λ

0.5

b31λ b32λ
0.5 b33

 (for Le, Lν and Rd), (5.29)

where aij and bij are generically complex O(1) coefficients, respectively. The mass inser-
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tion parameters are defined as

(δψΓΓ)ij ≡
(Γ†

ψm̃
2
ψΓ
Γψ)ij

m2
ψ̃

(Γ = L,R∗), (5.30)

where mψ̃ is the averaged sfermion mass of ψ = u, d, e, ν and is taken m0 in many cases

in this thesis. These can be calculated as

(δψΓΓ)12 = a∗21λ
(
(m2

10)22 − (m2
10)11

)
+ a∗31a32λ

5
(
(m2

10)33 − (m2
10)11

)
(5.31)

(δψΓΓ)13 =
[
a∗21a23

(
(m2

10)22 − (m2
10)11

)
+ a∗31

(
(m2

10)33 − (m2
10)11

)]
λ3 (5.32)

(δψΓΓ)23 =
[
a23
(
(m2

10)22 − (m2
10)11

)
+ a∗32

(
(m2

10)33 − (m2
10)11

)]
λ2 (5.33)

for 10 fields and

(δψΓΓ)12 = b∗21b22λ
0.5
(
(m2

5̄0)22 − (m2
5̄0)11

)
+ b∗31b32λ

1.5
(
(m2

5̄0)33 − (m2
5̄0)11

)
(5.34)

(δψΓΓ)13 =
[
b∗21b23

(
(m2

5̄0)22 − (m2
5̄0)11

)
+ b∗31b33

(
(m2

5̄0)33 − (m2
5̄0)11

)]
λ (5.35)

(δψΓΓ)23 =
[
b∗22b23

(
(m2

5̄0)22 − (m2
5̄0)11

)
+ b∗32b33

(
(m2

5̄0)33 − (m2
5̄0)11

)]
λ0.5 (5.36)

for 5̄ fields. In Appendix E, we show each mass insertion parameter in this model with

explicit O(1) coefficients.

Let us calculate the constraints from the ϵK parameter inK0-K0 mixing. In Refs. [154,

155], the constraints for (δdLL)12 and (δdRR)12 are studied by including the SM contribution

and NLO calculation of QCD. Their bounds are√
|Im(δdLL)

2
12| < 2.9× 10−3

( md̃

500GeV

)
, (5.37)√

|Im(δdRR)
2
12| < 2.9× 10−3

( md̃

500GeV

)
, (5.38)√

|Im(δdLL)12(δ
d
RR)12| < 1.1× 10−4

( md̃

500GeV

)
. (5.39)

These parameters can roughly be calculated as

(δdLL)12 ∼
(
2

3
+ i

4

27

)(
λ
(m2

10)22 − (m2
10)11

m2
d̃

+ λ5
(m2

10)33 − (m2
10)11

m2
d̃

)
, (5.40)

(δdRR)12 ∼
2

3
(1 + i)

(
λ0.5

(m2
5̄0)22 − (m2

5̄0)11
m2
d̃

+ λ1.5
(m2

5̄0)33 − (m2
5̄0)11

m2
d̃

)
, (5.41)

in this model [68]. By taking |(m2
10)33−(m2

10)11| = m2
0 = m2

d̃
, we can obtain the allowed re-
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gion in (
√
|(m2

5̄0
)22 − (m2

5̄0
)11|/md̃,

√
|(m2

10)22 − (m2
10)11|/md̃ =

√
|(m2

5̄0
)33 − (m2

5̄0
)11|/md̃)

space. we show the results in Fig. 12. Note that (m2
10)22 − (m2

10)11 = (m2
5̄0)33 − (m2

5̄0)11 is

one of the predictions in the E6 × SU(2)F × U(1)A model.

Figure 12: Allowed region in (
√

|(m2
5̄0
)22 − (m2

5̄0
)11|/md̃,

√
|(m2

10)22 − (m2
10)11|/md̃ =√

|(m2
5̄0
)33 − (m2

5̄0
)11|/md̃) space [68]. The allowed region for the condition of√

|Im(δdLL)12(δ
d
RR)12| is obtained below the solid lines for various md̃ = 5 TeV, 10 TeV,

20 TeV and 40 TeV. The allowed region for
√

|Im(δdRR)
2
12| is the left side of the dot-

ted line for md̃ = 40 TeV. The other conditions are satisfied in the allowed region for√
|Im(δdLL)12(δ

d
RR)12|.

Note that we neglected the contributions to the sfermion masses which are suppressed

by power of λ in Eqs. (5.16) and (5.19) in the above arguments. Almost all these terms

can be neglected because of the power of λ. However, λ2m2 term in Eq. (5.19) can give

non-vanishing contribution to
√
|(m2

5̄0
)22 − (m2

5̄0
)11|/md̃ if m ∼ m0. In such a case, we

can easily extract the FCNC constraints from Fig. 12.

5.5 Summary of the section

In this section, we introduced the interesting SUSY GUT models based on the E6 ×
SU(2)F × U(1)A SUSY GUT. These models can solve almost all the problems which are

caused in SUSY GUT model under the natural assumption which all the interactions
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allowed by the symmetries are introduced. One of the important signatures of the E6 ×
SU(2)F ×U(1)A SUSY GUT is the MUSM. This structure can suppress the contributions

to SUSY FCNC processes and stabilize the weak scale at the same time [54–58,156–158].

However, the universality of the MUSM is destroyed by non-vanishing D-term contri-

butions predicted in the E6×SU(2)F ×U(1)A SUSY GUT. Therefore, these contributions

are strongly constrained by the FCNC processes, especially the CP-violating parameter

ϵK in K0-K0 mixing. We searched the size of D-term contributions from the constraint

of ϵK and found that sizable contributions are allowed as shown in Fig. 12, which is O(1)

TeV. Moreover, we obtained the novel relation, (m2
10)22 − (m2

10)11 = (m2
5̄0)33 − (m2

5̄0)11

which is specific to this model. Therefore, if this relation can be observed in the future

experiments in addition to the small modifications from the MUSM, we may establish the

E6 × SU(2)F × U(1)A SUSY GUT.
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6 CEDM constraints in natural SUSY-type sfermion

spectrum

In the previous section, we introduced the SUSY GUT model with the natural SUSY-

type sfermion mass spectrum. This type of spectrum suffers from the CEDM constraints

because of the light stop mass. In this section, we focus on the sfermion mass spectrum

obtained in Eq. (5.20) [150,151,159],

m̃2
10 =

m2
0

m2
0

m2
3

 , m̃2
5̄0 =

m2
0

m2
0

m2
0

 , (6.1)

and investigate the lower bound of the sfermion masses from the EDM bounds.

