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Abstract

In the early universe, a number of cosmological phase transitions are expected to

have taken place. These cosmological phase transitions could leave features in the

early universe, which are called cosmic defects. These defects are caused by the

symmetry breaking and live longer than the time scale of their phase transitions. In

this study, we focus on two of them. One is the cosmic string which is a string like

high energy region, and the other is the texture which is the self-ordering scalar fields.

These defects induce scalar, vector, and tensor mode cosmological perturbations in the

universe, and these perturbations produce observational signatures. We expect that

we can probe the phase transitions observing such signatures. Here we will see the

signatures caused by the vector and tensor perturbations which are not contaminated

by the standard cosmological perturbations.

In this study, we will investigate the generation process of the observational signa-

tures of cosmic defects in vector and tensor perturbations according to the four papers

[1, 2, 3, 4]. Here we review the generation of the primordial magnetic fields from cos-

mic strings and textures [1, 2], the primordial gravitational waves from cosmic strings

[3] and the gravitational lensing signals from textures [4].

The energy momentum tensors of cosmic strings and textures have anisotropic

stresses so that they produce vector and tensor perturbations. In the early universe,

the vector-mode perturbation from defects induces the relative velocity between pho-

ton and baryon fluids and it leads the generation of primordial magnetic fields, the

tensor-mode perturbation from defects generates primordial gravitational waves, and

both of vector and tensor perturbations induce weak gravitational lensing effects on

the cosmic microwave background fluctuations (CMB lensing) and the shape of galax-

ies (cosmic shear).

We find that the resulting magnetic fields are Bstring ∼ 10−25(Gµ/10−6) Gauss

and Btexture ∼ 10−19ϵv Gauss at about 100Mpc scale for cosmic strings and textures,

respectively, where ϵ2v = N−1(Gv2)2 is the combined parameter for texture, G is the

gravitational constant, N is the number of scalar fields constituting the texture, v is

their vacuum expectation value, and µ is the tension of the strings. The strength of

gravitational waves from infinite string network is given as Ωstring
gw ∼ 10−8(Gµ/10−6)2

at 10−8Hz. Assuming a CMB ideal lensing observation without instrumental noise,

we can obtain an upper limit of ϵv as 2.7× 10−6.
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Part.I

Introduction





In recent years, various precise observations of the universe enable us to reveal the

evolution of the universe. One of the most important observational signatures, which

has a stock of information, is the cosmic microwave background (CMB) discovered

by [5]. It is the afterglow of the epoch of ”big bang”, in which the universe was in

a very high density and high temperature state. CMB is the black body radiation

whose mean temperature and its fluctuation are T = 2.725K and ∆T/T ∼ 10−5,

respectively. Because of its high density, we can not see earlier than the CMB epoch.

CMB is the oldest observational signature which we can see by elecromagnetic waves.

From a viewpoint of a grand unified theory (GUT) [6, 7], there were many fields

in the early universe and they have experienced a number of phase transitions due

to decrease of temperature. Observing these phase transitions themselves is difficult

because most of them have occurred before the era of CMB and we can not see them

by electromagnetic waves. Here we would like to mention the fact that, however,

these phase transitions could leave some features called cosmic defects, such as cosmic

strings and textures [8]. They can live longer than the time of the phase transition, and

it may have more chance to observe the features induced by them than observing the

phase transitions themselves. Cosmological features left by defects can be estimated

by structures of the universe at present, which can be evaluated by cosmological

perturbations. It is interesting that we can probe such high energy phenomena by

observing the cosmological signatures in the late universe.

In this thesis, we describe observational signatures of cosmic defects, cosmic strings

and texture, according to the cosmological perturbation theory. In part I, we will

review the standard cosmology where we introduce cosmological perturbation theory

(chapeter 1), and physics of cosmological phase transitions (chapter 2). We will

discuss the cosmic defects, especially cosmic strings and textures and their effects on

cosmological vector and tensor perturbations. In part II, we represent the generation

of magnetic fields from cosmic strings (chapter 4) and textures (chapter 5). In part

III, we give accounts of the generation of gravitational waves from the sharp structures

called kinks on cosmic strings (chapter 7). In part IV we will see the weak gravitational

lensing effects of textures on galaxies shapes (chapter 8) and CMB angular power

spectra. Finally, we summarize the each signature in part V. Here we adopt natural

units c = ℏ = kB = 1, where c is the light speed, ℏ is the reduced Planck constant

and kB is the Boltzmann constant.
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Chapter.1

Standard cosmology

The underlying concept of the standard big bang cosmology is that the universe

began as a high density and high temperature region called ‘fire ball’, and such the

universe is expanding until now with decreasing temperature. This concept of ex-

panding universe was suggested by Friedmann and Lemâıtre independently [9, 10],

considering the general relativity (GR) [11] under the condition of the homogeneous

and isotropic space. Solving Einstein’s field equation, they obtained the solution of

the expanding or contracting universe. ￥Hubble found almost all distant galaxies

were moving away from us and their recession velocities were proportional to the

distances [14]. This observational relation between distance and velocity of galaxies

provides a firm basis of expansion of the universe. Moreover, it turns out the expan-

sion is actually accelerating due to recent observations of type-Ia Supernovae [15, 16].

These observational facts strongly support the idea of the globally homogeneous and

isotropic expanding universe. According to the concept of the expanding universe,

the universe started as a high density and high temperature point in the ancient era

[12, 13], and this era is called the ‘big bang’ era.

On the contrary to homogeneity and isotropy, we can see local inhomogeneity of

the universe via local structures in the universe like galaxies clusters and cosmic webs.

These local structures are originated from tiny density fluctuations of the early uni-

verse which we can see in the cosmic microwave background [17, 18, 19] as temperature

fluctuations. These results suggest that the universe is globally homogeneous but it

has seed fluctuations for the structure formation. Evolution of these fluctuations is

described by the theoretically well established cosmological perturbations. The cos-

mological perturbation theory can represent not only the structures but also magnetic

fields, gravitational waves and so on. Using the cosmological perturbation theory, we

can calculate these cosmological signatures directly.
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1.1 Evolution of the universe

In this section, we will review the expanding homogeneous and isotropic universe

based on the GR. The structure of the spacetime is represented using the world

distance ds and the metric gµν as,

ds2 = gµνdx
µdxν , (1.1.1)

where dxµ is the infinitesimal displacement in four dimensional spacetime and we

sum up the indices µ and ν from 0 to 3 (Einstein’s notation). Because we consider

the homogeneous and isotropic universe, the world distance and the metric can be

written as

ds2 = gµνdx
µdxν = −dt2 + a2(t)d2x⃗ = a2(η)(−dη2 + d2x⃗), (1.1.2)

= a2(η)ηµνdx
µdxν , (1.1.3)

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.1.4)

where t is the physical time, η =
∫
dt/a(t) is the conformal time, a is the scale factor

of the universe which represents the homogeneous and isotropic evolution (expansion

and contraction) of space, and ηµν is the Minkovski metric. The Einstein field equa-

tion that denotes the relation between the energy momentum tensor of matters and

spacetime is given as,

Gµν = Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (1.1.5)

where Gµν is the Einstein tensor, Rµν is the Riemann tensor, R is the Ricci scalar,

G is the gravitational constant, Tµν is the energy momentum tensor, and Λ is the

cosmological constant. Using the metric gµν , the Riemann tensor and Ricci scalar are

defined as the following equations,

R = Rµµ, (1.1.6)

Rµν = Rρµρν , (1.1.7)

Rρσµν =
∂

∂xµ
Γρνσ − ∂

∂xν
Γρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (1.1.8)

Γρµν = gρλ
(
∂gλν
∂xµ

+
∂gµλ
∂xν

− ∂gµν
∂xλ

)
, (1.1.9)
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where Γρµν the Christoffel symbol. Assuming the components of the universe to be

perfect fluids, we can describe the energy momentum tensor as

Tµν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (1.1.10)

where ρ is the energy density and P is the pressure of the fluids. In case of the homo-

geneous and isotropic universe described by equations (1.1.2) and (1.1.10) (hereafter

we assumed the curvature of the universe K as zero), we can obtain the evolution of

the scale factor by calculating (1.1.5) as,(
1

a

da

dt

)2

= H2 =
8πG

3
ρ+

Λ

3
, (1.1.11)

1

a

d2a

dt2
= −4πG

3

(
ρ+ 3P − Λ

4πG

)
, (1.1.12)

where H is the Hubble parameter. These are simultaneous equations called the Fried-

mann equations. Here we introduce the other notation for these equations as

H2 =
8πG

3
ρa2 +

Λ

3
a2, (1.1.13)

Ḣ = −4πG

3

(
ρ+ 3P − Λ

4πG

)
a2, (1.1.14)

where H = Ha is the conformal Hubble parameter, and dot ˙ represents the conformal

time derivative d/dη.

Here we review the evolution of the universe and the scale factor according to

the Friedmann equations (1.1.11) and (1.1.13). In the early universe, at the epoch of

inflation, the evolution of the universe is driven by the potential energy of the inflation

field and the energy density of the universe can be written as ρinf ∼ V (ϕ) ∼ constant,

where V is the potential of the inflation field ϕ, and we obtain the evolution of the

scale factor as a(t) ∝ exp(
√
8πGρinf/3t). After the inflation epoch, the inflation field

was thermalized and it produced particles. This process is called reheating. After

the reheating epoch, the universe had become hot and been filled with relativistic

particles. At that epoch (i.e., the radiation dominated epoch), the evolution of energy

density of the universe can be written as ρrad ∝ a−4, where the a−3 is from the

expansion of space and the other a−1 is from the redshift of frequency of relativistic

particles. In this case, we can describe the evolution of the scale factor as arad ∝
t1/2 (∝ η). The temperature of the universe decreases according to expansion of

the universe (T ∝ a−1) and when the temperature became lower than the mass of
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massive particles (m > T ), they could not be relativistic any longer, the massive

particles became none-relativistic. Then we can express the energy density of such

particles as ρmat ∝ a−3. Because ρmat ∝ a−3 decreases slower than ρrad ∝ a−4, they

would dominate the universe later (the matter dominated epoch). In that epoch, the

time dependence of scale factor is a ∝ t2/3 ∝ η2. Afterward, the decrease of ρmat

is caused by the evolution of the scale factor, and the cosmological constant term

in (1.1.11) and (1.1.13) will dominate the universe. Then the expansion law of the

universe has an accelerating form (a ∝ exp(
√

Λ/3t)) again.

Here we redefine the Friedmann equation using non-dimensional quantities. Let us

first define the critical density of the universe,

ρcrit ≡
3H2

8πG
, (1.1.15)

as a unit of energy density. When we consider the standard cosmology called the

ΛCDM model, in which the evolution of the universe is almost driven by dark energy

and cold dark matter nowadays, we can describe density components in the unit of

the critical density as

ρ

ρcrit,0
=

ρr
ρcrit,0

+
ρm
ρcrit,0

+
ρΛ
ρcrit,0

= Ωra
−4 +Ωma

−3 +ΩΛ, (1.1.16)

where subscript zero 0 represents quantities at present time, ρΛ = Λ/8πG is the energy

density of the dark energy, Ωr ≡ ρr,0/ρcrit,0, Ωm ≡ ρm,0/ρcrit,0 and ΩΛ ≡ ρΛ/ρcrit,0 are

density parameters for radiation, matter and dark energy components of the universe,

respectively, and they satisfy the relation Ωr + Ωm + ΩΛ = 1. Then we can rewrite

the Friedmann equation using the density parameters as

H2 = H2
0 (Ωra

−2 +Ωma
−1 +ΩΛa

2). (1.1.17)

where H0 is the Hubble parameter at present time. One can see that the ratio of

each parameter decides when each epoch starts. The matter dominated epoch starts

at the matter-radiation equality time amr = Ωr/Ωm, and the dark energy dominated

epoch starts at dark energy-matter equality time ad = (Ωm/ΩΛ)
1/3. Thanks to pre-

cise cosmological observations in recent years [20], these cosmological parameters are

determined as H0 ∼ 70[km/s/Mpc], Ωm ∼ 0.3, Ωm/Ωr ∼ 3000, and ΩΛ ∼ 0.7. Let us

review the history of the universe with these parameters. Here we define the another

notation of the scale factor namely redshift using the elongation of electromagnetic

waves due to cosmic expansion. We can denote the elongation of the wavelength as

λobs
λemit

=
aobs
aemit

≡ 1 + z (1.1.18)
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where λobs is the observed wavelength, λemit is the emitted wavelength, aobs = a0

is the scale factor at observation time (here we assume present time), aemit is the

scale factor at emission time and z is called redshift which represents the extension

of wavelength. We can see the radiation dominated epoch continues until matter-

radiation equality at redshift about zm = a−1
mr−1 = Ωm/Ωr−1 ∼ 3000. After that, the

matter dominated epoch starts and it lasts until the epoch when dark energy density

coinside with that of matter density, at redshift about z = a−1
d −1 = (ΩΛ/Ωm)

1/3−1 ∼
0.3. Then dark energy dominated epoch starts and now the universe is driven by dark

energy.

Finally we introduce the baryonic component. We divide the matter component

into two terms,
Ωm = Ωc +Ωb, (1.1.19)

where Ωc is the contribution from cold dark matter which interacts only via gravity,

and Ωb is the contribution from usual matter. As long as we consider the evolution of

the universe as a whole, we do not need to consider individual components. However, if

we need to treat perturbations from the homogeneous and isotropic universe to handle

structure formation, the difference between cold dark matter and baryon becomes

significant due to the electromagnetic interactions of the baryonic components.

1.2 Cosmological perturbation theory

In this section, we review the cosmological perturbation theory according to the

Einstein equation (1.1.5). We consider the metric perturbations in the universe with

the isotropic and homogeneous background. We decompose the perturbations into

three independent modes, i.e., scalar, vector, tensor mode [21, 22, 23]. In this thesis,

we focus on vector and tensor modes in particular, because these modes have only

decaying solutions in the standard cosmology, and they are useful to see the effects

of external sources like cosmic defects on metric perturbations.

We define the metric perturbation as,

gµνdx
µdxν = a2(η)(−dη2 + (δij + hij)dx

idxj), (1.2.20)

in the synchronous gauge, where hij is the metric perturbation. Here we decompose

hij into a trace part h = hii and three traceless parts h
∥
ij , h

⊥
ij and h

T
ij in Fourier space

as

hij =
h

3
δij + h

∥
ij + h⊥ij + hTij , (1.2.21)

9



where
ϵijkkikjh

∥
kl = 0, kikjh

⊥
ij = 0, kih

T
ij = 0, (1.2.22)

ki is wavenumber vector and ϵijk is the Levi-Civita tensor. Here we can denote these

terms using the projection functions O(k̂). At first, we rewrite the parallel mode h
∥
ij

as

h
∥
ij = O(0)

ij (k̂)hS , O(0)
ij (k̂) =

√
3

2

(
k̂ik̂j −

δij
3

)
(1.2.23)

where hS is the scalar perturbation, O(0)
ij (k̂) is the projection to the scalar mode and

k̂i is the unit wavenumber vector. Next we decompose h⊥ij as

h⊥ij =
ik̂ihj + ik̂jhi√

2
, (1.2.24)

where hi is a divergenceless vector. Using the vector basis,

ê(±1)(k̂) =
(ê1(k̂)± iê2(k̂))√

2
, (1.2.25)

where k̂ · ê1(k̂) = k̂ · ê2(k̂) = ê1(k̂) · ê2(k̂) = 0, ê1(k̂) · ê1(k̂) = ê2(k̂) · ê2(k̂) = 1 and

kiê
±
i (k̂) = 0, we can represent hi as

hi =
∑
λ=±1

λh
(λ)
V e

(λ)
i (k̂). (1.2.26)

From equations (1.2.24) and (1.2.26), we can obtain h⊥ij directly as

h⊥ij =
∑
λ=±1

h
(λ)
V O(λ)

ij (k̂), O(λ)
ij (k̂) =

iλ√
2
(k̂iê

(λ)
j (k̂) + k̂j ê

(λ)
i (k̂)), (1.2.27)

where h
(λ)
V is the amplitude of the vector perturbation. In the same way as the vector

mode, using the tensor basis (polarization tensor),

ê±2
ij (k̂) = ê±i (k̂)ê

±
j (k̂), (1.2.28)

we can denote the tensor mode hTij directly as

hTij =
∑
σ=±2

h
(σ)
T O(σ)

ij (k̂), O(σ)
ij (k̂) = ê±2

ij (k̂), (1.2.29)

where hT is the amplitude of tensor perturbation. Here scalar mode perturbations h

and hS correspond to scalar quantities such as gravitational potential, vector mode

perturbations h
(λ)
V represent vector quantities such as vorticity or vector fields, and

tensor mode perturbations h
(σ)
T are equivalent to gravitational waves. Multiplying

10



O(0)
ij , O(λ)

ij or O(σ)
ij in eqs.(1.2.23), (1.2.27) and (1.2.29) by the metric perturbation

hij , we can obtain each perturbation as

O(0)
ij (k̂)hij = hS , O(λ)

ij (k̂)hij = h
(−λ)
V , O(σ)

ij (k̂)hij = h
(−σ)
T . (1.2.30)

Note that these projections are orthonormal each other,

O(0)
ij (k̂)O(λ)

ij (k̂) = O(λ)
ij (k̂)O(σ)

ij (k̂) = O(σ)
ij (k̂)O(0)

ij (k̂) = 0, (1.2.31)

and we defined them as a normalized system,

O(0)
ij (k̂)O(0)

ij (k̂) = O(λ)
ij (k̂)O(−λ)

ij (k̂) = O(σ)
ij (k̂)O(−σ)

ij (k̂) = 1. (1.2.32)

Now we can see scalar, vector, tensor mode are independent from each other and this

decomposition is called the scalar vector tensor (SVT) decomposition. Hereafter, we

will focus on vector and tensor modes perturbations, and we will see their evolutions

briefly.

Substituting eq.(1.2.20) into eq.(1.1.5), we obtain the equation of motion for the

scale factor a as eq.(1.1.11) in the zero-th (background) order, and decomposing vector

and tensor modes, we obtain the equations of motions for each mode in first (linear)

order approximation as,
σ̇V + 2HσV = 8πGΠV /k, (1.2.33)

ḧT + 2Hḣ+ k2h = 16πGΠT , (1.2.34)

where σV = σ
(λ)
V = ḣ

(λ)
V /k is the vorticity, ΠV = Π

(λ)
V = O(λ)

ij Tij is the anisotropic

stress in vector mode, and ΠT = Π
(σ)
T = TijO(σ)

ij is the anisotropic stress in tensor

mode. Here we omit subscripts λ and σ for simplicity because of independency of

each mode shown in eq.(1.2.31). In other words individual modes do not mix in first

order perturbations.

In the standard cosmological perturbation theory, the vector and tensor modes

anisotropic stress ΠV ,ΠT do not appear at cosmological scales, because all (per-

turbed) source terms induced by the energy momentum tensor Tµν at cosmological

scale are originated in the density perturbation δρ and it can only induce scalar modes.

In such a situation, the equations of motions for vector and tensor modes, eqs.(1.2.33)

and (1.2.34) have only free streaming solutions and only propagate the initial values.

Then solving eq.(1.2.33) assuming ΠV = 0, we obtain the vorticity σV as a decreasing

function,

σV = σV 0(k⃗)a
−2 (1.2.35)
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where σV 0(k⃗) is the initial value of vorticity. In the same way, we consider the case

of tensor mode assuming ΠT = 0. We can solve (1.2.34) as

hT (k⃗, η) =
kη

a(η)

(
h1(k⃗)jν−1(kη) + h2(k⃗)nν−1(kη)

)
→ hini(k⃗)

kη

a(η)
jν−1(kη), (1.2.36)

where ν is the power law index of conformal time at that time,

ν ≡ d ln a

d ln η
. (1.2.37)

νrad = 1 and νmat = 2 are the indices at the radiation and matter dominated epochs,

respectively, jν(x) is the spherical Bessel function, nν(x) is the spherical Neumann

function, h1(= hini) and h2 are the arbitrary functions corresponding to initial condi-

tions. Here we assume there is no divergence at η = 0 and we adopt only the spherical

Bessel term. These modes are only propagating initial values and they are decreasing

functions in time.

The above discussion is true only when we assume both the first order cosmological

perturbation theory and the energy momentum tensor from the standard matters.

When we consider the second order perturbation terms or external sources, vector

and tensor modes arise. In the case of the second order perturbations, coupling of

scalar-mode perturbations (second order terms) can induce vector or tensor mode. In

the case of external sources, vector and tensor modes are produced by kinetic terms or

other contributions. Here let us show a case of an external source which is originated

from a scalar field, for example. The energy momentum tensor of a scalar field can

be written as

Tϕµν = ∇µϕ∇νϕ
∗ − gµν

(
1

2
∇αϕ∇αϕ∗ + V (ϕ)

)
, (1.2.38)

and in Fourier space as

Tϕij(k⃗) =

∫
d3q qi(qj − kj)ϕ̃(q, η)ϕ̃(|q⃗ − k⃗|, η)ϕini(q⃗)ϕini(q⃗ − k⃗)

−1

2
gij

∫
d3q qα(q

α − kα)ϕ̃(q, η)ϕ̃(|q⃗ − k⃗|, η)ϕini(q⃗)ϕini(q⃗ − k⃗)

−
∫
gµνV (ϕ)e−ik⃗·x⃗

d3x

(2π)3
, (1.2.39)

where ϕ̃(q, t) is the transfer function, and ϕini(q⃗) is the initial value of the scalar field.

Considering the vector projection,

qi(qj − kj)O(λ)
ij (k̂) =

λ

2

√
1− µ2(k − 2qµ)qe−iψ(k̂,q̂,λ), (1.2.40)
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gijO(λ)
ij (k̂) = 0, (1.2.41)

where µ = k̂ · q̂ = cos θ, q̂ is the unit vector of q⃗, θ is the angle between k̂ and q̂,

and ψ(k̂, q̂, λ) is the angle defined by k̂ and q̂, we obtain the vector mode anisotropic

stress from a scalar field as

Π
(λ)
V =

λ

2

∫
d3q

√
1− µ2(k − 2qµ)qϕ̃(q, η)ϕ̃(|q⃗ − k⃗|, η)

×ϕini(q⃗)ϕini(q⃗ − k⃗)e−iψ(k̂,q̂,λ). (1.2.42)

Then let us see the tensor mode. We can represent the projections as

qi(qj − kj)O(σ)
ij (k̂) =

1

2
(1− µ2)q2e−2iψ(k̂,q̂,σ), (1.2.43)

gijO(σ)
ij (k̂) = 0, (1.2.44)

and therefore the tensor mode anisotropic stress is given as

Π
(σ)
T =

1

2

∫
d3q (1− µ2)q2ϕ̃(q, η)ϕ̃(|q⃗ − k⃗|, η)

×ϕini(q⃗)ϕini(q⃗ − k⃗)e−2iψ(k̂,q̂,σ). (1.2.45)

Now we can see that kinetic terms of a scalar field can produce the vector and tensor

modes anisotropic stresses. This means that external sources which have kinetic terms

can produce the vector and tensor modes anisotropic stress generally.
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Chapter.2

Phase transition and cosmic defects

generation

In this chapter, we explain a phase transition of a scalar field due to decreasing

temperature of the universe [24, 25, 26, 27] and how defects are configured in the

phase transition [8, 28] according to [29]. Here we in particular focus on defects called

cosmic strings and textures, and we will discuss their effects on vector and tensor

perturbations.

2.1 Phase transition of a scalar field

Phase transitions are phenomena in which fields or particles change their features or

states. In case of scalar fields, phase transitions occur due to decrease of temperature

of the universe. In the early very hot and dense universe, their mass or vacuum

energy were negligible (they were in free states), but now they seem to have mass

or vacuum expected values and in stable states (they are in bound states). This

means that they have experienced phase transitions. One major indicator of phase

transitions is symmetry. Phase transitions which go from free states to bound states

correspond to symmetry breaking, and which go from bound states to free states

are called symmetry restoration. In case of scalar fields, these phase transitions are

characterized by the effective potential of scalar fields. Here we introduce the effective

potential of a scalar field and its temperature dependence at first. Next we include

a vector field with U(1) (rotation) symmetry in addition to the scalar field, and we

confirm that a symmetry breaking of the effective potential and a phase transition

of a scalar field could take place. In this section, we consider the homogeneous and

15



isotropic universe,
gµνdx

µdxν = −dt2 + dx⃗2, (2.1.1)

where we ignore the cosmic expansion for simplification.

