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Abstract

Chiral symmetry is spontaneously broken in the vacuum and hadron masses and
pion dynamics are understood in a unified way. This symmetry is, however, expected
to be restored at high density. In this dissertation, I focus on charmed mesons such
as D̄ mesons as probes for exploring the change of chiral symmetry in nuclear matter.
Nuclear matter is described by a chiral model such as a linear sigma model or a parity
doublet model, and D̄ mesons are introduced by a chiral partner structure. In the
context of the chiral partner, a mass difference between positive-parity meson and
negative-parity meson is generated by the spontaneous breakdown of chiral symmetry
so that I especially investigate masses and spectral functions for D̄∗

0 (0
+) and D̄ (0−)

mesons in nuclear matter respecting chiral symmetry.
First, I study density dependences of the masses and spectral functions for D̄∗

0 and
D̄ meson in the low density region within the linear sigma model. The results show
that the mass of D̄ meson increases while that of D̄∗

0 meson decreases with increasing
density which essentially reflects a partial restoration of chiral symmetry. In the
spectral function for D̄∗

0 meson, I find three peaks. The first peak is corresponding to
a D̄∗

0 resonance. This peak shifts to the lower energy regime as we increase the density
which shows the reduction of its mass, and gets broadened by a collisional broadening.
The second peak is regarded as a threshold enhancement. This peak shifts to the
higher energy regime as the density increases and gets remarkably enhanced so that
this peak is a proper probe for observing the partial restoration of chiral symmetry
in nuclear matter. The third peak is a Landau damping and this peak gradually
grows as we increase the density.

Next, I study the chiral invariant mass dependence of spectral function for D̄∗
0

meson at the normal nuclear matter density within the parity doublet model. I find
two clear peaks regarded as a resonance of D̄∗

0 meson and a threshold enhancement.
As we increase the value of chiral invariant mass, the peak position of D̄∗

0 meson
resonance shifts to the lower energy regime while that of the threshold enhancement
shifts to the higher energy regime. These changes, especially the threshold enhance-
ment, provide us with fruitful information on the value of the chiral invariant mass
as well as the magnitude of partial restoration of chiral symmetry in nuclear matter.
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Chapter 1

Introduction

Hadrons such as nucleon and pion are understood as composite particles made
by plural quarks, and their binding mechanism is dominated by Quantum Chro-
modynamics (QCD). However, QCD dynamics is non-perturbative at low energy
regime with its complicated non-abelian interactions. As a result, comprehensive
understanding of hadron properties and interactions by an ab-initio calculation is
extremely difficult. Because of this difficulty, it is appropriate to understand hadron
interactions at hadronic level. An effective field theory (or an effective model) is
enumerated as one of such methods. In this procedure, an effective Lagrangian for
hadrons is constructed by respecting symmetries of QCD to fully respect the original
theory. Therefore, “symmetry” is a keyword in this dissertation.

QCD possesses approximate chiral symmetry since quark masses are greatly sup-
pressed in comparison with ΛQCD

1. This suggests that the spontaneous breakdown
of chiral symmetry is one of the most powerful scenarios to give clues to answer
the question of mass generation of a nucleon as with Higgs mechanism in Glashow-
Weinberg-Salam theory [1, 2, 3, 4]. In this context, pions are regarded as Nambu-
Goldstone bosons (NG bosons) [5, 6]. Pion dynamics and interaction manners with
the nucleon are actually well described by low energy theorems in association with
the spontaneous breakdown of chiral symmetry [8, 7].

Chiral symmetry is undoubtedly spontaneously broken in QCD as stated above.
It is discussed, however, that various changes of its phase are expected at tem-
perature and/or density, e.g., partial restoration of chiral symmetry, emergence of
inhomogeneous chiral broken phases, complete restoration of chiral symmetry, and
so on [9]. These variations are so influential in hadron properties at such extreme

1Here I restrict our discussion in two flavor case so that mq ∼ O(1) MeV while ΛQCD ∼ O(102)
MeV.
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environments that understanding of QCD phase diagram in terms of chiral symmetry
is indispensable, e.g., in studying Heavy Ion Collision experiments and Neutron Star
observations.

At temperature, a numerical ab-initio calculation called lattice QCD simulation
is successfully applied, and chiral symmetry at temperature is now under the investi-
gation [12]. In contrast, the lattice QCD simulation fails to run at density because of
a disastrous problem so-called sign problem. Therefore, information on chiral sym-
metry at density is poor and an observation of partial restoration of chiral symmetry
at density is still controversial (see Ref. [13] as a review and references therein).

In order to explore the chiral symmetry at density, I propose D̄ (∼ c̄q) meson can
be an appropriate probe [14, 15, 16, 17, 18]. D̄ meson is composed of one light quark
and one anti-charm quark, then these mesons have two advantages:

(I) Thanks to the large mass of charm quark, 1/ΛQCD expansion is applicable.

(II) D̄ meson belongs to the fundamental representation of chiral group.

From (I), a symmetry called“ Heavy Quark Spin Symmetry (HQSS)” emerges,
and a concise effective Lagrangian is constructible [19, 20]. The advantage (II)
allows D̄ mesons to interact with pions and other light mesons in an unsophisticated
manner [21]. Note that I especially adopt D̄ mesons but not D mesons to avoid
complicated pair annihilation processes. D̄ mesons in nuclear matter are expected to
be realized at FAIR (Facility for Antiproton and Ion Research) and J-PARC (Japan
Proton Accelerator Research Complex) in the future.

Previous studies on charmed mesons in nuclear matter by means of quark meson
coupling model [22], QCD sum rule [23, 24, 25, 26, 27], coupled channel analy-
sis [28, 29, 30, 31] and chiral effective model [17, 32, 33, 34] exist. Although some
works on charmed mesons in nuclear matter based on the chiral effective model are
published, it is not easy to include the tendency of the restoration of chiral symmetry
explicitly since a self-consistent calculation in medium requires a terrible numerical
computation. Therefore, I investigate D̄ mesons in nuclear matter with the partial
restoration of chiral symmetry fully respecting chiral symmetry by a chiral effective
model in this dissertation. First, I employ the linear sigma model to describe nu-
clear matter since this model is one of the most concise effective models to represent
the spontaneous breakdown of chiral symmetry and the mass generation of the nu-
cleon [35, 36]. Next, the parity doublet model [37, 38] is applied to study D̄ meson
at the normal nuclear matter density quantitatively.

I utilize the chiral partner structure for constructing a Lagrangian for D̄ mesons
together with the HQSS [39, 40]. In this structure, a mass difference between positive-
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parity D̄ meson and negative-parity D̄ meson is generated by the breakdown of chiral
symmetry, which is a clear manifestation of advantage (II). In the real world, D̄
(1869) (0−) and D̄∗

0 (2318) (0+) meson are regarded as the partner while D̄∗ (2010)
(1−) and D̄1 (2427) (1+) meson are regarded as the partner. Furthermore, we can
find a characteristic relation called the extended Goldberger-Treiman relation among
them. For instance, the mass difference between D̄∗

0 meson and D̄ meson (∆m) is
related to the D̄∗

0D̄π coupling constant (gD̄∗
0D̄π

) by ∆m = gD̄∗
0D̄π

σ0, with σ0 being a
mean field of σ meson. This relation claims that mass difference between the chiral
partner gets small when we access to nuclear matter at which the chiral symmetry
is expected to be partially restored. Accordingly, a visible mass shift of D̄∗

0 meson
and a change of width of D̄∗

0 meson are expected in nuclear matter. Motivated by
this prospect, I investigate the mass and spectral function for D̄∗

0 meson as well as
D̄ meson in nuclear matter.

This dissertation is organized as follows: In Chap. 2, I construct an effective La-
grangian of D̄ meson based on the HQSS and the chiral partner structure. In Sec. 3,
I describe nuclear matter by the linear sigma model and study the partial restoration
of chiral symmetry. In Chap. 4, I investigate masses and spectral functions for D̄
and D̄∗

0 mesons. In Chap. 5, I further construct nuclear matter by the parity doublet
model and study a spectral function for D̄∗

0 meson at normal nuclear matter density.
Finally, in Chap. 6, I give conclusions.
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Chapter 2

Heavy Meson Effective Theory

In this chapter, I construct an effective Lagrangian for D̄ mesons. D̄ meson contains
an anti-charm quark whose mass is larger in comparison with the typical energy
scale of QCD (ΛQCD), and this hierarchy allows us to construct an effective the-
ory which is called “Heavy Quark Effective Theory (HQET)”. In Sec. 2.1, I briefly
show a derivation of HQET and appearance of the “Heavy Quark Spin Symmetry
(HQSS)”. In Sec. 2.2, I introduce heavy-light meson fields consistently with HQET.
In Sec. 2.3, I give an explanation of an idea of chiral partner structure and construct
an effective Lagrangian for D̄ mesons which is based on the HQET and the chiral
partner structure. This Lagrangian plays a central role in the later analysis.

2.1 Heavy Quark Effective Theory

Here I give a brief derivation of the Heavy Quark Effective Theory (HQET) [19, 20].
The propagator of a quark with momentum Q and mass mQ is given by

i

/Q−mQ + iϵ
. (2.1)

By separating the momentum of quark Q as Qµ = mQvµ + kµ with v being the
“velocity” of the quark (v2 = 1) and k being the residual momentum, and taking the
quark mass to be infinity: mQ → ∞, the propagator of a quark (2.1) is reduced as

i

/Q−mQ
=

i(mQ/v + /k +mQ + iϵ)

(mQv + k)2 −m2
Q

→ 1 + /v

2

i

v · k + iϵ
. (2.2)
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Namely, the leading order of the HQET is defined by an effective Lagrangian which
reproduces the propagator in Eq. (2.2).

The quark field ψ is decomposed into two ingredients as

ψ = e−imQv·x
[
eimQv·x1 + /v

2
ψ + eimQv·x1− /v

2
ψ

]

≡ e−imQv·x [ψv +Ψv] (2.3)

where I have defined a large component ψv and a small component Ψv of the quark
by

ψv = eimQv·x1 + /v

2
ψ (2.4)

Ψv = eimQv·x1− /v

2
ψ . (2.5)

In these expressions, 1+/v
2 turns into 1+γ0

2 at the rest frame vµ = (1, 0⃗) which is
regarded as the projection operator picking up only the positive-energy part of the

quark. In a similar manner, 1−/v
2 is regarded as the projection operator picking up

only the negative-energy part of the quark.
By substituting the decomposition (2.3) into the original QCD Lagrangian, we

find

L = ψ̄(i /D −m)ψ

=
(
ψ̄v + Ψ̄v

)
eimv·x(i /D −m)e−imv·x (ψv +Ψv)

= (ψ̄v + Ψ̄v)i /D(ψv +Ψv)−m(ψ̄v + Ψ̄v)(1− /v)(ψv +Ψv) . (2.6)

As we have seen in Eq. (2.2), the quark propagator contains only positive-energy part
in the heavy quark limit mQ → ∞. Then we can simply drop the small component
Ψv in Eq. (2.6) at the leading order, which reads

L = ψ̄vi /Dψv −mψ̄v(1− /v)ψv

= ψ̄v
1 + /v

2
i /D

1 + /v

2
ψv −mψ̄v

1 + /v

2
(1− /v)

1 + /v

2
ψv

= ψ̄viv ·Dψv , (2.7)

where I have used a relation

ψv =
1 + /v

2
ψv . (2.8)
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From the reduced Lagrangian (2.7), the propagator is obtained as

i

v · k + iϵ
, (2.9)

and using the relation in Eq. (2.8), this is completely identical to the heavy quark
propagator (2.2). Therefore, the Lagrangian in Eq. (2.7) defines the HQET at the
leading order.

The Lagrangian (2.7) shows that the interaction term between a heavy quark and
a gluon does not include γ matrices so that heavy quark does not change its spin
in the gluon emission process. Thanks to this magnificent feature, we find a global
SU(2)S spin symmetry which is called the Heavy Quark Spin Symmetry (HQSS).
This symmetry plays an important role in constructing a Heavy Meson Effective
Theory as will be seen in Sec. 2.2. Note that the heavy quark has only its positive-
energy component and the spin polarization is fixed, which manifestly shows that
HQET is completely equivalent to a non-relativistic theory of QCD.

2.2 Heavy-light meson fields

In this section, I show how a heavy-light meson field can be introduced incorporating
the HQET. When we consider a heavy-light meson which is composed of a heavy
quark Q and an anti-light quark q̄, we can regard it as if a cloud of the light degrees of
freedom is surrounding the heavy quark (Brown Muck picture). From the standpoint
of this picture, the heavy quark dominates the motion of the heavy-light meson, and
the light anti-quark simply follows it.

The heavy-light meson should have a global SU(2)S spin symmetry referred to as
the HQSS which showed up in Sec. 2.1. From the point of view of addition of spin,
the spin representation of the heavy-light meson is

2h ⊗ 2l = 3⊕ 1 , (2.10)

where 2h and 2l correspond to the spin of heavy quark and anti-light quark, respec-
tively. In Eq. (2.10), 3 obviously denotes the vector meson (1−) while 1 denotes
the pseudo-scalar meson (0−). Thanks to the HQSS, masses of these two mesons
degenerate. This feature is, however, realized in the heavy quark limit while masses
of observed heavy-light mesons such as D mesons (D̄ ∼ cq̄) in the real world are
not infinite. In fact, the HQSS is slightly violated due to the small mass difference
between D (1870) (0−) and D∗ (2010) (1−), however the mass splitting is suppressed
by O(ΛQCD/mc) with mc being the mass of a charm quark. Therefore, we can respect
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the HQSS for D mesons as a first approximation. In the main analysis in Chap. 4
and Chap. 5, I will include the violation of HQSS. Note that the HQSS works bet-
ter for bottom quark sector since its mass is heavier than that of charm quark, so
that the mass degeneracy between B̄ (5279) (0−) and B̄∗ (5325) (1−) is well realized
(B̄ ∼ bq̄).