6.1 CEDM and rough estimation

The effective Lagrangian for the quark CEDM can be calculated by the diagram shown

in Fig. 13, and described as

LCEDM = −igs
2
dCq q(G · σ)γ5q, (6.2)

where gs is the QCD coupling, G · σ = GA
µνT

Aσµν , GA
µν is field strength of gluon, TA

(A = 1, 2, · · · , 8) are SU(3) generators and σµν = i
2
[γµ, γν ]. dCq denotes a quark CEDM

Figure 13: An one-loop diagram for the quark CEDM. χ̃ denotes fermionic superpartners,
such as gluinos, charginos and neutralinos.

and particularly, it is dominated by gluino contributions. Therefore, we focus on the

gluino contributions to the quark CEDMs in this thesis.

62



If one consider the natural SUSY-type sfermion spectrum, such as Eq. (6.1), the

diagram shown in Fig. 14 becomes dominant contribution to up-quark CEDM, dCu [69,

72, 160, 161]. This contribution is enhanced when the stop mass is light to be around 1

Figure 14: A diagram which dominantly contributes to dCu . (∆
u
AB)ij (A,B = L orR, i, j =

1, 2, 3) is the element of 6× 6 sfermion mass matrix (see Eq. (6.3)).

TeV and in general, its size is severely constrained by the CEDM constraints even if all

SUSY-breaking parameters and the Higgsino mass parameter µ are taken to be real. In

order to explain the enhancement and constraints, let us estimate this diagram by using

mass insertion approximation (MIA) [162].

We define the 6× 6 mass matrix for up-type sfermions as follow:

M2
ũ =

(
L†
u(m

2
Q + v2uY

∗
u Y

T
u )Lu L†

u(vuA
∗
u − µvdY

∗
u )R

∗
u

RT
u (vuA

T
u − µvdY

T
u )Lu RT

u (m
2
u + v2uY

T
u Y

∗
u )R

∗
u

)
≡

(
(∆u

LL) (∆u
LR)

(∆u
RL) (∆u

RR)

)
, (6.3)

where Au is a 3×3 matrix for scalar three point vertex andm2
Q andm2

u are 3×3 soft SUSY-

breaking mass matrices. Hereafter, we assume that Yu has the hierarchical structure for

the observed masses as follow:

Yu ∼

λ6 λ5 λ3

λ5 λ4 λ2

λ3 λ2 1

 (λ = 0.22). (6.4)

Here, we omit the O(1) coefficients for each element. In this case, the diagonalizing

matrices, Lu and Ru, can be the CKM-type matrix:

Lu, Ru ∼ VCKM ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 . (6.5)
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The diagonalized Yukawa coupling is obtained as LTuYuRu = Y D
u as in Eq. (5.23). By

using these equations, we can estimate the contribution of Fig. 14 to dCu as

dCu ≃ αs
4π
FMIA(rg̃, rt̃)Im

[
Mg̃

m2
t̃

(∆u
RL)33
m2
t̃

(∆u
LL)31
m2
ũ

(∆u
RR)13
m2
ũ

]
∼ αs

4π
F (rg̃, rt̃)

Mg̃Au33vu
m4
t̃

Im [(δuLL)31(δ
u
RR)13] , (6.6)

whereMg̃ is the gluino mass, rg̃ =M2
g̃ /m

2
ũ, rt̃ = m2

t̃
/m2

ũ and FMIA(x, y) is a loop function.

Note that in notation of Eq. (6.3), the mass insertion parameters (δuAB)ij are

(δuAB)ij =
(∆u

AB)ij
m2
ũ

(A,B = L orR, i, j = 1, 2, 3). (6.7)

In Eq. (6.6), we assume that Mg̃ and (∆u
RL)33 ∼ Au33vu are real. Therefore, dCu is pro-

portional to the imaginary part of the (δuLL)31(δ
u
RR)13 which includes the diagonalizing

matrices, Lu and Ru. Since these diagonalizing matrices are complex to obtain the KM

phase, the contribution of Eq. (6.6) are induced even if all SUSY-breaking parameters

and µ are real.

To obtain the CEDM constraints, one should use the relations between the EDM and

CEDM. In this thesis, we use the following relations: dHg ∼ 2.2 × 10−3 e(dCu − dCd ) [163]

for the mercury EDM and dN ∼ −0.3 e(dCu − dCd ) [164] for the neutron EDM. The current

upper bound for these EDMs [76,77] are

dN < 3.0× 10−26 e cm, (6.8)

dHg < 7.4× 10−30 e cm. (6.9)

By taking mt̃ ∼ Au33 ∼ 2 TeV, mg̃ ∼ 1.5mt̃ ∼ 3 TeV and mũ ∼ 10 TeV and using

these relations and constraints, we obtain the following bounds for the mass insertion

parameters7:

Im [(δuLL)31(δ
u
RR)13] <

{
5.3× 10−6 (Hg)

1.6× 10−4 (neutron)

}( mt̃

2TeV

)2
. (6.10)

Note that the loop integral in this case is FMIA(0.09, 0.04) ≃ 0.079. We summarize the

value of FMIA(rg̃, rt̃) with different rg̃ and rt̃ in Appendix F. The left-hand side of Eq. (6.10)

7For the bound of dCu , we consider the situation that m0 ≫ m3. In such a case, the down quark
CEDM dCd is decoupled and can be ignored. In this thesis, we just use the bound for dCu − dCd obtained
from the relations between the EDM and CEDM as that for dCu and dCd .
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can be calculated by Eqs. (6.1) and (6.5) as

Im [(δuLL)31(δ
u
RR)13] ≃

(
m2
t̃
−m2

ũ

m2
ũ

)2

× λ6. (6.11)

Clearly, this does not decouple when mũ → ∞ which correspond to m0 → ∞, and its size

is about λ6 ∼ 10−4. Therefore, the stop mass is needed to be larger than roughly 10 TeV

in order to avoid the Hg EDM bound obtained in this approximation.

Note that the down quark CEDM dCd decouples in the limit of m0 → ∞ because

the mass of the right-handed sbottom becomes heavy in the natural SUSY-type sfermion

spectrum Eq. (6.1). Therefore, by calculating the approximate expression for dCd in a

similar way, we expected that md̃ > 10 TeV is needed to satisfy the CEDM bounds if the

decoupling feature of dCd for md̃ is similar to that of dCu for mũ.

In the point of view of the naturalness, it is preferable that the stop mass is O(1) TeV.

In order to satisfy the CEDM bounds in such a light stop case, an interesting solution

is to assume that Yu and Au are real at the GUT scale, while Yd is complex to obtain

the KM phase. In this solution, diagonalizing matrices for Yu are also real, and dCu is

strongly suppressed as understood from Eq. (6.6). In fact, Yu becomes complex at the

low energy scale through the RGE running. However, since there is a loop suppression in

the imaginary part of Yu, the current CEDM bounds are satisfied in this case.

6.2 Calculational method

In order to discuss the CEDM constraints for the model with the natural SUSY-type

sfermion spectrum and compare the lower bound of the sfermion masses in different

Yukawa structure, we calculate the CEDMs numerically. Before showing the results,

let us explain the detail of the calculation.