Effective potential of a scalar field

Here we introduce the physics of a self-ordering scalar field and its fluctuation

χ(t, x⃗) = χ̄(t) + ϕ(t, x⃗). After derivation of the equation of motion of the scalar field

χ, we see the effects of fluctuation ϕ(t, x⃗) on the homogeneous component of the scalar

field χ̄(t) by considering quantization of the fluctuation ϕ(t, x⃗) and its thermal effects.

At first, let us consider the Lagrangian density of the self-ordering scalar field χ,

L = −1

2
∂µχ∂µχ− V (χ), (2.1.2)

where V (χ) is the potential of the scalar field. Taking the variations of the Lagrangian,

we obtain the equation of motion of the scalar field as,

− ∂µ∂µχ+ V ′(χ) = 0, (2.1.3)

where we define derivation of the potential V as V ′(χ) ≡ ∂V/∂χ. Decomposing

the scalar field χ(t, x⃗) into the homogeneous part and the inhomogeneous fluctuation,

χ(t, x⃗) = χ̄(t)+ϕ(t, x⃗), and taking ensemble average, we obtain the equation of motion

of χ̄ as

− ∂µ∂µχ̄+ V ′(χ̄) +
1

2
V ′′′(χ̄)

⟨
ϕ2
⟩
= 0, (2.1.4)

where V ′′′(χ̄) ≡ ∂3V (χ̄)/∂χ̄3 and
⟨
ϕ2
⟩
is the ensemble average of the squared fluc-

tuation of the scalar field. Here we have to take the term V ′′′(χ̄)
⟨
ϕ2
⟩
into account

when considering the effective potential for the homogeneous scalar field χ̄. Then we

need to solve the equation of motion for ϕ(t, x⃗) and estimate the value of
⟨
ϕ2
⟩
. From

the first order perturbation of eq.(2.1.3), the equation of motion of the fluctuation

ϕ(t, x⃗) is written as,
− ∂µ∂µϕ+m2

ϕ(χ̄)ϕ = 0, (2.1.5)

where we define and assume,

m2
ϕ(χ̄) ≡ V ′′(χ̄) =

∂2V

∂χ̄2
≥ 0, (2.1.6)

and the time variation of m2
ϕ(χ̄) is slower than that of ϕ itself. Then the solution of

ϕ(t, x⃗) is given by,

ϕ(t, x⃗) =

∫
d3k

(2π)3/2
1√
2ωk

(
e−iωkt+ik⃗·xa+k + eiωkt−ik⃗·xa−k

)
, (2.1.7)
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where,

ωk =
√
k2 +m2

ϕ(χ̄), (2.1.8)

is the angular velocity and a+k = (a−k )
∗ is the integration constant. To obtain the

ensemble average
⟨
ϕ2
⟩
, we quantize the field ϕ(t, x⃗) → ϕ̂x(t) and its conjugate mo-

mentum ∂L/∂ϕ̇x = ∂ϕx/∂t → ∂ϕ̂x/∂t = π̂x. Their commutation relation is denoted

as, [
ϕ̂x(t), π̂y(t)

]
= ϕ̂x(t)π̂y(t)− π̂y(t)ϕ̂x(t) = iδ(x⃗− y⃗), (2.1.9)

where ϕ̂x(t) and π̂x(t) are the operators of the field, and this relation is called the

Heisenberg’s commutation relation. Then, the integration constants a+k = (a−k )
∗ also

become operators as, a+k → â+k , a
−
k → â−k , and we obtain their commutation relations

as, [
â−k (t), â

+
k′(t)

]
= δ(k⃗ − k⃗′),

[
â−k (t), â

−
k′(t)

]
=
[
â+k (t), â

+
k′(t)

]
= 0. (2.1.10)

where â+k and â−k are called the creation and annihilation operators. These commu-

tation relations correspond to those of a harmonic oscillator, and we can write it in

the Hilbert space. First we define the vacuum state as,

â−k (t) |0⟩ = 0, (2.1.11)

where |0⟩ is the ground (vacuum) state and this state is defined for all wavenumbers

k. Then we can denote the nk particles state as

|nk⟩ =
(â+k )

nk

√
nk!

|0⟩ , (2.1.12)

and its average as

⟨
â+k â

−
k′

⟩
Q
=

⟨nk| â+k â
−
k′ |nk⟩

⟨nk|nk⟩
= nkδ(k⃗ − k⃗′), (2.1.13)

⟨
â+k â

+
k′

⟩
Q
=
⟨
â−k â

−
k′

⟩
Q
= 0. (2.1.14)

Substituting the creation and annihilation operators into (2.1.7) and using the com-

mutation relations eqs.(2.1.13) and (2.1.14), we can calculate the ensemble average of⟨
ϕ2
⟩
as ⟨

ϕ2
⟩
=

1

2π2

∫
dk k2

ωk

(
nk +

1

2

)
=
⟨
ϕ2
⟩
T
+
⟨
ϕ2
⟩
V
, (2.1.15)

where
⟨
ϕ2
⟩
T

is the thermal contribution from nk term and
⟨
ϕ2
⟩
V

is the vacuum

contribution from the other term. We will see each term below.
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Vacuum contribution

The vacuum contribution can be written as [29],

1

2
V ′′′(χ̄)

⟨
ϕ2
⟩
V
=

1

8π2

∂m2
ϕ(χ̄)

∂χ̄

∫ kc=M dk k2√
k2 +m2

ϕ(χ̄)
=
∂V vac

ϕ

∂χ̄
, (2.1.16)

V vacϕ =
1

4π2

∫ M

dk k2
√
k2 +m2

ϕ(χ̄) =
I(mϕ(χ̄))

4π2
, (2.1.17)

I(m) =
1

8

[
M(2M2 +m2)

√
M2 +m2 +m4 ln

m

M +
√
M2 +m2

]
(2.1.18)

where we introduce the cutoff scale kc = M ≫ mϕ to see the characteristics of the

vacuum and its divergence. Then we obtain the equation of motion of the averaged

field χ̄ using the effective potential Veff as

− ∂µ∂µχ̄+ V ′
eff(χ̄) = 0, (2.1.19)

where the effective potential Veff including the vacuum contribution V vac
ϕ is given by

Veff(χ̄) = V + V vac
ϕ

= V + V∞ +
m2
ϕ

64π2
ln
m2
ϕ

µ2
, (2.1.20)

V∞ =
M4

16π2
+

M2

16π2
m2
ϕ −

m4
ϕ

32π2
ln

2M

e1/4µ
, (2.1.21)

and µ is arbitrary energy scale. Here we assume a simple renormalizable potential V

as

V =
λ0
4
χ̄4 +

m2
0

2
χ̄2 + Λ0, (2.1.22)

where λ0, m
2
0 and Λ0 are naked constants. Then we can renormalize the effective

potential as

Veff =
λR
4
χ̄4 +

m2
R

2
χ̄2 + ΛR +

m2
ϕ

64π2
ln
m2
ϕ

µ2
, (2.1.23)

where we can connect renormalized constants λR, m
2
R, ΛR with the naked constants

λ0, m
2
0, Λ0 as

λR
4

=
λ0
4

− 9λ20
32π2

ln
2M

e1/4µ
(2.1.24)

m2
R

2
=
m2

0

2
+

3λ0
16π2

(
M2 −m2

0 ln
2M

e1/4µ

)
(2.1.25)

ΛR = Λ0 +
M4

16π2
+
M2m2

0

16π2
− m4

0

32π2
ln

2M

e1/4µ
. (2.1.26)
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These renormalizations enable us to remove divergence of terms including the cutoff

scale M .

Thermal contribution

We consider the contribution from the thermal term originated in nk. Here nk is

the occupancy of excited states and we can represent it by using the Bose-Einstein

distribution as

nk =
1

eωk/T − 1
. (2.1.27)

Then, the thermal contribution is given by

1

2
V ′′′(χ̄)

⟨
ϕ2
⟩
T
=

1

4π2

∂m2
ϕ

∂χ̄

∫
dk k2

ωk(eωk/T − 1)
=

1

8π2

∂m2
ϕ

∂χ̄
J
(1)
−

(mϕ

T
, 0
)
≡ ∂V T

∂χ̄
(2.1.28)

where

J
(ν)
± (α, β) =

∫ ∞

α

dx

(
(x2 − α2)ν/2

ex+β ± 1
+

(x2 − α2)ν/2

ex−β ± 1

)
, (2.1.29)

V T (χ̄) =
T 4

4π2

∫ mϕ/T

0

dα αJ
(1)
− (α, 0) =

T 4

4π2
F
(mϕ

T

)
. (2.1.30)

Putting this thermal contribution into the effective potential (2.1.23), we can describe

the whole shape of the effective potential from the fluctuation of the scalar field as

Veff = V + V vac
ϕ + V T

=
λR
4
χ̄4 +

m2
R

2
χ̄2 + ΛR +

m2
ϕ

64π2
ln
m2
ϕ

µ2
+

T 4

4π2
F
(mϕ

T

)
. (2.1.31)

U(1) model

Here we consider the interaction between a scalar field χ and a U(1) gauge field

Gµ, and derive the effective potential for the scalar field. The Lagrangian density of

such a model can be written as

L = −1

2
∂µχ∂µχ− V (χ) +

1

4
FµνF

µν − e2χ2

2
GµG

µ, (2.1.32)

where
Fµν = ∂µGν − ∂νGµ, (2.1.33)

and e is the coupling constant between the scalar field and the gauge field. We consider

the tight coupling case e2 ≫ λ0 and ignore the fluctuation of the scalar field. Then

the equation of motion for the averaged scalar field is given as

− ∂µ∂
µχ̄+ V ′(χ̄) + e2χ̄ ⟨GµGµ⟩ = 0. (2.1.34)
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The feature of the effective potential Veff for the scalar field depends on the ensemble

average ⟨GµGµ⟩. To obtain ⟨GµGµ⟩, we will investigate the behavior of the gauge

field Gµ in the same way as the case of the fluctuation of a scalar field. We describe

the equation of motion for Gµ taking variation of the Lagrangian (2.1.32) as,

− ∂ν∂
νGµ + e2χ̄2Gµ = 0, (2.1.35)

in the coulomb gauge δµGµ = 0. Treating eχ̄ as mG(χ̄), the form of the equation of

motion is the same as the case of scalar field (2.1.5), and therefore we can represent the

contribution of ⟨GµGµ⟩ by decomposing into the vacuum and thermal contributions

as,

e2χ̄ ⟨GµGµ⟩V =
∂

∂χ̄

(
3I(mG)

4π2

)
=
∂V vac

G

∂χ̄
, (2.1.36)

e2χ̄ ⟨GµGµ⟩T =
∂

∂χ̄

(
3T 4

4π2
F
(mG

T

))
=
∂V TG
∂χ̄

, (2.1.37)

where the factor of three in front of the potential comes from the degree of freedom of

the gauge field Gµ in the coulomb gauge. Now we can calculate the effective potential

as,

Veff = V + V vac
G + V TG

=
λR
4
χ̄4 +

m2
R

2
χ̄2 + ΛR +

3m2
G

64π2
ln
m2
G

µ2
+

3T 4

4π2
F
(mG

T

)
. (2.1.38)

The condition for phase transitions

To find the condition for phase transitions, we will see the shape of the effective

potential at T = 0 K. Assuming µ = eχ0, we obtain the effective potential at T = 0 K

as

Veff =
λR
4
χ̄4 +

m2
R

2
χ̄2 + ΛR +

3e4χ̄4

32π2
ln

∣∣∣∣ χ̄χ0

∣∣∣∣ , (2.1.39)

Here we assume that the effective potential has a minimum at χ̄ = χ0, Veff(χ0) = 0,

which means V ′
eff(χ0) = 0 and V ′′

eff(χ0) = m2
H > 0, with mH being the Higgs mass.

Then, using χ0 and m2
H , the values of renormalized constants λR, m

2
R and ΛR can

be written as

λR =
m2
H

2χ2
0

− 9e4

32π2
, (2.1.40)

m2
R = −m

2
H

2
+

3e4χ2
0

16π2
, (2.1.41)

ΛR =
χ2
0

8

(
m2
H − e4χ2

0

16π2

)
. (2.1.42)
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We can see that there is a minimum or maximum at χ̄ = 0 in this potential eq.(2.1.39).

In case m2
H < 3e4χ2

0/8π
2 (m2

R > 0), the point χ̄ = 0 becomes a minimum too, and

if in case m2
H < 3e4χ2

0/16π
2 (ΛR < 0), the minimum at χ̄ = 0 becomes stabler than

that of χ̄ = χ0 (Veff(0) < Veff(χ0)). This means that the symmetry breaking state at

χ̄ = χ0 is not favored in such a case. If we consider the phase transition caused by

the decrease of temperature of the universe, the mean value of χ̄ corresponds to zero

(see eq.(2.1.48)) in the early hot universe, and the condition (Veff(0) > Veff(χ0)) is

needed to trigger off the phase transition. Thus the condition of the phase transition

is given by

m2
H >

3e4χ2
0

16π2
, (2.1.43)

and this is called as the Linde-Weinberg condition.

Feature of the effective potential at high temperature

Here we consider the high temperature (T ≫ mG(χ̄)) case. In such a situation, the

temperature dependent term in eq.(2.1.38), 3T 4F (mG/T )/4π
2, becomes important.

We can expand the function F(x) for x≪ 1 as,

F (x) ≈ π2

6
x2 − π

3
x3 − 1

8
x4 lnx+

3

32
x4 +

x4

16
ln b, (2.1.44)

where ln b = 2 ln 4π − 2γ and γ is the Euler constant. Then we can describe the

effective potential as

Veff(χ̄) =
λT
4
χ̄4 − e3T

4π
χ̄3 +

m2
T

2
χ̄2 + ΛR, (2.1.45)

where

λT =
m2
H

2χ2
0

+
3e4

16π2
ln

bT 2

(eχ0)2
, (2.1.46)

m2
T =

e2

4
(T 2 − T 2

0 ), T 2
0 =

2m2
H

e2
− 3e2χ2

0

4π2
. (2.1.47)

In enough high temperature, T ≫ T0, the effective potential is given by

Veff(χ̄) =
e2

8
T 2χ̄2, (2.1.48)

and the stable point of the scalar field χ̄ becomes symmetric (χ̄ = 0).
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T<Tc

T=Tc

T≫Tc

Figure.2.1 The shape of the potential at the temperature T < Tc (blue line),

T = Tc (green line) and T ≫ Tc.

Phase transition of a scalar field

Here we focus on how the shape of the effective potential changes according to the

decrease of temperature (i.e. see fig.2.1), and how the scalar field travels in such a

potential.

At very high temperature, the shape of effective potential is given by eq.(2.1.48)

and the only stable point is χ̄ = 0 in such a potential. When the temperature of the

universe becomes lower than

T1 =
T0√

1− (9e4/16π2λT1)
, (2.1.49)

the other minimum appears at χ̄ = 3e3T1/8πλT1 , and that minimum goes to larger

value. If the temperature becomes lower than

Tc =
T0√

1− (e4/2π2λTc)
, (2.1.50)

where Tc is called the critical temperature, the minimum at χ̄ ̸= 0 take lower potential

value than that of the minimum at χ̄ = 0. At that time, the location of the minimum
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at χ̄ ̸= 0 is

χ̄c =
e3Tc
2πλTc

, (2.1.51)

and the potential barrier between the two minima at χ̄ = χ̄c/2 is given by

Veff(χ̄c/2) =
e12T 4

c

4(4π)4λ3Tc

. (2.1.52)

Then the minimum at χ̄ = 0 becomes the false stable minimum and the minimum at

χ̄ ̸= 0 becomes the true stable minimum in the effective potential. This means the

stable point goes from χ̄ = 0 to χ̄ ̸= 0 (symmetry breaking) and a phase transition

takes place. We represent the typical shape of the potential in fig.2.1.

The way how the phase transition proceeds depends on the relation between the

value of the fluctuation of the scalar field and the width of the potential barrier.

Substituting the expression of J
(1)
− (α, β) for α, β ≪ 1,

J
(1)
− (α, β) =

π2

3
− 1

2
β2 − π

√
α2 − β2 − 1

2
α2

(
ln

α

4π
+ γ − 1

2

)
(2.1.53)

into eq.(2.1.28), we obtain the magnitude of the fluctuation as

δχ ∼
√

⟨ϕ2⟩T ≈ T√
12
. (2.1.54)

The scalar field in smaller width than δχ (2.1.54) is never localized, and we can rec-

ognize whether or not the scalar field feels the potential barrier (2.1.52) by comparing

the fluctuation δχ (2.1.54) with the width of the potential ∆χ ∼ χ̄c/2 which is about

magnitude of the position of the potential exists, χ̄c/2.

Let us consider the case that the scalar field feels the barrier first. When the tem-

perature is high T ≫ eχ̄ and the barrier width ∆χ is larger than the fluctuation

of the scalar field, the relation between the width of the potential and the critical

temperature is written as
Tc
e
>
χ̄c
2
>

Tc√
12
. (2.1.55)

Adapting it for λTc , we obtain

e4

4π
< λTc <

√
3

2π
e3. (2.1.56)

In this case, the scalar field feels the potential barrier and it needs to go through the

potential via the tunnel effect or thermal excitation, to the true minimum. At that

time the phase transition is the first order phase transition and it creates bubbles of

the true vacuum.
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Next let us consider the case that the scalar field does not feel the potential barrier.

In that case, the relation between the width of the barrier and fluctuation is given by

χ̄c
2
< δχ ∼ Tc√

12
. (2.1.57)

Considering the condition that the tight coupling is valid, e2 ≫ λ, we can limit λTc

as

e2 > λTc >

√
3

2π
e3. (2.1.58)

In this case, the scalar field does not feel the potential barrier and it goes to the true

minimum gradually.

2.2 Cosmic defects

The grand unified theory indicates existence of various scalar fields in the early

universe [6, 30]. As we saw in previous sections, these scalar fields should have expe-

rienced phase transitions as the temperature of the universe decreases and the fields

have broken their symmetries. However, in some cases, there are regions in which their

symmetries remain restored, and such regions are called ‘cosmic defects’ [8, 29, 31].

These symmetry restorations take place because of the continuity of scalar fields val-

ues in the universe (real space) and in the field space. Hereafter we introduce cosmic

defects which originated from symmetry breaking of N scalar fields called O(N) sym-

metry breaking and the nature of defects depends on the number of scalar fields N

[8]. The produced defects are called ‘domain wall’ (N = 1), ‘cosmic string’ (N = 2),

‘monopole’ (N = 3) and ‘texture’ (N ≥ 4).

Here we consider the self-ordering scalar fields whose Lagrangian density is given

by

LΦ = −1

2
∇µΦ

t∇µΦ− λ

4
(ΦtΦ− v2)2 + LT , (2.2.59)

where Φ = (ϕ1, ϕ2, ..., ϕN ) is the scalar fields, λ is the coupling constant, v is the

vacuum expected value (VEV) of the scalar fields (which corresponds to the energy

scale of the phase transition), and LT is the thermal contribution which is written as

LT ∼ −T 2ΦtΦ at high temperature. Taking variation of the Lagrangian (2.2.59), we

obtain the equation of motion for the self-ordering scalar fields as

−∇µ∇µϕi +
∂

∂ϕi
V (ϕ, T ) = 0, (2.2.60)
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Figure.2.2 Rough illustrations of cosmic defects. There are no high energy re-

gions for the case N ≥ 4 : textures.

where the potential V (ϕ, T ) is written as

V (ϕ, T ) =
λ

4
(ΦtΦ− v2)2 + αT 2ΦtΦ, (α > 0). (2.2.61)

In the early hot universe, the potential is driven by the thermal term αT 2ΦtΦ and the

only stable minimum is located at ΦtΦ = 0. After temperature has become lower than

the critical temperature Tc, the other stable minima appear. The shapes or minima

location depend on the number of the scalar fields N . We shall see the shapes of

minima location and consider their resulting cosmic defects in each case below.

(i) N = 1

The positions of minima are distributed discrete values in the field space at ϕ = ±v.
At the time of the phase transition, the scalar field goes to the either minima ϕ = v

or ϕ = −v correlating each other within the horizon scale at that time. However in

larger scale it goes randomly. Then VEVs can differ in each place at larger scales

than the horizon size at the phase transition time. Here the field value of the scalar

field has to satisfy continuity in the three dimensional space in the universe and in the

field space as well. This means that there should be a wall like region which satisfies

ϕ = 0 between the regions whose field values are ϕ = v and ϕ = −v (see fig.2.2).

25



In such regions, the symmetry of the scalar field is restored (ϕ = 0), and the energy

density is large because of the potential barrier of the scalar field V (0) = λv4/4. The

length scale of the high energy region can be calculated as ℓ ∼ (λ/2)−1/2v−1 and the

surface density of domain wall is σλ1/2v3 [29]. This wall like potential barrier is called

domain walls [8, 29, 31].

(ii)N = 2

The minima draw a circle in the two dimensional field space ΦtΦ = ϕ21 + ϕ22 = v2.

In the same way as the domain wall creation, the scalar fields go to the minima where

ϕ21+ϕ
2
2 = v2 in the field space at the time of the phase transition. They distribute on

the circle randomly at large scales and the field value can be written as ϕ1 = v sin θ

and ϕ2 = v cos θ. Then, from the same reason with the case of N = 1, there are

symmetry restored regions, which are surrounded by the scalar fields which satisfy

the continuous phase of θ : 0 → 2π. In this case, the symmetry restored regions,

whose field values are ϕ1 = ϕ2 = 0, are string like high energy regions (see fig.2.2)

and these are called cosmic strings [8, 29, 31]. Here the thickness of strings can be

estimated as rs ∼ λ−1/2v−1 and its linear density is given as µ ∼ v2 [29].

You can see that the dimension of the cosmic defects is given as dim = d−N , where

d is the spacial dimension of the universe. The projection of the field space on the

space of the universe leads such a relation [29].

(iii)N = 3

As with the case of cosmic string, the minima draw a two dimensional spherical

surface in the three dimensional field space ΦtΦ = ϕ21+ϕ
2
2+ϕ

2
3 = v2 and the field values

distribute randomly on the two dimensional spherical surface at large scales. In this

case, considering the projection of the spherical surface in the field space on the three

dimensional universe, we can find points which should restore the symmetry in the

two dimensional spherical surfaces. These are the zero dimensional (dim = 3−3 = 0)

point like defects (see fig.2.2), called monopoles [8, 29, 31]. The size of the monopole

is approximately rm ∼ λ−1/2v−1 and its mass is mm ∼ λ−1/2v [29].

(iv) N ≥ 4

In this case, the stable minima of scalar fields draw a N − 1 dimensional spherical

surface in a N dimensional field space, ΦtΦ = ϕ21 + ϕ22 + ...+ ϕ2N≥4 = v2, and we can

project this surface onto the three dimensional universe without having any symmetry
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restored points. Then, we have no high energy region in the universe caused by the

potential barrier of these scalar fields, but the configuration of the scalar fields evolves

according to the evolution of the universe under the constraint of ΦtΦ = v2. At the

time of the phase transition, the scalar fields distribute randomly on a N−1 spherical

surface at larger scales than that of the horizon scale at that time. As the universe

evolves, the horizon evolves larger and the scalar fields which come into the horizon

scale start to affect each other. Then the scalar fields move on the N − 1 dimensional

spherical surface in the field space and their motion can affect on the spacetime of

the universe via their energy momentum tensor. These self-ordering scalar fields are

called textures [29, 31].

These defects are generated a few in the horizon scale at the time of the phase

transition. According to the evolution of the universe, the horizon scale of the universe

takes in amount of ancient horizon scales. This means that many defects can exist

in the horizon scale at the late time and they can interact each other. We know that

if we assume the energy scale of phase transitions as the GUT scales, the created

domain walls have too large mass in the horizon scale, more than the total mass of

galaxies, and it can change the evolution history of the universe. We expect there is

no such a remnant from recent cosmological observations. Considering monopoles, in

the same consideration with the domain wall, we expect they should have too large

energy density, larger than the critical density of the universe, in the horizon scale at

present. However if we consider an inflationary epoch after the creation of monopoles,

they are diluted and only a few monopoles can exist in the horizon scale at present and

the number of monopoles should be small not to affect the cosmological quantities.

Hereafter we consider cosmic strings, textures and their effects on cosmological

observables as realistic cosmic defects.