The degeneracy of vector and pseudo-scalar meson suggests that it is more con-
venient to treat these mesons in a unified way. Keeping in mind this peculiarity, let
us introduce a heavy-light meson field Hv parametrized as

Hv =
1 + /v

2
[ /D∗

v + iγ5Dv] . (2.11)

D∗µ
v is a vector field andDv is a pseudo-scalar field which are regarded as the observed

D mesons. The subscript v represents that these fields are defined within the effective
theory of heavy degrees of freedom. This Hv field is schematically indicated as

Ha
v,hl ∼ chq̄

a
l , (2.12)

where h and l are the spin index of the charm quark and the light anti-quark,
respectively, and a denotes the isospin degrees of freedom. The projection operator
1+/v
2 in Eq. (2.11) is needed so as to reproduce the reduction obtained in the HQET

for the charm quark in (2.12). Under the parity transformation, D and D∗ mesons
transform as

Dv(x)
P−→ −Dv(xp)

D∗
v,µ(x)

P−→ D∗µ
v (xp) , (2.13)

where xp refers to xp = (x0,−x⃗). Accordingly, heavy-light meson field Hv transforms
in a simple manner as

Hv(x) =
1 + /v

2
[ /D∗

v(x) + iγ5Dv(x)]

P−→ 1 + /v

2
[D∗ν

v (xp)γ
ν − iγ5Dv(xp)]

= γ0
1 + vµγµ

2
[ /D∗

v(xp) + iγ5Dv(xp)] γ
0

= γ0Hvp(xp)γ
0 , (2.14)

which is consistent with the schematic picture in Eq. (2.12). Under the SU(2)S heavy
quark spin transformation, Hv transforms as

Hv → SQHv , (2.15)

7



where SQ is an element of the SU(2)S HQSS. These transformation laws are necessary
to construct an effective Lagrangian of heavy-light mesons as will be seen in Sec. 2.3.

2.3 Chiral partner structure for D mesons

In this section, I introduce a characteristic feature of D mesons (D̄ mesons) related
to chiral symmetry called the “chiral partner structure”, and complete our construc-
tion of an effective Lagrangian for D̄ mesons [39, 40]. The chiral partner structure
claims that a mass difference between positive-parity state and negative-parity state
is generated by the spontaneous breakdown of chiral symmetry.

Within the linear representation of light flavors, the schematic picture of heavy-
light meson field (2.12) is described as

Hv,L ∼ cq̄L , Hv,R ∼ cq̄R . (2.16)

Then these fields transform under the SU(2)L × SU(2)R chiral transformation as

Hv,L → Hv,Lg
†
L , Hv,R → Hv,Rg

†
R , (2.17)

where gL and gR are elements of SU(2)L and SU(2)R chiral group, respectively. The
transformation laws under the SU(2)S heavy quark spin transformation and parity
transformation are identical to (2.15) and (2.14), respectively. By employing these
transformation laws, we can easily construct an effective Lagrangian for D mesons
which holds the SU(2)L × SU(2)R chiral symmetry, SU(2)S HQSS and parity as

LHMET = tr[Hv,L(iv · ∂)H̄v,L] + tr[Hv,R(iv · ∂)H̄v,R]

+
∆m

2fπ
tr[Hv,LMH̄v,R +Hv,RM

†H̄v,L]

+i
g

2fπ
tr[Hv,Rγ5γ

µ∂µM
†H̄v,L −Hv,Lγ5γ

µ∂µMH̄v,R]

+ · · · . (2.18)

H̄v,L(R) is defined by H̄v,L(R) = γ0H
†
v,L(R)γ0. The chiral field M contains σ meson and

pions parametrized as

M = σ + iπaτa , (2.19)

where τa (a = 1, 2, 3) is the Pauli matrix. The quark contents of this field is indicated
by

M ij ∼ q̄jRq
i
L , (2.20)
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which leads to a transformation law under the SU(2)L×SU(2)R chiral transformation
as 1

M → gLMg†R . (2.21)

∆m and g are free parameters which will be determined soon, and fπ is the pion
decay constant. The kinetic terms of heavy-light mesons in (2.18) are of the same
form as that of a heavy quark in (2.7) motivated by the sense of Brown Muck picture
described in Sec. 2.2. Note that in constructing the Lagrangian (2.18), We have
remained up to first derivative terms and one chiral field M with an assumption that
higher derivatives and multiple light meson couplings are suppressed.

Hv,L and Hv,R are so useful to construct the Lagrangian since the chiral represen-
tation is transparent. These fields, however, are not eigenstates of parity and are not
corresponding to the observed heavy-light mesons. The interpolating fields in (2.16)
are rewritten as

Hv,L ∼ 1

2
cq̄ +

1

2
cq̄γ5 (2.22)

Hv,R ∼ 1

2
cq̄ − 1

2
cq̄γ5 , (2.23)

which suggests that the parity eigenstates Hv and Gv which contain (0−, 1−) and
(0+, 1+), respectively, can be related as

Hv,L =
1√
2
(Gv + iHvγ5)

Hv,R =
1√
2
(Gv − iHvγ5) , (2.24)

for example. D (0−) and D∗ (1−) mesons belong to Hv while D∗
0 (0+) and D1

(1+) mesons belong to Gv, so that Hv and Gv are parametrized with an analogy in
Eq. (2.11) as

Hv =
1 + /v

2
[iγ5Dv + /D∗

v]

Gv =
1 + /v

2
[D∗

0v − iD1vγ5] . (2.25)

1The chiral field defined by Eq. (2.19) includes only scalar and iso-scalar meson (σ), and pseudo-
scalar and iso-vector mesons (πa), while the right-hand-side in Eq. (2.20) contains scalar and iso-
vector meson (aa0), and pseudo-scalar and iso-scalar meson (η) in addition. σ meson and pions are,
however, regarded as a chiral partner so that the transformation law in Eq. (2.20) is consistent.
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By utilizing Eq. (2.24), the Lagrangian (2.18) is expressed in terms of Hv and Gv

doublets as

LHMET = tr[Gv(iv · ∂)Ḡv]− tr[Hv(iv · ∂)H̄v]

+
∆m

4fπ
tr
[
Gv(M +M †)Ḡv +Hv(M +M †)H̄v

−iGv(M −M †)γ5H̄v + iHv(M −M †)γ5Ḡv

]

+
ig

4fπ
tr
[
Gvγ5(/∂M

† − /∂M)Ḡv −Hvγ5(/∂M
† − /∂M)H̄v

−iGv(/∂M
† + /∂M)H̄v − iHv(/∂M

† + /∂M)Ḡv

]
.

(2.26)

The effective Lagrangian in terms of D mesons are further derived by substitut-
ing (2.25). In this dissertation, however, I study D̄ mesons in nuclear matter. The
effective Lagrangian for D̄ mesons are obtained by taking the charge conjugation.
Then we find

LHMET = 2D̄v(iv · ∂)D̄†
v − 2D̄∗

v,µ(iv · ∂)D̄∗†µ
v + 2D̄∗

0v(iv · ∂)D̄
∗†
0v − 2D̄1v,µ(iv · ∂)D̄†µ

1v

+
∆m

2fπ

[
D̄∗

0v(M +M †)D̄∗†
0v − D̄1v,µ(M +M †)D̄†µ

1v

−D̄v(M +M †)D̄†
v + D̄∗

v,µ(M +M †)D̄∗†µ
v

]

+
∆m

2fπ

[
D̄∗

0v(M −M †)D̄†
v − D̄1v,µ(M −M †)D̄∗†µ

v

−D̄v(M −M †)D̄∗†
0v + D̄∗†

v,µ(M −M †)D̄†µ
1v

]

− g

2fπ

[
D̄µ

1v(∂µM
† − ∂µM)D̄∗†

0v − D̄∗
0v(∂µM

† − ∂µM)D̄†µ
1v

−ϵµνρσD̄1v,µ(∂νM
† − ∂νM)D̄†

1v,ρvσ
]

+
g

2fπ

[
D̄∗µ

v (∂µM
† − ∂µM)D̄†

v − D̄v(∂µM
† − ∂µM)D̄∗†µ

v

−ϵµνρσD̄∗
v,µ(∂νM

† − ∂νM)D̄∗†
v,ρvσ

]

+
g

2fπ
[D̄µ

1v(∂µM
† + ∂µM)D̄†

v + D̄v(∂µM
† + ∂µM)D̄†µ

1v ]

− g

2fπ
[D̄∗

0v(∂µM
† + ∂µM)D̄∗†µ

v + D̄∗µ
v (∂µM

† + ∂µM)D̄∗†
0v]

− g

2fπ
[ϵµνρσD̄1v,ν(∂ρM

† + ∂ρM)D̄∗†
v,µvσ + ϵµνρσD̄∗

v,µ(∂ρM
† + ∂ρM)D̄†

1v,νvσ] .

(2.27)
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For later use, it is more convenient to further rewrite the Lagrangian (2.27) in a
relativistic form. It is obtained by using D̄ = 1√

me−imv·xD̄v as

L = ∂µD̄
∗
0∂

µD̄∗†
0 −m2D̄∗

0D̄
∗†
0 − ∂µD̄1ν∂

µD̄†ν
1 + ∂µD̄1ν∂

νD̄†µ
1 +m2D̄1µD̄

†µ
1

+ ∂µD̄∂
µD̄† −m2D̄D̄† − ∂µD̄

∗
ν∂

µD̄∗†ν + ∂µD̄
∗
ν∂

νD̄∗†µ +m2D̄∗
µD̄

∗†µ

− 1

2

m∆m

fπ
[D̄∗

0(M +M †)D̄∗†
0 − D̄1µ(M +M †)D̄†µ

1 − D̄(M +M †)D̄† + D̄∗
µ(M +M †)D̄∗µ†]

− 1

2

m∆m

fπ
[D̄∗

0(M −M †)D̄† − D̄1µ(M −M †)D̄∗†µ − D̄(M −M †)D̄∗†
0 + D̄∗

µ(M −M †)D̄†µ
1 ]

− g

2

m

fπ
[D̄µ

1 (∂µM
† − ∂µM)D̄∗†

0 − D̄∗
0(∂µM

† − ∂µM)D̄†µ
1 − 1

m
ϵµνρσD̄1µ(∂νM

† − ∂νM)i∂σD̄
†
1ρ]

+
g

2

m

fπ
[D̄∗µ(∂µM

† − ∂µM)D̄† − D̄(∂µM
† − ∂µM)D̄∗†µ − 1

m
ϵµνρσD̄∗

µ(∂νM
† − ∂νM)i∂σD̄

∗†
ρ ]

+
g

2

m

fπ
[D̄µ

1 (∂µM
† + ∂µM)D̄† + D̄(∂µM

† + ∂µM)D̄†µ
1 ]

− g

2

m

fπ
[D̄∗

0(∂µM
† + ∂µM)D̄∗†µ + D̄∗µ(∂µM

† + ∂µM)D̄∗†
0 ]

− g

2

1

fπ
[ϵµνρσD̄1ν(∂ρM

† + ∂ρM)i∂σD̄
∗†
µ + ϵµνρσD̄∗

µ(∂ρM
† + ∂ρM)i∂σD̄

†
1ν ] , (2.28)

This Lagrangian is the fundamental Lagrangian for analysis which will be done in
Chap. 4 and Chap. 5.

In the vacuum, chiral symmetry is spontaneously broken, which is expressed by
taking the vacuum expectation value (VEV) of the chiral field as ⟨M⟩0 = fπ in the
present model 2. Therefore, the squared masses for Hv = (D̄, D̄∗) mesons and the
squared masses for Gv = (D̄∗

0, D̄1) mesons together with the spontaneous breakdown
of chiral symmetry are read from Eq. (2.28) as

m2
H = m2 −m∆m (2.29)

m2
G = m2 +m∆m , (2.30)

respectively. Then, using a hierarchy m ≫ ∆m, we find following mass formulae

m = mG +mH (2.31)

∆m = mG −mH . (2.32)

2We have assumed that parity is not violated in QCD so that pions do not have their VEVs.
Also, We have used a fact that the VEV of σ meson is identical to the pion decay constant fπ in
the vacuum. In general, the mean field of σ meson can differ from fπ.

11



When we takemH andmG as a spin-averaged masses of (D̄, D̄∗) and (D̄∗
0, D̄1) defined

by

mH =
mD̄ + 3mD̄∗

4
(2.33)

mG =
mD̄∗

0
+ 3mD̄1

4
, (2.34)

respectively, and use the following observed values mD̄ = 1869 MeV, mD̄∗ = 2010
MeV, mD̄∗

0
= 2318 MeV and mD̄1

= 2427 MeV, the parameters m and ∆m are fixed
as

m = 2190 MeV (2.35)

∆m = 430 MeV . (2.36)

The other parameter g is determined by the decay width ΓD∗→Dπ as g = 0.50.
Finally, let us make a comment on the chiral partner structure for D̄ mesons. In

obtaining the relations (2.29) and (2.30), we have taken the VEV of σ meson to be
the pion decay constant fπ. When we access to an extreme environments such as
temperature and density at which chiral symmetry is expected to be restored, the
VEV of σ meson σ0 is not identical to fπ. In this case, the masses of Hv = (D̄, D̄∗)
and Gv = (D̄∗

0, D̄1) are read as

m∗
H = m− Gπσ0

2
(2.37)

m∗
G = m+

Gπσ0
2

, (2.38)

where we have defined Gπ = ∆m/fπ = 4.65 for the convenience. These mass relations
claim that the mass difference between Gv = (D̄∗

0, D̄1) and Hv = (D̄, D̄∗) is of the
form

∆∗
m ≡ m∗

G −m∗
H = Gπσ0 . (2.39)

Therefore, the mass difference between chiral partners is generated by the sponta-
neous breakdown of chiral symmetry since it is proportional to the VEV of σ meson.
Particularly, the mass of chiral partners coincide at which chiral symmetry is com-
pletely restored: m∗

G = m∗
H with σ0 = 0.
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Chapter 3

Linear sigma model in nuclear
matter

In this chapter, I consider the linear sigma model and construct nuclear matter within
this model. First, I review the linear sigma model and see how the spontaneous
breakdown of chiral symmetry is demonstrated in Sec. 3.1. Next, in Sec. 3.2, I show
the partial restoration of chiral symmetry in nuclear matter by employing the method
of relativistic finite density field theory given in Appendix. A. Also, treatments of
fluctuations of σ meson and pion respecting chiral symmetry are provided.

3.1 Linear sigma model

In this section, I review the linear sigma model [35, 36]. This model provides us with
various aspects of chiral symmetry breakdown and related phenomena despite its
simple appearance. This model will be utilized in calculations in Chap. 4 to describe
the partial restoration of chiral symmetry in nuclear matter.