For the calculation, the input parameters are given at the GUT scale, ΛGUT = 2×1016

GeV. For simplicity, we assume that the model is the MSSM with the natural SUSY-

type sfermion spectrum. Therefore, the input parameters are gauge couplings gi, gaugino

massesMi, Yukawa couplings Yf , scalar cubic couplings Af which are called A-parameters

in this thesis, sfermion mass matrices and doublet Higgs masses. These values or struc-

tures are8

g1(ΛGUT) = g2(ΛGUT) = g3(ΛGUT) = gGUT = 0.7, (6.12)

M1(ΛGUT) =M2(ΛGUT) =M3(ΛGUT) =M1/2, (6.13)

8We consider that hierarchies of A-parameters are the similar to those of corresponding Yukawa
couplings. This situation can be realized if one consider the model in which the Froggatt-Nielsen mech-
anism [165,166] is considered.
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Yu =

yu11λ6 yu12λ
5 yu13λ

3

yu21λ
5 yu22λ

4 yu23λ
2

yu31λ
3 yu32λ

2 yu33

 , Au = A0

au11λ6 au12λ
5 au13λ

3

au21λ
5 au22λ

4 au23λ
2

au31λ
3 au32λ

2 au33

 , (6.14)

Yd =

yd11λ6 yd12λ
5.5 yd13λ

5

yd21λ
5 yd22λ

4.5 yd23λ
4

yd31λ
3 yd32λ

2.5 yd33λ
2

 , Ad = A0

ad11λ6 ad12λ
5.5 ad13λ

5

ad21λ
5 ad22λ

4.5 ad23λ
4

ad31λ
3 ad32λ

2.5 ad33λ
2

 , (6.15)

Ye =

 ye11λ
6 ye12λ

5 ye13λ
3

ye21λ
5.5 ye22λ

4.5 ye23λ
2.5

ye31λ
5 ye32λ

4 ye33λ
2

 , Ae = A0

 ae11λ
6 ae12λ

5 ae13λ
3

ae21λ
5.5 ae22λ

4.5 ae23λ
2.5

ae31λ
5 ae32λ

4 ae33λ
2

 , (6.16)

m̃2
10 =

m2
0

m2
0

m2
3

 , m̃2
5̄0 =

m2
0

m2
0

m2
0

 , (6.17)

m2
Hu(ΛGUT) = m2

Hd
(ΛGUT) = (500GeV)2, (6.18)

where yfij and afij (f = u, d, e) are the O(1) coefficients and A0 is the typical scale of

A-parameters. The other parameter of the MSSM is the Higgsino mass parameter, µ.

In this calculation, it is fixed by the Z boson mass MZ . Note that we do not mind the

largeness of the value of µ because it does not contribute much to dCu , although µ becomes

O(1) TeV and it may lead to destabilization of the weak scale.

In the calculation, we assume that Yukawa couplings and A-parameters have the

hierarchies composed of λ = 0.22, but have three different types of O(1) coefficients at

the GUT scale for the comparison:

(i) complex Yu type

All yfij and afij (f = u, d, e) are complex O(1) coefficients (i, j = 1, 2, 3).

(ii) real Yu type

yuij and auij are real O(1) coefficients, while ydij, adij, yeij and aeij are complex O(1)

coefficients (i, j = 1, 2, 3).

(iii) E6 model (with family symmetry and spontaneous CP violation)

yuij, ydij and yeij have the special structures obtained in Eqs. (5.11), (5.12) and

(5.13) [73–75]: yu11 = yu13 = yu31 = ye13 = ye21 = 0, yu12 = −yu21 = yd13 = 1
3
dq,

yu23 = yu32, yd23 = ye32, yd33 = ye33 and ye12 = −ye31. yd11, yd12, yd22, yd32, ye11, ye22
and ye23 are complex O(1) coefficients, and dq, yu22, yu23, yu33, yd21, yd23, yd31, yd33

and ye12 are real O(1) coefficients. A-parameters have same structures.

Note that the real or complex O(1) coefficient in this thesis is defined as follow. The O(1)

coefficient C can be written by its radius and phase as C = |C|exp(iθ(C)). We fix the
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range of the radius as 0.5 ≤ |C| ≤ 1.5. If C is the real O(1) coefficient, the phase θ(C) is

randomly chosen by 0 or π. If C is the complex O(1) coefficient, the phase θ(C) is random

number in the range of 0 ≤ θ(C) ≤ 2π.

For all three types, we assume that M1/2, µ, Au33 = A0 and yu33 = 0.8 are real at the

GUT scale, in which most of the usual contributions to EDMs are strongly suppressed

when m0 → ∞. In addition, we consider that the SUSY-breaking scale is 1 TeV and

tan β = 7.

We obtain the low energy parameters from above inputs by using two-loop RGEs of

the MSSM9 [167]. The CEDMs for light quarks (u, d, s) can be calculated by the one-loop

formulas for the gluino contributions as

dCu = c
αs
4π

6∑
j=1

Mg̃

(M̂2
ũ)jj

{(
−1

3
F1(x

u
j )− 3F2(x

u
j )

)
Im[(U †

ũ)1j(Uũ)j4]

}
, (6.19)

dCd = c
αs
4π

6∑
j=1

Mg̃

(M̂2
d̃
)jj

{(
−1

3
F1(x

d
j )− 3F2(x

d
j )

)
Im[(U †

d̃
)1j(Ud̃)j4]

}
, (6.20)

dCs = c
αs
4π

6∑
j=1

Mg̃

(M̂2
d̃
)jj

{(
−1

3
F1(x

d
j )− 3F2(x

d
j )

)
Im[(U †

d̃
)2j(Ud̃)j5]

}
, (6.21)

where c ∼ 0.9 is QCD correction. M̂2
q̃ (q = u, d) are diagonalized squark mass matrices

which is defined as M̂2
q̃ = Uq̃M

2
q̃U

†
q̃ . M

2
q̃ is 6× 6 sfermion mass matrices and Uq̃ are their

diagonalizing matrices. F1(x) = (x2 − 4x + 3 + 2lnx)/2(1 − x)3 and F2(x) = (x2 − 1 −
2xlnx)/2(1− x)3 are coming from loop integrals and xqj =

M2
g̃

(M̂2
q̃ )jj

. The current bounds for

each quark CEDM [69,76,77,160] are

|dCq | < 3.4× 10−27 cm (q = u, d), (fromHgEDM) (6.22)

|dCq | < 1.0× 10−25 cm (q = u, d), (fromneutronEDM) (6.23)

|dCs | < 1.1× 10−25 cm. (6.24)

In the next subsection, we will show the results by calculating CEDMs above method.

We generate O(100) model points with different O(1) coefficients and obtain the mean

value and standard deviation of log 10|dCq |. Note that we do not fit the observed fermion

masses and the CKM matrix strictly. However, these are roughly realized by the Yukawa

hierarchies in Eqs. (6.14), (6.15) and (6.16).