2.3 Cosmic strings and their network evolution

In this section, we review the evolution of individual strings and the string network

according to [1]. We first introduce the energy momentum tensor of the individual

strings. Moreover, by considering the evolution of the separations, motions, and

decays of the strings, we calculate the energy momentum tensor of the string network.

Here we assume a homogeneous and isotropic expanding universe described by the

FLRW metric given by
ds2 = a(η2)(−dη2 + dx⃗2). (2.3.62)
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2.3.1 Wiggly string

Here we introduce the action and the energy stress tensor of a wiggly cosmic string

on the string worldsheet following [32]. We define the string worldsheet (ζ1, ζ2) in

four dimensional space-time, where ζ1 = η is the conformal time defined in (2.3.62).

Using these conditions, we can calculate the action density as

S = −µ
∫
Σ

dA (2.3.63)

= −µ
∫
Σ

d2ζ
[
−detab

(
γab
)] 1

2 , (2.3.64)

where

γab = gµν
∂xµ

∂ζa

∂xν

∂ζb
(2.3.65)

is the metric on the string worldsheet. Here µ is the string energy density per unit

length. From the definition, we can write the energy stress tensor of the string as

Tµν =
µ√
−g

∫
Σ

d2ζ
{
ϵẋµẋν − ϵ−1x′µx′ν

}
δ(4)(y − x(ζ)), (2.3.66)

with

ϵ =

√
x⃗′2

1− ˙⃗x2
, (2.3.67)

where dots and primes represent derivatives with respect to the conformal time and

ζ2, respectively, and we have chosen the gauge as ẋµx′µ = 0. Following [33], the string

tension T and the linear energy density U can be defined by

√
−gTµν(y) =

∫
Σ

d2ζ
√
−γ {Uuµuν − Tvµvν} δ(4)(y − x(ζ)), (2.3.68)

where
uµuµ = −vµvµ = 1, uµvµ = 0, (2.3.69)

(uµvρ − vµuρ)(uρvν − vρuν) = uµuν − vµvν = ηµν , (2.3.70)

ηµν = γabxµ,ax
ν
,b, (2.3.71)

and

uµ =

√
ϵẋµ

(−γ)1/4
, vµ =

x′µ√
ϵ(−γ)1/4

. (2.3.72)

We can easily check that uµ and vµ satisfy (2.3.69) ∼ (2.3.71). Substituting (2.3.72)

into (2.3.68) and comparing with (2.3.66), we can see that

U = T = µ. (2.3.73)
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This is the equation of state for a Nambu–Goto string. In practice, in lattice simula-

tions of cosmic strings, the strings are macroscopically straight, but they have wiggles

from a microscopic viewpoint [34, 35]. Even though the cosmic strings are macro-

scopic and straight on the cosmological scale (∼ Mpc), their macroscopic equations

of state are affected by the microscopic wigglinesses. The equation of state for the

wiggly string, smoothing out the small scale structures, is shown in [33, 36]. In this

case, we employ effective values of the string tension T̃ and the linear energy density

Ũ , with which the equations of states for the wiggly string are denoted as

T̃ =
µ

α
, Ũ = αµ. (2.3.74)

Here α is the “wiggliness parameter”, which is a function of time and the string

coordinate ζ. The evolution of α is estimated in [32, 34, 37], which show that α ∼ 1.9

in the radiation dominated era and α ∼ 1.5 in the matter dominated era. In the

late time universe, when the cosmological constant dominates, wiggliness is smoothed

out by the exponential expansion of the universe and α becomes equal to unity.

Substituting the effective values of (2.3.74) into (2.3.68), we can write the effective

energy momentum tensor of a wiggly string T̃µν as

T̃µν(y) =
1√
−g

∫
Σ

d2ζ
√
−γ
{
Ũuµuν − T̃ vµvν

}
δ(4)(y − x(ζ)) (2.3.75)

=
µ√
−g

∫
Σ

d2ζ

{
ϵαẋµẋν − x′µx′ν

ϵα

}
δ(4)(y − x(ζ)). (2.3.76)

If we consider magnetic field generation by the string network, the wiggliness affects

the magnetic field spectrum only through a constant factor α2. Here we set α = 1 for

simplicity, which represents straight strings and gives a conservative estimate of the

amplitude of the magnetic fields.

2.3.2 Evolution of the string network

Following the one-scale model [38, 39, 40], the network of cosmic strings can be

characterized by a single parameter, the correlation length L, which is defined as

L2 =
µ

ρstring
, (2.3.77)

where ρstring is the energy density of the cosmic string. To simplify the expressions,

we introduce the comoving correlation length l = L/a. From the energy conservation

law and the equation of motion of the string, we can obtain the evolution equations
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of the string network as [38, 39, 40]:

dl

dη
= Hlv2 + 1

2
c̃v, (2.3.78)

dv

dη
= (1− v2)

(
k̃

l
− 2Hv

)
, (2.3.79)

where H = ȧ/a is the conformal Hubble parameter,

v =

√∫
dσϵ⃗̇x2∫
dσϵ

,

is the string’s rms velocity, c̃ is the loop–chopping efficiency,

k̃ =

∫
dσϵ(1− ⃗̇x2)⃗̇x · û
v(1− v2)

∫
dσϵ

,

is the effective curvature of the strings, and û is the unit vector of the curvature radius

vector of the string. In our calculation, we use an ansatz for relativistic strings as

[41],

k̃(v) =
2
√
2

π

1− 8v6

1 + 8v6
.

Here we consider the reduction of the energy density by the expansion of the universe

and the decrease of the total length of infinite strings in the Hubble horizon. The

total length of infinite strings decreases because infinite strings are chopped due to

their collisions, making string loops that immediately decay by radiating gravitational

waves from their peakedness [42]. The loop–chopping efficiency c̃ represents the rate

at which strings become loops. In general, c̃ is a function of time as shown in [32, 40];

however its value does not vary much. In the radiation dominated era, c̃ = cr = 0.23,

and in the matter dominated era, c̃ = cm = 0.18.

We describe the Fourier transform of the energy momentum tensor of an individual

string as

Θµν(k⃗, η) =

∫
d3xeik⃗·x⃗Tµν(x)

=

∫ l/2

−l/2
dζeik⃗·X⃗

[
ϵαẊµẊν − X ′µX ′ν

ϵα

]
, (2.3.80)

where the four vector Xµ(ζ, η) = (η, X⃗) denotes the coordinates in which the string

segment exists. We can represent the vector as

X0 = η, X⃗ = x⃗0 + ζX̂ ′ + vη ˆ̇X, (2.3.81)
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where x⃗0 is a random vector that denotes the initial position of the string’s mass

center, and X̂ ′ and ˆ̇X are random unit vectors that fulfill X̂ ′ · ˆ̇X = 0. In the expression

for the energy momentum tensor of the string, the initial position coordinate x⃗0

appears only as a phase in the inner product with k⃗. We can therefore deal with

k⃗ · x⃗0 as a random initial phase ϕ0 : [0, 2π]. Because individual strings have their

own initial positions, aligned directions, and velocity directions, we write those of the

m-th string as x⃗m0 , X̂
′m and ˆ̇Xm. Summing up our description of strings, we obtain

the total energy momentum tensor of the string network. Fourier transform of the

total energy momentum tensor of the string network Θµν(k⃗, τ) is given by [32],

Θµν(k⃗, η) =

N0∑
m=1

Θmµν(k⃗, η)T
off(η, ηm), (2.3.82)

where N0 is the initial number of the strings, Θmµν(k⃗, τ) is the energy momentum

tensor of the individual strings, ηm is the time of decay for the m-th string, and T off

is the smoothing function of the decay. We adopt the functional form of T off from

[32, 43] that is given by

T off(η, ηm) =

 1, (η < fηm)
1/2 + (x3 − 3x)/4, (fηm < η < ηm)
0, (ηm < η),

(2.3.83)

x = 2
ln(fηm/η)

lnf
− 1. (2.3.84)

Here 0 < f < 1 is a parameter which controls the speed of the strings decay. We

fix this value to f = 0.5. Considering (2.3.83) for individual infinite strings, we take

account of the decrease in the number of infinite strings by their decay into loops

due to their intersections. Because of their random initial positions and directions of

motion, the decay time for each string ηm is fixed randomly.

2.4 Textures with non-linear sigma model

We consider a model of N scalar fields with a global O(N) symmetry, which un-

dergoes symmetry breaking in the early universe according to [2]. The Lagrangian of

the model is given by

L = −1

2
∇µΦ

t∇µΦ− λ

4
(ΦtΦ− v2)2 + LT . (2.4.85)

Here Φ = (ϕ1, ϕ2, ..., ϕN ) is an array of N real scalar fields, v is the vacuum expecta-

tion value (VEV) of the scalar fields after symmetry breaking, λ is the self-coupling

31



constant, and LT ∼ T 2ΦtΦ is the thermal term of the Lagrangian. Deep in the

radiation-dominated universe, the thermal term is dominant in the Lagrangian of the

scalar fields. As the temperature of the universe goes down, this thermal term gets

smaller. When the term becomes negligible a spontaneous symmetry breaking occurs.

At energy scales well below v, the field values are confined on the N − 1 dimensional

sphere in the N dimensional field space so that Φt(x⃗, η)Φ(x⃗, η) = v2. Under this

condition, in the large-N limit, the equation of motion for the scalar fields can be

derived as
∇µ∇µβa + (∇µβb) · (∇µβb)βa = 0, (2.4.86)

where the indices a and b run over 1, . . . , N and summations with respect to dep-

recated indices are implicit. This is the equation of motion for the scalar fields in

the NLSM. If N ≤ 3, topological defects such as domain walls, cosmic strings and

monopoles are produced, where the scalar fields can restore the O(N) symmetry and

possess the higher energy density.

In this paper we consider cases with N ≥ 4, where non-topological defects, or tex-

tures, form. Let us consider the flat Friedmann-Lemâıtre-Robertson-Walker universe

with the metric
ds2 = gµνdx

µdxν = a2(η)(−dη2 + dx⃗2) , (2.4.87)

where a(η) is the cosmic scale factor and η is the conformal time. In the large-

N limit, making an ansatz that ⟨(∇µβa) · (∇µβa)⟩ = T0a
−2η−2, we can obtain the

analytic solution as [44] [45]

βa(k⃗, η) =
√
Aν

(
η

η∗

)3/2
Jν(kη)

(kη)ν
βa(k⃗, η∗) ≡ f(k, η, η∗)βa(k⃗, η∗), (2.4.88)

where ν = d ln a/d ln η+1, Aν = 4Γ(2ν−1/2)Γ(ν−1/2)/3Γ(ν−1) and T0 = 3ν−9/4.

In eq. (2.4.88), η∗ is the time of phase transition and βa(k⃗, η∗) is the initial value of

scalar fields, whose two-point correlation function can be given as⟨
βa(k⃗1, η∗)β

∗
b (k⃗2, η∗)

⟩
=

6π2η3∗
N

δab (2π)
3δ(k⃗1 − k⃗2). (2.4.89)

The above relation is only valid for k ≪ 1/η∗, which follows, in the large-N limit,

from the fact that the scalar fields take their VEV independently in each horizon at

η∗.*
1 We also note that βa(k⃗, η∗) is Gaussian at these scales.

*1 On small scales k ≳ 1/η∗, initial scalar fields become homogenous and correlation function

of eq. (2.4.89) should vanish. We however note that our argument does not depend on the

correlation function on these scales.
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We denote a correlation function of βa as a product of the transfer function and

the initial amplitude as⟨
βa(k⃗1, η)β

∗
b (k⃗2, η)

⟩
= F (k1, k2, η, η∗)

⟨
βa(k⃗1, η∗)β

∗
b (k⃗2, η∗)

⟩
, (2.4.90)

where F (k1, k2, η, η∗) ≡ f(k1, η, η∗)f(k2, η, η∗). From eq.(2.4.88) and eq.(2.4.89), we

can see that the dependence of eq.(2.4.90) on η∗ is canceled out. Therefore we

omit η∗ from the equations hereafter and write as F (k1, k2, η, η∗) = F (k1, k2, η) and

βa(k⃗, η∗) = βa(k⃗). Finally the energy momentum tensor of the scalar fields is given

by

Tϕµν = v2
[
∂µβa∂νβa −

1

2
gµν∂λβa∂

λβa

]
. (2.4.91)

2.4.1 Power spectrum in the NLSM

Let us consider the power spectrum of some variable X(k⃗) and Y (k⃗) which is

generated by scalar fields following the NLSM. At first, let us write X(k⃗) using its

transfer function FX(q, p) and FY (q, p) as

X(k⃗) =

∫
d3p

(2π)3
d3q

(2π)3
FX(q, p)βs(p⃗)βs(q⃗)(2π)

3δ(k⃗ − p⃗− q⃗), (2.4.92)

and a similar expression for Y (k⃗). The (cross) power spectrum of X and Y is defined

by ⟨
X(k⃗)Y ∗(k⃗′)

⟩
≡ (2π)3PXY (k) δ(k⃗ − k⃗′). (2.4.93)

To calculate the power spectrum, we need to calculate four point correlation function

of scalar fields. This is given by

⟨βa(q⃗1)βa(p⃗1)β∗
b (q⃗2)β

∗
b (p⃗2)⟩ = ⟨βa(q⃗1)βa(p⃗1)⟩ ⟨β∗

b (q⃗2)β
∗
b (p⃗2)⟩

+ ⟨βa(q⃗1)β∗
b (q⃗2)⟩ ⟨βa(p⃗1)β∗

b (p⃗2)⟩
+ ⟨βa(q⃗1)β∗

b (p⃗2)⟩ ⟨βa(p⃗1)β∗
b (q⃗2)⟩

= (6π2)2 (2π)3δ(p⃗1 + q⃗1) (2π)
3δ(p⃗2 + q⃗2)

+
(6π2)2

N
(2π)3δ(q⃗1 − q⃗2) (2π)

3δ(p⃗1 − p⃗2)

+
(6π2)2

N
(2π)3δ(q⃗1 − p⃗2) (2π)

3δ(p⃗1 − q⃗2).

(2.4.94)

Here, (6π2)2

N = PNini is the initial power spectrum of the scalar fields. Substituting eq.

(2.4.94) to eqs. (2.4.92) and (2.4.93), and using F (q, p) = F (p, q), we calculate the
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cross correlation as⟨
X(k⃗)Y ∗(k⃗′)

⟩
=

∫
d3q1
(2π)3

d3p1
(2π)3

d3q2
(2π)3

d3p2
(2π)3

×FX(q1, p1)F
∗
Y (q2, p2) ⟨βa(q⃗1)βa(p⃗1)β∗

b (q⃗2)β
∗
b (p⃗2)⟩

×(2π)3δ(k⃗ − p⃗1 − q⃗1) (2π)
3δ(k⃗′ − p⃗2 − q⃗2)

=

∫
d3q1
(2π)3

d3p1
(2π)3

d3q2
(2π)3

d3p2
(2π)3

FX(q1, p1)F
∗
Y (q2, p2)[

(6π2)2

N
(2π)3δ(q⃗1 − q⃗2) (2π)

3δ(p⃗1 − p⃗2)

+
(6π2)2

N
(2π)3δ(q⃗1 − p⃗2) (2π)

3δ(p⃗1 − q⃗2)

]
×(2π)3δ(k⃗ − p⃗1 − q⃗1) (2π)

3δ(k⃗′ − p⃗2 − q⃗2)

= PNini(2π)3δ(k⃗ − k⃗′)

×
∫

d3q

(2π)3

[
FX(q, |⃗k − q⃗|)F ∗

Y (q, |⃗k − q⃗|) + FX(|⃗k − q⃗|, q)F ∗
Y (q, |⃗k − q⃗|)

]
= 2PNini(2π)3δ(k⃗ − k⃗′)

∫
d3q

(2π)3
FX(q, |⃗k − q⃗|)F ∗

Y (q, |⃗k − q⃗|) . (2.4.95)

Therefore the power spectrum PXY is read off as

PXY (k) = 2PNini
∫

d3q

(2π)3
FX(q, |⃗k − q⃗|)F ∗

Y (q, |⃗k − q⃗|)

=
PNini
2π2

∫
dq q2

∫
dµ FX(q, |⃗k − q⃗|)F ∗

Y (q, |⃗k − q⃗|), (2.4.96)

where µ = k̂ · q̂.
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Part.II

Magnetic fields generation from

cosmic defects





In this part, we introduce the generation of the cosmological scale magnetic fields

from cosmic string networks and textures. These defects induce the vector mode

cosmological perturbations in the early universe and such perturbations lead magnetic

fields at cosmological scales [1, 2]. Here we first discuss the generation mechanism of

the magnetic fields, focusing on the tight coupling approximation (TCA) between the

photon fluid and the baryon fluid in the early universe.
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Chapter.3

Primordial magnetic fields generation

Here we explain how magnetic fields can generally be produced at cosmological

scales in the universe. The most reasonable way to produce magnetic fields at cos-

mological scales is creating them through physical mechanisms at cosmological scales,

such as second-order cosmological couplings of perturbations [46], cosmological phase

transitions [1, 2] and so on. These events can generate vector mode perturbations at

cosmological scales and they induce a relative velocity between photon and baryon

fluids via a slight violation of the tight coupling between photon and baryon fluids.

This relative velocity originates the magnetic fields in the early universe. Here we in-

troduce the tight coupling approximation in the standard cosmological perturbation

theory, and then derive the evolution equation for magnetic fields which is driven by

the relative velocity between photon and baryon fluids.

3.1 The Euler equations

The vorticity of the spacetime plays an important role to generate magnetic fields

in the vector mode perturbations. In the standard cosmological perturbation theory,

there is no source term for the vorticity in the vector mode perturbations, and it

has only a decaying solution (see section 1.2). However, when we consider external

sources of the vector mode perturbations such as second order couplings of density

perturbations or cosmic defects, the vorticity can be generated. Then the vorticity

induces the anisotropic stress of the photon fluid and it gives rise to the velocity

of the photon fluid in the vector mode. In the early universe, photons scatter with

hot electrons frequently and the scattered electrons stuck together with baryons. In

this phase, photon and baryon fluids move together and this state is called the tight

coupling. Here we show the mechanism of the tight coupling and solve the relative
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velocity between the photon and baryon fluid using the Euler equations.

We start with the Boltzmann equation for the distribution function of particles at

position x⃗ and velocity v⃗

df

dt
=
∂f

∂t
+ v⃗ · ∂f

∂x⃗
+ a⃗ · ∂f

∂v⃗
=

(
∂f

∂t

)
C

, (3.1.1)

where f(t, x⃗, v⃗) is the distribution function in the six dimensional phase space, a⃗ is

the acceleration which affects particles at position x⃗, and (∂f/∂t)C is the collision

term which represents the interactions between particles. This equation describes the

evolution of the distribution function of particles in the phase space. Taking velocity

moments, we can obtain the equations of motions for velocity, anisotropic stress, and

so on. Let us show a simple example in case there are no any external forces a⃗ = 0 in

collisionless system. Integrating eq.(3.1.1) by d3v, and multiplying v⃗ with eq.(3.1.1)

and integrating by d3v, we obtain the zero-th and primary moments of the Boltzmann

equation as
∂n

∂t
+∇(nu⃗) = 0, (3.1.2)

∂nui
∂t

+ ∂j(nΠij) = 0, (3.1.3)

where n =
∫
d3vf is the zero-th order moment which corresponds to the number

density in three dimensional space, u⃗ = n−1
∫
d3vv⃗f is the primary moment which

describes the mean velocity, and Πij = n−1
∫
d3v vivjf is the secondary moment

which is equivalent to the anisotropic stress. These represent the equations of motions

for each moment and we can see the higher order moments affect the lower order

moments. Even in such a simple case, the moments are related each other. It is of

course true for more complicated collisional systems with external forces.

Hereafter we see the Euler equations for baryon and photon fluids in the vector

mode, in the early universe. Let us see the Euler equation for the baryon fluid first.

In the same way as [47, 48], assuming synchronous gauge (1.2.20), we obtain the

equation of motion for the baryon fluid,

v̇b +Hvb = Rτ̇(vγ − vb), (3.1.4)

where vb is the velocity of the baryon fluid, vγ is the velocity of the photon fluid, dot

represents the derivative by the conformal time, R = 4ργ/3ρb is the photon baryon

ratio, τ̇ = aneσT is the conformal time derivative of the optical depth with ne and σT

being the electron number density and the Thomson scattering cross section. There

are no pressure or anisotropic stress terms in the equation of motion for the baryon
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fluid, because of the equation of state P = 0. This means that there is no effects

from the higher order Euler equations on the baryon fluid velocity vb. Thus, the only

effective term which drives the baryon fluid is the collision term (∂f/∂t)C . Here we

consider the early hot universe in which the Compton scattering between the photon

fluid and electrons takes place frequently and the scattered electrons move with the

baryon fluid due to the Coulomb interaction. In such a situation, the collision term

for the baryon fluid Rτ̇(vγ − vb) is originated from the Compton scattering.

Next, we discuss the Euler equations for the photon fluid. The equations can be

categorized into three spices for the photon fluid. One is the equation for the intensity,

the others correspond to the equations of motions for polarizations. Let us see the

equation of motions for the intensity first. The Euler equations for intensity of photons

in vector mode are given by [47, 48, 49],

v̇γ +
k

8
Πγ = −τ̇(vγ − vb), (3.1.5)

Π̇γ +
8

5
kI3 −

8

5
kvγ = −τ̇

(
9

10
Πγ −

9

5
E2

)
+

8

5
kσ, (3.1.6)

İℓ + k
ℓ

2ℓ+ 1

(
ℓ+ 2

ℓ+ 1
Iℓ+1 − Iℓ−1

)
= −τ̇ Iℓ, (ℓ ≥ 3), (3.1.7)

where Πγ is the anisotropic stress of the photon fluid, E2 is the secondary moment

of the E-mode polarization, σ = ḣV /k is the vorticity in the spacial metric, hV is the

vector mode perturbation in eq.(1.2.27) and we define Iℓ as the ℓ-th order moment of

the intensity. We consider the Compton scattering term as the collision term which

affects the motion of the photon fluid, in the same way as the case of the baryon fluid.

The main differences between the photon and baryon fluids are the existence of the

anisotropic stress Πγ in (3.1.5) and its evolution relating with the polarizations. The

Euler equations for the polarizations are written as,

Ėℓ +
(ℓ+ 3)(ℓ+ 2)(ℓ− 1)

(ℓ+ 1)3(2ℓ+ 1)
kEℓ+1 − ℓ

2ℓ+ 1
kEℓ−1

= −τ̇
(
Eℓ −

2

15
ζδℓ2

)
+

2

ℓ(ℓ+ 1)
kBℓ, (3.1.8)

ζ ≡ 3

4
I2 +

9

2
E2, (3.1.9)

Ḃℓ +
(ℓ+ 3)(ℓ+ 2)(ℓ− 1)

(ℓ+ 1)3(2ℓ+ 1)
kBℓ+1 −

ℓ

2ℓ+ 1
kBℓ−1 = − 2

ℓ(ℓ+ 1)
kEℓ, (3.1.10)

where Eℓ and Bℓ are the ℓ-th moment of the E- and B-mode polarization. You can see

that the Euler equations for the baryon, photon intensity and polarizations affect each
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other. In case of magnetic fields generation from some external sources only coupled

with gravity, all moments in the Euler equations are originated in the vorticity σ.

This vorticity σ induces the anisotropic stress of photon first and it drives the photon

motion. Then the baryon fluid is pushed because of the Compton scattering between

the photons and electrons which follow the baryon fluid. This mechanism is valid in

the early universe in which the photon fluid scatters with electrons frequently, and

when the photon and baryon fluids are coupled tightly.

3.2 Tight coupling approximation

In general, it is difficult to solve the Euler equations because of infinite number

of the moments and their correlations. Then we need to introduce a cutoff order

for moments to solve them. When we consider the situation of the tight coupling

between the photon and baryon fluids, such as in the early universe, we can partially

understand their behavior analytically. We can give the initial conditions for the Euler

equations at the early universe by considering the tight coupling approximation. Here

we will see the necessary condition of the tight coupling approximation and its role

in estimating the moments, especially the relative velocity between the photon and

baryon fluids (vγ − vb) in anticipation of the magnetic fields generation at final step.