The conventional linear sigma model for two flavor is given by

LLS = ψ̄Li/∂ψL + ψ̄Ri/∂ψR − gY
(
ψ̄LMψR + ψ̄RM

†ψL

)

+
1

4
tr
[
∂µM∂µM †]− m2

0

4
tr
[
MM †]− λ

16

(
tr
[
MM †])2 + ϵσ , (3.1)

where ψL and ψR are left-handed and right-handed two component nucleon fields,
respectively, and M is the chiral field introduced in Eq (2.19). gY , m0, λ and ϵ
are free parameters. The transformation laws under the SU(2)L × SU(2)R chiral
transformation for the nucleon ψL and ψR are

ψL → gLψL , ψR → gRψR , (3.2)
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so that we find the Lagrangian (3.1) is chiral invariant except for the last term in
the second line in Eq. (3.1) together with Eq. (2.21). This explicit chiral breaking
term Lex = ϵσ is introduced to take into account the finite mass of pions. The linear
sigma model in (3.1) is often rewritten in terms of ψ as

LLS = ψ̄i/∂ψ − gY ψ̄M5ψ

+
1

4
tr
[
∂µM∂µM †]− m2

0

4
tr
[
MM †]− λ

16

(
tr
[
MM †])2 + ϵσ , (3.3)

where M5 is defined by M5 = σ + iγ5πaτa.
The spontaneous breakdown of chiral symmetry occurs when σ meson has its VEV

since σ meson is not chiral singlet. This breakdown is triggered by an instability of
the ground state realized when m2

0 is negative. Then, by separating σ meson into
the VEV and fluctuation as σ → σ0 + σ, the Lagrangian under the spontaneous
breakdown of chiral symmetry is of the form

LLS = ψ̄i/∂ψ −mN ψ̄ψ − gY ψ̄M5ψ

+
1

2
∂µσ∂

µσ − 1

2
(m2

0 + 3λσ2
0)σ

2 +
1

2
∂µπ

a∂µπa − 1

2
(m2

0 + λσ2
0)π

aπa

+(interactions) . (3.4)

mN is defined by mN = gY σ0 and this quantity is regarded as the mass of nucleon.
(interactions) in the third line in Eq. (3.4) collectively denotes the interaction terms
among σ meson and pion. In order to take account that σ0 represents the true
vacuum, we need to solve a gap equation. This equation actually ensures that one
point function (tadpole diagram) of σ meson vanishes. The gap equation is derived
as

m2
0σ0 + λσ3

0 = ϵ . (3.5)

In Eq. (3.4), I have demonstrated that the nucleon mass is dynamically gen-
erated by the spontaneous breakdown of chiral symmetry in a simple way. Note
the Lagrangian in Eq. (3.4) together with the gap equation in Eq. (3.5) tells us
that the mass of pion is read as m2

π = ϵ
σ0
. Namely, the pion mass vanishes when

the original SU(2)L × SU(2)R chiral symmetry is exact. This indicates pion is the
Nambu-Goldstone boson (NG boson). As I have mentioned in Sec. 2.3, the VEV of
σ meson σ0 is identical to the pion decay constant fπ in the vacuum.
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3.2 Partial restoration of chiral symmetry in nu-
clear matter

Here, I demonstrate how the partial restoration of chiral symmetry in nuclear matter
occurs in the linear sigma model.

In this study, nuclear matter is constructed by a nucleon one-loop. From the
Lagrangian in Eq. (3.4), the effective action with nucleon one-loop and the homoge-
neous VEV of σ meson is obtained by performing the path integral with respect to
the nucleon field as

Γ[σ, π; σ0] = −iTr ln(i/∂ + µBγ
0 − gY (σ0 + σ + iγ5τ

aπa))

+

∫
d4x
( 1

2
∂µσ∂

µσ +
1

2
∂µπ

a∂µπa − m2
0

2
((σ0 + σ)2 + π2)

−λ
4
((σ0 + σ)2 + π2)2 + ϵ(σ0 + σ)

)
,

(3.6)

where we have added a baryon number chemical potential µB to take the baryon
number density into account. “Tr” in Eq. (3.6) represents the trace for spin, isospin
and space-time coordinate. The gap equation is derived by taking a derivative with
respect to σ0 with σ = π = 0 as

∂Γ[0, 0; σ0]

∂σ0
= TV

(
2gY tr

∫
d̃4k

(2π)4
G̃N(k)−m2

0σ0 − λσ3
0 + ϵ

)
= 0 . (3.7)

TV is the infinite volume of space-time. The factor 2 in Eq. (3.7) appears due to the
isospin degrees of freedom. In Eq. (3.7), we have defined the in-medium propagator
of the nucleon by G̃N(k) derived in Eq. (A.9) which takes the form of

G̃N(k0, k⃗) = (/k +mN)

[
i

k2 −m2
N + iϵ

− 2πθ(k0)θ(kF − |⃗k|)δ(k2 −m2
N)

]
,

(3.8)

where we have defined mN = gY σ0. θ(x) is the Heaviside’s step function and δ(x)
is the Dirac’s delta function. kF is the Fermi momentum which is defined in terms
of the chemical potential by µB =

√
k2
F +m2

N , and is related to the baryon number
density ρB by

ρB =
2

3π2
k3
F . (3.9)
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In the present analysis, I only pick up the density dependent part of the integral
since our present study is intended to investigate the partial restoration of chiral
symmetry in nuclear matter. Then, the symbol d̃4k in the first line in Eq. (3.7)
indicates a momentum integral for density dependent part. Namely, if we define a
function F (k0, k⃗; kF ) with kF being the Fermi momentum, the integral d̃4k refers to

∫
d̃4k

(2π)4
F (k0, k⃗; kF ) ≡

∫
d4k

(2π)4
F (k0, k⃗; kF )−

∫
d4k

(2π)4
F (k0, k⃗; kF = 0) . (3.10)

Therefore, the gap equation in Eq. (3.7) is explicitly reduced to

−4gY

∫
d3k

(2π)3
mN√

|⃗k|2 +m2
N

= m2
0σ

2
0 + λσ3

0 − ϵ . (3.11)

By inserting the gap equation in Eq. (3.11) so as to cancel the one-point function
of σ meson, the effective action is expanded up to the quadratic terms with respect
to σ and pion as

Γ[σ, π; σ0] = −iTr ln(i/∂ −mN + µBγ
0)

+ i
g2

2
Tr

[
1

i/∂ −mN + µBγ0
σ

1

i/∂ −mN + µBγ0
σ

]

+ i
g2

2
Tr

[
1

i/∂ −mN + µBγ0
iγ5π

aτa
1

i/∂ −mN + µBγ0
iγ5π

bτ b
]

+

∫
d4x

{
1

2
∂µσ∂

µσ +
1

2
∂µπ

a∂µπa − 1

2
(m2

0 + 3λσ2
0)σ

2 − 1

2
(m2

0 + λσ2
0)π

aπa

}

+ · · · .

(3.12)

From this form, we easily find the propagators of σ meson and pion around the new
ground state determined by the gap equation in Eq. (3.11). They are defined by the
inverse of second functional derivative as

iG̃−1
σ (q0, q⃗) ≡ F.T.

δ2Γ[σ,π; σ0]

δσ(x)δσ(y)

= q2 − (m2
0 + 3λσ2

0)− 2ig2
∫

d̃4k

(2π)4
tr
[
G̃N(k0, k⃗)G̃N(k0 − q0, k⃗ − q⃗)

]

≡ q2 −m2
σ − iΣ̃σ(q0, q⃗) , (3.13)
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and

iG̃ab,−1
π (q0, q⃗) ≡ F.T.

δ2Γ[σ, π; σ0]

δπa(x)δπb(y)

=

(
q2 − (m2

0 + λσ2
0)− 2ig2

∫
d̃4k

(2π)4
tr
[
iγ5G̃N(k0, k⃗)iγ5G̃N(k0 − q0, k⃗ − q⃗)

])
δab

≡
(
q2 −m2

π − iΣ̃π(q0, q⃗)
)
δab . (3.14)

The symbol “F.T.” in Eqs (3.13) and (3.14) represents the Fourier transformation.

Figure 3.1: Self-energies for (a) pion Σ̃π(q0, q⃗) and (b) σ meson Σ̃σ(q0, q⃗) .

The diagrammatic picture of self-energies for pion and σ meson denoted by Σ̃π(q0, q⃗)
and Σ̃σ(q0, q⃗) are shown in Fig. 3.1. I should note that it is obvious these propagators

Figure 3.2: Propagators for pion and σ meson should include infinite sums of nucleon
one-loops to preserve chiral symmetry.

are fully respecting the original chiral symmetry since they are derived from the
effective action directly. Furthermore, they should include infinite sums of nucleon
loops as indicated in Fig. 3.2.

Finally, we put some physical values into the parameters and solve the gap equa-
tion in Eq. (3.11) numerically. Here, we use pion mass mπ = 138 MeV, nucleon mass
mN = 939 MeV, pion decay constant fπ = 92.4 MeV and sigma term ΣπN = 45 MeV
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as inputs. Then, from the relations 1

mN = gfπ,

ΣπN = g
f 2
πm

2
π

2λf 3
π + ϵ

,

m2
0 + λf 2

π =
ϵ

fπ
,

m2
π =

ϵ

fπ
, (3.16)

the parameters gY , λ, m2
0 and ϵ are fixed as

gY = 10.2,

λ = 22.2,

m2
0 = −1.70× 105 MeV2,

ϵ = 1.76× 106 MeV3. (3.17)

These values allow us to solve the gap equation in Eq. (3.11) numerically, and the

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.5

0.6

0.7

0.8

0.9

1.0

ρB[fm 3]

σ 0
/f π

Figure 3.3: Density dependence of the mean field σ0.

resultant density dependence of σ0 is plotted in Fig. 3.3. As indicated in this figure,
the VEV of σ meson decreases as the baryon number density increases. This tendency
explicitly shows the partial restoration of chiral symmetry in nuclear matter. Note

1The sigma term ΣπN is defined in association with a slope of σ0 by

ΣπN ≡ −fπm
2
π
∂σ0

∂ρB

∣∣∣
ρB=0

. (3.15)

The formula in the second line in Eq. (3.16) is derived by taking a derivative in Eq. (3.11) with
respect to ρB and setting ρB = 0 together with Eq. (3.15).
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that the tendency of restoration is observed only at ρB ! 0.10 fm−3, which is lower
than the normal nuclear matter density ρ∗B ≈ 0.16 fm−3 [41]. In the present analysis,
however, I investigate the qualitative tendency of modifications of D̄ mesons at low
density regime. Therefore, I utilize this linear sigma model to describe nuclear matter
for calculations of D̄ mesons in Chap. 4.
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Chapter 4

Modifications of D̄ mesons in
nuclear matter

Here, I study the modifications of D̄ mesons in nuclear matter by employing the
effective Lagrangian for D̄ mesons based on the chiral partner structure derived in
Chap. 2 and the linear sigma model introduced in Chap. 3 to describe the medium.
In the context of the chiral partner structure, the mass difference between positive-
parity meson and negative-parity meson are related to the spontaneous breakdown
of chiral symmetry as shown in Sec. 2.3. Therefore, I particularly focus on D̄ (0−)
meson and D̄∗

0 (0+) meson in this chapter. First, I investigate masses of these D̄
mesons in nuclear matter by taking into account mean field σ0, Hartree-type and
Fock-type one-loop contributions in Sec.4.1. In Sec. 4.2, spectral functions for D̄
mesons are studied so as to find vestiges of the changes of chiral symmetry in nuclear
matter.

4.1 Masses of D̄ and D̄∗
0 meson in nuclear matter

In this section, I study masses of D̄ and D̄∗
0 mesons. From the Lagrangian in

Eq. (2.28) based on the chiral partner structure, masses of D̄ mesons are derived
as in Eqs. (2.37) and (2.38), where m∗

H and m∗
G indicate the spin-averaged masses

of (D̄, D̄∗) mesons and (D̄∗
0, D̄1) mesons, respectively. In these equations, σ0 is the

mean field of σ meson (the VEV of σ meson) which is not identical to the pion decay
constant fπ since we suppose nuclear matter. The values of parameters m and ∆m

are given by Eqs. (2.35) and (2.36), respectively. The analysis in Sec. 2.3 have done
under the HQSS. In the real world, however, this symmetry is slightly violated since
the mass of a charm quark does not diverge as mentioned in Sec. 2.2. Therefore, we
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need to include such violation to make our discussion more realistic. This effect is
incorporated by changing mass formulae as

mD̄ = m− Gπσ0
2

− ∆D̄

2
,

mD̄∗ = m− Gπσ0
2

+
∆D̄∗

2
,

mD̄∗
0

= m+
Gπσ0
2

−
∆D̄∗

0

2
,

mD̄1
= m+

Gπσ0
2

+
∆D̄1

2
, (4.1)

where ∆D̄, ∆D̄∗ , ∆D̄∗
0
and ∆D̄1

are given so as to reproduce the masses of D̄, D̄∗, D̄∗
0

and D̄1 mesons in the vacuum: mD̄ = 1869 MeV, mD̄∗ = 2010 MeV, mD̄∗
0
= 2318

MeV and mD̄1
= 2427 MeV. Then, these are fixed as ∆D̄ = 202 MeV, ∆D̄∗ = 80

MeV, ∆D̄∗
0
= 164 MeV and ∆D̄1

= 54 MeV by using a fact of σ0 = fπ in the vacuum.
The mean field of σ meson is expected to be changed by including one-loop dia-

grams of σ meson and pion as σ0 → σ0+ δσ0 (δ0 represents the one-loop correction),
since σσσ vertex and σππ vertex are derived in the linear sigma model. In calculat-
ing these one-loop diagrams, we must utilize the propagators of σ meson and pion
obtained in Eqs. (3.13) and (3.14) or diagrammatically shown in Fig. 3.2, in order to
respect chiral symmetry as explained in Sec. 3.2. By keeping in mind this treatment,
the one-loop corrections to the mean field δσ0 are included as

δσ0 = −3λσ0
m̃2
σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2 (
G̃σ(k0, k⃗)− G̃vac

σ (k0, k⃗)
)

−3λσ0
m̃2
σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2 (
G̃π(k0, k⃗)− G̃vac

π (k0, k⃗)
)

=
3λσ0
m̃2
σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2
Im

[
1

k2 −m2
σ − iΣ̃σ(k0, k⃗)

− 1

k2 −m2
σ,vac + iϵ

]

+
3λσ0
m̃2
σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2
Im

[
1

k2 −m2
π − iΣ̃π(k0, k⃗)

− 1

k2 −m2
π,vac + iϵ

]

= −3λσ0
2m̃2

σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2
ϵ(k0)

{
ρσ(k0, k⃗)− ρvacσ (k)

}

−3λσ0
2m̃2

σ

∫
d4k

(2π)4

(
F (k⃗;Λ)

)2
ϵ(k0)

{
ρπ(k0, k⃗)− ρvacπ (k0, k⃗)

}
.