9We do not consider one-loop threshold corrections in this calculation since their effects to CEDMs
are much smaller than that of O(1) coefficients, although one-loop threshold corrections should be taken
into account when one calculate RGEs at two-loop level.
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m0 Mg̃ |Au33|
5 TeV 2.7 TeV 2.0 TeV
10 TeV 2.8 TeV 2.1 TeV
20 TeV 4.3 TeV 3.1 TeV
30 TeV 6.2 TeV 4.4 TeV
40 TeV 8.4 TeV 5.8 TeV

Table 9: Mg̃ and |Au33| at the SUSY scale (1 TeV) in each m0 value for calculation in
Fig. 15.

6.3 Numerical results

The first result is shown in Fig. 15. The vertical axis is log 10|dCu | (left panel) and log 10|dCd |
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Figure 15: mũ,d̃ dependence of dCu (left panel) and dCd (right panel) [78]. Blue, red and
green plots are complex Yu type, real Yu type and E6 model, respectively. Each error
bar shows the standard deviation for the value of log 10|dCq | (q = u, d). Black solid line
is current bound from Hg EDM and allowed region is lower area. Dashed line shows the
current bound from neutron EDM, and the dotted line is the bound expected in future
experiments of neutron EDM. We choose m3 and M1/2 to become light stop at the SUSY
scale (1 TeV), and in these figures, we set mt̃ = (2000± 250) GeV. We also set A0 = −1
TeV.

(right panel) and the horizontal axis is heavy sfermion mass at low energy denoted asmũ,d̃.

Blue, red and green plots are corresponding to complex Yu type, real Yu type and E6 model,

respectively. For these plots, we set A0 = −1 TeV at the GUT scale and the stop mass at

low energy is about 2 TeV by choosing the values of M1/2 and m3. The current bounds

are shown as black solid line (Hg EDM, Eq. (6.22)) and dashed line (neutron EDM,

Eq. (6.23)). We also plotted the future expected bound in the experiments of neutron

EDM [168–172] as dotted line. The values ofMg̃ and |Au33| at the low energy are listed in

Table 9. From Fig. 15, one can see that dCu does not depend on the mũ (and hence m0),
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while dCd is decoupled when m0 become large. Roughly speaking, the Hg EDM bound

leads to md̃ > 7 TeV from dCd plots, which corresponds to m0 > 7 TeV at the GUT scale.

Note that hereafter, we discuss the sfermion mass bound by using the center value in

each distribution. From dCu plots, when mt̃ ≃ 2 TeV, complex Yu type cannot satisfy the

current dHg bound, while real Yu type and E6 model can satisfy it. This means that

the assumption which Yu and Au at the GUT scale are real is a good solution for the

CEDM problem. Note that E6 model predicts smaller values of dCu than the results of

real Yu type. This is caused by the special structure in Yu at the GUT scale, especially

yu11 = yu13 = yu31 = 0 and the factor of 1/3 in yu12 = −yu21.
Next, we show how large stop mass is needed in Fig. 16. The horizontal axis is mt̃.
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Figure 16: mt̃ dependence of dCu (left panel) and dCd (right panel) [78]. Blue, red and
green plots are complex Yu type, real Yu type and E6 model, respectively. Each vertical
error bar shows the standard deviation for the value of log 10|dCq | (q = u, d). Horizontal
error bar shows the distribution of stop masses by variation of O(1) coefficients of Yukawa
couplings and A parameters. Black solid line is current bound from Hg EDM and allowed
region is lower area. Dashed line shows the current bound from neutron EDM, and the
dotted line is the bound expected in future experiments of neutron EDM. In these figures,
we set m0 = 10 TeV and A0 = −1 TeV.

The vertical axis, colors of plots and shapes of lines are the same meaning as in Fig. 15.

For these plots, we set m0 = 20 TeV and A0 = −1 TeV at the GUT scale. At the low

energy, Mg̃ = 3 TeV and stop mass is given by the eigenvalues of the matrix of the stop

mass square as mt̃ ≡
√
mt̃1mt̃2 . It is obvious that dCu is strongly dependent on mt̃ and

roughly, mt̃ > 7 TeV is needed to satisfy the current bounds in complex Yu type, which is

not so far from the lower bound obtained by the MIA. However, it may not be permissible

to be such a large stop mass from the point of view of naturalness. On the other hand,

real Yu type and E6 model can satisfy the dCu bound even if mt̃ ≲ 1 TeV. Therefore, to

satisfy the dCu bound with O(1) TeV stop mass, real Yu at GUT scale can be an important

condition. Note that the flat regions appeared in the large stop mass area are caused by
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the contributions from the first two generation squarks. This is because we fix m0 = 20

TeV. These regions are expected to disappear if m0 ≫ 20 TeV.

Note that we have also calculated the strange quark CEDM and investigated its md̃,t̃

dependences. The results are very similar to dCd results and the current bound is al-

most satisfied. Therefore, we do not discuss the constraints of dCs . The weakness of the

constraint of dCs can be understood from Fig. 17.

In the last of this subsection, we will mention about the 125 GeV Higgs mass. We have

checked whether the Higgs mass is really obtained in this setup by using FeynHiggs-2.10

[173–177]. Table 10 shows the values of GUT scale parameters we used. These values are

chosen to obtain positive squared masses for all sfermions at the SUSY-breaking scale.

We show the values of mt̃ and |Au33| at the SUSY-breaking scale for each m0 case in

Table 11. We found that the 125 GeV Higgs mass is realized by these parameters in all

m0 m3 M1/2 A0

5 TeV 1.2 TeV 1.5 TeV −5 TeV
10 TeV 1.5 TeV 1.8 TeV −4.5 TeV
20 TeV 2 TeV 2.4 TeV −2.5 TeV
40 TeV 3.5 TeV 4.5 TeV −3.5 TeV

Table 10: GUT scale parameters which we use for obtaining the 125 GeV Higgs mass in
each m0 value.

m0 mt̃ |Au33|
5 TeV 1.9 TeV 3.4 TeV
10 TeV 2.3 TeV 3.7 TeV
20 TeV 2.6 TeV 4.1 TeV
40 TeV 4.3 TeV 7.4 TeV

Table 11: mt̃ and |Au33| at SUSY scale in each m0 value.

three types. The CEDM values in these cases are shown in Fig. 17.
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Figure 17: Up, down and strange quark CEDM in three type of boundary condition of

Yu [78]. Left panel is up and down quark CEDM and right panel is up and strange quark

CEDM. Square, diamond and circle plots are complex Yu type, real Yu type and E6 model,,

respectively. Red, blue, green and orange mean that m0 is 5 TeV, 10 TeV, 20 TeV and 40

TeV. Each error bar shows the standard deviation for the value of log 10|dCq | (q = u, d, s).

Black solid line is the current bound from Hg EDM and allowed region is lower left area.

Dashed line shows the current bound from neutron EDM, and the dotted line is the bound

expected in future experiments of neutron EDM.