The condition for the tight coupling between the photon and baryon fluids is given

by
k

τ̇
≪ 1, (3.2.11)

where k/τ̇ the ratio between the mean free path of the photon and the wavelength

which we focus on, and it is called the tight coupling parameter. In the early uni-

verse, this condition is well satisfied at cosmological scales, meaning that photons are

scattered frequently in focused scales. In that case, we can expand each moment by

the tight coupling parameter k/τ̇ as,

v = v(0) + v(1) + v(2) + v(3) + ... (3.2.12)

where the index (n) represents the order of the tight coupling. Hereafter we will

consider the vector mode perturbations. Then, solving the Euler equations, we obtain

zero-th order expansion for each moment as

v(0)γ − v
(0)
b = Π(0)

γ = I
(0)
ℓ = E

(0)
ℓ = B

(0)
ℓ = 0. (3.2.13)

42



When we consider the first order expansion, then the relative velocity, the anisotropic

stress and the secondary moment of E-mode polarization are given by

v(1)γ − v
(1)
b =

(
k

τ̇

)
H

(1 +R)k
v(0)γ , (3.2.14)

Π(1)
γ =

32

15

(
k

τ̇

)
(v(0)γ + σ(0)), (3.2.15)

E
(1)
2 =

8

45

(
k

τ̇

)
(v(0)γ + σ(0)). (3.2.16)

Here you can see the relative velocity is described as v
(1)
γ − v

(1)
b ∝ v

(0)
γ . As I men-

tioned in the previous subsection, the velocity of the photon fluid is induced by the

anisotropic stress Πγ . This means that the lowest order of vγ is the first order of

the tight coupling and v
(0)
γ corresponds to zero. Then the first order of the relative

velocity also goes to zero, and the leading order of the relative velocity should be the

second order of the tight coupling. Here the second order expansions for the relative

velocity v
(2)
γ − v

(2)
b , the anisotropic stress Π

(2)
γ , and the polarization term E

(2)
2 are

written as

v(2)γ − v
(2)
b =

(
k

τ̇

)
H

(1 +R)k
v(1)γ − 4

15

(
k

τ̇

)2
1

1 +R
(v(0)γ + σ(0))

−
(
k

τ̇

)2 Hv(0)γ
(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(0)
γ

v
(0)
γ

− τ̈

τ̇

)
, (3.2.17)

Π(2)
γ =

32

15

(
k

τ̇

)
(v(1)γ + σ(1))

+
176

45

(
k

τ̇

)2
1

k

(
τ̈

τ̇
(v(0)γ + σ(0))− (v̇(0)γ + σ̇(0))

)
, (3.2.18)

E
(2)
2 =

8

45

(
k

τ̇

)
(v(1)γ + σ(1))

+
74

135

(
k

τ̇

)2
1

k

(
τ̈

τ̇
(v(0)γ + σ(0))− (v̇(0)γ + σ̇(0))

)
, (3.2.19)

where we keep terms which multiplied by v
(0)
γ correspond to zero at this order, because

we need these terms for the higher order expansion. At the end of the tight coupling

epoch, k/τ̇ ∼ 1, we have to solve the Euler equations numerically without the tight

coupling approximation. For the connection, we need to give the leading contribution

of each moment accurately at the end of the tight coupling epoch and give accurate
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‘initial conditions’ for the Euler equations. To obtain accurate conditions, we should

count the required order of the tight coupling approximation, considering evolution

equations like eqs.(3.1.4) and (3.1.5). The equations of motion at the n-th order of the

tight coupling approximation, for the photon and baryon fluids velocities are given

by

v̇
(n)
b = −Hv(n)b +Rτ̇(v(n+1)

γ − v
(n+1)
b ), (3.2.20)

v̇(n)γ = −k
8
Π(n)
γ − τ̇(v(n+1)

γ − v
(n+1)
b ). (3.2.21)

Therefore, if we need the n-th order accurately, we have to know the relative velocity

at the (n+1)-th order in the tight coupling approximation. As for the relative velocity

vγ − vb, the leading term is in the second order of the tight coupling approximation

v
(2)
γ − v

(2)
b , and we have to calculate v

(2)
γ and v

(2)
b accurately at the end of the tight

coupling epoch. Thus we need the third order tight coupling approximation expression

for the relative velocity v
(3)
γ − v

(3)
b which is written as

v(3)γ − v
(3)
b =

(
k

τ̇

)
H

(1 +R)k
v(2)γ − 4

15

(
k

τ̇

)2
1

1 +R
(v(1)γ + σ(1))

−
(
k

τ̇

)2 Hv(1)γ
(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(1)
γ

v
(1)
γ

− τ̈

τ̇

)

+
4

15

(
k

τ̇

)3 H
(1 +R)2k

σ(0) − 2

45

(
k

τ̇

)3
1

(1 +R)2k

[
(23 + 11R)

τ̈

τ̇
σ(0)

−(17 + 11R)σ̇(0) − 6HRσ(0)

1 +R

]
. (3.2.22)

Now we know enough expansion for vb and vγ . In the same way with the case of the

relative velocity vγ − vb, we need expansions for the anisotropic stress Πγ and the

polarization term E2. The leading order of these moments are the first order of the

tight coupling approximation, and therefore we need the second order terms of them

given by eqs.(3.2.18) and (3.2.19) for accurate numerical calculation.

3.3 Magnetic fields generation

Now we can calculate the relative velocity between the photon and baryon fluids

δv ≡ vγ − vb accurately. Here we consider the magnetic fields generation induced by

the relative velocity δv.

We know that the photon fluid scatter electrons more frequently than protons in

the early universe, and it makes separation between electrons and protons. Then the
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electric fields are produced and protons catch up with electrons. When we consider the

vector mode perturbation, which is corresponding to the rotation mode, this scattering

and catching up process can induce magnetic fields via the Maxwell equations, because

of the rotation of the electric fields between electrons and protons. The strength of

the electric fields depends on the relative velocity between the photon and the proton

(i.e., baryon) fluids δv. The equation of motion for such magnetic fields are given by

[50]
1

a2
d

dη
(a2Bi) =

4σT ργ
3e

ϵijk∂kδvj , (3.3.23)

where Bi is the magnetic flux density for direction i, e is the electric charge, and ϵijk

is the Levi-Civita tensor. Then we can describe the power spectrum of the magnetic

fields in the Fourier space as

a4Bi(k⃗, η)B∗
i (k⃗

′, η) =

(
4σT
3e

)2

(δjlδkm − δjmδkl)kkk
′
m

×
∫ η

0

dη′a2(η′)ργ(η
′)δvj(k⃗, η

′)

×
∫ η

0

dη′′a2(η′′)ργ(η
′′)δvl(k⃗

′, η′′). (3.3.24)

To take the ensemble average of the magnetic fields, we need the ensemble average of

the relative velocity spectrum. We denote the relative velocity spectrum as,⟨
δvj(k⃗, η

′)δvl(k⃗
′, η′′)

⟩
= P vec

jl (k̂)Pδv(k)δv(k, η
′)δv(k, η′′)(2π)3δ(k⃗ − k⃗′), (3.3.25)

where
P vec
jl (k̂) = δjl − k̂j k̂l, (3.3.26)

is the projection of the vector mode which satisfies P vec
jl (k̂)k̂j = 0, Pδv(k) is the initial

power spectrum of relative velocity, and δv(k, η) is the transfer function of the relative

velocity. Here we define the ensemble average of the magnetic fields as⟨
Bi(k⃗, η)Bi(k⃗

′, η)
⟩
= (2π)2SB(k, η)δ(k⃗ − k⃗′), (3.3.27)

and we obtain

a4
k3

2π2
SB(k, η) =

k3

2π2
2Pδv(k)

(
4σT
3e

)2

k2
[∫ η

0

dη′a2(η′)ργ(η
′)δv(k⃗, η′)

]2
. (3.3.28)

In following chapters, we consider magnetic fields generation due to these processes.

In addition, we have to take care of specific features in the spectrum of magnetic

fields generated from cosmic defects. We have to consider the network structure and
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its averaged feature for cosmic strings, and mode couplings of different wavenumbers

for textures. We will see the magnetic fields generation from each defect according to

[1, 2] hereafter.
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Chapter.4

Primordial magnetic fields from the

string network

Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase

transition in the early universe. Individual strings would have gathered to build a

network, and their dynamical motion would induce scalar, vector and tensor type

perturbations. In this chapter, we focus on the vector mode perturbations arising

from the string network based on the one scale model and calculate the time evo-

lution and the power spectrum of the associated magnetic fields. We show that the

relative velocity between photon and baryon fluids induced by the string network

can generate magnetic fields over a wide range of scales based on standard cosmol-

ogy. We obtain the magnetic field spectrum before recombination as a2B(k, z) ∼
4 × 10−16Gµ/((1 + z)/1000)4.25(k/Mpc−1)3.5 Gauss on super-horizon scales, and

a2B(k, z) ∼ 2.4×10−17Gµ/((1+z)/1000)3.5(k/Mpc−1)2.5 Gauss on sub-horizon scales

in co-moving coordinates. This magnetic field grows up to the end of recombina-

tion, and has a final amplitude of approximately B ∼ 10−17∼−18Gµ Gauss at the

k ∼ 1 Mpc−1 scale today. This field might serve as a seed for cosmological magnetic

fields.

4.1 An introduction to magnetic fields from cosmic

string network

Cosmic strings are expected to affect physics at various scales [51]. There are a

number of phenomena caused by cosmic strings, for instance, as gravitational signa-

tures, primordial gravitational waves (PGWs) from cusps and kinks on infinite strings
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and string loops [52, 53, 54, 55], gravitational lensing by strings (strong lensing [56]

and microlensing [57]), CMB angular power spectra [32, 58], and so on. As non-

gravitational signatures, the following are predicted: ultra-high energy cosmic rays

from strings [59] and cusps on string loops via a scalar field [60], and radio bursts

from kinks and cusps on strings via the gravitational Aharonov-Bohm effect [61, 62].

Because of the impact on physics, a number of studies exist that aim to place

constraints on string tension µ which shows the string energy scale. As for CMB

observations, cosmic strings induce CMB anisotropies of the order of ∆T/T ∼ 4πGµ,

where T is the CMB temperature, ∆T is its fluctuation, and G is the gravitational

constant. As a result, the recent CMB temperature measurement by the Planck

collaboration provides limits to the energy scale of cosmic strings [63]. Details of the

limits depend on the models of the cosmic strings, for instance, Gµ ≤ 3.2× 10−7 for

Abelian Higgs strings and Gµ ≤ 1.5× 10−7 for Nambu-Goto strings [63].

Large scale magnetic fields are ubiquitous in the universe in various structures such

as in filaments [64] and in clusters of galaxies [65].The strength of magnetic fields is

expected to be about ∼ 10−8 Gauss in filaments (based on the turbulence simulations

[64]), and found to be ∼ 10−5 Gauss in clusters (based on Faraday rotation measure-

ments [65]). It is convincing that these large scale magnetic fields are amplified by

the dynamo mechanism from tiny, primordial seed fields. Recent gamma-ray obser-

vations have indicated the existence of magnetic fields even in cosmic voids [66]. The

strength of magnetic fields are about 10−16 Gauss in Mpc scale as [66]. Because voids

are far away from most of astrophysical objects, primordial magnetic fields, if any,

may survive just as they are in such regions[67].

In this chapter, we investigate primordial magnetic fields induced by the cosmic

string network. Previous works about the generation of primordial magnetic fields

from cosmic strings include generation from the motion of wiggly strings [68], shock

waves induced by cosmic strings [69, 70], the dynamical friction of strings’ motion

[71], and via the Harrison mechanism in the early universe [72]. Because of the

conservation of vorticity, it is argued that primordial magnetic fields can hardly be

produced by cosmic defects [72]. To reassess the generation of primordial magnetic

fields from cosmic strings, we focus on the tight coupling relationship between photon

and baryon fluids in the early universe and the anisotropic stress of photons. We see

that generation of magnetic fields from the cosmic string network is possible if we

consider up to second order in the tight coupling expansion including the anisotropic

stress of photons. In order to calculate the time evolution of cosmic string networks
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and their associated magnetic fields, we modified CMBACT [73]; this is the code

used to calculate the evolution of the string network and CMB anisotropies from the

cosmic string network following the ”one scale model” [38, 39, 40].

In the section 2.3, we have described the model of the individual strings and the

evolution of the string network. In the next section (section 4.2), we investigate

magnetic fields generation from the string network by considering the tight coupling

approximation between the photon and baryon fluids. In section 4.3, the method

which accounts for the randomness of the strings’ initial configuration is given. We

then discuss evolution of the magnetic field spectrum before and after the recom-

bination epoch in section 4.4. Finally, we summarize the features of the magnetic

fields from the cosmic string network in section 4.5. Throughout this chapter, we as-

sumed an homogeneous and isotropic expanding universe consistent with the Λ-CDM

model as the background metric. We fixed the cosmological parameters to h = 0.73,

Ωmh
2 = 0.127, Ωbh

2 = 0.0223, and Nν = 3.04, where H0 = 100hkm/s/Mpc is the

Hubble constant, Ωm and Ωb are the density parameters of matter and baryon, and

Nν is the number of massless neutrinos.

4.2 Magnetic fields

Infinite strings can be the source of magnetic fields on large scales around the

recombination era. In this section, we estimate the amplitude of the magnetic fields

produced by the network made of infinite strings.

4.2.1 Vector mode perturbation

Here we take the Poisson gauge,

ds2 = a2(η)(−(1 + 2ψ)dη2 + 2widηdx
i + [(1− 2ϕ)δij + hij ]dx

idxj). (4.2.1)

In the same way as [74], using the vector projector tensor

O(λ)
ij (k̂) =

iλ√
2
(k̂ie

(λ)
j (k̂) + k̂je

(λ)
i (k̂)), (4.2.2)

we can denote the vector mode part of hij directly as

hij =
∑
λ=±1

h
(λ)
V O(λ)

ij . (4.2.3)
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The evolution equation of the vorticity σ = ḣV /k is given based on the Einstein

equation by
σ̇(λ) + 2Hσ(λ) = 8πGa2Π(λ)/k. (4.2.4)

Here λ = ± is the index of polarization, and Π = Θtot
ij (k, τ)Oij is the total anisotropic

stress in the vector mode. In this chapter, we assume the infinite strings to be the

sources of the vector mode perturbations.

In the vector mode, the Euler equation for the baryon fluid is given by

v̇b − σ̇ +H(vb − σ) = Rτ̇(vγ − vb), (4.2.5)

where vγ and vb are the velocities of photon and baryon fluids, respectively, ργ and

ρb are the energy densities of photon and baryon fluids, respectively, R = 4ργ/3ρb

is the photon-baryon ratio, τ̇ = aσTne is the opacity of the Thomson scattering, σT

is the Thomson scattering cross section, and ne is the electron number density. The

vector mode Boltzmann equations for the photon fluid are given by

v̇γ − σ̇ +
k

8
Πγ = −τ̇(vγ − vb), (4.2.6)

Π̇γ +
8

5
kI3 −

8

5
kvγ = −τ̇

(
9

10
Πγ −

9

5
E2

)
,

(4.2.7)

İl + k
l

2l + 1

(
l + 2

l + 1
Il+1 − Il−1

)
= −τ̇ Il (l ≥ 3), (4.2.8)

Ėl +
(l + 3)(l + 2)l(l − 1)

(l + 1)3(2l + 1)
kEl+1 −

l

2l + 1
kEl−1

= −τ̇
(
El −

2

15
ξδl2

)
+

2

l(l + 1)
kBl,

(4.2.9)

Ḃl +
(l + 3)(l + 2)l(l − 1)

(l + 1)3(2l + 1)
kBl+1 −

l

2l + 1
kBl−1 = − 2

l(l + 1)
kEl,

(4.2.10)

where Πγ = 3I2 is the anisotropic stress of the photon fluid, Il is the l-th order

moment of the intensity, El and Bl are the l-th order moments of the polarization,

and ξ = 3I2/4 + 9E2/2 [47].

As shown in [74], the topological defects induce vγ and vb from the vorticity σ.

Then, the relative velocity between the photon and baryon fluids, vγ − vb, plays the

main role in exciting the magnetic fields [75, 76]. The evolution of the relative velocity
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and thus the evolution of the associated magnetic fields are driven by the strength

of the coupling between the photon and baryon fluids. Therefore, the magnetic fields

evolve differently before and after the epoch of recombination. Before recombination,

a tight-coupling approximation can be applied to describe their evolution. However,

after recombination, we need to solve the baryon fluid equation (4.2.5) and the full

Boltzmann equations (4.2.6)∼(4.2.10). We do this numerically.

4.2.2 Tight-coupling approximation

In the early universe before recombination, photon and baryon fluids are tightly

coupled to each other because of the frequent Thomson scattering. In that epoch, the

opacity of the Thomson scattering τ̇ was very large and the tight-coupling parameter

k/τ̇ takes a very small value (k/τ̇ ≪ 1). Therefore, we can expand the Boltzmann and

the Einstein equations with the tight coupling parameter. This expansion is called the

tight-coupling approximation (TCA). In [77], the authors considered magnetic field

generation with no external source, and used the first order approximation for the

photon’s anisotropic stress Π
(1)
γ and the second order approximation for the relative

velocity between photon and baryon fluids v
(2)
γ − v

(2)
b . In the case where there is an

external source, higher order TCA, such as Π
(2)
γ and v

(3)
γ − v

(3)
b are needed [74]. In

this chapter, we consider the string network as the external source and we need to

consider the higher order approximation.

Here we consider the TCA up to the third order in the conformal Newtonian gauge.

In the TCA, we expand the relative velocity as δv = vγ−vb = 0+δv(1)+δv(2)+δv(3)+...

, where δv(n) ∝ (k/τ̇)n is the n-th order expansion. Following [74], we find the TCA

up to second order for Πγ and up to third order for δv as,

Π(1)
γ =

32

15

(
k

τ̇

)
v(0)γ ,

Π(2)
γ =

32

15

(
k

τ̇

)
v(1)γ +

176

45

(
k

τ̇

)2
1

k

[
τ̈

τ̇
v(0)γ − v̇(0)γ

]
, (4.2.11)

δv(1) =

(
k

τ̇

)
H

(1 +R)k
(v(0)γ − σ(0)), (4.2.12)

δv(2) =

(
k

τ̇

)
H

(1 +R)k
(v(1)γ − σ(1))− 4

15

(
k

τ̇

)2
1

1 +R
v(0)γ

−
(
k

τ̇

)2 H(v
(0)
γ − σ(0))

(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(0)
γ − σ̇(0)

v
(0)
γ − σ(0)

− τ̈

τ̇

)
, (4.2.13)
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δv(3) =

(
k

τ̇

)
H

(1 +R)k
(v(2)γ − σ(2))− 4

15

(
k

τ̇

)2
1

1 +R
v(1)γ

−
(
k

τ̇

)2 H(v
(1)
γ − σ(1))

(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(1)
γ − σ̇(1)

v
(1)
γ − σ(1)

− τ̈

τ̇

)

+
4

15

(
k

τ̇

)3 H
(1 +R)2k

v(0)γ

− 2

45k

(
k

τ̇

)3
1

(1 +R)2

[
(23 + 11R)

τ̈

τ̇
v(0)γ − (17 + 11R)v̇(0)γ − 6v

(0)
γ HR
1 +R

]
.

(4.2.14)

In this chapter, we assume that the strings are the only source of vorticity. In this case,

the fact that v(0) = σ(0) plays the most important role. Because of this, the first order

TCA of the relative velocity is given as δv(1) = 0. Therefore, δv(2) ∼ (k/τ̇)2σ/(1+R)

is the leading order of the TCA. In our numerical calculation, evolution equations are

switched from the TCA to the full Boltzmann equations at the epoch of recombination.

At this time, we need to calculate an accurate relative velocity δv(2) = v
(2)
γ − v

(2)
b via

the Boltzmann equations. The junction conditions for v
(2)
γ and v

(2)
b at recombination

are given by the following equations,

v̇
(2)
b − σ̇(2) +H(v

(2)
b − σ(2)) = Rτ̇δv

(3)
TCA, (4.2.15)

v̇(2)γ − σ̇(2) +
k

8
Π(2)
γ = −τ̇ δv(3)TCA. (4.2.16)

Therefore we need δv(3) for an accurate calculation of δv(2) at the switching time [74]

from the TCA to the full Boltzmann equations.

4.2.3 Magnetic field generation

The relative velocity between the photon and baryon fluids can induce magnetic

fields [75, 76]. In the early universe, electrons move together with photons because

of the frequent Thomson scattering. Because this scattering separates electrons from

photons, electric fields are induced and their rotations generate magnetic fields via

the Maxwell equations. The evolution equation of the magnetic fields is given by

[75, 76, 50],
1

a

d

dη
(a2Bi) =

4σT ργa

3e
ϵijk∂k(vγj − vbj) , (4.2.17)
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where e is the elementary charge and ϵijk is the Levi-Civita tensor. We can obtain

the magnetic field spectrum by integrating (4.2.17) in Fourier space as

⟨
a4Bi(k⃗, η)B∗

i (k⃗
′, η)

⟩
=

(
4σT
3e

)2

(δjlδkm − δjmδkl)kkk
′
m

⟨∫ η

0

dη′a2(η′)ργ(η
′)δvj(k⃗, η

′)

×
∫ η

0

dη′′a2(η′′)ργ(η
′′)δv∗l (k⃗

′, η′′)

⟩
. (4.2.18)

To calculate the above ensemble average we need the unequal–time correlation

⟨δv(k, η′)δv(k, η′′)⟩ as a result of continuous generation of metric perturbation from

cosmic strings. To obtain this, we perform a number of simulations using CMBACT

and estimate the ensemble average directly from the simulations as

⟨
δvj(k⃗, η

′)δv∗l (k⃗
′, η′′)

⟩
=

1

Nr

Nr∑
I=1

Qjl(k̂)δv
(I)(k, η′)δv(I)(k, η′′)(2π)3δ(k⃗ − k⃗′),

(4.2.19)

where

Qjl(k̂) = δjl − k̂j k̂l, (4.2.20)

is the projection tensor and Nr = 100 is the number of realization (for details, see

section 4.3). Substituting (4.2.19) and (4.2.20) into (4.2.18), we obtain the correlation

function of the magnetic fields as [77]⟨
Bi(k⃗, η)Bi(k⃗

′, η)
⟩
= (2π)3Save

B (k, η)δ(3)(k⃗ − k⃗′), (4.2.21)

where

a4(η)
k3

2π2
Save
B (k, η) = 2

k3

2π2

(
4σT
3e

)2

k2
1

Nr

Nr∑
I=1

[∫ η

0

dη′ a2(η′)ργ(η
′)δv(I)(k, η′)

]2
.

(4.2.22)

The source of this spectrum is δv, which is driven by σ.

4.3 Method

Once the initial configuration of the string network and its evolution are fixed, the

spectrum of the magnetic fields can be calculated as shown in section 4.2.

However, the string network has a random initial configuration, and individual

strings decay at random. To see the statistical properties of the generated magnetic

fields, we need to average out their randomness. For that, we prepare a number of
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realizations for the string network and calculate the power spectrum (4.2.22) under

each realization.

In practice, we realize the magnetic fields by repeatedly following the three steps

listed below using CMBACT[73]:

1. Set a random initial configuration of the string network.

2. Compute the evolution of the energy–momentum tensor of the string network by

considering random decay of the strings.

3. Calculate the magnetic field spectrum.

In the m-th realization, the m-th power spectrum SmB (k, η) in (4.2.21) is calculated.

Moreover, we can obtain the averaged power spectrum Save
B (k, η) as

Save
B (k, η) =

1

Nr

Nr∑
I=1

S
(I)
B (k, η), (4.3.23)

where Nr is the number of realizations, and we fix Nr = 100 in this chapter. Because

each SmB has an initial configuration and evolution, the averaged power spectrum,

Save
B (k, η), can not be divided into an initial power spectrum and common transfer

functions. Therefore, to see the statistical properties of the generated magnetic fields,

we need to calculate a number of spectra under different realizations and average

them out as (4.3.23).

According to the above argument and calculating (4.2.22) numerically, we can ob-

tain the power spectrum of the magnetic fields from the string network as shown in

Fig.4.1 and Fig.4.2. Fig.4.1 shows magnetic field spectra before recombination when

the TCA can be applied, whereas Fig.4.2 shows the spectra after recombination when

the TCA is invalid.