(4.2)
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These are diagrammatically shown in Fig. 4.1. In Eq. (4.2), we have defined G̃π(k0, k⃗)

Figure 4.1: Hartree-type one-loop corrections (δσ∗
0) to the self-energies of D̄ and D̄∗

0

mesons. The meaning of blobs in these diagrams is provided in Fig. 3.2.

via by the following relation: G̃ab
π (k0, k⃗) = δabG̃π(k0, k⃗). G̃vac

σ (k0, k⃗) and G̃vac
π (k0, k⃗)

are the propagators of σ meson and pion in the vacuum:

G̃vac
π (k0, k⃗) =

i

k2 −m2
σ,vac + iϵ

G̃vac
π (k0, k⃗) =

i

k2 −m2
π,vac + iϵ

, (4.3)

where mσ,vac and mπ,vac are the masses of σ meson and pion in the vacuum, respec-
tively. m̃σ is the mass of σ meson in nuclear matter, i.e., this is defined by the energy
at which G̃−1

σ (k0, 0⃗) = 0 is satisfied. F (k⃗,Λ) is the form factor to take hadronic size
into account which is of the form

F (k⃗;Λ) =
Λ2

|⃗k|2 + Λ2
, (4.4)

where Λ is the cutoff parameter. In the present analysis, the value of Λ is fixed as
Λ = 300 MeV, which is slightly higher than the Fermi momentum of the normal
nuclear matter density. ϵ(k0) in the last line in Eq. (4.2) is the sign function which
is defined by ϵ(k0) = +1 for k0 > 0 and ϵ(k0) = −1 for k0 < 0. ρσ(π)(k0, k⃗) is the
spectral function for σ meson (pion) in nuclear matter calculated by using a useful
relation in Eq. (A.20) as

ρσ(π)(k0, k⃗) =
−2ImΣ̃R

π(σ)(k0, k⃗)[
k2 −m2

π(σ) − ReΣ̃R
π(σ)(k0, k⃗)

]2
+
[
ImΣ̃R

π(σ)(k0, k⃗)
]2 ,

(4.5)
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(a) Masses of D̄ and D̄∗
0 mesons.
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D̄ mesons.

Figure 4.2: (color online) The density dependence of (a) masses of D̄ and D̄∗
0 mesons

and (b) that of mass difference between D̄∗
0 and D̄ mesons. The red filled circles and

the blue filled circles in (a) denote the masses of D̄∗
0 meson and D̄, respectively, with

Hartree-type one-loop corrections as well as the mean field. The open circles in (a)
represent the results with mean field alone. In a similar way, the filled purple circles
in (b) denote the mass difference between D̄∗

0 and D̄ mesons with mean field and
Hartree-type one-loop corrections, while the open ones denote that with mean field
alone. The dashed horizontal line corresponds to the vacuum values of them put as
references.

where the symbol “R” refers to the retarded self-energy, and ρvacσ(π)(k0, k⃗) is that in
the vacuum

ρvacσ(π) = 2πϵ(k0)δ(k
2 −m2

σ(π),vac) . (4.6)

The detail on the definition and derivation for them is given in Appendix A.
First, I show the density dependence of the masses of D̄ and D̄∗

0 mesons with
Hartree-type one-loop corrections as well as the mean field. The resultant plot is
indicated in Fig. 4.2. The red filled circles and the blue filled circles in Fig. 4.2
(a) denote the masses of D̄∗

0 meson and D̄ meson, respectively, with mean field
and Hartree-type one-loop corrections. The open circles in Fig. 4.2 (a) represent
the results with mean field alone. As we can see from this figure, the mass of D̄
meson increases while that of D̄∗

0 meson decreases as we can access to higher density.
This tendency reflects the feature of chiral partner, i.e., mass difference between the
partners is generated by the spontaneous breakdown of chiral symmetry and it is
expected to get small as the density increases together with the partial restoration of
chiral symmetry. To observe this change more clearly, I plot the density dependence
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of the mass difference between D̄∗
0 and D̄ mesons in Fig. 4.2 (b). The filled purple

circles in Fig. 4.2 (b) denote the mass difference between D̄∗
0 and D̄ mesons with

Hartree-type one-loop corrections as well as the mean field, while the open ones
denote that with mean field alone. I should note that mean field contributions are
dominant and Hartree-type one-loop corrections are rather suppressed.

Figure 4.3: Fock-type one-loop corrections to the self-energy for D̄ meson.

Figure 4.4: Fock-type one-loop corrections to the self-energy for D̄∗
0 meson.

Next, I include Fock-type one loop corrections in addition to the Hartree-type one-
loop corrections and the mean field which are diagrammatically indicated in Fig. 4.3
and Fig. 4.4. Again, the propagators of σ meson and pion in these figures must
include infinite sums of nucleon loops as in Fig. 3.2. Calculations of these diagrams
are complicated, so that, here, let us show the detailed calculation of the self-energy
in Fig. 4.3 (1a) as an example. According to the arguments on finite density field
theory [42] in Appendix A, the imaginary part of the retarded self-energy in Fig. 4.3
(1a) ImΣ̃R

D̄(1a)(q0, q⃗) is related to the greater self-energy Σ̃>
D̄(1a)

(q0, q⃗) and the lesser

self-energy Σ̃<
D̄(1a)

(q0, q⃗) as

ImΣ̃R
D̄(1a)(q0, q⃗) =

1

2

(
Σ̃>

D̄(1a)(q0, q⃗)− Σ̃<
D̄(1a)(q0, q⃗)

)
.

(4.7)

This relation is shown in Eq (A.21). The real part of the retarded self-energy
ReΣ̃R

D̄(1a)(q0, q⃗) is obtained via the subtracted dispersion relation derived in Eq. (A.25)
as

ReΣ̃R
D̄(1a)(q0, q⃗) =

q2 −m2
D̄

π
P

∫ ∞

0

dz2
ImΣ̃R

D̄(z, q⃗)

(z2 − q20)(z
2 − |q⃗|2 −m2

D̄
)
, (4.8)
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where the symbol “P” stands for the principal value integral. Therefore, we need to
compute the imaginary part of the retarded self-energy (4.7), namely, we firstly need
to know the explicit forms of Σ̃>

D̄(1a)
(q0, q⃗) and Σ̃<

D̄(1a)
(q0, q⃗).

The greater and lesser self-energy in the coordinate space Σ̃>
D̄(1a)

(x0, x⃗) and Σ̃<
D̄(1a)

(x0, x⃗)

are defined through ΣD̄(1a)(x0, x⃗) by

ΣD̄(1a)(x0, x⃗) = θ(x0)Σ
>
D̄(1a)(x0, x⃗) + θ(−x0)Σ

<
D̄(1a)(x0, x⃗) . (4.9)

Σ̃>
D̄(1a)

(q0, q⃗) and Σ̃<
D̄(1a)

(q0, q⃗) are defined by the Fourier transformation of them. In

a similar manner, the propagator of σ meson (D̄ meson) is also decomposed into the
greater part G>

σ (x0, x⃗) (G
>
D̄
(x0, x⃗)) and the lesser part G<

σ (x0, x⃗) (G
<
D̄
(x0, x⃗)) as

Gσ(x0, x⃗) = θ(x0)G
>
σ (x0, x⃗) + θ(−x0)G

<
σ (x0, x⃗) (4.10)

GD̄(x0, x⃗) = θ(x0)G
>
D̄(x0, x⃗) + θ(−x0)G

<
D̄(x0, x⃗) (4.11)

in the coordinate space. Then, the self-energy in Fig. 4.3 (1a) ΣD̄(1a)(x0, x⃗) is com-
puted as

ΣD̄(1a)(x0, x⃗) = (imGπ)
2GD̄(x0, x⃗)Gσ(x0, x⃗)

= (imGπ)
2 [θ(x0)G

>
D̄(x0, x⃗) + θ(−x0)G

<
D̄(x0, x⃗)

]

× [θ(x0)G
>
σ (x0, x⃗) + θ(−x0)G

<
σ (x0, x⃗)]

= (imGπ)
2 [θ(x0)G

>
D̄(x0, x⃗)G

>
σ (x0, x⃗) + θ(−x0)G

<
D̄(x0, x⃗)G

<
σ (x0, x⃗)

]
.

(4.12)

This equation tells us Σ̃>
D̄(1a)

(x0, x⃗) and Σ̃<
D̄(1a)

(x0, x⃗) are expressed as

Σ>
D̄(1a)(x0, x⃗) = (imGπ)

2 G>
D̄(x0, x⃗)G

>
σ (x0, x⃗)

Σ<
D̄(1a)(x0, x⃗) = (imGπ)

2 G<
D̄(x0, x⃗)G

<
σ (x0, x⃗) , (4.13)

and the Fourier transformations of them leads to

Σ̃>
D̄(1a)(q0, q⃗) = (imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
G̃>

D̄(k0, k⃗)G̃
>
σ (q0 − k0, q⃗ − k⃗)

Σ̃<
D̄(1a)(q0, q⃗) = (imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
G̃<

D̄(k0, k⃗)G̃
<
σ (q0 − k0, q⃗ − k⃗) .

(4.14)

In Eq. (4.14), we have again inserted the form factor F (k⃗,Λ) defined by Eq. (4.4),
and G̃>

D̄(σ)
(k0, k⃗) and G̃<

D̄(σ)
(k0, k⃗) are the Fourier transformation of G̃>

D̄(σ)
(x0, x⃗)
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and G̃<
D̄(σ)

(x0, x⃗), respectively. From Eq. (A.33), we find that G̃>
D̄
(q0, q⃗), G̃>

σ (q0, q⃗),

G̃<
D̄
(q0, q⃗) and G̃<

σ (q0, q⃗) take the forms of

G̃>
D̄(q0, q⃗) = θ(q0)ρD̄(q0, q⃗) , G̃>

σ (q0, q⃗) = θ(q0)ρσ(q0, q⃗) ,

G̃<
D̄(q0, q⃗) = −θ(−q0)ρD̄(q0, q⃗) , G̃<

σ (q0, q⃗) = −θ(q0)ρσ(q0, q⃗) , (4.15)

where ρD̄(q0, q⃗) is the spectral function of D̄ meson at the mean field level as

ρD̄(q0, q⃗) = 2πϵ(q0)δ(q
2 −m2

D̄) (4.16)

(mD̄ is given in Eq. (4.1)), and ρσ(q0, q⃗) is that of σ meson in nuclear matter obtained
in Eq. (4.5). By substituting Eq. (4.14) into Eq. (4.7) together with relations in
Eq. (4.15), we can find

ImΣ̃R
D̄(1a)(q0, q⃗)

=
1

2

(
Σ̃D̄(1a)(q0, q⃗)− Σ̃<

D̄(1a)(q0, q⃗)
)

=
1

2
(imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
G̃>

D̄(k0, k⃗)G̃
>
σ (q0 − k0, q⃗ − k⃗)

−1

2
(imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
G̃<

D̄(k0, k⃗)G̃
<
σ (q0 − k0, q⃗ − k⃗)

=
1

2
(imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
θ(k0)ρD̄(k0, q⃗)θ(q0 − k0)ρσ(q0 − k0, q⃗ − k⃗)

−1

2
(imGπ)

2
∫

d4k

(2π)4

(
F (k⃗;Λ)

)2
θ(−k0)ρD̄(k0, k⃗)θ(−q0 + k0)ρσ(q0 − k0, q⃗ − k⃗)

= −1

2
m2G2

π

∫
d3k

(2π)3

(
F (k⃗;Λ)

)2

× 1

2ED̄
k

{
θ(q0 − ED̄

k )ρσ(q0 − ED̄
k , q⃗ − k⃗) + θ(−ED̄

k − q0)ρσ(q0 + ED̄
k , q⃗ − k⃗)

}
,

(4.17)

where ED̄
k is defined by ED̄

k =
√

|⃗k|2 +m2
D̄
. The real part of the retarded self-energy

is derived by means of the subtracted dispersion relation in Eq. (4.8), and we can
complete a calculation of the retarded self-energy in Fig. 4.3 (1a). Applications of
this method to the remaining diagrams in Fig. 4.3 and Fig. 4.4 are straightforward,
and we can complete the calculations of the retarded self-energy of D̄ and D̄∗

0 meson
in nuclear matter.
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(a) Masses of D̄ and D̄∗
0 mesons.
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(b) Mass difference between D̄∗
0 and

D̄ mesons.

Figure 4.5: (color online) The density dependence of (a) masses of D̄ and D̄∗
0 mesons

and (b) that of mass difference between D̄∗
0 and D̄ mesons. The red filled circles and

the blue filled circles in (a) denote the masses of D̄∗
0 meson and D̄, respectively, with

Fock-type one-loop corrections as well as the mean field and Hartree-type one-loop
corrections. The open circles in (a) represent the results with mean field alone. In a
similar way, the filled purple circles in (b) denote the mass difference between D̄∗

0 and
D̄ mesons with Fock-type one-loop corrections as well as the mean field and Hartree-
type one-loop corrections, while the open ones denote that with mean field alone.
The dashed horizontal lines correspond to the vacuum values put as references.

The resultant density dependence of masses of D̄ and D̄∗
0 mesons are plotted in

Fig. 4.5 (a). Defining

m̂D̄ ≡ m− Gπ

2
(σ0 + δσ0)−

∆D̄

2
, (4.18)

the mass of D̄ meson is defined by the solution of q20−m̂2
D̄−ReΣ̃D̄(q0, 0⃗) = 0 directly

obtained by using a relation ReΣ̃D̄(q0, 0⃗) = ReΣ̃R
D̄(q0, 0⃗). The mass of D̄∗

0 meson is
defined by the value of energy at which maximum of its spectral function is realized 1.
The red filled circles and the blue filled circles in Fig. 4.5 (a) denote the masses of D̄∗

0

meson and D̄ meson, respectively, with Fock-type one-loop corrections as well as the
mean field and Hartree-type one-loop corrections. The open circles in Fig. 4.5 (a)
represent the results with mean field alone. From this figure together with Fig. 4.2,
we can find Fock-type corrections push down the mass of D̄ meson while they push up
the mass of D̄∗

0 meson. As a result, the resulting masses behave rather similar to the
results with mean field. I plot the density dependence of the mass difference between

1The spectral function for D̄∗
0 meson will be calculated in Sec. 4.2.
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D̄∗
0 and D̄ mesons in Fig. 4.5 (b). The filled purple circles in Fig. 4.5 (b) denote the

mass difference between D̄∗
0 and D̄ mesons with Fock-type one-loop corrections as

well as the mean field and Hartree-type one loop corrections, while the open ones
denote that with mean field alone.