The left (right) panel shows dCu versus dCd (dCu versus dCs ). In these figures, square,

diamond and circle plots are corresponding to complex Yu type, real Yu type and E6 model,

respectively. Red, blue, green and orange means that m0 is 5 TeV, 10 TeV, 20 TeV and

40 TeV. The current bounds are shown as black solid line (Hg EDM, Eq. (6.22)) and

dashed line (neutron EDM, Eq. (6.23)). We also plotted the future expected bound in

the experiments of neutron EDM [168–172] as dotted line. The lower left area of each line

is allowed region. From Fig. 17, dCu bound for complex Yu type is still severe even these

cases. Interestingly, for real Yu type and E6 model, we can expect some signals from the

down quark CEDM dCd in future experiments of neutron EDM when m0 = O(10) TeV.

6.4 Comment on electron EDM

The electron EDM bound is recently improved at the ACME EDM Experiment [178]. It

may be important for the discussion of the lower bounds of the sfermion masses. There-

fore, we also calculate the electron EDM denoted as de and search its constraints in the

same situations discussed above. We will show the results for the sum of four neutralino

contributions by using the expressions in Ref. [71]. Note that although there are another

contributions, the chargino contributions, to de, we just ignore such contributions since

these are much smaller than the neutralino contributions because of the largeness of the
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chargino masses. We checked that in the setup discussed here, the results are not changed

if the chargino contributions are included.
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Figure 18: mẽ dependence of de in three type of boundary condition of Yu [78]. Blue, red

and green plots are complex Yu type, real Yu type and E6 model, respectively. Each error

bar show standard deviation for the value of log 10|de|. Black solid line is current bound

and allowed region is lower area. Other input parameters are same as for the Fig. 15. The

dashed (dotted) line shows the future bound expected by ACME II (III) [179,180].

The vertical and horizontal axes in Fig. 18 are log 10|de| and the heavy slepton masses,

respectively. The colors of plots show the same meaning as in Fig. 15. Black solid line

shows the current bound, |de| < 8.7×10−29 e cm, and lower area is allowed. Dashed (Dot-

ted) line is the future expected bound at ACME II (III) [179,180]. The input parameters

used for this result are the same are for Fig. 15. In Table 12, we show the neutralino

masses in each m0 case.

m0 mN1 mN2 mN3 , mN4

5 TeV 0.5 TeV 0.9 TeV 2.1 TeV
10 TeV 0.6 TeV 1.0 TeV 2.4 TeV
20 TeV 0.8 TeV 1.5 TeV 3.3 TeV
30 TeV 1.2 TeV 2.2 TeV 4.2 TeV
40 TeV 1.6 TeV 3.0 TeV 5.2 TeV

Table 12: Neutralino masses at SUSY scale in each m0 case. In this calculation, the
masses of two of heavy neutralinos, mN3 and mN4 , are almost degenerated.

From Figs. 15 and 18, we found that the current constraint of de is slightly weaker

than that of dCq . The lower bounds of the slepton mass for real Yu type and complex Yu
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type are roughly 6 TeV, while that of E6 model is 5 TeV. This difference is caused by the

structure of Ye in E6 model (see Eq. (5.13)). Note that since electron EDM experiments

will be improved in a few years [180], some signals are expected in de when m0 = O(10)

TeV. If there is no signal, the lower bound of m0 becomes 20 TeV.

6.5 Summary of the section

In this section, we focused on the natural SUSY-type sfermion mass spectrum, Eq. (6.1).

This type of spectrum is strongly constrained by the CEDM constraints because of the

light stop contributions. In general, sfermion masses, including the stop mass, are needed

to be larger than 10 TeV to satisfy these constraints. It causes the destabilization of the

weak scale.

An interesting solution shown in this section is the up-type Yukawa couplings are set

to be real at the GUT scale. For comparison, we calculated the CEDMs and discussed

the lower bounds of sfermion masses in three different types of Yukawa structure, complex

Yu type, real Yu type and E6 model. As a result, we found that real Yu at the GUT scale

is one of the good solutions for the CEDM constraints with light (O(1) TeV) stop mass.

We summarized the lower bound of sfermion masses from Hg EDM bound in each type

in Table 13. From this table, we can conclude that if the stop mass is observed in future

experiments and its size is O(1) TeV, it may be able to constrain the structure of Yu at

GUT scale by using the CEDM constraints.

complex Yu type real Yu type E6 model

m0 7 TeV (20 TeV) 7 TeV (20 TeV) 5 TeV (15 TeV)

mt̃ 7 TeV (20 TeV) No constraint (1 TeV) No constraint (No constraint)

Table 13: The lower bounds from Hg EDM bound. In this table, we also show the bounds
from the future expected sensitivity of neutron EDM in parentheses. “No constraint”
means that the bound is smaller than 1 TeV.

Actually, there are large uncertainties in the theoretical calculation of the relation

between dHg and dCq [163, 181]. Therefore, the other EDM bounds, such as neutron and

electron EDM bounds, are also important to discuss the lower bounds of sfermion masses

conservatively. However, there are almost no constraints from the current dn bound even

in complex Yu type. The current de bound constrains the heavy sfermion mass as m0 > 5-6

TeV. In a near future, the electron EDM experiments are improved and we expect that

strong constraint tom0 is given or some signals are observed in future experiments. On the

other hand, mt̃ is not constrained by de. Therefore, an improvement of the neutron EDM

is needed to constrain the stop mass. Of course, not only the experimental improvement

but also the theoretical improvement in the calculation of Hg EDM are important.
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7 Conclusion

The scale of GUTs (1015-16 GeV) is much higher than the weak scale. Therefore, direct

searches for the GUT are difficult in the current (and maybe future) experiments, and to

search for predictions of GUT models, which can be observed at low energy, is important

for testing such a model. In this thesis, we have obtained such predictions in the realistic

SUSY GUT models which can realize the observed fermion mass hierarchies and CKM

matrix.

We especially focused on the method in which the SM matter fields are given by linear

combinations of matter fields considered in the model. Because of this field mixing, unde-

sired relations predicted in some GUT models are modified and realistic mass spectrum

can be obtained. In some of models, flavor-violating couplings are obtained by this mixing

and induce FCNC in specific processes.

One of such models is our SO(10) SUSY GUT model discussed in Sec. 4. In this

model, we introduced three additional fields, 10, as matters in addition to 16i matter

fields. Therefore, we have six 5̄ matter fields and these fields mix with each other after

extra U(1)′ gauge symmetry is broken. We considered that this symmetry breaking is

caused around the SUSY breaking scale which is O(100) TeV in this model. Therefore,

a scale of extra gauge boson Z ′ is also O(100) TeV. Since there are flavor-violating Z ′

couplings induced by the field mixing, FCNC processes mediated by Z ′ are induced at

tree-level and important for this model even when mZ′ ≃ 100 TeV. Moreover, since this

flavor-violating couplings are only for matter fields belonging to 5̄ field, some prediction

specific to this model would be obtained. Therefore, we have investigated our predictions

from the current FCNC bounds.