4.4 Result & Discussion

In this section, we will give an analytical interpretation of the magnetic field spec-

trum arising from the string network. Here to understand the behavior of the spec-

trum, we investigate the evolution of magnetic fields separately before and after re-

combination.
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Figure.4.1 Power spectra of magnetic fields at z = 10, 000 (red solid line), 5, 000

(green solid line), and 2, 500 (blue solid line) from the infinite string network with

Gµ = 1.1 × 10−6. We averaged 100 realizations and the light-blue region is the

68% confidence interval for the z = 2, 500 case. Under these redshifts, the TCA

is valid.
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Figure.4.2 Same as Fig.4.1, but at z = 1, 000, 500, 100. In these epochs, the

TCA is invalid.

4.4.1 Before recombination

Before recombination, Thomson scattering between photons and electrons occurs

frequently; therefore, we can use the TCA. Focusing on the vector mode that is
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responsible for the generation of magnetic fields, all of the perturbations are induced

by vorticity σ from the string network. This assumption leads the first order TCA

of the relative velocity to be zero δv(1) = 0; therefore, the second order TCA of the

relative velocity δv(2) is the leading order of δv [74],

δv ≈ δv(2) ∝
(
k

τ̇

)2
v
(0)
γ

1 +R
=

(
k

τ̇

)2
σ(0)

1 +R
=

{
k2a5σ(0) (for rad. dominated era)
k2a4σ(0) (for mat. dominated era).

(4.4.24)

Sourced by this relative velocity, magnetic fields are generated via (4.2.22) in indi-

vidual realizations. Here we define the source function of the magnetic fields Fs(k, η)

as

Fs(k, η) ≡
∫ η

0

dη′ a2(η′)ργ(η
′)δv(k, η′). (4.4.25)

Assuming σ ∝ aν , and integrating (4.2.4), we can find ν ≥ −2 is always valid once the

anisotropic stress Π from the string network arises although the anisotropic stress is

continuously generated by the active string network which makes its time-dependence

nontrivial. Because of this, the value of ν varies between realizations. Then, substi-

tuting σ ∝ aν and (4.4.24) into (4.4.25), we find that the source function Fs(k, η)

always increases with time. This means that the co-moving magnetic fields induced

in this era are always increasing,

Following the above argument, we obtain a spectrum of the magnetic fields

S
(I)
B (k, η), which grows in time for each realization. Averaging these spectra in the

manner explained in section 4.3, we calculate the averaged magnetic field power

spectrum as shown in Fig.4.1. From Fig.4.1, we can find approximate expressions for

the magnetic field spectrum. On super-horizon scales, the expression is given by

a4(η)
k3

2π2
Save
B (k, z) ≈ 1.6× 10−31(Gµ)2

(
1 + z

1000

)−8.5(
k

Mpc−1

)7

[G2], (4.4.26)

and on sub-horizon scales,

a4(η)
k3

2π2
Save
B (k, z) ≈ 5.8× 10−34(Gµ)2

(
1 + z

1000

)−7(
k

Mpc−1

)5

[G2]. (4.4.27)

On super horizon scales, we find that the wavenumber dependence is the same as that

of the magnetic field spectrum from texture [74] and second order density perturba-

tions [50, 46], but slightly different from the magnetic fields generated in Einstein-

aether gravity
⟨
B2

EA(k)
⟩
∝ k8 [78]. The power spectrum of anisotropic stress arising

from the string network is shown in Fig.4.3. On sub-horizon scales, we find the power
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spectrum of magnetic fields as k3SB(k) ∝ k5. To understand this scale dependence,

we show the power spectrum of anisotropic stress arising from the string network in

Fig.4.3. On sub-horizon scales, the spectrum shows Π ∝ k−1. From the equations

(4.2.4) and (4.2.13) we find the relations σ ∝ Π/k and δv ∝ k2σ, which imply that

k3SB(k) ∝ k5 from (4.2.22). The wavenumber dependence differs from the other

models which are given by
⟨
B2

NLSM(k)
⟩
∝ k1 [74],

⟨
B2

rec(k)
⟩
∝ k2 or k2/3 [50] and⟨

B2
EA(k)

⟩
∝ k2 or k−2 [78].

On smaller scales before recombination, δv begins to decay at the Silk damping

scale. Here, the co-moving spectrum can be written as
⟨
a4B2(k, a)

⟩
∝ k5a−7 and

the Silk scale can be written as kSilk ∝ a−3/2 [79]. In the same way as [77], we

obtain the power spectrum of magnetic fields at scales smaller than the Silk scale as⟨
a4B2

Silk(k)
⟩
∝ k1/3. This spectrum continues to the horizon scale of electron positron

pair annihilation, k ∼ 105Mpc−1, where the mechanism of magnetic field generation

considered in this chapter ceases to function [77].

4.4.2 After recombination

Because the TCA was valid before recombination, we only needed the expression

of δv up to δv(2) for the source of the magnetic fields. However, around recombina-

tion, as the number density of free electrons decreases, the frequency of the Thomson

scattering between photons and electrons decreases. Moreover the photons and elec-

trons gradually decouple. Then, the baryon fluid becomes less able to catch up with

photon fluid and the TCA breaks down. After this switching epoch, to obtain δv, we

need to calculate the full Boltzmann-Einstein system (4.2.4)∼(4.2.10). In general, it

is difficult to solve the Boltzmann equations and see the evolution of δv analytically.

However, on super-horizon scales, we can estimate δv using the condition kη ≪ 1. By

integrating (4.2.5) and (4.2.6), baryon and photon fluids velocities can be denoted as

vb(k, η) = σ(k, η) +
1

a(η)

∫ η

dη′a(η′)τ̇(η′)R(η′)δv(k, η′) (4.4.28)

= σ(k, η) +R(η)

∫ η

dη′τ̇(η′)δv(k, η′), (4.4.29)

vγ(k, η) = σ(k, η)− k

8

∫ η

dη′Πγ(k, η
′)−

∫ η

dη′τ̇(η′)δv(k, η′). (4.4.30)

From (4.4.28)−(4.4.30), we obtain the differential equation for δv,

δ̇v ≃ −k
8
Πγ(k, η)− τ̇(η)δv(k, η′), (4.4.31)
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where we neglected the second term on the RHS of (4.4.28) since R(η) = 4ργ/3ρb ≪ 1

after recombination. We solve it to obtain the form of δv(k, η)

δv(k, η) ≃ −k
8
e−τ(η)

∫ η

dη′Πγ(k, η
′)eτ(η

′). (4.4.32)

Writing the anisotropic stress of photons from (4.2.7) as,

Πγ(kη) ∼
8

5
k

∫ η

dη′vγ(k, η
′), (4.4.33)

we can estimate δv using vγ as

δv(k, η) ∼ −k2e−τ(η)
∫ η

dη′eτ(η
′)

∫ η′

dη′′vγ(k, η
′′). (4.4.34)

Substituting (4.4.33) and (4.4.34) into (4.4.30), we can see that vγ(k, η) = σ(k, η) +

O((kη)2). Because of this, δv on super-horizon scales should be

δv(k, η) ∼ −k2e−τ(η)
∫ η

dη′eτ(η
′)

∫ η′

dη′′σ(k, η′′). (4.4.35)

After vorticity σ becomes source free, σ evolves as σ ∝ a−2 and the source function

(4.4.25) becomes constant. Then, the evolution of the magnetic fields finishes at

super-horizon scales.

On sub-horizon scales, the same argument as that for the super-horizon holds true,

and we can see the same relationship between δv and vγ as in (4.4.34). The main

difference in this case is the effects of the higher order terms in kη. On sub-horizon

scales (kη ≥ 1), the photon fluid velocity vγ evolves following not the first but the sec-

ond and third terms on the RHS of (4.4.30) (higher order terms in kη). Subsequently,

after the recombination epoch, the third term vanishes and the evolution of vγ follows

the free-streaming solution. Then, the conformal time dependence of (4.4.34) is up

to δv ∝ η2, and the generation of magnetic fields finishes.

In each realization, magnetic fields are induced by this mechanism. As before,

because the evolution of magnetic fields varies in realizations, we need to take the

realization average as in section 4.3. The averaged magnetic field power spectrum

after recombination is given in Fig.4.2. We can see that the anisotropic stress induced

by the string network is independent of the wavenumber k on the super-horizon scale

from Fig.4.3. Using (4.2.4), (4.2.22) and (4.4.35), the wavenumber power on the

super-horizon scale is the same as that before recombination,
⟨
B2(k)

⟩
∝ k7. The

expression of the magnetic field spectrum today can be written as

a4(η)
k3

2π2
Save
B (k, z) ≈ 7× 10−23(Gµ)2

(
k

Mpc−1

)7

[G2], (4.4.36)
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on super-horizon scales and,

a4(η)
k3

2π2
Save
B (k, z) ≈ 2.5× 10−35(Gµ)2 [G2], (4.4.37)

on sub-horizon scales at z = 100 as shown in Fig.4.2.
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Figure.4.3 Wavenumber dependence of the anisotropic stress at z = 2500 (red

solid line), 1000 (green solid line), 100 (blue solid line) from the infinite string

network.

Finally let us discuss implications of these magnetic fields. If such magnetic fields

existed in the early universe, strong magnetic amplification would occur in the accre-

tion shocks of primordial gases during structure formation of the universe. Then they

could provide extra pressure and suppress the fragmentation of gas clumps, support-

ing the formation of massive protostars and super massive black holes [80]. Moreover,

they would affect the hyperfine structure of neutral hydrogens in primordial gases and

might be observed via the anisotropic power spectrum of the brightness temperature

of the 21-cm line with future surveys as discussed in [81].

4.5 Conclusion

In this chapter, we estimated the magnetic field spectrum from the cosmic string

network. First, we calculated the evolution of the cosmic string network under the

process of the one scale model and its energy momentum tensor using CMBACT [73].

Then, we solved the Boltzmann-Einstein system to obtain the relative velocity be-
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tween the photon and baryon fluids using the tight coupling approximation and saw

that the leading order of TCA for δv was O((k/τ̇)2)σ before recombination. Finally,

we obtained the power spectrum of the magnetic fields via (4.2.22), before recombina-

tion, as a2
√
B2(k, z) ∼ 4×10−16Gµ/((1+z)/1000)4.25(k/Mpc−1)3.5 Gauss on super-

horizon scales, and a2
√
B2(k, z) ∼ 2.4 × 10−17Gµ/((1 + z)/1000)3.5(k/Mpc−1)2.5

Gauss on sub-horizon scales in co-moving coordinates. On scales smaller than the Silk

damping scale, the spectrum could be calculated as a2
√
B2(k) ∝ k1/6. After recombi-

nation, the spectrum was driven by the evolution of vorticity on super-horizon scales

and the coupling between photon and baryon fluids on sub-horizon scales. When the

recombination epoch came to an end, the evolution of magnetic fields also ceased. The

magnetic field spectrum today is a2
√
B2(k, z) ∼ 2× 10−11Gµ(k/Mpc−1)3.5 Gauss on

super-horizon scales and a2
√
B2(k, z) ∼ 5× 10−17Gµ Gauss on sub-horizon scales.
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Chapter.5

Primordial magnetic fields from

self-ordering scalar fields

A symmetry-breaking phase transition in the early universe could have led to the

formation of cosmic defects. Because these defects dynamically excite not only scalar

and tensor type cosmological perturbations but also vector type ones, they may serve

as a source of primordial magnetic fields. In this study, we calculate the time evo-

lution and the spectrum of magnetic fields that are generated by a type of cosmic

defects, called global textures, using the non-linear sigma (NLSM) model. Based on

the standard cosmological perturbation theory, we show, both analytically and nu-

merically, that a vector mode relative velocity between photon and baryon fluids is

induced by textures, which inevitably leads to the generation of magnetic fields over

a wide range of scales. We find that the amplitude of the magnetic fields is given by

B ∼ 10−9((1 + z)/103)−2.5 (v/mpl)
2 (
k/Mpc−1

)3.5
/
√
N Gauss in the radiation dom-

inated era for k ≲ 1 Mpc−1, with v being the vacuum expectation value of the O(N)

symmetric scalar fields. By extrapolating our numerical result toward smaller scales,

we expect that B ∼ 10−14.5
(
(1 + z)/103

)1/2
(v/mpl)

2 (
k/Mpc−1

)1/2
/
√
N Gauss on

scales of k ≳ 1 Mpc−1 at redshift z ≳ 1100. This might be a seed of the magnetic

fields observed on large scales today.

5.1 An introduction to magnetic fields from self-

ordering scalar fields

There exist many studies regarding the phenomenological aspects of topological de-

fects, which include the generation of CMB temperature and polarization anisotropies
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[82, 83, 84, 85], gravitational waves (GWs)[45, 86, 44, 87, 88], cosmic rays [89, 90],

and some non-gravitational effects [91, 92], among others (for a review of structure

formation with topological defects, see [93]). As a rule of thumb, the amplitude of the

fluctuations induced by topological defects, such as CMB anisotropies, is of the order

∆T/T ∼ 4πGv2, where v is the vacuum expectation value (VEV) of the scalar fields,

G is the Newton constant, and T and ∆T are the CMB temperature and its fluctu-

ation, respectively. Therefore, the recent CMB measurement by the Planck satellite

has placed limits on the energy scale of the topological defects [63]. The actual limits

depend on the detailed models, for instance, Gv2 ≤ 4.2×10−7 [94] for cosmic strings,

Gv2 ≤ 3.2×10−7 for Abelian–Higgs cosmic strings, Gv2 ≤ 1.5×10−7 for Nambu–Goto

strings, and Gv2 ≤ 1.1× 10−6 for semi-local strings and global textures [63].

In this chapter, we pay particular attention to global textures with N ≫ 4, which

can be well-approximated by self-ordering scalar fields that follow the non-linear sigma

model (NLSM). The NLSM can describe the evolution of global O(N) symmetric

scalar fields with an accuracy up to corrections on the order of 1/N . The NLSM has

attracted much attention since the discovery of CMB B-mode polarizations by the

BICEP2 experiment [95] because textures following the NLSM can be a source of the

scale-invariant GWs [96][44][45], just as inflation in the early universe can produce the

scale-invariant GWs. To observationally distinguish between GWs originating from

inflation and from textures, one should consider observables that reflect the time

evolution of the GWs. The GWs from inflation are frozen on super-horizon scales at

first, and decay with oscillations after the horizon crossing. The GWs from textures,

on the other hand, are generated inside the horizon, and decay with oscillations after

the scalar fields that source the GWs decay away as the universe expands. In [97], the

authors calculate the CMB temperature and polarization anisotropies in the NLSM

and find that the shapes of the correlation functions of the CMB anisotropies in the

NLSM are different from the corresponding ones from inflation. Therefore, detailed

observations of CMB anisotropies can distinguish between GWs from the two different

origins. In fact, the recent B-mode measurement by BICEP2 places an upper bound

on the VEV in the NLSM at v ≲ 9 × 10−4G−1/2, and the GWs from the NLSM

are shown to be slightly disfavored by the data compared with those from inflation

[98][99], while contamination by dust in the BICEP2 data has to be re-analyzed with

PLANCK data.

In this chapter, we investigate yet another route to probe the NLSM: the gen-

eration of magnetic fields. Because of the non-linear nature of the NLSM, scalar
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fields following the NLSM inevitably induce vector mode perturbations as well as

scalar and tensor modes ones. The relative vector mode velocity between photon and

baryon fluids induces rotation in electric fields, leading to the generation of magnetic

fields [77]. Recent discoveries of large-scale magnetic fields in void regions [66][100]

as well as magnetic fields at high redshifts [101] make the investigation more inter-

esting because such magnetic fields may be of primordial origin in the early universe.

Therefore, one of the aims of this chapter is to derive the spectrum of magnetic fields

generated by vector perturbations in the NLSM within the observational limits of

CMB anisotropies.

We already reviewed the NLSM, in which N -component scalar fields act as a source

of cosmological perturbations, in section 2.4. Then, this chapter is organized as

follows. In the next section, we derive the power spectrum of magnetic fields in the

NLSM, both numerically and analytically, using the tight coupling approximation.

We will see that in order to obtain a reliable result, we should expand the equations

up to the third order in the tight coupling approximation between photon and baryon

fluids. We discuss the result and give an analytic interpretation of the spectrum of the

magnetic fields in section 4, followed by our conclusion in section 5. Throughout this

chapter, we fix the cosmological parameters to h = 0.7, Ωbh
2 = 0.0226, Ωch

2 = 0.112,

and Nν = 3.046, where H0 = 100h km/s/Mpc is the Hubble constant, Ωb and Ωc are

the density parameters of baryonic and cold dark matter, respectively, and Nν is the

effective number of massless neutrinos. Those parameter values are consistent with

the Planck results, and correspond to the ΛCDM model [102].

5.2 Magnetic fields

In this section, we investigate generation of seeds of large scale magnetic fields from

the self-ordering scalar fields which follow the NLSM. These scalar fields can induce

cosmological vector mode perturbations and eventually produce magnetic fields.

5.2.1 Vector mode perturbations and their evolution equa-

tions

We begin by reviewing the basic linear perturbation theory and define the vec-

tor mode. Let us consider the perturbed metric around the flat FRW one in the
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synchronous gauge as

ds2 = gµνdx
µdxν = a2(η)(−dη2 + (δij + hij)dx

i dxj), (5.2.1)

where hij is the metric perturbation. In Fourier space, the vector part of hij can be

expressed as

hij =
ik̂ih

V
j + ik̂jh

V
i√

2
. (5.2.2)

Here hVi is a divergenceless vector and can be rewritten using the vector basis e
(±)
i (k̂)

as
hVi =

∑
λ=±

λh
(λ)
V e

(λ)
i (k̂). (5.2.3)

Combining eq. (5.2.2) and eq. (5.2.3), we can denote hij directly as

hij =
∑
λ=±

h
(λ)
V O(λ)

ij , O(λ)
ij =

iλ√
2
( k̂ie

(λ)
j (k̂) + k̂je

(λ)
i (k̂) ), (5.2.4)

where O(λ)
ij is the vector projection tensor. Using this projection tensor, we can derive

the vector mode perturbation equation for σ = ḣV /k as

σ̇(λ) + 2Hσ(λ) = 8πGa2Π(λ)/k, (5.2.5)

where Π(λ) = T
(tot)
ij O(λ)

ij is the total anisotropic stress in the vector mode,H = ȧ/a is

conformal hubble, and a dot denotes a conformal time derivative. Hereafter we shall

omit the superscript (λ) for the purpose of presentation. The total energy-momentum

tensor consists of two parts: one is from the ordinary matter and radiation and the

other is from the scalar fields given by eq. (2.4.91). Anisotropic stress of the scalar

fields Πϕ = TϕijOij can be calculated as

a2Πϕ(k⃗, η) =
v2

2

∫
d3p

(2π)3
d3q

(2π)3

√
1− µ2 [k − 2qµ] q F (q, p, η)βa(p⃗)βa(q⃗)(2π)

3δ(k⃗−p⃗−q⃗),

(5.2.6)

where µ = k̂ · q̂ and p =
√
k2 − 2kqµ+ q2. For the expression of anisotropic stress of

ordinary matter and radiation, we refer to, e.g., ref. [22]. Let us define the transfer

function for the anisotropic stress of the scalar fields as

a2πϕ(k, q, µ, η) ≡ v2

2

√
1− µ2 [k − 2qµ] q F (q, p, η), (5.2.7)

and the transfer function for σ as

σ(k, q, µ, η) =
4π

a2(η)

v2

m2
pl

∫ η

dη′ a2(η′)
√
1− µ2 [k − 2qµ] q F (q, p, η′)/k. (5.2.8)
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The fluid equation for baryon in the vector mode is given by

v̇b +Hvb =
4ργ
3ρb

aneσT (vγ − vb), (5.2.9)

where ργ and ρb are the energy densities of photon and baryon fluids, respectively,

R = 4ργ/3ρb, σT is the Thomson scattering cross section, ne is the electron number

density, and aneσT = τ̇ is the opacity of the Thomson scattering. On the other hand,

the vector mode Boltzmann equation of photon fluid expanded in terms of multipole

momenta is given by

v̇γ +
1

8
kΠγ = −τ̇(vγ − vb), (5.2.10)

Π̇γ +
8

5
kI3 −

8

5
kvγ = −τ̇

(
9

10
Πγ −

9

5
E2

)
+

8

5
kσ, (5.2.11)

İl + k
l

2l + 1

(
l + 2

l + 1
Il+1 − Il−1

)
= −τ̇ Il (for l ≥ 3), (5.2.12)

for intensity and

Ėl +
(l + 3)(l + 2)l(l − 1)

(l + 1)3(2l + 1)
kEl+1 −

l

2l + 1
kEl−1

= −τ̇
(
El −

2

15
ζδl2

)
+

2

l(l + 1)
kBl, (5.2.13)

Ḃl +
(l + 3)(l + 2)l(l − 1)

(l + 1)3(2l + 1)
kBl+1 −

l

2l + 1
kBl−1 = − 2

l(l + 1)
kEl, (5.2.14)

for polarization. Here vγ and Πγ are the velocity and anisotropic stress of photons,

respectively, Il is the l-th order moment of photons’ distribution, and El and Bl are

the photons’ polarization moments and ζ ≡ 3I2/4 + 9E2/2 [47].

As we shall show in section 5.2.2, the relative velocity between the photon and

baryon fluids plays the key role in generation of magnetic fields. Since the strength

of the coupling between photon and baryon velocities significantly changes before

and after recombination, evolution of the relative velocity and hence the magnetic

fields qualitatively differs between these two epochs. Before recombination, the tight-

coupling approximation allows us to solve the system of equations partially, which we

shall see shortly, and helps us to interpret numerical results. On the other hand, after

recombination, the system of equations is solved completely numerically.

Tight-coupling approximation

In the early universe, photon and baryon fluids are tightly coupled because the

opacity of the Thomson scattering τ̇ is very large. Therefore we can expand the per-

turbation equations in section 5.2.1 in terms of the tight-coupling parameter k/τ̇ ≪ 1.
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This is called the tight coupling approximation (TCA). In ordinary analyses without

external sources such as the NLSM, the first order solution for anisotropic stress of

photons Π
(1)
g and the second order solution for the relative velocity between the pho-

ton and baryon fluids δv(2) = v
(2)
γ − v

(2)
b were used [77]. However, when there exist

NLSM scalar fields as an external source in the linearized Boltzmann system, we find

that one should consider the TCA up to the third order terms proportional to σ, as

discussed below.

In the tight coupling expansion, the baryon velocity relative to the photon velocity

is expanded using the tight coupling parameter, i.e., vγ − vb = 0+ δv(1) + δv(2) + . . . ,

where δv(1) and δv(2) are proportional to (k/τ̇) and (k/τ̇)2, respectively. The tight

coupling solutions of Πγ and δv up to the second order are given by

Π(1)
γ =

32

15

(
k

τ̇

)
(v(0)γ + σ(0)),

Π(2)
γ =

32

15

(
k

τ̇

)
(v(1)γ

+σ(1)) +
176

45

(
k

τ̇

)2
1

k

[
τ̈

τ̇
(v(0)γ + σ(0))− (v̇(0)γ + σ̇(0))

]
(5.2.15)

δv(1) =

(
k

τ̇

)
H

(1 +R)k
v(0)γ (5.2.16)

δv(2) =

(
k

τ̇

)
H

(1 +R)k
v(1)γ − 4

15

(
k

τ̇

)2
1

1 +R
(v(0)γ + σ(0))

−
(
k

τ̇

)2 Hv(0)γ
(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(0)
γ

v
(0)
γ

− τ̈

τ̇

)
(5.2.17)

It is imporant to note that δv(2) is not necessarily smaller than δv(1) in the NLSM.

This is because, in the NLSM, the metric perturbation σ is always much larger than

the fluid perturbation variables such as vγ (see figure 5.1 and discussion in section

5.3), and it sometimes happens that the first order solution proportional to vγ is

smaller than the second order solution proportional to σ i.e. (k/τ̇)vγ ≲ (k/τ̇)2σ. We

can see directly this relation from (5.2.10), which implies

vγ ∼ k

∫
dη
k

τ̇
σ ∼ kη

(
k

τ̇

)
σ. (5.2.18)

Therefore, the condition that (k/τ̇)vγ ≲ (k/τ̇)2σ is satisfied at least on super-horizon

scales, and the slip term is dominated by the second order terms in the tight coupling

approximation.
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In fact, in the numerical calculations, we must eventually switch to evaluate the slip

term directly from vγ and vb because the tight coupling approximation breaks down

in late times. Because the slip term is dominated by the second order term δv(2) in

early times, we must keep solving vγ and vb accurate enough up to the second order

in the tight coupling approximation, i.e., v
(2)
γ and v

(2)
b . In terms of the tight coupling

approximation, the evolution equation of v
(2)
γ , for instance, is given by

v̇(2)γ = −1

8
kΠ(2)

γ − τ̇ δv(3) . (5.2.19)

This is why we need to consider TCA up to the third order. The slip term at the

third order is given by

δv(3) =

(
k

τ̇

)
H

(1 +R)k
v(2)γ − 4

15

(
k

τ̇

)2
1

1 +R
(v(1)γ + σ(1))

−
(
k

τ̇

)2 Hv(1)γ
(1 +R)2k2

(
HR
1 +R

+
Ḣ
H

+H+
v̇
(1)
γ

v
(1)
γ

− τ̈

τ̇

)
(5.2.20)

+
4

15

(
k

τ̇

)3 H
(1 +R)2k

σ(0)

− 2

45k

(
k

τ̇

)3
1

(1 +R)2

[
(23 + 11R)

τ̈

τ̇
σ(0) − (17 + 11R)σ̇(0) − 6σ(0)HR

1 +R

]
.