4.2 Spectral functions for D̄ and D̄∗
0 mesons in nu-

clear matter

In this section, I show spectral functions for D̄ and D̄∗
0 meson. The spectral functions

are defined by the same manner as in Eq. (4.5):

ρD̄(D̄∗
0)
(k0, k⃗) =

−2ImΣ̃R
D̄(D̄∗

0)
(k0, k⃗)

[
k2 − m̂2

D̄(D̄∗
0)
− ReΣ̃R

D̄(D̄∗
0)
(k0, k⃗)

]2
+
[
ImΣ̃R

D̄(D̄∗
0)
(k0, k⃗)

]2 . (4.19)

m̂D̄∗
0
is defined by

m̂D̄∗
0
= m+

Gπ

2
(σ0 + δσ0)−

∆D̄∗
0

2
(4.20)

as in Eq. (4.18). I particularly pay attention to the spectral function for D̄∗
0 meson

since D̄∗
0 mainly decays into its chiral partner D̄ meson by emitting a pion in the

vacuum, so that it is expected the spectral function for D̄∗
0 meson shows characteristic

changes when we access to nuclear matter.
The resultant spectral functions for D̄∗

0 meson at rest q⃗ = 0⃗ at several densities
are shown in Fig. 4.6. The dashed curve is the spectral function in the vacuum,
and colored curves are the obtained results. The vertical dotted lines refer to the
threshold of D̄ + π at each density. In this figure, we can find three peaks. The
first peak corresponds to the resonance state of D̄∗

0 meson. This peak shifts to the
lower energy as the density increases which explicitly shows the reduction of mass of
D̄∗

0 meson as indicated by red circles in Fig. 4.5 (a). Also, this peak gets broadened
and its hight gets suppressed. This is essentially caused by collisions with nucleons
surrounding the D̄∗

0 meson (collisional broadening) so that this effect is enhanced
as the density increases. The second peak is identified as a threshold enhancement,
and its peak position shifts to the higher energy regime as we increase the density.
This peak suggests there is a virtual state, i.e., I expect we can find a pole on the
real q0 axis below the threshold in the second Riemann sheet. This state is made by
an attractive force between D̄ meson and pion. As the density increases, the level
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Figure 4.6: (color online) The spectral functions for D̄∗
0 meson with vanishing mo-

mentum q⃗ = 0⃗ at ρB = 0.036 fm−3, 0.051 fm−3, 0.066 fm−3, 0.081 fm−3, 0.095 fm−3.
The dashed curve is the spectral function in the vacuum, and colored curves are the
obtained results. The vertical dotted lines refer to the threshold of D̄ + π at each
density. The detail is given in the text.

difference between the bare mass of D̄∗
0 meson (mD̄∗

0
) and threshold of D̄ + π gets

small by the partial restoration of chiral symmetry, which causes an enlargement of
level repulsion between these two levels. As a result, the attractive force between
D̄ meson and pion is strengthened, and the threshold enhancement is enhanced as
the density increases. I should note that I expect a bound state of D̄π state appears
at ρB = 0.095 fm−3 since the peak stands below the threshold. The third peak is
regarded as the Landau damping. This bump is caused by scattering between D̄∗

0

meson and a nucleon in medium as diagrammatically shown in Fig. 4.7, and gets
enhanced as we increase the density.

The figures in Fig. 4.6 suggest that the threshold enhancement provide us with
useful information of the partial restoration of chiral symmetry in real experiments
since this peak is so sharp and remarkably enhanced. Furthermore, this peak stands
at or near the threshold of D̄+π, which tells us directly the sum of mass of D̄ meson
and pion.

I show the spectral function for D̄ meson at ρB = 0.066 fm−3 with q⃗ = 0⃗ in
Fig. 4.8. The dashed curve is the spectral function in the vacuum, and the yellow
colored curve is the result. Some bumps correspond to the opening of some channels.
Note that the magnitude of spectral function for D̄ meson is smaller than that for D̄∗

0
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Figure 4.7: A diagrammatical representation of the Landau damping.

meson. This difference reflects that D̄∗
0 meson can decay within the strong interaction

while D̄ meson can only decay by the weak interaction.

Figure 4.8: (color online) A spectral function for D̄ meson at ρB = 0.066 fm−3 with
q⃗ = 0⃗. The dashed curve is the spectral function in the vacuum, and yellow colored
curve is the result.
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Chapter 5

Modifications of D̄ mesons in
nuclear matter by the parity
doublet model

The linear sigma model I have employed throughout Chap. 4 provides us with fruitful
information on tendency of chiral restoration and changes of D̄ mesons at low density.
The use of this model is, however, limited to lower density than the normal nuclear
matter density. In this chapter, I utilize the parity doublet model [37] which can
reproduce properties of nuclear matter in a consistent way and study the spectral
function for D̄∗

0 meson at the nuclear matter density. In Sec. 5.1, I give the detailed
explanation of an idea of parity doublet model. In Sec. 5.2, I construct nuclear
matter with a mean field approximation in this model and determine parameters. In
Sec. 5.3, I study a spectral function for D̄∗

0 meson by the parity doublet model.

5.1 Parity doublet model

Quarks are such elementary particles that they belong to the fundamental represen-
tation of SU(2)L × SU(2)R chiral representation:

q = qL + qR ∼ (2,1)⊕ (1,2) . (5.1)

In this equation, q is a quark field, qL (qR) is a corresponding left-handed (right-
handed) quark, and the number in left (right) component in the bracket refers to
the representation of SU(2)L (SU(2)R) chiral group. Namely, qL and qR transforms
under the SU(2)L × SU(2)R chiral transformation as

qL → gLqL , qR → gRqR . (5.2)
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In a first approximation, a nucleon is composed of three light quarks, so that its
chiral representation can take three patterns as

N ∼ q ⊗ q ⊗ q ∼
(
(2,1)⊕ (1,2)

)3

= 5 [(2,1)⊕ (1,2)] + 3 [(3,2)⊕ (2,3)]⊕ [(4,1)⊕ (1,4)] .

(5.3)

Here, we take the (2,1)⊕ (1,2) representation for the nucleon. We further take that
a ∆ baryon belongs to (3,2) ⊕ (2,3) representation since ∆ baryon couples to the
nucleon and pion strongly, and N ∼ (2,1) ⊕ (1,2) and π ∼ (2,2) which does not
contain (4,1)⊕ (1,4).

As I have stated above, the nucleon belongs to (2,1)⊕ (1,2). One of the simple
choice is NL ∼ (2,1) and NR ∼ (1,2), where NL and NR are defined in terms of an
eigenvalue of a chirality γ5 by NL = 1−γ5

2 and NR = 1+γ5
2 , respectively. It is possible,

however, that we take another choice: NL ∼ (1,2) and NR ∼ (2,1). Namely, we
can introduce two types of the nucleon fields N1 and N2 which transform under the
SU(2)L × SU(2)R chiral transformation as

N1L → gLN1L , N1R → gRN1R

N2L → gRN2L , N2R → gLN2R . (5.4)

The assignment for the nucleon N2 is called a “mirror assignment” [43, 44, 45, 46].
An effective model based on the mirror assignment is referred to as the parity doublet
model. I should remind that the subscripts L and R are defined by the eigenvalues
of the chirality

N1(2),L =
1− γ5

2
N1(2) , N1(2),R =

1 + γ5
2

N1(2) . (5.5)

The chirality is related to the parity, so that it is expected that we obtain a
characteristic structure in terms of the parity-eigenstate when we take the mirror
assignment. In order to see it, let us construct an effective Lagrangian which is
invariant under the SU(2)L × SU(2)R chiral transformation, parity and charge con-
jugation. Regarding the parity transformation, I assign the following transformation
properties:

N1L(x) → N1R(xp) , N1L(x) → N1R(xp)

N2R(x) → −N2L(xp) , N2L(x) → −N2R(xp) . (5.6)

For N2, I put an unfamiliar phase −1 under the parity transformation. This phase
is, however, does not contain physical meanings since N1 and N2 themselves are not
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regarded as physical states as we will see soon. This phase is just put for later use.
The nucleon part of the effective Lagrangian up to the first order of derivative can
be obtained as [38]

LN = N̄1Ri/∂N1R + N̄1Li/∂N1L + N̄2Ri/∂N2R + N̄2Li/∂N2L

−m0

[
N̄1LN2R − N̄1RN2L − N̄2LN1R + N̄2RN1L

]

−g1
[
N̄1RM

†N1L + N̄1LMN1R

]
− g2

[
N̄2RMN2L + N̄2LM

†N2R

]

−ih1

[
N̄1L(M/∂M † − /∂MM †)N1L + N̄1R(M

†/∂M − /∂M †M)N1R

]

−ih2

[
N̄2R(M/∂M † − /∂MM †)N2R + N̄2L(M

†/∂M − /∂M †M)N2L

]
,

(5.7)

where M is the chiral field defined by Eq. (2.19) and m0, g1, g2, h1 and h2 are real
parameters. Under the spontaneous breakdown of chiral symmetry, σ meson field is
replaced by its VEV σ0 and a resultant Lagrangian is

LN = N̄1Ri/∂N1R + N̄1Li/∂N1L + N̄2Ri/∂N2R + N̄2Li/∂N2L

−m0

[
N̄1LN2R − N̄1RN2L − N̄2LN1R + N̄2RN1L

]

−g1σ0
[
N̄1RN1L + N̄1LN1R

]
− g2σ0

[
N̄2RN2L + N̄2LN2R

]

= N̄1i/∂N1 + N̄2i/∂N2 −m0

[
N̄1γ5N2 − N̄2γ5N1

]

−g1σ0N̄1N1 − g2σ0N̄2N2 , (5.8)

where we have neglected fluctuations of σ meson and pion. The Lagrangian (5.8)
shows that a mass matrix is not diagonalized in terms of N1 and N2. By introducing
two mass eigenstates N+ and N− via

(
N+

N−

)
=

(
cos θ γ5sin θ

−γ5sin θ cos θ

)(
N1

N2

)
, (5.9)

this mass matrix can be diagonalized by taking the mixing angle θ to satisfy

tan 2θ =
2m0

(g1 + g2)σ0
. (5.10)

In this case, the Lagrangian in Eq. (5.8) is rewritten into

LN = N̄+i/∂N+ + N̄−i/∂N− −m+N̄+N+ −m−N̄−N− , (5.11)

where the masses of N+ and N− are derived as

m+ ≡ 1

2

[√
(g1 + g2)2σ2

0 + 4m2
0 − (g2 − g1)σ0

]
(5.12)

m− ≡ 1

2

[√
(g1 + g2)2σ2

0 + 4m2
0 + (g2 − g1)σ0

]
. (5.13)
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Note that the definition of N+ and N− in Eq. (5.9) together with the parity trans-
formations of N1 and N2 in Eq. (5.6) leads to the parity transformation laws of N+

and N− as

N+(x)
P→ γ0N+(xp) , N−(x)

P→ −γ0N−(xp) . (5.14)

Namely, the parity eigenvalue of N+ is +1 while that of N− is −1. This fact allows
us to assign N+ and N− as the nucleon N(939) and N∗(1535), respectively. Another
feature of mirror assignment is that we can get a relation between the mass splitting
of N− and N+ and the VEV of σ meson as

m− −m+ = (g2 − g1)σ0 . (5.15)

This relation is often referred to as the extended Goldberger-Treiman relation since
this is a naive extension of the original Goldberger-Treiman relation.

When we utilized a polar decomposition with respect to the pion as

M = σU = σexp

(
i
πaτa

fπ

)
, (5.16)

and expand the Lagrangian (5.7) up to the second order of meson fields, we can find

LN = N̄+(i/∂ + µBγ
0 − gω/ω)N+ + N̄−(i/∂ + µBγ

0 − gω/ω)N− −m+N̄+N+ −m−N̄−N−

−gNNσN̄+σN+ − gNNπN̄+iγ5πrN+ + gNN∗σN̄+γ5σN− + gNN∗πN̄+iπrN−

−gNN∗σN̄−γ5σN+ − gNN∗πN̄−iπrN+ − gN∗N∗σN̄−σN− − gN∗N∗πN̄−iγ5πrN−

+
gNNσ

2σ0
N̄+π

2
rN+ − gNN∗σ

2σ0
N̄+γ5π

2
rN− +

gNN∗σ

2σ0
N̄−γ5π

2
rN+ +

gN∗N∗σ

2σ0
N̄−π

2
rN−

+2σ0hNNπN̄+/∂πrγ5N+ + 2σ0hNN∗πN̄+/∂πrN− + 2σ0hNN∗πN̄−/∂πrN+ + 2σ0N̄−/∂πrγ5N−

−ifπhNNππN̄+[πr, /∂πr]N+ − ifπhNN∗ππN̄+[πr, /∂πr]γ5N−

−ifπhNN∗ππN̄+[πr, /∂πr]γ5N− − ifπhN∗N∗ππN̄−[πr, /∂πr]N−

+ · · · (5.17)

in terms of N+ and N− fields under the spontaneous breakdown of chiral symmetry.
In Eq. (5.17), we have defined

π = Z1/2πr with Z =
f 2
π

σ2
0

(5.18)
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so as to renormalize the kinetic term of pion properly, and the coupling constants
are

gNNσ =
1

2
(g1 − g2) +

1

2
(g1 + g2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

gNNπ =
1

2
(g1 + g2) +

1

2
(g1 − g2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

gNN∗σ = (g1 + g2)
m0√

(g1 + g2)2σ2
0 + 4m2

0

gNN∗π = (g1 − g2)
m0√

(g1 + g2)2σ2
0 + 4m2

0

gN∗N∗σ = −1

2
(g1 − g2) +

1

2
(g1 + g2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

gN∗N∗π = −1

2
(g1 + g2) +

1

2
(g1 − g2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

hNNπ =
1

2
(h1 − h2) +

1

2
(h1 + h2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

hNN∗π = −(h1 + h2)
m0√

(g1 + g2)2σ2
0 + 4m2

0

hN∗N∗π =
1

2
(h1 − h2)−

1

2
(h1 + h2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

hNNππ =
1

2
(h1 + h2) +

1

2
(h1 − h2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

hNN∗ππ = −(h1 − h2)
m0√

(g1 + g2)2σ2
0 + 4m2

0

hN∗N∗ππ =
1

2
(h1 + h2)−

1

2
(h1 − h2)

(g1 + g2)σ0√
(g1 + g2)2σ2

0 + 4m2
0

. (5.19)

Note that we have added baryon number chemical potentials µB to the nucleon and
N∗(1535) since we will access to density system. ω meson is also put as a chiral
singlet particle in SU(2)L×SU(2)R to determine a density dependence of our model
self-consistently.

The mesonic Lagrangian is introduced for the present analysis by including a
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six-point interaction of meson fields as [37]

LM =
1

4
tr[∂µM∂µM †] +

µ̄2

4
tr[MM †]− λ

16
(tr[MM †])2 +

λ6
48

(tr[MM †])3 +
1

4
m̄ϵtr[M +M †]

−1

4
ωµνω

µν +
1

2
m2
ωωµω

µ ,

(5.20)

where ωµν = ∂µων − ∂νωµ is added to create a kinetic term of ω meson and mω is
the ω meson mass. This Lagrangian except for the last term is invariant under the
SU(2)L × SU(2)R chiral transformation, and this last term is added to reproduce
the finite pion mass. With the same way in obtaining Eq. (5.17), the mesonic part
of the Lagrangian (5.20) is expanded as

LM =
1

2
∂µσ∂

µσ +
1

2
∂µπ

a
r∂

µπa
r +

1

2
µ̄2(σ0 + σ)2

−1

4
λ(σ0 + σ)4 +

1

6
λ6(σ0 + σ)6 + m̄ϵσ0 −

1

2

m̄ϵ

σ0
πa
rπ

a
r + · · · . (5.21)

The Lagrangians in Eqs. (5.17) and (5.21) define our model.