As a result, our model is most sensitive to the CP-violating parameter ϵK in K0-K0

mixing. We found that its deviation can be larger than 10 %. Another predictions are

obtained from LFV µ decays, µ → 3 e and µ-e conversion. We can conclude that our

model is still safe for the bounds of these processes. Moreover, if mZ′ is O(10) TeV,

our predictions can reach future expected bounds. One of the important features of our

flavor-violating couplings is that its (b, s)-element tends to be large because Adbs ∝ md
sm

d
b .

Therefore, some predictions are expected in B physics. However, the deviation from the

SM predictions for B0
(s)-B

0
(s) are smaller than 10 % unless mZ′ is around O(10) TeV.

The important point is that our model can be tested indirectly, even though the SUSY

breaking scale and hence Z ′ scale are O(100) TeV which is too high scale to reach at the

LHC.

We have also discussed the E6 model with SU(2)F family and anomalous U(1)A gauge

symmetries in Sec. 5. In such a model, almost all the problems caused in a SUSY GUT

model are solved in the natural assumption. One of the interesting features of this model
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is the sfermion mass spectrum. Since all the sfermion masses other than stop mass are

degenerated in this spectrum called MUSM in this thesis, SUSY contributions to FCNC

processes are suppressed without destabilizing the weak scale.

In this model, however, there are non-vanishing D-term contributions to the MUSM.

Since these contributions are dependent on the flavor, the degeneracy of the MUSM is

destroyed, and D-terms are constrained by FCNC processes. Therefore, we have discussed

the size of D-term contributions. If the stop mass is around 1 TeV and the other sfermion

masses are O(10) TeV, we found that these contributions can be sizable even when the

most strongest constraint in FCNC processes are considered. Therefore, small but sizable

contributions to the MUSM may become the evidence of this model if all the sfermion

masses are observed in future experiments and almost degenerated except for the stop

mass. In addition, we found the novel relation (m2
10)22 − (m2

10)11 = (m2
5̄0)33 − (m2

5̄0)11

which is specific to this model, so that to verify this relation is also important to test this

model.

In fact, the natural SUSY-type sfermion mass spectrum like the MUSM is severely

constrained by CEDMs. This is caused by the smallness of the stop mass. A simple

solution is that one takes stop mass to be heavy, though it leads to destabilization of the

weak scale. Moreover, the constraint of up quark CEDM is still severe even if all the

SUSY-breaking parameters are set to be real. To satisfy the CEDM constraints with light

stop mass, real Yu at the GUT scale is a good solution. Therefore, we have searched the

lower bounds of sfermion masses and discussed the difference of the lower bounds in three

types of structures of Yukawa couplings in Sec. 6.

We found that when we assume that Yu is real at the GUT scale, the CEDM bounds

are satisfied even when the stop mass is 1 TeV. On the other hand, roughly speaking,

the stop mass should be larger than 7 TeV when Yu is complex at the GUT scale. We

obtained these bounds from the current mercury EDM bound, although there are still

large uncertainties in the theoretical calculation of dHg. Therefore, we also investigated

the lower bounds from the neutron EDM bound. However in such case, we did not obtain

any constraints even when Yu is complex at the GUT scale. If the neutron EDM bound is

improved in future, heavy sfermion masses are constrained as m0 > 20 TeV. To satisfy the

future expected dn bound, the stop mass should be much larger than 10 TeV in the case of

complex Yu at the GUT scale, while the light stop mass (∼ O(1) TeV) is still allowed if Yu

is real at the GUT scale. Note that at present, the bound from electron EDM may be also

important to discuss the lower bounds of sfermion masses. However, we cannot obtain the

stop mass bound from de bound, so that theoretical and/or experimental improvement is

needed to constrain the stop mass.
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A Notation

In this section, we list a notation for this thesis.

σµ =
(
1, σi

)
(i = 1, 2, 3), (A.1)

where 1 is a 2× 2 unit matrix. The Pauli matrices are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The gamma matrices are

γ0 =

(
0 1

1 0

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3 0

)
, (A.3)

where 0 is a 2× 2 zero matrix. γ5 matrix is defined as

γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0

0 1

)
. (A.4)

Projection operators are written by γ5 as

PL =
1− γ5

2
, PR =

1 + γ5

2
. (A.5)

Charge conjugation is defined as

ψc ≡ CψC = −iγ2ψ∗ = −iγ2γ0ψ̄T = Cψ̄T , (A.6)

where C ≡ −iγ2γ0 = iγ0γ2.
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B RGEs for the ∆F = 2 processes

The one-loop RGE for Q̃q
1 is given by

µ
d

dµ
C̃q

1 = −αs
2π

(
3

Nc

− 3

)
C̃q

1 . (B.1)

Using the one-loop description of the RGE running of αs, we can estimate the one-loop

Wilson coefficients in the each process: for the K0-K0 mixing,

C̃K
1 (mK) =

(
αs(mc)

αs(mK)

) 2
9
(
αs(mb)

αs(mc)

) 6
25
(
αs(mt)

αs(mb)

) 6
23
(
αs(MZ′)

αs(mt)

) 2
7

C̃K
1 (MZ′), (B.2)

and for the B0
(s)-B

0
(s) mixing,

C̃
B(s)

1 (mb) =

(
αs(mt)

αs(mb)

) 6
23
(
αs(MZ′)

αs(mt)

) 2
7

C̃
B(s)

1 (MZ′). (B.3)

C Functions

The functions which appear in the K0-K0 and B0
(s)-B

0
(s) mixing are given by

S0(x) =
4x− 11x2 + x3

4(1− x)2
− 3x3 log x

2(1− x)3
, (C.1)

S(x, y) =
−3xy

4(y − 1)(x− 1)
− xy(4− 8y + y2) log y

4(y − 1)2(x− y)

+
xy(4− 8x+ x2) log x

4(x− 1)2(x− y)
. (C.2)

The function for the short-distance contribution to KL → πνν is defined as

X(x) =
x

8

{
x+ 2

x− 1
+

3x− 6

(x− 1)2
log x

}
. (C.3)

The function for Bs(d) → µ+µ− is defined as

Y0(x) =
x

8

{
x− 4

x− 1
+

3x

(x− 1)2
lnx

}
. (C.4)
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D The coefficients of diagonalizing matrices

In Appendix A in Ref. [148], we show how to diagonalize the 3 × 3 matrix Yij. Here

we show the diagonalizing matrices for up-type quarks, down-type quarks and charged

leptons in the leading order. The diagonalizing matrices Lψ and Rψ come from mixing

angles s
ψL/R
ij ≡ sin θ

ψL/R
ij eiχ

ψL/R
ij and c

ψL/R
ij ≡ cos θ

ψL/R
ij . In our calculation we use the

approximation that the mixing angles are small, i.e. |sψL/Rij | ∼ |θψL/Rij | ≪ 1 (s
ψL/R
ij ∼

θ
ψL/R
ij eiχ

ψL/R
ij ) and c

ψL/R
ij ≃ 1. In this approximation the diagonalizing matrices are

Lψ ≃

 1 sψL∗12 sψL∗13

−sψL12 1 sψL∗23

−sψL13 + sψL23 s
ψL
12 −sψL23 1

 , (D.1)