(5.2.21)

Here we show only the terms proportional to σ. The condition δv(3) ≪ δv(2) is always

valid in the tight coupling regime.

5.2.2 Magnetic field generation

We consider generation of magnetic fields originated from the relative velocity be-

tween the photon and baryon fluids, δv = vγ − vb. Well before recombination, due

to the frequent Thomson scattering of photons off electrons, electrons are separated

with protons, and move together with photons. For protons to catch up with elec-

trons, electric fields are induced and rotation of the induced electric fields generates

magnetic fields via Maxwell equations.

The equation for the generation of magnetic fields is given by [50]

1

a

d

dη
(a2Bi) =

4σT ργa

3e
ϵijk∂k(vγj − vbj), (5.2.22)

where e is the elementary charge and ϵijk is the Levi-Civita tensor. The appearance

of the rotation of δv in eq. (5.2.22) clearly shows that only the vector mode part of
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Figure.5.1 Time-evolutions of the transfer functions. Here σ(k, q, µ, η) (red

line), vγ(k, q, µ, η) (green), vb(k, q, µ, η) (blue) and δv(k, q, µ, η) (magenta) are

plotted as functions of the scale factor. We assume k = q = 10−1Mpc−1 and,

µ = 0. We can see that the condition σ ≫ vγ is almost always satisfied.

δv can contribute to magnetic fields. By integrating eq. (5.2.22) in Fourier space, we

obtain

a4Bi(k⃗, η)B∗
i (k⃗

′, η) =

(
4σT
3e

)2

(δjlδkm − δjmδkl)kkk
′
m

∫ η

0

dη′a2(η′)ργ(η
′)δvj(k⃗, η

′)

×
∫ η

0

dη′′a2(η′′)ργ(η
′′)δv∗l (k⃗

′, η′′). (5.2.23)

Next we take an ensemble average of this expression over the initial configuration

of the NLSM scalar fields βa(k⃗). The ensemble average of the relative velocity can

be calculated using the transfer function δv(k, q, µ, η) and the NLSM’s initial power

spectrum PNini defined in appendix 2.4.1 as⟨
δvj(k⃗, η

′)δv∗l (k⃗
′, η′′)

⟩
= Pjl(k̂)

PNini
2π2

(2π)3δ(k⃗ − k⃗′)

×
∫
dq q2

∫
dµ δv(k, q, µ, η′)δv(k, q, µ, η′′), (5.2.24)

Pjl(k̂) = δjl − k̂j k̂l. (5.2.25)

The correlation function of magnetic fields is then obtained as⟨
Bi(k⃗, η)B∗

i (k⃗
′, η)

⟩
= (2π)3SB(k, η)δ(k⃗ − k⃗′), (5.2.26)
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where

a4(η)
k3

2π2
SB(k, η) =

k3

2π2

(
4σT
3e

)2 PNini
π2

k2
∫
dq q2

∫ 1

−1

dµ

×
[∫ η

0

dη′ a2(η′)ργ(η
′)δv(k, q, µ, η′)

]2
. (5.2.27)

We calculate eq. (5.2.27) numerically and the power spectra of magnetic fields at

several redshifts are depicted in figure 5.2.
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Figure.5.2 Power spectra of magnetic fields at z = 2000 (red solid line), z =

5000 (blue solid line) and z = 10000 (green solid line) from scalar fields in the

NLSM. Here we take the NLSM parameters as v4/N = 10−12m4
pl. The black

dotted line is the approximate amplitude which is given by eq. (5.3.45).

5.3 Analytical Understanding

Let us try to understand the results obtained in the previous section analytically.

In our numerical calculations, we consider scalar fields following the NLSM as the

only source of vector mode cosmological perturbations. Therefore we assume that

there are no vector mode perturbations at η → 0. In this setup, vorticity σ evolves

first with the scalar fields as an external source (eq. (5.2.6)), and it induces photons’

anisotropic stress Πγ . Then Πγ leads to the photon velocity vγ and it propagates to

the baryon velocity vb. Because the induced anisotropic stress Πγ is suppressed by a

factor of the tight coupling parameter k/τ̇ due to the frequent Thomson scattering
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(see eq. (5.2.15)), the velocities induced from the anisotropic stress are much smaller

than σ, in other words, the condition that σ ≫ vγ ∼ vb is valid at least in the tight

coupling era. Therefore, we can find that the dominant term in eq. (5.2.17) is

δv(k, q, µ, η) ≈ − 4

15

(
k

τ̇

)2
1

1 +R
σ(k, q, µ, η). (5.3.28)

To calculate σ(k, q, µ, η), we introduce approximations for the Bessel function in

eq. (2.4.88) which are given by

Jν(x)

xν
≈


1

2νΓ(ν+1) (for x≪ 1)

1
xν

√
2
πxcos

(
x− 2ν+1

4 π
)

(for x≫ 1)
. (5.3.29)

Using these approximations, we can calculate super-horizon (kη ≪ 1) and sub-horizon

(kη ≫ 1) solutions in the radiation and matter dominated eras as we shall show below.

5.3.1 Super-horizon

On super-horizon scales, the wavenumber of fluctuations k is smaller than the in-

verse of the horizon scale, i.e., kη ≪ 1. However the wavenumber q in eq. (5.2.27)

which comes from the convolution integral does not necessarily satisfy qη ≪ 1. We

know from eq. (5.2.7) and eq. (5.3.29) that σ(k, q, µ, η) as a function of q decays

as σ ∝ q−2ν+1 for q ≫ η−1, and we could expect that the bulk of the q-integration

comes from the range of q ≲ η−1. In this case we can express eq. (5.2.27) as

a4
k3

2π2
SB(k) ∝ k5η−3

[
ηa−2δv(k, q = 1/η, µ, η)

]2
. (5.3.30)

For k ≪ q ∼ p ∼ 1/η, we can find the k-dependence of σ from eq. (5.2.8) as,

σ ∝ η2

k
. (5.3.31)

Then, substituting eq. (5.3.28) and eq. (5.3.31) into eq. (5.3.30), we obtain

a4
k3

2π2
SB(k) ∝ k5

[
k2

k

]2
∝ k7. (5.3.32)

We can see this power law tail on large scales in figure 5.2. The spectral index is same

as that of the magnetic fields generated from second order density perturbations [50],

but slightly different from the one obtained in the Einstein-aether gravity model,

where
√
⟨B2

EA(k)⟩ ∝ k4 [103].
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5.3.2 Sub-horizon

On sub-horizon scales, i.e. kη ≫ 1, the situation changes in a more complicated

way. Because of the condition that pη =
√
k2 − 2kqµ+ q2η ≫ 1, we must take special

care of rapid oscillations of the Bessel functions in eqs.(5.2.8) and (5.2.27). In order

to manipulate the equations analytically, we divide the interval of integration with

wavenumber q into three regions: (i) k ∼ q ≫ η−1; q is on sub-horizon scale, (ii)

q ≪ η−1; q is on super-horizon scale, and (iii) η−1 < q < αη−1; q is nearly on

the horizon scale (with α being O(1) constant). Considering contributions from each

interval, we estimate the power spectrum of magnetic fields.

case (i) k ∼ q ≫ η−1

In this case, because the conditions that pη ≫ 1 and qη ≫ 1 are satisfied from

the conservation of the momentum, the source function of the vorticity σ has decayed

away. Without sources, the vorticity also decays and therefore the contribution from

this part is negligible.

case (ii) q ≪ η−1

In this case, p ∼ k and the source of the vorticity is growing. Using the approx-

imation of eq. (5.3.29), and assuming the radiation dominated era (ν = 2), we can

evaluate eq. (5.2.8) as

σ ∝ 1

a2

∫ η′

0

dη′′ η′′5q(1− 2qµ/k)
Jν(kη

′′)

(kη′′)ν
,

∝ η′−2k−6q(kη′)3J3(kη
′). (5.3.33)

Here we use the fact that 1 − 2qµ/k ≃ 1 and the formula
∫
dx xn+1Jn(x) =

xn+1Jn+1(x), and ignore the factor
√

1− µ2. Using the above formula again and

eq. (5.3.28), we obtain ∫ η

0

dη′ ργa
2δv ∝ k−6q(kη)4J4(kη). (5.3.34)

Substituting eq. (5.3.34) into eq. (5.2.27) and using eq. (5.3.29), the spectrum can be

written as

a4
k3

2π2
SB(k) ∝ k5

∫ 1/η

0

dq q4
[
k−6(kη)4J4(kη)

]2
∝ k0 . (5.3.35)
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case (iii) η−1 < q < αη−1

In this range, we need to treat the source carefully. First, assuming the radiation

dominated era, let us divide the η′ integral in eq. (5.2.27) as∫ η

0

a2(η′)ργ(η
′)δv dη′ ∝

∫ η

0

η′σ(η′)dη′ =

∫ q−1

0

η′ση′<q−1(η′)dη′+

∫ η

q−1

η′ση′>q−1(η′)dη′ .

(5.3.36)

The integrand of the first term in the above equation, ση′<q−1(η′), is given by

eq. (5.3.33), and the integration leads to the term proportional to k−6q(k/q)4J4(k/q).

That of the second term is calculated as

ση′>q−1(η′) ≃ 1

a2

∫ q−1

0

dη′′η′′5q(1− 2qµ/k)
Jν(kη

′′)

(kη′′)ν

+
1

a2

∫ η′

q−1

dη′′η′′5q(1− 2qµ/k)
Jν(kη

′′)

(kη′′)ν
Jν(qη

′′)

(qη′′)ν

∝η′−2k−6[q(k/q)3J3(k/q) + k2q−1(kη′)(J3(kη
′)J2(qη

′) +O(q/k))]

(5.3.37)

where we used Jν(qη
′′)/(qη′′)ν ≃ O(1) for qη′′ ≪ 1, and omitted the constant factor

of O(1).

Then the integration of δv can be calculated, by integrating by parts, as∫ η

0

dη′ ργa
2δv ∝

[
k−6q(k/q)4J4(k/q) + k−4q(k/q)3J3(k/q)(η

2 − q−2)

+ k−4q−1(kη)2J4(kη)J2(qη)
]
. (5.3.38)

Substituting the above equation into eq.(5.2.27) and ignoring the cross terms, we

obtain,

a4
k3

2π2
SB(k) ∝ k5

∫ α/η

1/η

dq q2
[
k−12q2(k/q)8J2

4 (k/q)

+ k−8q2(k/q)6J2
3 (k/q)(η

2 − q−2)2 + k−8q−2(kη)4J2
4 (kη)J

2
2 (qη)

]
.

(5.3.39)

Integrating with q, we find that the first, second, and the third terms in the above

equation give terms ∝ k0, ∝ k1, and ∝ k0, respectively. Taking these terms together,

we can find the k dependence of the magnetic field spectrum as

a4
k3

2π2
SB(k) ∝ k[1 +O(1/kη)]. (5.3.40)
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Therefore, in the radiation dominated era (ν = 2), we find a4k3SB(k)/2π
2 ∝ k,

which is confirmed in our numerical calculation. Finally, by reading off the numerical

amplitude from the result of our numerical calculation we find the power spectrum of

magnetic field on sub-horizon scales as

a4B2 ∼ 10−44

(1 + z)3
1

N

(
v

10−3mpl

)4(
k

Mpc−1

)1

[G2] (5.3.41)

Similarly, we find a4k3SB(k)/2π
2 ∝ k−1 in the matter dominated era (ν = 3).

In figure 5.2, we find that the spectrum shows k3SB ∝ k on small scales (say,

k ≳ 0.1 Mpc−1) in the radiation dominated era. At z = 2000 (the red solid line), the

spectrum on sub-horizon scales shows the k dependence between the fully radiation

dominated (∝ k) and matter dominated ones (∝ k−1). On much smaller scales

(k ≫ 1 Mpc−1) and in the matter dominated era, we expect that the spectrum of

magnetic fields should be proportional to k because on those scales the source of

vector perturbations has already decayed away and the magnetic fields just decay

adiabatically after their creation deep in the radiation dominated era. From the fact

that the generation mechanism is based on the mass difference between positively

charged particles (protons) and negatively charged particles (electrons) and the small

velocity slip between these particles, we expect that the spectrum continues up to the

horizon scale at the epoch of e± annihilation k ∼ 105 Mpc−1 and a cutoff at that

scale [77].

5.3.3 Approximation at super-horizon scale

On super-horizon scales and in the radiation dominated era, we can estimate not

only the shape of the spectrum but also the amplitude of magnetic fields approxi-

mately. On super-horizon scales the power spectrum of magnetic fields is given by

a4(η)
k3

2π2
SB(k, η) =

k3

2π2

(
4σT
3e

)2 PNini
π2

k2
∫ 1/η

0

dq q2
∫ 1

−1

dµ

×
[∫ η

0

dη′ a2(η′)ργ(η
′)δv(k, q, µ, η′)

]2
. (5.3.42)

Substituting eq. (5.3.29) and eq. (5.2.7) to eq. (5.2.5) we get,

σ(k, q, µ, η) ≃ −πAν
48

√
1− µ2µ

(
v

mpl

)2

η4
q2

k
, (5.3.43)
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where we assume k ≪ q ∼ 1/η. Using the above expression, we can write the velocity

slip as

δv(k, q, µ, η) ≈ πAν
180

R−1τ̇−2
√
1− µ2µ

(
v

mpl

)2

η4q2k. (5.3.44)

Substituting eq.(5.3.44) into eq.(5.3.42), we obtain

a4(z)
k3

2π2
SB(k, z) ∼

10−3

(1 + z)9
1

N

(
v

mpl

)4(
k

Mpc−1

)7

[G2], (5.3.45)

in unit of Gauss at redshift z ≫ zeq ≈ 3300 [102]. This analytic power is plotted in

figure5.2 to make a comparison with numerical results.

5.3.4 After recombination

In the above sections, we discussed magnetic field generation in the era when the

tight coupling approximation is valid. Here we consider the era after the tight coupling

approximation breaks down. In particular, we estimate when the magnetic fields

become source-free on super-horizon scales, by considering the time evolution of the

source function of magnetic fields S(η) = ργa
2δvq3/2, which satisfies B2 ∝ [

∫
dηS]2.

On super-horizon scales (k ≪ H), the scalar fields with wavenumbers q ∼ H have

the biggest contribution to the source of vector perturbations and hence the magnetic

fields. Thus we can set q ∼ 1/η in investigating the behavior of the source. When

the tight coupling approximation is valid, i.e. z ≫ zrec, we can estimate the time

evolution of δv as
δv ∝ k2

η

τ̇
σ ∝ η7, (5.3.46)

from eq. (5.2.10) and eq. (5.2.11). Then after recombination, we can estimate δv ≈ vγ

from the same equations as
δv ∝ k2η2σ ∝ η4. (5.3.47)

Using these relations, the time evolution of the source term of magnetic fields before

and after recombination can be derived as

S(η) = ργa
2vγq

3/2 ∝
{
η3/2 (before recombination)
η−3/2 (after recombination)

. (5.3.48)

Therefore, the evolution of magnetic fields becomes source-free after recombination.

In fact, during recombination, δv is considerably enhanced and significant amount

of magnetic fields is produced by the end of recombination z ≳ 300. For z ≲ 300,

the magnetic fields simply decay adiabatically. The spectrum of magnetic fields after

recombination is depicted in figure 5.3.

74



10-66

10-64

10-62

10-60

10-58

10-56

10-54

10-52

10-50

10-48

10-3 10-2 10-1

a4 k3 S
B
(k

)/
2π

2  [G
2 ]

k [Mpc-1]

z=500
z=700

z=1000
z=1500
z=2000

Figure.5.3 Power spectra of magnetic fields at z = 2000 (black solid line), 1500

(green solid line), 1000 (cyan solid line), 700 (green solid line), and 500 (red solid

line) from scalar fields in the NLSM. Here we take the NLSM parameters as

v4/N = 10−12m4
pl. The evolution of the spectrum comes to an end by z = 300.

5.4 Conclusion

In this chapter, we consider magnetic field generation from self-ordering scalar

fields that follow the NLSM. We find that to reliably estimate the magnetic fields,

one needs to expand the Boltzmann equations up to the third order terms in the

tight coupling approximation. This is because the vorticity σ is very large so that

O ((k/τ̇)vγ) ∼ O
(
(k/τ̇)3σ

)
in the tight coupling era (see figure.5.1) if the anisotropic

stress of the scalar fields eq. (5.2.6) is an external source. By smoothly connecting the

tight coupling solutions to the numerical ones we obtain the full magnetic field spec-

trum in the radiation dominated era and the matter dominated era, with an analytic

interpretation of the results. In so doing, we see that the scalar fields with wavenum-

ber q ∼ 1/η are the main source for both super-horizon (kη ≪ 1) and sub-horizon

(kη ≫ 1) magnetic fields. By extrapolating our numerical result toward smaller

scales analytically, we find B ∼ 10−22
(
v/10−3mpl

)2
(1 + z)

1/2 (
k/Mpc−1

)1/2
/
√
N

Gauss at k ≳ 1 Mpc−1 and z ≳ zrec. The strengths of magnetic fields smoothed

at λ = 1 and 100 Mpc scales are Bλ ∼ 1.8 × 10−25 and 4.5 × 10−26 Gauss, re-

spectvely, where B2
λ ≡

∫
dkk2e−λ

2k2SB(k)/2π
2. The energy density of magnetic
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fields is ρB ≡
∫
dkk2SB(k)/2π

2 ∼ 1.2 × 10−49 [G2]. This might serve as a seed of

large scale magnetic fields in the present universe.
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Part.III

Gravitational waves radiation from

cosmic string network





In this part, we will see gravitational waves from cosmic strings. There are two

kinds of configuration of strings, namely loops and infinite strings. Both of them emit

gravitational waves [3, 42, 104, 105, 106, 107, 108, 109, 110, 111, 53, 112, 113]. In this

thesis, we focus on gravitational waves from kinks, which is sharp structures on cosmic

infinite strings. Here we first introduce the gravitational waves in the cosmological

perturbation theory, and kinks on infinite strings. Next we will see the gravitational

waves from such kinks on the infinite string network.
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Chapter.6

Preparation for gravitational waves

from cosmic strings

In this chapter, we will introduce the primordial gravitational waves in standard

cosmology, and the physics of kinks on infinite cosmic strings. In the next chapter,

we combine them according to [3] and calculate gravitational waves from kinks on

strings.

6.1 Primordial gravitational waves

Gravitational waves [11, 114, 115] are the metric perturbations in tensor mode

perturbations (1.2.34). We can characterize their amplitude using the spectrum of

tensor mode as⟨
hT (k⃗, η)hT∗(k⃗′, η)

⟩
= 2|h|2(k, η)PTini(k)(2π)3δ(k⃗ − k⃗′), (6.1.1)

where the factor 2 is the number of tensor mode (σ = ±2), |h|2(k, η) is the square of

the transfer function,

PTini(k)(2π)
3δ(k⃗ − k⃗′) =

⟨
hTini(k⃗)h

T∗
ini (k⃗

′)
⟩
, (6.1.2)

is the initial power spectrum of tensor mode and |h|2(k, η)PTini(k) corresponds to the

squared amplitude of gravitational waves.

Here we consider primordial gravitational waves As a superposition of many stochas-

tic, isotropic waves with a wide range of frequency. In standard cosmology, we define

such primordial gravitational waves using the concept of density parameters (1.1.16)

as

ΩGW(k, η) =
1

ρcrit,0

dρGW

d ln k
=

|ḣ|2(k, η)k3PTini(k)
12π2H2

0a
2(η)

, (6.1.3)
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where

ρGW =

⟨
ḣT (x⃗, η)ḣT∗(x⃗, η)

⟩
32πGa2(η)

=
1

32πGa2(η)

∫
d3k

(2π)3
d3k′

(2π)3

∑
σ=±2

⟨
ḣ
(σ)
T (k⃗, η)ḣ

(σ)∗
T (k⃗′, η)

⟩
e−i(k⃗−k⃗

′)·x⃗

=
1

16πGa2(η)

∫
d ln k

k3PTini(k)

2π2
|ḣ|2(k, η) (6.1.4)

is the energy density of the gravitational waves, |h|2(k, η) is the squared transfer

function of tensor mode perturbation and dot ˙ denote the conformal time derivative.

This expression is a convenient form to express the energy density of primordial

gravitational waves. Considering the evolution of tensor mode perturbation h(k, η),

we can estimate the gravitational wave spectrum ΩGW(k, η).

6.2 Kinks on cosmic strings

Quadrupole motions of strings can induce tensor mode metric perturbations and

they emit gravitational waves [11, 114, 115]. Here we focus on the continuous but

undifferentiable (sharpened) points on cosmic strings which emit gravitational waves

significantly [42, 52].

There are two kinds of such differential discontinuity on strings (see fig.6.1). One

is called kinks, which are caused by reconnections of strings and they propagate on

strings with blunting by cosmic expansion [42]. The other is called cusps, which are

caused by the overlap of periodic modes on strings [42]. On the infinite strings, there

are only kinks because infinite strings have no loop and there can not be cusps by

periodic modes. The number of kinks are increased by collisions and reconnections

of infinite strings. In contrast, there are both the differential discontinuities on string

loops. When we consider wiggled strings, there are many periodic modes on string

loops which produce cusps, and cusps can give dominant contribution to gravitational

waves from loops.

Different types of strings produce gravitational waves at different scales [3, 55, 116,

104, 105, 106, 107, 108]. Infinite strings give the dominant contribution to GWs at the

horizon scale of that epoch [3, 55]. On the contrary, string loops give the dominant

contribution from cosmological scales to smaller scales [104, 105, 106, 107, 108, 56]

because of their contraction caused by the gravitational radiation.

Here we want to focus on phenomena and observational signatures in cosmological
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Figure.6.1 Images of kinks and a cusp on strings.

scales, and we will see the case of kinks on infinite strings hereafter.

6.2.1 A kink on the string

In this section, as a preparation for the next chapter, we will introduce the distri-

bution of kinks on infinite strings. First let us see the wave modes on cosmic infinite

strings, and define kinks and their sharpness in the Minkowski spacetime [28, 116] in

which the metric is represented as gµν = ηµν . We consider the equation of motion of

the string on string worldsheet [32] using the action given by eq.(2.3.63). To fix the

string worldsheet, we choose the gauge as

∂x⃗

∂ζ1
· ∂x⃗
∂ζ2

= 0, (6.2.5)(
∂x⃗

∂ζ1

)2

+

(
∂x⃗

∂ζ2

)2

= 1. (6.2.6)

In this gauge, we can obtain the following equation of motion,

∂2x⃗

∂ζ21
− ∂2x⃗

∂ζ22
= 0. (6.2.7)

We fix the coordinate (ζ1, ζ2) as (t, ξ), where t is the physical time and ξ is the space

coordinate which runs along the string. Then the solution of the mode x⃗ is given by

x⃗ =
1

2

(
a⃗(ξ − t) + b⃗(ξ + t)

)
, (6.2.8)

where a⃗(ξ− t) and b⃗(ξ+ t) are arbitrary functions called left and right moving mode,

respectively, which satisfy (
∂a⃗

∂ξ

)2

=

(
∂b⃗

∂ξ

)2

= 1. (6.2.9)
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Hereafter let us discuss the feature of kinks on strings. Kinks are generated by col-

lisions and reconnections between strings. Here we first consider collision and recon-

nection between two strings. At the time of collision, the strings reconnect each other

at the collided point. Then the reconnected strings have the sharp structure called

the kink. Here we focus on a reconnected point on the string as (t, ξ) = (tk, ξk), where

the kink exists, and we consider only the left moving mode, a⃗(ξ − t) for the sake of

simplicity. We can describe the left moving mode a⃗(ξ − t) using (tk, ξk) as

a⃗(ξ − t) = a⃗(ξk − tk) ≡ a⃗(pk). (6.2.10)

In the ‘left side’ pl(ξ, t) = ξ − t < pk and the ‘right side’ pr(ξ, t) = ξ − t > pk, the

left moving modes a⃗(pl) and a⃗(pr) come from different strings. The left moving mode

itself a⃗ is continuous, but the tilt of the string ∂a⃗/∂ξ is discontinuous at the point of

the kink pk in general. Here we define the sharpness of the kink as

ψ =
1

2
(1− a⃗′l · a⃗′r), (6.2.11)

where a⃗′l and a⃗
′
r are the tilts of the colliding strings

a⃗′l = lim
pl→pk

∂a⃗

∂ξ
(pl), a⃗′r = lim

pr→pk

∂a⃗

∂ξ
(pr), (6.2.12)

the inner product a⃗′l · a⃗′r = cos θk corresponds to cosine of the angle θk at the tip of the

kink, and you can see that the sharpest kink is represented as ψ = 1 and the bluntest

one is represented as ψ = 0.