5.2 Construction of nuclear matter and parameter
determination

In this section, I determine the parameters in Eqs. (5.17) and (5.21). Some in-
put parameters are summarized in Table. 5.1. In the present analysis, I utilize
the nucleon mass, N∗(1535) mass, pion mass, ω meson mass, pion decay constant,
ΓN∗→Nπ, and the nucleon axial-charge (gA) as inputs in the vacuum. In addition, I
use saturation density, binding energy, incompressibility as inputs in nuclear mat-
ter. I list them in Table. 5.2. I should note that we have an additional condition of
∂
∂ρB

(E/A −mvac
+ )|ρ∗B = 0 to reproduce the saturation behavior (A is the mass num-

ber). Therefore, we need to obtain thermodynamical quantities within our model
and describe nuclear matter.

From the Lagrangians in Eqs. (5.17) and (5.21), we can find a thermodynamic
potential Ω with mean fields of σ meson (σ0) and time-component of ω meson (ω0)

36



mvac
+ (MeV) mvac

− (MeV) mπ(MeV) mω(MeV) fπ(MeV) ΓN∗→Nπ(MeV) gA
939 1535 140 783 93 75 1.27

Table 5.1: Input parameters by properties in the vacuum. In this table, mvac
+ , mvac

− ,
mπ, mω, fπ, ΓN∗→Nπ, gA represent the nucleon mass, N∗(1535) mass, pion mass, ω
meson mass, decay width of N∗ → Nπ, nucleon axial charge, respectively.

ρ∗B(fm
−3) E/A−mvac

+ (MeV) K(MeV)
0.16 -16 240

Table 5.2: Input parameters by properties in nuclear matter. In this table, ρ∗B,
E, A, K represent the normal nuclear matter density, total energy of the system,
mass number, incompressibility, respectively. I should note that we have additional
condition of ∂

∂ρB
(E/A−mvac

+ )|ρ∗B = 0 to reproduce the saturation nature.

as

Ω = − 1

β
lnZ

= −i
1

β
Trln(i/∂ + µ∗
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1
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Trln(i/∂ + µ∗
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+
1

β

∫ β

0
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2
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2
0 +

1

2
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4
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0 +
1

6
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6
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β→∞→
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V

4π2

{
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3

√
k2
Fi +m2

i k
3
Fi −

√
k2
Fi +m2

i kFim
2
i +m4

i ln

(
kFi +

√
k2
Fi +m2

i

mi

)}

+V

(
1

2
m2
ωω

2
0 +

1

2
µ̄2σ2

0 −
1

4
λσ4

0 +
1

6
λ6σ

6
0 + m̄ϵσ0

)
,

(5.22)

where β = 1/T is the inverse of temperature and V is the volume of the system.
Both of them should be taken to be infinity since we study on infinite volume nuclear
matter at zero temperature. Correspondingly, V is not regarded as a variable in our
approach. I note that I assume such parity non-vanishing condensates that mean
fields of pion and space-components of ω meson do not have their non-zero values.
µ∗
B is the effective chemical potential defined by µ∗

B = µB − gωω0 and kF+ and
kF− are the Fermi momenta of N+ and N− defined by kF+ =

√
µ∗2
B −m2

+ and
kF− =

√
µ∗2
B −m2

−, respectively. The mean fields σ0 and ω0 satisfy the stationary
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conditions ∂Ω
∂σ0

= 0, ∂Ω∂ω0
= 0 which are of the forms

−µ̄2σ0 + λσ3
0 − λ6σ

5
0 − m̄ϵ

= 4

(
(g2 − g1)−

(g1 + g2)2σ0√
(g1 + g2)2σ2

0 + 4m2
0

)∫ kF+ d3k

(2π)3
m+

2
√

k2 +m2
+

−4

(
(g2 − g1) +

(g1 + g2)2σ0√
(g1 + g2)2σ2

0 + 4m2
0

)∫ kF− d3k

(2π)3
m−

2
√

k2 +m2
−

,

(5.23)

and

ω0 =
gω
m2
ω

ρB

=
gω
m2
ω

(
2

3π2
k3
F+ +

2

3π2
k3
F−

)
. (5.24)

The pressure P is given by

P = −Ω/V − Pvacuum

=
∑

i=+,−

1

4π2

{
2

3

√
k2
Fi +m2

i k
3
Fi −

√
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Fi +m2
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2
i +m4
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Fi +m2
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mi
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+
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2
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ωω
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1

2
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λf 4

π +
1

6
λ6f

6
π + m̄ϵfπ

}
,

(5.25)

and the averaged energy per-volume ϵ is

ϵ = − 1

V

∂

∂β
lnZ + µB

A

V
− ϵvacuum

= 4
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(5.26)
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In Eqs. (5.25) and (5.26), I have subtracted vacuum pressure

Pvacuum = −Ωvacuum

V

=
1

2
µ̄2f 2

π −
1

4
λf 4

π +
1

6
λ6f

6
π + m̄ϵfπ (5.27)

and vacuum energy per-volume

ϵvacuum = − 1

V

∂

∂β
lnZ
∣∣∣
vacuum

= −1

2
µ̄2f 2

π +
1

4
λf 4

π −
1

6
λ6f

6
π − m̄ϵfπ (5.28)

to measure them from the appropriate ground state.
From Eq. (5.26), the binding energy of a nucleon in nuclear matter is easily

calculated thanks to a relation of E/A = ϵ/ρ∗B. The saturation condition is reduced
to

∂

∂ρB
(E/A−mvac

+ )|ρ∗B = V

(
∂(EA)

∂A

)

V

∣∣∣∣∣
ρ∗B

= V

(
∂E
∂A

)
V
A− E

A2

∣∣∣∣∣
ρ∗B

= V
µBA− E

A2

∣∣∣∣
ρ∗B

=
V 2

A2
P |ρ∗B

= 0 , (5.29)

namely, only we need to do is to solve a simple equation

P |ρ∗B = 0 . (5.30)

In obtaining Eq. (5.29), we have made use of thermodynamic identities

dE = TdS − PdV + µBdA (5.31)

and

E = TS − PV + µBA , (5.32)
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with T = 0 (T is the temperature and S is an entropy). The incompressibility is
defined by

K = 9ρ∗2B
∂2

∂ρ2B

(
E

A

)

V

∣∣∣
ρ∗B

, (5.33)

and is rewritten into
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)
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kFimi
∂mi
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)
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g2ω
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ω

}∣∣∣∣∣
ρ∗B

, (5.34)

where we have used other thermodynamical relations of

dΩ = −SdT − PdV − AdµB (5.35)

and

P = − 1

V
Ω(T, V, µB) . (5.36)

With helps of above equations together with the stationary conditions in Eqs. (5.23)
and (5.24), we can determine the parameters with several values ofm0 as in Table 5.3.
I should note that only m0 remains as a free parameter. In other words, the origin
of mass of the nucleon cannot be determined since m0 is the chiral invariant mass
defined by a part of the nucleon mass which is invariant in terms of chiral symmetry
as in Eq. (5.12).

In Fig. 5.1, I plot density dependences of the mean field σ0 and mass of N∗(1535)
and the nucleon. In the present model, we can access to the normal nuclear matter
density ρB = 0.16 fm−3 respecting the nuclear matter properties listed in Table. 5.2 as
indicated in this figure. The mean field σ0 decreases as the density increases which
reflects the partial restoration of chiral symmetry as was seen in the linear sigma
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m0 [MeV] 500 700 900

g1 9.03 7.82 5.97
g2 15.5 14.3 12.4
gω 6.75 6.22 3.49
ˆ̄µ2 73.5 30.8 1.74
λ 139 58.8 5.00
λ̂6 62.9 25.7 0.952
ĥ1 0.108 0.127 0.145
ĥ2 0.336 0.0473 － 0.126

Table 5.3: Model parameters for a given value of m0. The dimensionless parameters
ˆ̄µ2, λ̂6 ĥ1 and ĥ2 are defined by ˆ̄µ = µ̄2/f 2

π , λ̂6 = λ6 · f 2
π , ĥ1 = h1 · f 2

π and ĥ2 = h2 · f 2
π .

model. Accordingly, the mass of the nucleon drops and that of N∗(1535) drops more
rapidly, and the mass difference between them is also suppressed as we increase the
density. This tendency is obviously understood by the extended Goldberger-Treiman
relation of our model in Eq. (5.15).

5.3 Spectral function for D̄∗
0 meson

In this section, I show spectral functions for D̄∗
0 meson at normal nuclear matter

density ρB = 0.16 fm−3 with some values of m0. I include Hartree-type and Fock-
type one-loop corrections in addition to the mean field for calculating the self-energy
of D̄∗

0, and the same procedure used in Chap. 4 is employed to get the spectral
function.

For the propagator of pion, we need to include infinite sums of self-energies shown
in Fig. 5.2 to preserve chiral symmetry in our calculation. In the analysis in this
chapter, I take into account only D̄π loop in the calculation of the self-energy of D̄∗

0

to avoid complexity. I confirm that this procedure gives a reasonable result for the
spectral function for D̄∗

0 meson numerically.
The resulting spectral functions with m0 = 500 MeV, 700 MeV, 900 MeV are

indicated in Fig. 5.3. The colored curves are the results, and dashed black curve is
the spectral function in the vacuum. I take q⃗ = 0⃗ in this figure. We find two clear
peaks in the spectral function which are regarded as a resonance of D̄∗

0 state and a
threshold enhancement. The physical meaning of them have been already provided
in Chap. 4. In Fig. 5.3, we cannot get a clear bump of the Landau damping in
contrast with the results in the linear sigma model in Chap. 4. As we can see, the
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Figure 5.1: (color online) Density dependence of (a) the mean field σ0 and (b) mass
of the nucleon and N∗(1535).

resultant peak position of the D̄∗
0 resonance (threshold enhancement) moves to the

lower energy regime (higher energy regime) as we increase the value of m0. This
tendency is triggered since the larger the value of m0 is taken, the faster the partial
restoration of chiral symmetry is realized. I should note that the threshold of D̄+ π
is located at q0 = 2124 MeV for m0 = 900 MeV and the threshold enhancement
stands below it, which suggests an existence of a bound state of D̄π state.
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Figure 5.2: Self-energy for pion (Σ̃π(q0, q⃗))
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(a) m0 = 500 MeV.
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(b) m0 = 700 MeV.
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(c) m0 = 900 MeV.

Figure 5.3: (color online) Spectral functions for D̄∗
0 meson at ρB = 0.16 fm−3 and

q⃗ = 0⃗ with (a) m0 = 500 MeV, (b) m0 = 700 MeV, (c) m0 = 900 MeV. The colored
curves are the results, and dashed black curve is the spectral function in the vacuum.
The detail is given in the text.
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Chapter 6

Conclusions

In this chapter, I give conclusions of this dissertation.
I investigate a possibility of D̄ mesons as probes to explore the partial restoration

of chiral symmetry in nuclear matter throughout this dissertation. An effective
Lagrangian for D̄ mesons is based on the Heavy Quark Spin Symmetry (HQSS)
and the chiral partner structure. In order to investigate D̄ mesons in nuclear matter
respecting chiral symmetry correctly, we need to construct nuclear matter by a chiral
model. I firstly employ the linear sigma model to describe nuclear matter since this
model is one of the simplest chiral models, and we can fully study properties of
D̄ mesons at lower density regime qualitatively. I construct nuclear matter by a
one-loop of a nucleon within the linear sigma model. In Fig. 3.3, I plot a density
dependence of a mean field of σ meson (σ0) which is regarded as an order parameter
in terms of SU(2)L × SU(2)R chiral symmetry in the present analysis. This figure
clearly shows that the value of σ0 decreases as the baryon number density increases
which represents a partial restoration of chiral symmetry in nuclear matter.

Modifications of D̄ mesons in nuclear matter are induced by mediating σ meson
and pion. I should emphasize that we must employ propagators for σ meson and
pion which include infinite sums of the nucleon one-loops as depicted in Fig. 3.2 so
as to respect chiral symmetry in our calculations in this regard. This is because
our new ground state is defined by taking in the one-loop of the nucleon. In the
context of the chiral partner structure, the mass difference between positive-parity
meson and negative-parity meson is generated by the spontaneous breakdown of
chiral symmetry. Therefore, I study the masses of D̄ (0−) meson and D̄∗

0 (0
+) meson,

and the resultant density dependence of them are plotted in Fig. 4.5. In obtaining
the result, I include Hartree-type and Fock-type one loop-corrections as well as the
mean field contribution. Fig. 4.5 shows that mass of D̄ meson increases while that
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of D̄∗
0 meson decreases. Accordingly, the mass difference between D̄∗

0 and D̄ mesons
gets small. These behaviors fully reflect the partial restoration of chiral symmetry.
The spectral function for D̄∗

0 meson at several densities are also studied and the
results are shown in Fig. 4.6. I find three peaks in the spectral function which
essentially correspond to the D̄∗

0 meson resonance, a threshold enhancement and a
Landau damping. The peak of D̄∗

0 meson resonance gets broadened and its hight gets
suppressed as the density increases due to collisions with the nucleons surrounding D̄∗

0

meson. Its peak position shifts to the lower energy regime which shows a suppression
of D̄∗

0 meson mass by the partial restoration of chiral symmetry. The threshold
enhancement stands around the threshold of D̄ + π. Its peak position shifts to the
higher energy regime and this peak gets remarkably enhanced as we increase the
density. This feature suggests that this peak is expected to be a proper probe to
explore the partial restoration of chiral symmetry in nuclear matter. This peak is
caused by a virtual state or a bound state below the D̄ + π threshold. The Landau
damping purely reflects a medium effect which can be understood as a scattering
process diagrammatically shown in Fig. 4.7.

Furthermore, I study the spectral function for D̄∗
0 meson in nuclear matter which

is described by the parity doublet model to make our analysis more realistic. The
parity doublet model can reproduce properties of normal nuclear matter in addition
to vacuum properties in a consistent way [37, 38]. I should note that a chiral invariant
massm0 remains as a parameter in this model. The chiral invariant mass is defined by
a part of the nucleon mass which is invariant in terms of chiral symmetry. Therefore,
the determination of the value of chiral invariant mass is corresponding to seeking
the origin of nucleon mass. The spectral functions for D̄∗

0 meson for several values
of m0 at ρB = 0.16 fm−3 is indicated in Fig. 5.3. I find clear two peaks in the
spectral function which are regarded as the resonance state of D̄∗

0 meson and the
threshold enhancement. As we increase the value of m0, the peak position of the
resonance shifts to the lower energy regime while that of the threshold enhancement
shifts to the higher energy regime. These behaviors claim that the magnitude of the
partial restoration of chiral symmetry is strengthened as we increase the value of
m0. These characteristic structures, especially the threshold enhancement, provide
us with fruitful information of the strength of partial restoration of chiral symmetry
in nuclear matter and the value of m0, i.e., the origin of mass of the nucleon.