Rψ ≃

 1 sψR12 sψR13
−sψR∗

12 1 sψR23
−sψR∗

13 + sψR∗
23 sψR∗

12 −sψR∗
23 1

 . (D.2)

From Eq. (5.11), the mixing angles for up-type quarks are calculated as

suL23 = suR∗
23 ≃ b

a
λ2 ≡ RuL

23 λ
2, suL13 = suR∗

13 ≃ 0, suL12 = −suR∗
12 ≃

1
3
adq

ac− b2
λ ≡ 1

3
RuL

12 λ. (D.3)

From Eq. (5.12), the mixing angles for down-type quarks are calculated as

sdL23 ≃ cg − bf

bg − af
λ2 ≡ RdL

23 λ
2, sdL13 ≃ 1

3

dqg

bg − af
λ3 ≡ 1

3
RdL

13 λ
3, (D.4)

sdL12 ≃ −2

3

(bg − af)2d5
(ac− b2){f(bg − af)− g(cg − bf)}

λ

+
4

27

a2dqd
2
5

(ac− b2){f(bg − af)− g(cg − bf)}βH
e−i(2ρ−δ)λ

≡
(
2

3
RdL

12 +
4

27
IdL12 e

−i(2ρ−δ)
)
λ,

sdR∗
23 ≃ g2βH

bg − af
ei(ρ−δ)λ0.5 − 4

9

d25a
2

(ac− b2)(bg − af)
e−iρλ0.5 (D.5)

≡ IdR23 e
i(ρ−δ)λ0.5 − 4

9
I ′dR23 e

−iρλ0.5, (D.6)

sdR∗
13 ≃ −2

3

ad5
ac− b2

λ ≡ 2

3
RdR

13 λ,
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sdR∗
12 ≃ 2

3

d5(bg − af)

{f(bg − af)− g(cg − bf)}βH
e−i(ρ−δ)λ0.5 ≡ 2

3
IdR12 e

−i(ρ−δ)λ0.5.

From Eq. (5.13), the mixing angles for charged lepton are calculated as

seL23 ≃ g2βH
bg − af

ei(ρ−δ)λ0.5 ≡ IdR23 e
i(ρ−δ)λ0.5, seL13 ≃ 0, (D.7)

seL12 ≃ dl(bg − af)

{f(bg − af)− g(cg − bf)}βH
e−i(ρ−δ)λ0.5 ≡ IeL12 e

−i(ρ−δ)λ0.5

seR∗
23 ≃ sdL23 ≡ RdL

23 λ
2, seR∗

13 ≃ − dlg

bg − af
λ3 ≡ ReR

13 λ
3, (D.8)

seR∗
12 ≃ dlg

2

{f(bg − af)− g(cg − bf)}
λ ≡ ReR

12 λ.

The diagonalizing matrices for up-type quarks, down-type quarks and charged leptons are

calculated as

Lu ∼

 1 1
3
RuL

12 λ 0

−1
3
RuL

12 λ 1 RuL
23 λ

2

1
3
RuL

23 R
uL
12 λ

3 −RuL
23 λ

2 1

 , (D.9)

Ru ∼

 1 −1
3
RuL

12 λ 0
1
3
RuL

12 λ 1 RuL
23 λ

2

−1
3
RuL

23 R
uL
12 λ

3 −RuL
23 λ

2 1

 , (D.10)

Ld =

 1 (2
3
RdL

12 + 4
27
IdL12 e

i(2ρ−δ))λ 1
3
RdL

13 λ
3

−(2
3
RdL

12 + 4
27
IdL12 e

−i(2ρ−δ))λ 1 RdL
23 λ

2

(−1
3
RdL

13 + 2
3
RdL

23R
dL
12 + 4

27
RdL

23 I
dL
12 e

−i(2ρ−δ))λ3 −RdL
23 λ

2 1

 ,

Rd =

 1 2
3
IdR12 e

i(ρ−δ)λ0.5 2
3
RdR

13 λ

−2
3
IdR12 e

−i(ρ−δ)λ0.5 1 IdR23 e
−i(ρ−δ)λ0.5

(−2
3
RdR

13 + 2
3
IdR23 I

dR
12 − 8

27
I ′dR23 I

dR
12 e

−i(2ρ−δ))λ −IdR23 ei(ρ−δ)λ0.5 1



Le ∼

 1 IeL12 e
i(ρ−δ)λ0.5 0

−IeL12 e−i(ρ−δ)λ0.5 1 IdR23 e
−i(ρ−δ)λ0.5

IdR23 I
eL
12 λ −IdR23 ei(ρ−δ)λ0.5 1

 , (D.11)

Re ∼

 1 ReR
12 λ ReR

13 λ
3

−ReR
12 λ 1 RdL

23 λ
2

(−ReR
13 +RdL

23R
eR
12 )λ

3 −RdL
23 λ

2 1

 . (D.12)

In this model the Majorana neutrino mass matrix has a lot of other real parameters and
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CP phases, and therefore, we cannot constrain the diagonalizing matrix for neutrino. The

diagonalizing matrix for neutrino is written as

Lν ∼

 1 λ0.5 λ

λ0.5 1 λ0.5

λ λ0.5 1

 , (D.13)

where we have omitted the complex O(1) coefficients. In this model we can obtain realistic

CKM and MNS matrices as

VCKM = L†
uLd

∼

 1

(1
3
RuL

12 − 2
3
RdL

12 − 4
27
IdL12 e

−i(2ρ−δ))λ

{−2
3
RuL

23 R
dL
12 − 1

3
RdL

13 + 2
3
IdL23 I

dL
12 − 4

27
(RuL

23 −RdL
23 )I

dL
12 e

−i(2ρ−δ)}λ3

(−1
3
RuL

12 + 2
3
RdL

12 + 4
27
IdL12 e

i(ρ−δ))λ O(λ4)

1 (−RuL
23 +RdL

23 )λ
2

(RuL
23 −RdL

23 )λ
2 1

 , (D.14)

|VMNS| =
∣∣L†

νLe
∣∣ ∼

 1 λ0.5 λ

λ0.5 1 λ0.5

λ λ0.5 1

 . (D.15)

As discussed in Ref. [72–75], the leading contribution to the component (VCKM)13 is can-

celled and the sub-leading contribution O(λ4) dominates (VCKM)13.

E Mass insertion parameters

In this appendix, we just show all mass insertion parameters in the E6×SU(2)F ×U(1)A

SUSY GUT model.