Next let us consider the evolution of sharpness of a kink on a cosmic string in the

homogeneous and isotropic expanding universe (2.3.62). We fix the gauge as eq.(6.2.5)

and the coordinate (ζ1, ζ2) as (η, ξ), where η is the conformal time and ξ is the co-

moving space coordinate which runs along the string. We can obtain the equation of

motion for modes on strings from the action (2.3.63) as,

¨⃗x+ 2H ˙⃗x(1− ˙⃗x2) =
1

ϵ

(
x⃗′

ϵ

)′

, (6.2.13)

where ϵ is given in eq.(2.3.67), dot ˙ and prime ′ denote the conformal time and the

coordinate ξ derivatives, respectively. Here we define the alternatives of the left and

right moving modes a⃗, b⃗ as

p⃗± ≡ ˙⃗x∓ 1

ϵ
x⃗′, (6.2.14)

where p⃗+ and p⃗− satisfy
|p⃗+|2 = |p⃗−|2 = 1, (6.2.15)
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and these modes correspond to the tilt of the string which are given by a⃗′ in the

Minkowski spacetime. Here we can rewrite the equation of motion (6.2.13) using p⃗+

and p⃗− as

˙⃗p± ±
p⃗′±
ϵ

= −H (p⃗∓ − (p⃗+ · p⃗−)p⃗±) . (6.2.16)

From the equation of motions for p⃗+ and p⃗−, we can see the scaler factor dependence

of them as
∂p⃗+

∂(ϵξ + η)
∝ H, (6.2.17)

∂p⃗−
∂(ϵξ − η)

∝ H, (6.2.18)

where we make variable transformation from (ξ, η) to (ϵξ+η, ϵξ−η). These variables
go to zero in the Minkowski spacetime, in which ϵ = 1 and H = 0. These correspond

to the equations of motions for the tilts of the left moving and right moving modes,

∂a⃗′

∂(ξ + η)
= 0, (6.2.19)

∂b⃗′

∂(ξ − η)
= 0, (6.2.20)

and therefore we can say p⃗+ and p⃗− represent the tilts of left a⃗′ and right b⃗′ moving

modes. Now we can define the sharpness of a kink on a string in the homogeneous

and isotropic expanding universe as in the same way as eq.(6.2.11),

ψ =
1

2
(1− p⃗+,l · p⃗+,r), (6.2.21)

where p⃗′+l and p⃗′+r are the left and right sides (like a⃗′l a⃗
′
r) of the left moving mode

p⃗+. Here we have to remind that there are right moving modes as well and the

sharpness of kinks produced by right moving modes can be represented as eq.(6.2.21)

with replacing the subscript + to −.

Hereafter we will see the evolution of the sharpness ψ and its distribution on the

string [117]. If we regard p⃗+ and p⃗− as functions of variables (ϵξ−η, η) and (ϵξ+η, η),

respectively, we can reduce the equation of motion eq.(6.2.16) to

˙⃗p± = −H (p⃗∓ − (p⃗+ · p⃗−)p⃗±) . (6.2.22)

Rewriting eq.(6.2.22) in the physical coordinate, we obtain

dp⃗±
dt

= −H (p⃗∓ − (p⃗+ · p⃗−)p⃗±) , (6.2.23)
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we then write eq.(6.2.23) as the equation of motion for the sharpness as

dψ

dt
=
H

2
(p⃗− · p⃗+,r + p⃗− · p⃗+,l − (p⃗− · p⃗+,r)(p⃗+,l · p⃗+,r)− (p⃗− · p⃗+,l)(p⃗+,l · p⃗+,r)) .

(6.2.24)

Considering the ensemble average of p⃗− · p⃗+,

⟨p⃗− · p⃗+⟩ = −(1− 2v2) ≡ −κ, (6.2.25)

we reduce eq.(6.2.24) to
dψ

dt
= −2κHψ. (6.2.26)

Based on the simulation of cosmic string network [117], it is found that κr ≈ 0.18 and

κm ≈ 0.3 in the radiation and matter dominated epochs, respectively. Then we can

represent the sharpness ψ as the function of physical time,

ψ ∝ t−2ζ , (6.2.27)

where

ζ ≡ κ
d ln a

d ln t
=

{
0.09 (radiation dominated epoch)

0.2 (matter dominated epoch),
(6.2.28)

becomes constant in the radiation and matter dominated epochs.

6.2.2 Distribution of kinks on strings

Here we introduce the sharpness distribution of kinks on infinite strings. The dis-

tribution of kinks is determined by three factors,

(i) production of kinks by collisions between infinite strings,

(ii) the sharpness of kinks blunted by the cosmic expansion,

(iii) kinks taken away by string loops.

First, let us discuss the contribution from (i), considering a collision between string

1 (st1) and string 2 (st2). The probability of a collision is given by the intersection

probability of the infinitesimal regions of string worldsheet 1 dA1 and string world-

sheet 2 dA2. Here we choose the coordinate of string worldsheets as u = ξ − t and

s = ξ + t, and the infinitesimal region on each worldsheet is written as [u, u + du]

times [s, s+ ds] (see fig.6.2). The probability of the collision is represented as

dP1,2 =
dΩ

V dt
, (6.2.29)
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Figure.6.2 Rough illustrations of string worldsheets. dA1 is the worldsheet for

string 1 and dA2 is the worldsheet for string 2.

where V dt is the four dimensinal volume with the volume of space V , and dΩ is the

four dimensional volume configured by dA1 times dA2, which is given by

dΩ =

∣∣∣∣√−detgµνϵαβγδ
∂xα

∂u1

∂xβ

∂s1

∂xγ

∂u2

∂xδ

∂s2

∣∣∣∣ du1ds1du2ds2. (6.2.30)

Because the areas of the worldsheets are smaller than the horizon scale dA1, dA2 ≪
H−2, the metric can be treated as the Minkowski spacetime gµν = ηµν , and we can

denote dΩ as

dΩ =
1

4
∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r)du1ds1du2ds2 (6.2.31)

where ∆ is the products of p⃗±,

∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r) =
1

4
|(p⃗+,l × p⃗+,r) · (p⃗−,l − p⃗−,r) + (p⃗−,l × p⃗−,r) · (p⃗+,l − p⃗+,r)| .

(6.2.32)

To calculate the collision probability dP1,2, we consider the integration of [du ds] =

[2dξ dt] and rewrite ∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r) using the sharpness ψ. Here we rewrite ∆

by calculating (6.2.32) following [117],

∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r) = ∆̄

∫
dψg(ψ), (6.2.33)

where ∆̄ is the averaged ∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r) and g(ψ) is the distribution function

of sharpness produced by the collision. Considering up to the first order of p⃗+ ·p⃗− < 1,
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we obtain

∆̄ =

∫
dp⃗+,l
4π

dp⃗+,r
4π

dp⃗−,l
4π

dp⃗−,r
4π

∆(p⃗+,l, p⃗+,r, p⃗−,l, p⃗−,r)

=
2π

35

(
1 +

2

3
κ− 1

11
κ2
)
, (6.2.34)

and the distribution function g(ψ) is given by

g(ψ) =
35

256

√
ψ(15− 6ψ − ψ2), (6.2.35)

where the domain of g(ψ) is 0 ≤ ψ ≤ 1. Then we can calculate the collision probability

as

dP1,2 =
∆̄V

L4
dt, (6.2.36)

where we integrate the length of strings in the volume V as
∫ V

dξ = LV = V/L2 and

L is the correlation length of strings. Because collisions make kinks, you can see that

the number of collisions is equivalent to the number of kinks. We can represent the

number of produced kinks in the volume V per unit time by collision as

dP1,2 = dN |produced =
∆̄V

L4
dt, (6.2.37)

and the number of produced kinks per unit time and in the range of [ψ,ψ + dψ] is

written as
∂N

∂t
(ψ, t)

∣∣∣∣
produced

dψ =
∆̄V

L4
g(ψ)dψ. (6.2.38)

We now take into account the effects of the cosmic expansion. We consider the

conservation of the total amount of kinks, up to the sharpness ψ(t),

d

dt

[∫ ψ(t)

dψ′N(ψ′, t)

]
=

∫ ψ(t)

dψ′
[
∂N

∂t
(ψ′, t)− 2ζ

t

∂

∂ψ′ (ψ
′N(ψ′, t))

]
= 0,

(6.2.39)

and thus the equation

∂N

∂t
(ψ′, t)− 2ζ

t

∂

∂ψ′ (ψ
′N(ψ′, t)) = 0, (6.2.40)

has to be satisfied. Here the blunting of kinks, the second term of the left hand side,

dψ′/dt = −2ζψ′/t comes from the cosmic expansion. Then we can represent the

effects of the expansion for kinks as

∂N

∂t
(ψ, t)

∣∣∣∣
blunt

=
2ζ

t

∂

∂ψ
(ψN(ψ, t)) . (6.2.41)
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Next we will see the decrease of kinks on infinite strings. When strings collide each

other, some string loops are produced and some kinks are taken away by string loops.

Here the length of strings taken away by loops is given by [118, 119, 120],

dLV
dt

∣∣∣∣
loop

= −ηl
V

L3
(6.2.42)

where ηl is the product of the loop chopping efficiency and the root mean velocity of

strings, ηl = c̃v/2, and it is related to the evolution of the string network (2.3.78).

The fraction of amount of kinks which leaves infinite strings is written as

1

N

∂N

∂t

∣∣∣∣
loop

=
1

LV

dLV
dt

∣∣∣∣
loop

= −ηl
L
. (6.2.43)

Finally, considering the three contributions eqs.(6.2.38), (6.2.41) and (6.2.43), we

obtain the equation of motion for the distribution function of kinks on infinite strings

as

∂N

∂t
(ψ, t) =

∂N

∂t
(ψ, t)

∣∣∣∣
produced

+
∂N

∂t
(ψ, t)

∣∣∣∣
blunt

+
∂N

∂t

∣∣∣∣
loop

=
∆̄V

L4
g(ψ) +

2ζ

t

∂

∂ψ
(ψN(ψ, t))− ηl

L
N(ψ, t). (6.2.44)

Now we can calculate the evolution of the sharpness distribution of kinks on infinite

strings in the volume V . Solving eq.(6.2.44) and the evolution of cosmic string network

given by eqs.(2.3.78), (2.3.79), we obtain the distribution function of kinks. Then we

calculate the gravitational waves from kinks distributed on infinite strings in the next

chapter.
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Chapter.7

Improved calculation of the

gravitational wave spectrum from

kinks on infinite cosmic strings

Gravitational wave observations provide unique opportunities to search for cosmic

strings. One of the strongest sources of gravitational waves is discontinuities of cosmic

strings, called kinks, which are generated at points of intersection. Kinks on infinite

strings are known to generate a gravitational wave background over a wide range

of frequencies. In this chapter, we calculate the spectrum of the gravitational wave

background by numerically solving the evolution equation for the distribution function

of the kink sharpness. We find that the number of kinks for small sharpness is larger

than the analytical estimate used in a previous work, which makes a difference in the

spectral shape. Our numerical approach enables us to make a more precise prediction

on the spectral amplitude for future gravitational wave experiments.

7.1 Introduction

Cosmic strings continuously generate gravitational waves throughout the history of

the universe after their formation. Gravitational wave bursts from different epochs

and different directions overlap one another and form a gravitational wave background

over a wide range of frequencies. Thus, gravitational wave experiments are expected to

be a powerful tool to test the existence of cosmic strings. Various types of experiments

can be used to probe the gravitational wave background at different frequencies:

pulsar timing experiments [121, 122] measure gravitational waves at ∼ 10−8Hz; space
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missions such as eLISA [123, 124] and DECIGO [125, 126] explore 10−3Hz and 0.1Hz,

respectively; ground-based experiments such as Advanced-LIGO [127], Advanced-

VIRGO [128] and KAGRA [129] focus on ∼ 100Hz.

Gravitational wave signatures from cosmic strings have been extensively investi-

gated in the literature [116, 130, 131, 132, 133]. It has been widely accepted that

the string network evolves towards the scaling regime, where infinite strings continu-

ously decay into loops and the string network keeps O(1) infinite strings per Hubble

volume. Thus, the network consists of infinite strings and loops, both of which can

be sources of gravitational waves. In refs. [52, 42], it has been suggested that non-

smooth structures in strings, such as cusps and kinks, emit strong gravitational wave

bursts. Cosmic string loops generically have cusps and kinks, and various works have

shown that they generate a large gravitational wave background at high frequencies

[42, 104, 105, 106, 107, 108, 109, 110, 111, 53, 112, 113]. While loops generate grav-

itational waves of wavelength shorter than the loop size, gravitational waves from

infinite strings become important for long wavelength. The spectrum of the gravi-

tational wave background originating from kinks on infinite strings are calculated in

ref. [55].

In this chapter, we reexamine the spectrum of the gravitational wave background

from kinks on infinite strings. Since the strength of gravitational wave bursts depends

on the sharpness of kinks, we need to obtain the distribution function of the sharpness

to calculate the spectrum. The evolution equation for the sharpness distribution is

modeled in ref. [117], and ref. [55] calculated the spectrum by using analytic solu-

tions of the differential equation for the distribution function. The analytic solutions

are obtained separately for radiation-dominated (RD) and matter-dominated (MD)

eras and the normalization for the RD era is chosen to have the same amplitude with

the MD era at radiation-matter equality. Instead of using analytic solutions, we nu-

merically solve the differential equation to obtain the sharpness distribution function,

which enables us to smoothly connect the RD and MD eras. In fact, since the string

network evolves differently in these eras [134, 120, 135, 136, 137, 138, 139, 140], the

parameters in the differential equation differ for MD and RD. They should determine

the normalization of the distribution function and our numerical method correctly

takes into account these effects.

The change of the parameters at radiation-matter equality is taken into account

in two different ways. First, we interpolate the values using the tangent hyperbolic

function. Second, we calculate the time evolution of the parameters by using the
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velocity-dependent one-scale (VOS) model [40]. In the first case, the values of the

numerical parameters are set to be the same as the previous work, which makes the

comparison easier and enables us to show the effect of their change at radiation-matter

equality clearly. The second case enables us to follow the scaling law of the string

network and provides more realistic time evolution of the parameters.

The outline of this chapter is as follows. In section 7.2, we briefly describe the

methods to calculate the distribution function for the kink sharpness and gravitational

wave background spectrum. In section 7.3, we perform the numerical calculation to

evaluate the distribution function of kinks. Then, using the kink distribution, we

calculate the spectrum of the gravitational wave background. In section 7.4, we make

a comparison with previous works. Section 7.5 is devoted to conclusions.

7.2 Gravitational wave from kinks on the infinite

strings

First, we review the dynamics of cosmic strings and describe the method to cal-

culate the distribution function of kink sharpness and the power spectrum of the

gravitational wave background.

7.2.1 Dynamics of cosmic strings

We consider cosmic strings in a spatially flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric,

ds2 = a2(τ)
(
−dτ2 + dx2

)
= gµνdx

µdxν , (7.2.1)

where a(τ) is the scale factor of the universe. A cosmic string is represented as a two-

dimensional worldsheet in the four-dimensional spacetime. We choose the coordinates

on the worldsheet as ζ1 = τ (conformal time), ζ2 = σ (a direction along a cosmic

string), and ∂xµ

∂τ
∂xµ

∂σ = 0, then the action of the Nambu-Goto string is given by

S[xµ] = −µ
∫

d2ζ
√
−det(γab) , (7.2.2)

where µ is the tension of the string, γab = ∂xµ

∂ζa
∂xν

∂ζb
gµν is the induced metric on the

string worldsheet. Taking the variation of the action with respect to xµ, we obtain

the equation of motion for a cosmic string,

∂2x

∂τ2
+

2

a

da

dτ

∂x

∂τ

{
1−

(
∂x

∂τ

)2
}

=
1

ϵ

∂

∂σ

(
1

ϵ

∂x

∂σ

)
, (7.2.3)
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where

ϵ ≡

√
(∂x/∂σ)2

1− (∂x/∂τ)2
, (7.2.4)

is interpreted as energy per unit σ, and we set ϵ = 1 at the present time. When the

Hubble friction is negligible, the equation has solutions of left and right propagating

waves. Accordingly, we define the new variable p± which corresponds to the left and

right moving modes,

p± ≡ ∂x

∂τ
∓ 1

ϵ

∂x

∂σ
. (7.2.5)

7.2.2 Cosmic string network

Cosmic strings follow “scaling law” where the number of infinite strings conserves

in the horizon. In the VOS model [40], the network evolution is characterized by the

correlation length L. The total energy of a cosmic string and the average velocity are

defined by

E = µa

∫
dσϵ (7.2.6)

v2 ≡
∫
dσ
(
∂x
∂τ

)2
ϵ∫

dσϵ
, (7.2.7)

Then, the energy density ρinf of infinite strings is defined as

ρinf =
µ

L2
. (7.2.8)

Using the physical time t, which relates to the conformal time as dt = adτ , the

evolution equations of the correlation length and velocity are

dL

dt
= HL(1 + v2) +

1

2
cpv, (7.2.9)

dv

dt
= (1− v2)

(
k

L
− 2Hv

)
, (7.2.10)

where k(v) ≡ 1
v(1−v2)

∫
dσ
{
1−(dx/dτ)2

}
(dx/dτ)·uϵ∫

dσϵ
≃ 2

√
2

π
1−8v6

1+8v6 and u is a unit vector

parallel to the curvature radius vector, and H is the Hubble parameter H = da/dt
a .

The second term of the right hand of (7.2.9) is the energy transmitted to loops per

unit time, p is a probability of reconnection and c is the loop chopping efficiency

parameter which is set c ≃ 0.23 [141]. With γ ≡ L/t, the first equation is rewritten

as
dγ

dt
=

1

t

{
−γ +Hγt(1 + v2) +

1

2
cpv

}
. (7.2.11)
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By setting dγ/dt and dv/dt to be zero in (7.2.10) and (7.2.11), we obtain the asymp-

totic solutions
γ = Const., v = Const. (7.2.12)

As we find the correlation length L = γt grows in proportion to t, the number of

infinite strings is conserved in the horizon. The velocity keeps constant value for a

fixed cosmic expansion rate.

7.2.3 Distribution function of kinks on infinite strings

Kinks are defined as discontinuities in the string tangent vector x. They are pro-

duced by reconnection between cosmic strings and propagate along strings. The

sharpness of the kink is defined by

ψ ≡ 1

2
(1− p±, 1 · p±, 2) . (7.2.13)

The subscript ± denotes the left and right moving modes, and 1/2 represent the

left/right side of the discontinuity, respectively. The range of sharpness is 0 ≤ ψ ≤ 1

and a large value of ψ corresponds to a sharp kink.

Let us define −α ≡ ⟨p+ · p−⟩ = −(1 − 2v2), where the bracket means ensemble

average in the string network, v2 is the mean square velocity of strings. Rewriting

(7.2.5) and (7.2.13) in terms of ψ, we have [117]

ψ ∝ t−2ζ , (7.2.14)

where t is the proper time t =
∫
adτ and ζ = αν. The parameter ν characterizes the

evolution of the scale factor as a ∝ tν . The value of ζ in the MD era differs from the

one in the RD era, as we provide in table 7.1.

Intersections in the cosmic string network continuously generate kinks on infinite

strings. We define the distribution function of kinks as a function of the sharpness

and proper time, N(ψ, t), so that N(ψ, t)dψ is the number of kinks between ψ and

ψ + dψ within the volume V at proper time t. Then its time evolution is given by

[117]
∂N

∂t
(ψ, t)− 2ζ

t

∂

∂ψ
(ψN(ψ, t)) =

∆̄V

γ4t4
g(ψ)− η

γt
N(ψ, t), (7.2.15)

where ∆̄ is the probability of the intersection[142], γ characterizes the correlation

length of the string network L as L = γt, and η is the decrease rate of kinks due to

the loop production which is determined from simulations [118]. The function g(ψ)
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in (7.2.15) is the initial sharpness distribution, and given by

g(ψ) =
35

256

√
ψ(15− 6ψ − ψ2) , (7.2.16)

where we set g(ψ) = 0 for ψ < 0 or 1 < ψ. When the left hand side of (7.2.15) equals

to zero, the equation demonstrates that the number of kinks is conserved while the

sharpness decreases as in (7.2.14). In the right hand side of (7.2.15), the first term

denotes a production of kinks by intersection of strings, the second term denotes

decreasing of the number of kinks by the loop production. This term can be obtained

by considering the length of cosmic strings d transferred from infinite strings to loops,

ḋ

d

∣∣∣∣∣
loop

= − η

γt
, (7.2.17)

and we have assumed that the fraction of kinks taken away on loops is proportional

to the loss of length, ḋ/d ∝ Ṅ/N .

RD MD

γ 0.31 0.50

ζ 0.09 0.2

∆̄ 0.20 0.21

η 0.18 0.1
Table.7.1 The values of the con-

stant adopted in ref. [55] are sum-

marized for RD and MD eras.

RD MD

γ 0.27 0.56

ζ 0.062 0.16

∆̄ 0.19 0.21

η 0.076 0.068
Table.7.2 The values of the con-

stant for RD and MD eras obtained

by solving the VOS equations.

To obtain the kink distribution using (7.2.15), we need the time evolution of γ, ζ, ∆̄,

and η. In this chapter, we show results by using two different methods to obtain them.

In the first case, we use the parameter values used in ref. [55] and we smoothly change

them from RD to MD at radiation-matter equality teq ≃ 2.0× 1012s using

χ(t) = χm
1 + tanh(100ln(t/teq))

2
+ χr

1− tanh(100ln(t/teq))

2
, (7.2.18)

where χm and χr describe values for MD and RD. The values for RD and MD eras

are listed in table 7.1. Using the same values with the previous work makes easier

to see the effect of the parameter transitions at radiation-matter equality, which was

not taken into account in the previous work.

In the second case, we calculate the time evolution of γ, ζ, ∆̄, and η by solving the

VOS equations (7.2.10) and (7.2.11). The parameter values ζ, η, ∆̄ are obtained from
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v as

ζ = αν = (1− 2v2)

(
ln (a/aini)

ln (t/tini)

)
, (7.2.19)

η =
1

2
cpv , (7.2.20)

∆̄ =
2π

35

{
1 +

2

3
(1− 2v2)− 1

11
(1− 2v2)2

}
. (7.2.21)

Table. 7.2 shows the asymptotic values of the parameters for RD and MD eras ob-

tained by solving the VOS equations. As we can find by comparing the two tables,

some of the parameter values are different from the previous work, and they affect

the kink distribution as well as the amplitude of the gravitational wave background.

7.2.4 Gravitational waves from kinks

It has been shown in ref. [55] that the kinks which contribute the most to the power

of gravitational waves with angular frequency ω satisfy the following condition:(
ψ

N(ψ, t)

V (t)/(γt)2

)−1

∼ ω−1. (7.2.22)

We define the sharpness of kinks which satisfies (7.2.22) for a given frequency ω as

ψmax(ω, t). This condition means that the main contribution on the gravitational

wave background at physical frequency ω comes from kinks with sharpness ψmax

whose average

interval (ψN(ψ, t)/(V (t)/(γt)2))−1 is comparable with the wavelength of the gravi-

tational waves ω−1.