Experimentally, I expect that D̄∗
0 mesons in nuclear matter is realized in a nuclear

reaction process, e.g.,

p̄+ A → D + (D̄∗
0 in medium) . (6.1)

According to the Green function’s method [47], a (density averaged) spectral function
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in nuclear matter is directly reflected into the double differential cross section of the
reaction in Eq. (6.1) via a following relation:

d2σ

dEDdΩ
=

(
dσ

dΩ

)

p̄+N→D+D̄∗
0

× SD̄∗
0
(Ep̄ + Ei − ED) . (6.2)

Ep̄, ED and Ei are the energy of an incident anti-proton p̄, an emitted D meson and
the target nucleus A. SD̄∗

0
(Ep̄ + Ei − ED) is the density averaged spectral function

for D̄∗
0 captured in the nucleus.

(
dσ
dΩ

)
p̄+N→D+D̄∗

0
is a differential cross section for the

elementary process of p̄ + N → D + D̄∗
0. The reaction process in Eq. (6.1) can

be realized in the future experiment at FAIR and/or J-PARC. Therefore, I need to
evaluate the differential cross section in Eq. (6.2) by means of the spectral function
for D̄∗

0 in Fig. 5.3 in order to complete our quest for the partial restoration of chiral
symmetry in nuclear matter and the origin of nucleon mass.
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Appendix A

Finite density field theory

In this appendix, I show derivations of several relations employed in this dissertation
in association with the Finite Density Field Theory [42].

A.1 In-medium propagator of a fermion

Here, I show an in-medium propagator of a fermion. Let us prepare a quantized
fermion field ψ(x0, x⃗) forming a Fermi sea. It is more useful to expand the fermion
field ψ(x0, x⃗) in terms of its momentum and spin as

ψ(x0, x⃗) =
∑

s

∫
d3k

(2π)32ωk

[
bk,su(k⃗, s)e

−ik·x + d†k,sv(k⃗, s)e
ik·x
]
. (A.1)

In Eq. (A.1), ωk =
√
|⃗k|2 +m2

ψ with mψ being the mass of ψ represents the energy

of the fermion. bk,s and d†k,s are an annihilation operator of a particle and a creation
operator of an anti-particle, respectively, and the index s refers to the spin degrees
of freedom. u(k⃗, s) and v(k⃗, s) are the four components spinors for the particle and
anti-particle, respectively, and the four dimensional inner product k · x is defined by
k · x = ωkx0 − k⃗ · x⃗. bk,s and d†k,s satisfy following occupation conditions

⟨b†k,sbk′,s′⟩ = (2π)32ωkθ(kF − |⃗k|)δ3(k⃗ − k⃗′)δss′

⟨dk,sd†k′,s′⟩ = (2π)32ωkδ
3(k⃗ − k⃗′)δss′ , (A.2)

since the fermion ψ forms the Fermi sea described by the Fermi momentum kF ,
where the bracket ⟨· · · ⟩ is defined by the average in the presence of the Fermi sea.
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The quantization condition for the fermion field in terms of creation and annihilation
operators are given by

{ bk,s, b†k′,s′ } = { dk,s, d†k′,s′ } = (2π)32ωkδ
3(k⃗ − k⃗′)δss′

{ bk,s, d†k′,s′ } = { dk,s, b†k′,s′ } = 0 . (A.3)

Then, a propagator of ψ is straightforwardly evaluated as

⟨Tψα(x)ψ̄β(y)⟩

= θ(x0 − y0)
∑

s,s′

∫
d3k

(2π)32ωk

d3k′

(2π)32ωk′
⟨bk,sb†k′,s′⟩uα(k⃗, s)ūβ(k⃗

′, s′)e−ik·x+ik′·y

+ θ(x0 − y0)
∑

s,s′

∫
d3k

(2π)32ωk

d3k′

(2π)32ωk′
⟨d†k,sdk′,s′⟩vα(k⃗, s)v̄β(k⃗

′, s′)eik·x−ik′·y

− θ(y0 − x0)
∑

s,s′

∫
d3k

(2π)32ωk

d3k′

(2π)32ωk′
⟨b†k′,s′bk,s⟩ūβ(k⃗

′, s′)uα(k⃗, s)e
ik′·y−ik·x

− θ(y0 − x0)
∑

s,s′

∫
d3k

(2π)32ωk

d3k′

(2π)32ωk′
⟨dk′,s′d†k,s⟩v̄β(k⃗

′, s′)vα(k⃗, s)e
−ik′·y+ik·x

= θ(x0 − y0)

∫
d3k

(2π)32ωk
(1− θ(kF − |⃗k|))Λ+

αβ(k⃗)e
−ik·(x−y)

− θ(y0 − x0)

∫
d3k

(2π)32ωk
θ(kF − |⃗k|)Λ+

αβ(k⃗)e
−ik·(x−y)

− θ(y0 − x0)

∫
d3k

(2π)32ωk
Λ−
αβ(k⃗)e

ik·(x−y) , (A.4)

where we have defined projection operators

Λ±
αβ(k⃗) = (/k ±m)αβ (A.5)

with k0 = ωk. By using the Fourier transformation of the Heaviside’s step function

θ(x0) = i

∫
dk0
2π

e−ik0t

k0 + iϵ
, (A.6)
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the in-medium propagator in Eq. (A.4) is further simplified as

⟨Tψα(x)ψ̄β(y)⟩

= i

∫
d4k

(2π)4

{
/k +mψ

k2 −m2
ψ + iϵ

+ θ(kF − |⃗k|)ωkγ0 − k⃗ · γ +mψ

2ωk

2iϵ

(k0 − ωk)2 + ϵ2

}
e−ik·(x−y)

=

∫
d4k

(2π4)
(/k +mψ)

[
i

k2 −m2
ψ + iϵ

− 2πθ(k0)θ(kF − |⃗k|)δ(k2 −m2
ψ)

]
e−ik·(x−y) .

(A.7)

In obtaining the second equality in Eq. (A.7), we have used

1

2ωk

2ϵ

(k0 − ω)2 + ϵ2
=

1

2ωk
2πδ(k0 − ωk)

= 2πδ(k2 −m2
ψ)
∣∣∣
k0=ωk

. (A.8)

Therefore, in the Fourier space, the in-medium fermion propagator is of the form

G̃(k0, k⃗) =
i

k2 −m2
ψ + iϵ

− 2πθ(k0)θ(kF − |⃗k|)δ(k2 −m2
ψ) . (A.9)

This expression plays a central role in calculations of nucleon one-loops in nuclear
matter.

A.2 Greater and lesser Green’s functions (self-energies)

In this section, I summarize relations among greater and lesser Green’s function
(self-energy), and spectral function.

First, I give a simple expression of spectral function for a spin-0 particle described
by a real scalar field φ(x0, x⃗). A propagator of spin-0 particle in the coordinate space
G(x0, x⃗) is decomposed into a greater part and lesser part as

G(x0, x⃗) = ⟨Tφ(x0, x⃗)φ(0, 0⃗)⟩
= θ(x0)G

>(x0, x⃗) + θ(−x0)G
<(x0, x⃗) , (A.10)

where we have defined the greater Green’s function G>(x0, x⃗) = ⟨ψ(x0, x⃗)ψ(0, 0⃗)⟩
and the lesser Green’s function G<(x0, x⃗) = ⟨ψ(0, 0⃗)ψ(x0, x⃗)⟩. A retarded Green
function is defined by

GR(x0, x⃗) = iθ(x0)⟨[ψ(x0, x⃗),ψ(0, 0⃗)]⟩ , (A.11)
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and this is represented in terms of G>(x0, x⃗) and G<(x0, x⃗) as

GR(x0, x⃗) = iθ(x0)(G
>(x0, x⃗)−G<(x0, x⃗)) . (A.12)

By using the Fourier transformation of the Heaviside’s step function in Eq. (A.6),
the retarded Green’s function in the momentum space in Eq. (A.12) G̃R(q0, q⃗) takes
the form of

G̃R(q0, q⃗) = −
∫

dk0
2π

G̃>(k0, k⃗)− G̃<(k0, k⃗)

q0 − k0 + iϵ

≡ −
∫

dk0
2π

ρ(k0, q⃗)

q0 − k0 + iϵ

= −
∫

dk0
2π

P
ρ(k0, q⃗)

q0 − k0
+ i

1

2
ρ(q0, q⃗) . (A.13)

In Eq. (A.13), we have defined G̃(k0, k⃗) and G<(k0, k⃗) as the Fourier transformation
of G>(x0, x⃗) and G<(x0, x⃗), respectively, and ρ(k0, k⃗) is a spectral function for the
spin-0 particle defined by

ρ(k0, k⃗) ≡ G̃>(k0, k⃗)− G̃<(k0, k⃗) . (A.14)

According to Eq. (A.13), we find a simple relation between the retarded Green’s
function and the spectral function as

ρ(q0, q⃗) = 2ImG̃R(q0, q⃗) . (A.15)

Also, we can get another relation

ImG̃R(q0, q⃗) =
1

2

(
G̃>(q0, q⃗)− G̃<(q0, q⃗)

)
(A.16)

from Eqs. (A.15) and (A.14).
In the same manner, a self-energy in the coordinate space Σ(x0, x⃗) is decomposed

as

Σ(x0, x⃗) = θ(x0)Σ
>(x0, x⃗) + θ(−x0)Σ

<(x0, x⃗) , (A.17)

where we have defined a greater self-energy Σ>(x0, x⃗) and a lesser self-energy Σ<(x0, x⃗),
respectively. A retarded self-energy is defined by

ΣR(x0, x⃗) = iθ(x0) (Σ
>(x0, x⃗)− Σ<(x0, x⃗)) . (A.18)
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In the following, the Fourier transformation of ΣR(x0, x⃗), Σ>(x0, x⃗) and Σ<(x0, x⃗)
are described as Σ̃R(q0, q⃗), Σ̃>(q0, q⃗) and Σ̃<(q0, q⃗). Then, the corresponding retarded
Green’s function is obtained as

G̃R(q0, q⃗) = − 1

q2 −m2
φ − Σ̃R(q0, q⃗)

(A.19)

by including infinite sums of Σ̃R(q0, q⃗). mφ is a mass of the spin-0 particle. According
to Eq. (A.15) together with Eq. (A.19), we can find an explicit form of spectral
function as

ρ(q0, q⃗) =
−2ImΣ̃R(q0, q⃗)[

q2 −m2 − ReΣ̃R(q0, q⃗)
]2

+
[
ImΣ̃R(q0, q⃗)

]2 . (A.20)

Furthermore, we can obtain another powerful relation as in Eq. (A.16):

ImΣ̃R(q0, q⃗) =
1

2

(
Σ̃>(q0, q⃗)− Σ̃<(q0, q⃗)

)
, (A.21)

since we have used only the properties of θ(x0) and θ(−x0) in obtaining Eq. (A.16).
Next, I derive a dispersion relation often referred to as the Kramers-Kronig re-

lation. Because of the definition of the Heaviside’s step function and the retarded
self-energy in the coordinate space, we find a trivial equality

ΣR(x0, x⃗) = θ(x0)Σ
R(x0, x⃗) . (A.22)

This equality is passed down in the momentum space as

Σ̃R(q0, q⃗) = i

∫
dk0
2π

Σ̃R(k0, q⃗)

q0 − k0 + iϵ

= iP

∫
dk0
2π

Σ̃R(k0, q⃗)

q0 − k0
+

1

2
Σ̃R(q0, q⃗) . (A.23)

Therefore, we get a dispersion relation

ReΣ̃R(q0, q⃗) =
1

π
P

∫ ∞

−∞
dz

ImΣ̃R(z, q⃗)

z − q0
.

=
1

π
P

∫ ∞

0

dz2
ImΣ̃R(z, q⃗)

z2 − q20
, (A.24)
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where we have used ImΣ̃R(q0, q⃗) = ϵ(q0)Im
(
iΣ̃(q0, q⃗)

)
(Σ̃(q0, q⃗) is the Fourier trans-

formation of Σ(x0, x⃗)) in obtaining the second line which is followed by a charge
conjugation invariance of the spin-0 particle in medium.

The real part of the (retarded) self-energy is often suffered by a UV divergence.
When we have a logarithmic UV divergence, the dispersion relation in Eq. (A.24)
should be regularized by replacing as

ReΣ̃R(q0, q⃗) =
1

π
P

∫ ∞

−∞
dz2

ImΣ̃R(z, q⃗)

z2 − q20

→ 1

π
P

∫ ∞

0

dz2
(
ImΣ̃R(z, q⃗)

z2 − q20
− ImΣ̃R(z, q⃗)

z2 − |q⃗|2 −m2

)

=
q2 −m2

φ

π
P

∫ ∞

0

dz2
ImΣ̃R(z, q⃗)

(z2 − q20)(z
2 − |q⃗|2 −m2

φ)
,

(A.25)

where we have used an on-shell renormalization condition as ReΣ̃R(
√

|q⃗|2 +m2
φ, q⃗) =

0.
Finally, I show an explicit form of the greater and lesser Green’s functions in the

momentum space G̃>
free(q0, q⃗) and G̃<

free(q0, q⃗) in the free space. The quantized spin-0
particle field φ(x0, x⃗) is expanded as

φ(x0, x⃗) =

∫
d3q

(2π)32ϵq

{
aq e

−iq·x + a†q e
iq·x} (A.26)

in the vacuum, where ϵq =
√

|q⃗|2 +m2
φ is the on-shell energy with the momentum

k⃗ and the inner product q · x is defined by q · x = ϵqx0 − q⃗ · x⃗. aq and a†q are the
annihilation and creation operators, respectively. The quantization condition is given
in terms of aq and a†q by

[ aq, a
†
p ] = (2π)32ϵqδ

3(q⃗ − p⃗) (A.27)

so that G̃>
free(x0, x⃗) is calculated as

G̃>
free(x0, x⃗) = ⟨0|φ(x0, x⃗)φ(y0, y⃗)|0⟩|y0=0,y⃗=0⃗

=

∫
d3q

(2π)3
1

2ϵq
e−iϵqx0+iq⃗·x⃗

=

∫
d4q

(2π)4
2π

2ϵq
δ(q0 − ϵq)e

−iq·x , (A.28)
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where the vacuum state |0⟩ is defined by aq|0⟩ = 0. In a similar manner, G̃<
free(x0, x⃗)

is

G̃<
free(x0, x⃗) = ⟨0|φ(y0, y⃗)φ(x0, x⃗)|0⟩|y0=0,y⃗=0⃗

=

∫
d3q

(2π)3
1

2ϵq
e+iϵqx0−iq⃗·x⃗

=

∫
d4q

(2π)4
2π

2ϵq
δ(q0 + ϵq)e

−iq·x . (A.29)

Therefore, we can find

G̃>
free(q0, q⃗) =

2π

2ϵq
δ(q0 − ϵq)

G̃<
free(q0, q⃗) =

2π

2ϵq
δ(q0 + ϵq) . (A.30)

By using Eq. (A.14), the spectral function in the vacuum is easily obtained as

ρfree(q0, q⃗) = G̃>
free(q0, q⃗)− G̃<

free(q0, q⃗)

=
2π

2ϵq
δ(q0 − ϵq)−

2π

2ϵq
δ(q0 + ϵq)

= 2πϵ(q0)δ(q
2 −m2

φ) . (A.31)

Furthermore, Eq. (A.31) allows us to find another useful expressions of G̃>
free(q0, q⃗)

and G̃<
free(q0, q⃗) with respect to the spectral function as

G̃>
free(q0, q⃗) = θ(q0)ρfree(q0, q⃗)

G̃<
free(q0, q⃗) = −θ(−q0)ρfree(q0, q⃗) . (A.32)

This relations still hold even when we access to the finite density

G̃>(q0, q⃗) = θ(q0)ρ(q0, q⃗)

G̃<(q0, q⃗) = −θ(−q0)ρ(q0, q⃗) , (A.33)

where we replace the spectral function into a general one ρ(q0, q⃗). These equations
derived in this section help us in calculations of one-loop corrections to self-energies
of D̄ mesons in nuclear matter in the main text.
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Appendix B

Calculations of the self-energies of
σ meson and pion

In this appendix, I show explicit calculations of the self-energies of σ meson and pion
in Fig. 3.1 in the linear sigma model, and the self-energy of pion in Fig.5.2 in the
parity doublet model.