(δu12)LL = −(δu12)RR ≃
{
−1

3
RuL

12 λ∆m
2
10,2 −

1

3
(RuL

23 )
2RuL

12 λ
5∆m2

10,3

}
/m2

ũ (E.1)

(δu13)LL = −(δu13)RR ≃
{
−1

3
RuL

23 R
uL
12 ∆m

2
10,2 +

1

3
RuL

23 R
uL
12 ∆m

2
10,3

}
λ3/m2

ũ (E.2)

(δu23)LL = (δu23)RR ≃ RuL
23 {∆m2

10,2 −∆m2
10,3}λ2/m2

ũ (E.3)

(δd12)LL ≃
{
−
(
2

3
RdL

12 +
4

27
IdL12 e

i(2ρ−δ)
)
λ∆m2

10,2 (E.4)

81



−RdL
23

(
−1

3
RdL

13 +
2

3
RdL

23R
dL
12 +

4

27
RdL

23 I
dL
12 e

i(2ρ−δ)
)
λ5∆m2

10,3

}
/m2

d̃

(δd13)LL ≃
{
−RdL

23

(
2

3
RdL

12 +
4

27
IdL12 e

i(2ρ−δ)
)
∆m2

10,2 (E.5)

+

(
−1

3
RdL

13 +
2

3
RdL

23R
dL
12 +

4

27
RdL

23 I
dL
12 e

i(2ρ−δ)
)
∆m2

10,3

}
λ3/m2

d̃

(δd23)LL ≃ RdL
23 {∆m2

10,2 −∆m2
10,3}λ2/m2

d̃
(E.6)

(δd12)RR ≃
{
−2

3
IdR12 e

i(ρ−δ)λ0.5∆m2
5̄,2 − IdR23

(
−2

3
RdR

13 +
2

3
IdR23 I

dR
12

)
ei(ρ−δ)λ1.5∆m2

5̄,3

}
/m2

d̃

(E.7)

(δd13)RR ≃
{(

−2

3
IdR23 I

dR
12 +

8

27
IdR12 I

′dR
23 e

i(2ρ−δ)
)
∆m2

5̄,2 (E.8)

+

(
−2

3
RdR

13 +
2

3
IdR23 I

dR
12 − 8

27
I ′dR23 I

dR
12 e

i(2ρ−δ)
)
∆m2

5̄,3

}
λ/m2

d̃

(δd23)RR ≃ IdR23 e
−i(ρ−δ){∆m2

5̄,2 −∆m2
5̄,3}λ

0.5/m2
d̃

(E.9)

(δe12)LL ≃ −IeL12 ei(ρ−δ){λ0.5∆m2
5̄,2 + (IdR23 )

2λ1.5∆m2
5̄,3}/m

2
ẽ (E.10)

(δe13)LL ≃ −IdR23 IeL12 {∆m2
5̄,2 −∆m2

5̄,3}λ/m
2
ẽ (E.11)

(δe23)LL ≃ IdR23 e
−i(ρ−δ){∆m2

5̄,2 −∆m2
5̄,3}λ

0.5/m2
ẽ (E.12)

(δe12)RR ≃ {−ReR
12 λ∆m

2
10,2 −RdL

23 (−ReR
13 +RdL

23R
eR
12 )λ

5∆m2
10,3}/m2

ẽ (E.13)

(δe13)RR ≃ {−RdL
23R

eR
12∆m

2
10,2 + (−ReR

13 +RdL
23R

eR
12 )∆m

2
10,3}λ3/m2

ẽ (E.14)

(δe23)RR ≃ RdL
23 {∆m2

10,2 −∆m2
10,3}λ2/m2

ẽ (E.15)

F Loop integral for the dominant diagram to dCu

The expression of up quark CEDM dCu in mass insertion approximation is

dCu =
αs
4π

Mg̃

m2
t̃

Im [(δuLL)31(δ
u
RL)33(δ

u
RR)13]× FMIA(rg̃, rt̃) (F.1)

FMIA(rg̃, rt̃) ≡ 6 r2t̃

(
−3IG(rg̃, rt̃) +

1

3
IS1(rg̃, rt̃) +

1

3
IS2(rg̃, rt̃) +

1

3
IS3(rg̃, rt̃) +

1

3
IS4(rg̃, rt̃)

)
(F.2)
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where rg̃ =
M2
g̃

m2
ũ
, rt̃ =

m2
t̃

m2
ũ
and Ii(rg̃, rt̃) are loop integrals. Each integral are

IG(rg̃, rt̃) =

∫ 1

0

dx1 · · · dx4δ(Σixi − 1)
2x1x3x4

[rg̃(x1 + x2) + x3 + rt̃x4]
4
, (F.3)

IS1(rg̃, rt̃) =

∫ 1

0

dx1 · · · dx4δ(Σixi − 1)
(2x3 + 2x4 − 1)x3x4

[rg̃x1 + x2 + x3 + rt̃x4]
4
, (F.4)

IS2(rg̃, rt̃) =

∫ 1

0

dx1 · · · dx5δ(Σixi − 1)
(2x3 + 2x5 − 1)x5

[rg̃x1 + x2 + x3 + rt̃(x4 + x5)]4
, (F.5)

IS3(rg̃, rt̃) =

∫ 1

0

dx1 · · · dx5δ(Σixi − 1)
(2x3 + 2x5 − 1)x4

[rg̃x1 + x2 + x3 + rt̃(x4 + x5)]4
, (F.6)

IS4(rg̃, rt̃) =

∫ 1

0

dx1 · · · dx4δ(Σixi − 1)
(2x3 − 1)x2x4

[rg̃x1 + x2 + x3 + rt̃x4]
4
. (F.7)

We show the values of FMIA(rg̃, rt̃) with several values of mass ratio, rg̃ and rt̃.

rt̃ \ rg̃ 0.22 0.32 0.52 12 22 52

0.12 4.1× 10−2 1.1× 10−2 1.8× 10−3 1.2× 10−4 6.9× 10−6 1.6× 10−7

0.22 2.4× 10−1 7.9× 10−2 1.6× 10−2 1.2× 10−3 6.9× 10−5 1.5× 10−6

0.32 5.3× 10−1 2.0× 10−1 4.6× 10−2 4.0× 10−3 2.4× 10−4 5.1× 10−6

0.42 8.5× 10−1 3.6× 10−1 9.1× 10−2 8.8× 10−3 5.6× 10−4 1.2× 10−5

0.52 1.2 5.2× 10−1 1.4× 10−1 1.5× 10−2 1.0× 10−3 2.1× 10−5

0.62 1.4 6.8× 10−1 2.0× 10−1 2.3× 10−2 1.6× 10−3 3.4× 10−5

0.72 1.7 8.2× 10−1 2.6× 10−1 3.2× 10−2 2.3× 10−3 5.0× 10−5

0.82 1.9 9.6× 10−1 3.2× 10−1 4.1× 10−2 3.2× 10−3 6.8× 10−5

0.92 2.1 1.1 3.7× 10−1 5.1× 10−2 4.1× 10−3 8.9× 10−5

12 2.3 1.2 4.2× 10−1 6.1× 10−2 5.0× 10−3 1.1× 10−4

22 3.2 1.8 7.6× 10−1 1.4× 10−1 1.5× 10−2 4.0× 10−4

52 3.7 2.3 1.0 2.4× 10−1 3.3× 10−2 1.2× 10−3

Table 14: The values of FMIA(rg̃, rt̃) with several values of rg̃ and rt̃.
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