B.1 The self-energies in Fig. 3.1

According to the propagators of σ meson and pion in Eqs. (3.13) and (3.14), the
corresponding self-energies are given by

Σ̃σ(q0, q⃗) = 2g2
∫

d̃4k

(2π)4
tr
[
G̃N(k0, k⃗)G̃N(k0 − q0, k⃗ − q⃗)

]
(B.1)

and

Σ̃π(q0, q⃗) = 2g2
∫

d̃4k

(2π)4
tr
[
iγ5G̃N(k0, k⃗)iγ5G̃N(k0 − q0, k⃗ − q⃗)

]
, (B.2)

where the nucleon propagator G̃N(k0) is provided by Eq. (A.9):

G̃(k0, k⃗) =
i

k2 −m2
N + iϵ

− 2πθ(k0)θ(kkF − |⃗k|)δ(k2 −m2
N) . (B.3)

The symbol d̃4k is defined by Eq. (3.10).
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The real part of the retarded self-energies are calculated as

ReΣ̃R
σ (q0, q⃗) =

g2

2π2

∫ kF

0

d|⃗k| |⃗k|
2

E1

{
4− q20 − |q⃗|2 − 4m2

N

2|⃗k||q⃗|
ln |A1|

}

(B.4)

and

ReΣ̃R
π (q0, q⃗) =

g2

2π2

∫ kF

0

d|⃗k| |⃗k|
2

E1

{
4− q20 − |q⃗|2

2|⃗k||q⃗|
ln |A1|

}
,

(B.5)

where we have defined

A1 =
q20 − |q⃗|2 + 2|⃗k||q⃗|+ 2q0E1

q20 − |q⃗|2 − 2|⃗k||q⃗|+ 2q0E1

q20 − |q⃗|2 + 2|⃗k||q⃗|− 2q0E1

q20 − |q⃗|2 − 2|⃗k||q⃗|− 2q0E1

(B.6)

and

E1 =
√

|⃗k|2 +m2
N . (B.7)

The imaginary parts of the retarded self-energies are

ImΣ̃R
σ (q0, q⃗) = 4πg2(q2 − 4m2

N)

∫
d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 − E1 − E2)

− 4πg2(q2 − 4m2
N)

∫
d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 + E1 + E2)

− 4πg2(q2 − 4m2
N)

∫
d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 − E1 + E2)

+ 4πg2(q2 − 4m2
N)

∫
d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 + E1 − E2)

(B.8)

and

ImΣ̃R
π (q0, q⃗) = 4πg2q2

∫
d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 − E1 − E2)

− 4πg2q2
∫

d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 + E1 + E2)

− 4πg2q2
∫

d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 − E1 + E2)

+ 4πg2q2
∫

d3k

(2π)3
1

4E1E2
θ(kF − |⃗k|)δ(q0 + E1 − E2) , (B.9)
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where E2 is defined by

E2 =
√
|⃗k − q⃗|2 +m2

N . (B.10)

Note that Σ̃π(q0, q⃗) (or Σ̃R
π (q0, q⃗)) satisfies Σ̃π(q0, 0⃗) = 0 (or Σ̃R

π (q0, 0⃗) = 0). This fact
allows us to find

iG̃ab,−1
π (q0, 0⃗) = q20δ

ab (B.11)

in a chiral limit mπ → 0. Namely, the pion remains massless which clearly shows a
behavior of the Nambu-Goldstone boson (NG boson).

B.2 The self-energy in Fig.5.2

Here, I shall show calculations of the self-energies of pion in Fig. 5.2. I simply show
the results here. In the following, I define energies of the nucleon and N∗(1535) with
momentum k⃗ by E+

k and E−
k , respectively, as

E+
k ≡

√
|⃗k|2 +m2

+

E−
k ≡

√
|⃗k|2 +m2

− . (B.12)

Also, I define following quantities

A+ ≡ q20 − |q⃗|2 + 2|⃗k||q⃗|+ 2q0E
+
k

q20 − |q⃗|2 − 2|⃗k||q⃗|+ 2q0E
+
k

q20 − |q⃗|2 + 2|⃗k||q⃗|− 2q0E
+
k

q20 − |q⃗|2 − 2|⃗k||q⃗|− 2q0E
+
k

,

A+− ≡
q20 − |q⃗|2 + 2|⃗k||q⃗|+m2

+ −m2
− + 2q0E

+
k

q20 − |q⃗|2 − 2|⃗k||q⃗|+m2
+ −m2

− + 2q0E
+
k

q20 − |q⃗|2 + 2|⃗k||q⃗|+m2
+ −m2

− − 2q0E
+
k

q20 − |q⃗|2 − 2|⃗k||q⃗|+m2
+ −m2

− − 2q0E
+
k

,

A−+ ≡
q20 − |q⃗|2 − 2q0E

−
k + 2|⃗k||q⃗|+m2

− −m2
+

q20 − |q⃗|2 − 2q0E
−
k − 2|⃗k||q⃗|+m2

− −m2
+

q20 − |q⃗|2 + 2q0E
−
k + 2|⃗k||q⃗|+m2

− −m2
+

q20 − |q⃗|2 + 2q0E
−
k − 2|⃗k||q⃗|+m2

− −m2
+

,

A− ≡ q20 − |q⃗|2 + 2|⃗k||q⃗|+ 2q0E
−
k

q20 − |q⃗|2 − 2|⃗k||q⃗|+ 2q0E
−
k

q20 − |q⃗|2 + 2|⃗k||q⃗|− 2q0E
−
k

q20 − |q⃗|2 − 2|⃗k||q⃗|− 2q0E
−
k

(B.13)

for the convenient.
The real part of the sum of retarded self-energies is obtained as

ReΣ̃R
π (q0, q⃗) = ReΣ̃R

π,+(q0, q⃗) + ReΣ̃R
π,−(q0, q⃗) (B.14)
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where ReΣ̃R
π,+(q0, q⃗) and ReΣ̃R

π,−(q0, q⃗) are

ReΣ̃R
π,+(q0, q⃗)

=
g2NNπ

2π2

∫ kF+

0

d|⃗k| |⃗k|
2

E+
k

{
4− q20 − |q⃗|2

2|⃗k||q⃗|
ln |A+|

}

− m2
+

(2σ0hNNπ)
2

π2

∫ kF+

0

d|⃗k| |⃗k|
2

E+
k

q20 − |q⃗|2

|⃗k||q⃗|
ln |A+|

+
4σ0m+gNNπhNNπ

π2
(q20 − |q⃗|2)

∫ kF+

0

d|⃗k| |⃗k|
2

E+
k

1

2|⃗k||q⃗|
ln |A+|

+
g2NN∗π

π2

∫ kF+

0

d|⃗k| |⃗k|
2

E+
k

{
2− q20 − |q⃗|2 − (m+ +m−)2

4|⃗k||q⃗|
ln |A+−|

}

+
2(2σ0hNN∗π)2

π2

∫ kF+

0

d|⃗k| |⃗k|
2

2E+
k

2(m2
− −m2

+)

− 2(2σ0hNN∗π)2

π2

∫ kF+

0

d|⃗k| |⃗k|
2

2E+
k

(m− −m+)2(q20 − |q⃗|2 − (m+ +m−)2)

4|⃗k||q⃗|
ln |A+−|

+
8σ0gNN∗πhNN∗π

π2

∫ kF+

0

d|⃗k| |⃗k|
2

2E+
k

2(m+ +m−)ln |A+−|

− 8σ0gNN∗πhNN∗π

π2

∫ kF+

0

d|⃗k| |⃗k|
2

2E+
k

(m− −m+)(q20 − |q⃗|2 − (m+ +m−)2)

4|⃗k||q⃗|
ln |A+−|

− 2gNNσm+

π2σ0

∫ kF+

0

d|⃗k| |⃗k|
2

E+
k

, (B.15)
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and

ReΣ̃R
π,−(q0, q⃗)

=
g2N∗N∗π

2π2

∫ kF−

0

d|⃗k| |⃗k|
2

E−
k

{
4− q20 − |q⃗|2

2|⃗k||q⃗|
ln |A−|

}

− m2
−
(2σ0hN∗N∗π)

2

π2

∫ kF−

0

d|⃗k| |⃗k|
2

E−
k

q20 − |q⃗|2

|⃗k||q⃗|
ln |A−|

+
4σ0m−gN∗N∗πhN∗N∗π

π2
(q20 − |q⃗|2)

∫ kF−

0

d|⃗k| |⃗k|
2

E−
k

1

2|⃗k||q⃗|
ln |A−|

+
g2NN∗π

π2

∫ kF−

0

d|⃗k| |⃗k|
2

E−
k

{
2− q20 − |q⃗|2 − (m+ +m−)2

4|⃗k||q⃗|
ln |A−+|

}

+
2(2σ0hNN∗π)2

π2

∫ kF−

0

d|⃗k| |⃗k|
2

2E−
k

2(m2
− −m2

+)

− 2(2σ0hNN∗π)2

π2

∫ kF−

0

d|⃗k| |⃗k|
2

2E−
k

(m− −m+)2(q20 − |q⃗|2 − (m+ +m−)2)

4|⃗k||q⃗|
ln |A−+|

− 8σ0gNN∗πhNN∗π

π2

∫ kF−

0

d|⃗k| |⃗k|
2

2E−
k

2(m+ +m−)ln |A−+|

− 8σ0gNN∗πhNN∗π

π2

∫ kF−

0

d|⃗k| |⃗k|
2

2E−
k

(m− −m+)(q20 − |q⃗|2 − (m+ +m−)2)

4|⃗k||q⃗|
ln |A−+|

− 2gN∗N∗σm−

π2σ0

∫ kF−

0

d|⃗k| |⃗k|
2

E−
k

, (B.16)

respectively.
The imaginary part also has two parts as

ImΣ̃R
π (q0, q⃗) = ImΣ̃R

π,+(q0, q⃗) + ImΣ̃R
π,−(q0, q⃗) , (B.17)
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where ImΣ̃R
π,+(q0, q⃗) is

ImΣ̃R
π,+(q0, q⃗)

= πG2
1

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E+
k E

+
k−q

θ(kF+ − |⃗k|)δ(q0 − E+
k − E+

k−q)

− πG2
1

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E+
k E

+
k−q

θ(kF+ − |⃗k|)δ(q0 + E+
k + E+

k−q)

− πG2
1

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E+
k E

+
k−q

θ(kF+ − |⃗k|)δ(q0 − E+
k + E+

k−q)

+ πG2
1

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E+
k E

+
k−q

θ(kF+ − |⃗k|)δ(q0 + E+
k − E+

k−q)

+ πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E+
k E

−
k−q

θ(kF+ − |⃗k|)δ(q0 − E+
k − E−

k−q)

− πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E−
k−qE

+
k

θ(kF+ − |⃗k|)δ(q0 + E−
k−q + E+

k )

− πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E+
k E

−
k−q

θ(kF+ − |⃗k|)δ(q0 − E+
k + E−

k−q)

+ πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E−
k−qE

+
k

θ(kF+ − |⃗k|)δ(q0 − E−
k−q + E+

k ) ,

(B.18)
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and ImΣ̃R
π,−(q0, q⃗) is

ImΣ̃R
π,−(q0, q⃗)

= πG2
3

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E−
k E

−
k−q

θ(kF− − |⃗k|)δ(q0 − E−
k − E−

k−q)

− πG2
3

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E−
k E

−
k−q

θ(kF− − |⃗k|)δ(q0 + E−
k + E−

k−q)

− πG2
3

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E−
k E

−
k−q

θ(kF− − |⃗k|)δ(q0 − E−
k + E−

k−q)

+ πG2
3

q20 − |q⃗|2

2

∫
d3k

(2π)3
1

E−
k E

−
k−q

θ(kF− − |⃗k|)δ(q0 + E−
k − E−

k−q)

+ πG2
2g

2 q
2
0 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E−
k E

+
k−q

θ(kF− − |⃗k|)δ(q0 − E−
k − E+

k−q)

− πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E+
k−qE

−
k

θ(kF− − |⃗k|)δ(q0 + E+
k−q + E−

k )

− πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E−
k E

+
k−q

θ(kF− − |⃗k|)δ(q0 − E−
k + E+

k−q)

+ πG2
2

q20 − |q⃗|2 − (m+ +m−)2

2

∫
d3k

(2π)3
1

E+
k−qE

−
k

θ(kF− − |⃗k|)δ(q0 − E+
k−q + E−

k ) .

(B.19)

In these expressions, the couplings G1, G2 and G3 are defined by

G1 ≡ gNNπ + 4σ0m+hNNπ , (B.20)

G2 ≡ gNN∗π + 2σ0(m− −m+)hNN∗π , (B.21)

G3 ≡ gN∗N∗π + 4σ0m−hN∗N∗π . (B.22)

Again we can confirm Σ̃π(q0, q⃗) with q⃗ → 0⃗ in a chiral limit together with the gap
equation in Eq. (5.23), which indicates that pion becomes massless.
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