The strength of a gravitational wave burst from one kink on loops has been formal-

ized in ref. [42]. Including the dependence on the sharpness ψ, the strain amplitude

is given by

h(f, z) =
Gµ[ψmax(ω, z)]

1/2l

[(1 + z)fl]2/3
1

r(z)
Θ(1− θm), (7.2.23)

where θm = [(1 + z)fl]−1/3, f = aω/(2πa0) is the gravitational wave frequency

today with a0 = 1 being the present scale factor, r is the distance to the source

r(z) =
∫ z
0
dz/H(z), and l is twice the fundamental period Tl = l/2 of string loops.

Since we consider infinite strings and their typical curvature is given by γt, l is replaced

by the correlation length γt in our calculation. The step function Θ(1 − θm) is

introduced to set a low-frequency cutoff, which reflects the fact that kinks do not emit

gravitational waves larger than the horizon size. We calculate the Hubble parameter
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using H = H0[Ωr(a/a0)
−4 + Ωm(a/a0)

−3 + ΩΛ]
1/2, where Ωr, Ωm and ΩΛ are the

density parameters for radiation, matter, and the cosmological constant, respectively.

We use Ωrh
2 = 4.31× 10−5 where h is the reduced Hubble constant. In this chapter,

we assume a flat universe and use the values obtained from Planck satellite [20]:

h = 0.692, Ωm = 0.308 and ΩΛ = 0.692.

The power of the gravitational wave background is usually characterized by Ωgw ≡
(dρgw/dlnf)/ρc, where ρgw is the energy density of gravitational waves and ρc is the

critical density of the universe. The gravitational wave spectrum generated from kinks

on infinite strings is given by

Ωgw(f) =
2π2f2

3H2
0

∫
dz

z
Θ(n(f, z)− 1)n(f, z)h2(f, z) , (7.2.24)

where

n(f, z) =
1

f

dṄ

d ln z
=

1

f
· 1
2
θm(f, z)

z

1 + z

ψmax(ω, z)N(ψmax(ω, z), z)

V
l−1 dV

dz
, (7.2.25)

and dV/dz = 4πa3r2(z)/H(z) is the volume between the redshift z and z + dz. The

step function Θ(n(f, z) − 1) is introduced to exclude rare bursts, whose intervals

are longer than ∼ 1/f and cannot form a continuous background of gravitational

waves. Note the difference in the notation: ψÑ (number of kinks with sharpness

lnψ ∼ lnψ + d lnψ per volume) in ref. [55] is identical to ψN/V in this chapter. In

summary, the differences with respect to ref. [55] are

• We replace the typical curvature of infinite string as l ∼ γt instead of l ∼ t.

• The probability of observing the gravitational wave burst from a kink is θm/2

[107] instead of θm/4.

• The distance r and the volume dV/dz are calculated numerically instead of

using approximated analytic expressions.

• ΩΛ is included in the calculation of the Hubble parameter.

These changes increase the overall spectral amplitude by 9.6 in RD era and 2.7 in

MD era compared to the one calculated in ref. [55].

7.3 Results

7.3.1 Result with the tanh interpolation

We first solve the differential equation (7.2.15) using the tanh interpolation (7.2.18)

with the values in table 7.1. The result is shown in figure 7.1. As mentioned in the
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Figure.7.1 The distribution function of kinks obtained using the tanh interpola-

tion. The vertical axis is the number of kinks on infinite strings per length. The

horizontal axis is the sharpness of kinks. The light-blue broken line is the ana-

lytic estimation in the previous work [55] and the red solid line is our numerical

result.

previous section, the sharpness of kinks decreases with time. The number of old kinks

with small sharpness is larger than new ones, because O(1−10) of kinks are produced

per horizon and the number of newly produced kinks per comoving length decreases

as the horizon grows. In figure 7.1, we find that the distribution function of kinks

has two regions with different slopes. The left part (ψ ≲ 10−2) corresponds to kinks

generated during the RD era, and the right part (ψ ≳ 10−2) corresponds to kinks

generated in the MD era. Note that our result has a step at radiation-matter equality

(ψ ∼ 7.4 × 10−3), which is not seen in the result of the previous work. The reason

will be discussed in the next section.

Figure 7.2 is the numerical results for the power spectrum of the gravitational wave

background Ωgw. To calculate the gravitational wave background, we first look for

the value which satisfies (7.2.22) each time in the calculation of N(ψ, t) for each

gravitational wave frequency ω, and define it as ψmax(ω, t). Then, using the values of

ψmax, we numerically integrate (7.2.24) to obtain the power spectrum. Note that the

vertical axis of figure 7.1 is identical to the inverse of the left hand side of (7.2.22).
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Figure.7.2 Power spectrum of the gravitational wave background forGµ = 10−7.

The red solid line is the result obtained excluding rare bursts and the green broken

line is the result including rare bursts.

So gravitational wave frequency ω is corresponded to the vertical axis of figure 7.1.

As seen in figure 7.1, old kinks are numerous and the gravitational wave emission

has a short interval, while new kinks are few and the interval is large. Thus, the

high frequency gravitational waves are emitted from old kinks and low frequency

gravitational waves are from new kinks. The gravitational waves in the range of

10−13 Hz ≤ f are generated from kinks with small sharpness produced in the RD

era. The middle frequency 10−15 Hz ≤ f ≤ 10−13 Hz corresponds to kinks produced

during the transition from the RD era to the MD era. The low frequency gravitational

waves f ≤ 10−15 Hz are emitted from kinks produced in the MD era.

7.3.2 Result with the VOS model

In this section, we solve the differential equation (7.2.15) by simultaneously solving

the VOS equations (7.2.10) and (7.2.11). The VOS model provides time evolution

of γ and v, which can be converted to ζ, η and ∆̄ by (7.2.19), (7.2.20) and (7.2.21).

The time evolution of the parameters is shown in figure 7.3. We find their evolution
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Figure.7.3 The time evolution of the parameters which characterize the produc-

tion of kinks and their evolution. In the left figure, the time evolution of ζ is

shown. The red solid line is obtained by solving VOS equations and the green

broken line is the one interpolated by the tanh function. In the right figure, we

show time evolution of γ, ∆̄ and η obtained by solving the VOS equations. The

red solid line is γ, the green broken line is ∆̄ and the blue broken line is η.

is very different from the tanh interpolation. First, the VOS equations with c = 0.23

provide different asymptotic values of the parameters as seen by comparing tables 7.1

and 7.2. Second, the transition from the RD era to the MD era is not instant and

it takes time to approach the asymptotic value. In addition, the parameter values

change near the present time, since we include cosmological constant.

The distribution of kinks obtained by the VOS model is shown in figure 7.4. From

the figure, we find two differences between the results with the tanh interpolation and

the VOS model. First, the number of kinks increases considerably because the slope

of the distribution function becomes steeper both for the RD and MD eras. Second,

the position corresponding to radiation-matter equality has moved toward large ψ.

The reason is discussed in the next section.

Figure 7.5 shows the power spectrum of the gravitational wave background Ωgw

calculated using the kink distribution obtained by the VOS model. We see that the

amplitude is larger than the case of the tanh interpolation, because of the increase in

the number of kinks. Since the number increases more at small ψ, which corresponds

kinks generated during the RD era, the power of the gravitational wave spectrum is

enhanced in high frequencies.

Figure 7.6 is the comparison between sensitivity curves of future gravitational wave

observations and the power spectra of the gravitational wave background for different

values of string tension. The SKA [122] is a radio interferometer, which can detect
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Figure.7.4 The distribution function of kinks obtained by solving the VOS equa-

tions (the red solid line). The axises is same as figure 7.1. For comparison, we

also show the analytic estimation by the previous work [55] (light-blue broken

line) and our result of the tanh interpolation (magenta broken line).

gravitational waves by pulsar timing arrays. The eLISA [123, 124] and DECIGO

[125, 126] missions will observe gravitational waves using laser interferometers at

space. Advanced-LIGO [127] is a laser interferometer constructed on the ground

and will construct observation network with other ground-based detectors such as

Advanced-VIRGO [128] and KAGRA in near future [129].

7.4 Discussion

First, let us compare our numerical result of the tanh interpolation with the previous

work [55]. The major difference is that our result has a step-like feature in the

distribution function of kinks at radiation-matter equality as seen in figure 7.1. This

step arises because of the changes in the value of γ in the evolution equation of the

distribution function. The source term in (7.2.15) (the first term in the right hand

side) has a factor of ∆̄/γ4, and it becomes smaller in the MD era. Thus, the number

of newly produced kinks is smaller in the MD era.
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Figure.7.5 Power spectrum of the gravitational wave background forGµ = 10−7.

The axises are same as figure 7.2.

The gravitational wave spectrum reflects the existence of this transition phase,

and has three regions of different spectral slopes: the MD era f ≤ 10−15 Hz, the

transition phase 10−15 Hz ≤ f ≤ 10−13 Hz, and the RD era 10−13 Hz ≤ f . Let us

analytically estimate the frequency dependence of Ωgw. The distribution function of

kinks is related to the frequency of the gravitational wave background by (7.2.22).

The low-frequency gravitational waves f ≤ 10−15 Hz are generated by kinks produced

in the MD era, and we can read ψN/(V/(γt)2) ∼ ψ−2 from figure 7.1. Then we

can derive Ωgw ∝ f−1/6 using (7.2.22) and (7.2.23). This frequency dependence

of the spectrum coincides with the analytic result in the previous work [55] and is

also consistent with the numerical result shown in figure 7.2. The high-frequency

region 10−13 Hz ≤ f corresponds to the gravitational wave from kinks produced in

the RD era, where the result in figure 7.1 gives ψN/(V/(γt)2) ∼ ψ−5.1 and we get

Ωgw ∝ f7/51. This also coincides with the analytic result of ref. [55], and is consistent

with the spectrum with rare bursts in figure 7.2. The difference from the previous

work arises in 10−15 Hz ≤ f ≤ 10−13 Hz. In the transition phase, the value of ψmax is

the same for all the given frequency, so ψmax ≃ Const., and we get Ωgw ∝ f1/3 from

(7.2.22) and (7.2.23). In fact, this frequency dependence can be seen in the numerical
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Figure.7.6 The power spectrum of the gravitational wave background for differ-

ent string tensions. The spectrum shown here do not include rare bursts. The

black solid and broken lines are sensitivity curves of gravitational wave experi-

ments.

result of figure 7.2.

Let us compare the spectral amplitude with the previous work [55]. We compare

the results using the case with rare bursts, since the condition of excluding rare bursts

depends on the distribution function of kinks and the comparison cannot be made

simply. First of all, the overall amplitude is 9.6 and 2.7 times larger than the previous

work in RD and MD eras respectively, because of the modifications listed in section

7.2.4. In addition, the amplitude of the high frequency region increases because of the

larger number of kinks produced during the RD era. By extracting the dependence

on ψmax and γ from (7.2.24), we obtain

Ωgw(f) ∝ f2
∫

dz

z
ψmax(ω, z)

(
ψmax(ω, z)

N(ψmax(ω, z), z)

V/(γt)2

)
γ−8/3
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∝ f2
∫

dz

z
ψmax(ω, z)γ

−8/3. (7.4.26)

As seen in figure 7.1, the number of kinks produced during RD era is larger than

the previous work and the value of ψmax becomes larger about twice for a fixed ω.

Therefore, for every frequency of the gravitational wave background corresponding to

the RD era, the amplitude ∝ ψmax becomes twice larger than in the previous work.

In total, the spectral amplitude is a few times larger in the low frequency and O(10)

larger in the high frequency.

Next, let us discuss the case where we solve the parameter evolution with the VOS

model. First, we explain why the distribution of kinks has different shape compared

to the case of the tanh interpolation. In ref. [55], the solution of the distribution

function is provided as

ψ
N

V/(γt)2
∝ ψ

−3+3ν+η/γ
2ζ . (7.4.27)

As seen in tables 7.1 and 7.2, the parameter values from the VOS equations are

different from the ones used in the tanh case. They largely affect the ψ dependence

of the distribution function as seen in (7.4.27). In particular, the small value of ζ

increases the power of ψ, and makes the slope steeper. This increases the kink number

considerably at small ψ. In addition, the number of kink production is determined

by the coeficient of ∆̄/γ4 in the first term of the right hand side of (7.2.15). The

difference in this factor also increases the overall amplitude slightly. In figure 7.4, we

also see the position of radiation-matter equality shifts to larger ψ. As provided in

ref. [55], the value of ψ corresponding to radiation-matter equality ψ∗ is given by

ψ∗(t0) =

(
teq
t0

)2ζm

, (7.4.28)

where the suffix m is the value during MD era. Since the value of ζ is smaller than

the one used in the tanh case, ψ∗ becomes larger in the VOS case.

Then, let us describe the reason of the large increase of the spectral amplitude in

figure 7.5. The reason is the same as described in the tanh case, that is the increase

of ψmax. For example, ψmax increases 100 times at 102[Hz]. Then, from (7.4.26), Ωgw

increases O(102). Taking account the enhancement of the overall amplitude 9.6 for

RD era, we find that the power spectrum has increased O(103) at high frequencies

compared to the previous work.

From figure 7.6, we find that the gravitational wave background from kinks on

infinite strings is testable by future experiments depending on the tension of strings.

The SKA would probe Gµ ≳ 10−9, eLISA and Advanced-LIGO can test Gµ ≳ 10−7,
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and DECIGO has the strongest sensitivity to reach Gµ ≳ 10−10. Note that the

spectrum shown in figure 7.6 do not include rare bursts. Since rare bursts with

large amplitude exists at high frequencies as seen in figure 7.2, laser-interferometer

experiments could be also used to search for rare burst signals.

7.5 Conclusions

In this work, we have calculated the power spectrum of the gravitational wave back-

ground from kinks on infinite strings. First, we have solved the differential equation

(7.2.15) to obtain the distribution function of kinks numerically in two ways. First,

unlike the analytic estimation of ref. [55], we have smoothly connected the param-

eters using a tangent hyperboric function, which are related to the evolution of the

cosmic string network, at radiation-matter equality. As a result, we have found a

step in the distribution function of kinks at the transition from the RD era to the

MD era, which was overlooked in the previous work [55]. At the same time, we have

found an increase in the number of kinks generated in the RD era. Second, we have

calculated the distribution of kinks by following the time evolution of the parameters

with the VOS equations. We have found a steeper slope of the distribution function,

which gives a large increase of the kink number at small sharpness, and the shift of

the position of radiation-matter equality.

Next, using the numerical result of the distribution function of kinks, we have

calculated the power spectrum of the gravitational wave background. In the case

where we use the tanh interpolation, due to the step in the distribution function of

kinks, we have found that the power spectrum behaves as Ωgw ∝ f1/3 at 10−15 Hz ≲
f ≲ 10−13 Hz. The power spectrum has increased more in the case where we solve

the the VOS equations. In addition to the precise estimation of the kink distribution,

we have also carefully evaluated all the factors involved in the calculation of the

spectrum. This allows us to offer a rather precise prediction on the spectral amplitude.

By comparing the results with sensitivities of future experiments, we have shown

that gravitational waves from kinks on infinite strings can be probed at different

frequencies.

Finally, let us comment on the gravitational wave background from cusps and kinks

on cosmic string loops. Loops emit gravitational waves whose wavelength is shorter

than the loop size, and usually the number of loops is more than that of infinite

strings. Thus, it is more likely that the gravitational wave background generated
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by infinite strings is sub-dominant at high frequencies compared to the one from

loops. However, since the typical loop size is not known yet, gravitational waves from

kinks on infinite strings could be more important than that from loops, especially for

the SKA which probes low frequencies. It is important to consider both origins of

gravitational wave background to provide constraints on cosmic strings, and thus our

careful estimation of the gravitational wave background from kinks on infinite strings

would help to constrain cosmic strings by observation at low frequencies. Moreover,

there are cosmic superstrings predicted in superstring theory, and they also form the

network consisting of loops and infinite strings. They have cusps and kinks which

emit gravitational waves. Recently, the power spectrum of the gravitational wave

background produced by loops of cosmic superstrings has been investigated [143], but

the one from kinks on infinite superstrings is not clear yet. It is being examined in

a work in progress. If a new era of multi-wavelength gravitational wave observations

is successful and a detection was made, we might even be able to get insight in the

physics of the very early universe.
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Part.IV

Weak lensing signals from the texture





In this part, we will see the gravitational lensing signals from textures according to

[4]. We focus on the weak lensing signals, which is called the CMB lensing and the

cosmic shear, induced by the texture. In the standard cosmology, we have the scalar

mode perturbations from the density and gravitational potential perturbations, and

when we see the the lensing signals from the scalar mode perturbations, the signals

from textures are contaminated by the contributions from the standard cosmological

perturbations. On the other hand, the vector and tensor modes are the just decreasing

modes when we consider the first order of the standard cosmological perturbation

theory. Then we are not prevented by the quantities of the standard perturbation

theory if we see the vector and tensor modes. Here we are interested in the signal

induced by only vector and tensor modes, then we will see parity odd modes of the

gravitational lensing signals.

Here we will introduce the cosmic defects and gravitational lensing theirselves, and

their recent developments in section 8.1 at first. The next we define the un-equal time

power spectra of the texture in vector and tensor modes in section 8.2. Then we will

see the derivation of the parity odd modes, CMB lensing curl-mode and the cosmic

shear B-mode, from the un-equal time power spectrum in section 8.3. Then we can

see the resulting spectra and their observability in section 8.4.
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Chapter.8

Weak lensing from self-ordering scalar

fields

Cosmological defects result from cosmological phase transitions in the early Uni-

verse and the dynamics reflects their symmetry-breaking mechanisms. These cos-

mological defects may be probed through weak lensing effects because they interact

with ordinary matters only through the gravitational force. In this chapter, we in-

vestigate global textures by using weak lensing curl and B modes. Non-topological

textures are modeled by the non-linear sigma model (NLSM), and induce not only

the scalar perturbation but also vector and tensor perturbations in the primordial

plasma due to the nonlinearity in the anisotropic stress of scalar fields. We show

angular power spectra of curl and B modes from both vector and tensor modes based

on the NLSM. Furthermore, we give the analytic estimations for curl and B mode

power spectra. The amplitude of weak lensing signals depends on a combined pa-

rameter ϵ2v = N−1 (v/mpl)
4
where N and v are the number of the scalar fields and

the vacuum expectation value, respectively. We discuss the detectability of the curl

and B modes with several observation specifications. In the case of the CMB lensing

observation without including the instrumental noise, we can reach ϵv ≈ 2.7 × 10−6.

This constraint is about 10 times stronger than the current one determined from

the Planck. For the cosmic shear observation, we find that the signal-to-noise ratio

depends on the mean redshift and the observing number of galaxies as ∝ z0.7m and

∝ N0.2
g , respectively. In the study of textures using cosmic shear observations, the

mean redshift would be one of the key design parameters.
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8.1 introduction

Current cosmological observations confirm that the universe begins with extremely

high temperature, what we call the hot big-bang model. As the universe expands

adiabatically, it cools down from the hot initial condition. Therefore, it is natural

to expect that cosmological phase transitions occur in the history of the universe.

Cosmological phase transitions result in various cosmological defects depending on the

symmetry of the phase transitions, e.g., cosmic strings, domain walls, and textures,

which were first discussed by T.W.B.Kibble [8]. We can examine the nature of the

phase transition that happened in the early universe through the resulting defects by

using cosmological observations since these defects affect various observables; in the

case of cosmic strings, see e.g., Ref. [144].

The global O(N) symmetry breaking results in domain walls (N = 1), cosmic

strings (N = 2), monopoles (N = 3), textures (N = 4), and non-topological textures

(N > 4). Effects of the defects such as cosmic strings and textures can be seen at the

horizon scale at that time, which corresponds to the correlation length of the strings

or the textures. According to this fact, defects could affect several cosmological

observables in the various scales through the metric perturbations, which include,

for example, gravitational waves [42, 52, 53, 54, 55, 3], weak gravitational lensings

[56, 57], generation of magnetic fields [1], the cosmic microwave background (CMB)

angular power spectrum [32, 58] and the CMB lensing [145, 146, 147].

In this chapter, we focus on the non-topological texture with large-N limit N ≫ 4

[148, 149, 150]. The dynamics of non-topological textures is exactly described by the

non-linear sigma model (NLSM). Effects of textures on the cosmological observations,

such as the large-scale structure [148, 151], cosmic microwave background fluctuations

[152, 84, 153, 97, 98], gravitational waves [154, 45, 44], and generation of magnetic

fields [2], have been studied in many articles. Some cosmological defects including

textures induce not only the scalar, but also the vector and tensor modes originated

from the anisotropic stress of scalar fields such as [42, 52, 53, 54, 55, 3, 56, 57, 1,

32, 58, 145, 146, 147, 152, 84, 153, 97, 98, 154, 45, 44, 2]. These vector and tensor

modes are good tracers of cosmological defects since the vector and tensor modes do

not arise from the standard cosmology in the linear order. It is possible to bring

information of the phase transition that happened in the early stage of the universe

through studying the vector and tensor modes induced from the cosmological defect.
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We focus on the weak lensing from the vector and tensor modes induced by the

non-topological texture. Photons emitted from the CMB last scattering surface and

galaxies are deflected by the foreground scalar, vector, and tensor perturbations, called

the CMB lensing and the cosmic shear, respectively [155, 156]. We can decompose

these deflection patterns into the parity-even and parity-odd signatures. The parity-

even signal emerged from the scalar, vector, and tensor modes. On the other hand,

the parity-odd mode is induced only from the vector and tensor modes [157, 158,

159]. Therefore, the parity-odd mode of the CMB lensing and the cosmic shear, that

is, the curl mode and the cosmic shear B-mode, respectively, are a good probe for

the cosmological defects such as the texture. The parity-even modes of the CMB

lensing and the cosmic shear which are induced from the first-order scalar mode

have been detected with a high signal-to-noise ratio by e.g., the Planck [160], the

Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) [161, 162, 163], and

the Dark Energy Survey (DES) [164, 165]. In previous studies, many parity-odd

models have been studied and discussed, e.g., cosmic (super) strings [145, 146, 147],

primordial gravitational waves [166, 167], or the second-order perturbation [168, 169,

170]. Although the parity-odd mode has not been detected, the prediction of the

parity-odd mode for possible sources must become one of the important observable

in the future high sensitivity observations.

In this chapter, we study the parity-odd signals from the non-topological texture

governed by the NLSM with large-N limit. The outline of this chapter is as follows.

In Section 8.2, we review and summarize the NLSM with large-N limit. The NLSM

has N -component real scalar fields and the non-linearity of these scalar fields induces

the vector and tensor modes. The vector and tensor modes from the NLSM with

large-N limit can be determined by solving Einstein equation. In addition, we give

an analytical estimation of the vector and tensor modes. In Section 8.3, we present

the formulation of weak lensing signals. As mentioned above, we focus on the parity-

odd signatures, that is, the curl mode for the CMB lensing and the B-mode for

the cosmic shear. In Section 8.4, we provide results and discussions. We also give

analytical estimates of the lensing signal and discussions of the detectability of the

non-topological texture. In Section 8.5, we provide our conclusion.
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8.2 Non-linear sigma model

In this section, we review the non-linear sigma model (NLSM), which has the vector

and tensor modes originated from the anisotropic stress of scalar fields. The NLSM

can accurately describe cosmological defects with the global O(N) symmetry in the

case of N > 2 [148, 149]. Throughout this chapter, we assume the background metric

is given by the Friedman-Robertson-Walker metric as

ds2 = a(η)2
[
−dη2 + dx2

]
, (8.2.1)

where η and a(η) are the conformal time and the scale factor, respectively.

We focus on the dynamics of real N -scalar fields with the Lagrangian which satisfies

the global O(N) symmetry:

L = −1

2

(
∇µΦ

t
)
(∇µΦ)− λ

4

(
ΦtΦ− v2

)2
+ LT , (8.2.2)

where we define the array of real N -scalar fields as Φ = (ϕ1, ϕ2, · · · , ϕN ). Moreover,

v and λ are the vacuum expectation value (VEV) and the dimensionless self-coupling

parameter, respectively. The interaction with the thermal environment having the

temperature T is represented as LT ∼ T 2ΦtΦ. In the case of low temperature,

T ≪ v, the global O(N) symmetry breaks spontaneously to O(N −1) symmetry with

the condition ΦtΦ = v2. According to this constraint, the equation of motion for

scalar fields is determined from Eq. (8.2.2) as

∇µ∇µβa +
N−1∑
b=1

(∇µβb)
(
∇µβ

b
)
βa = 0 , (8.2.3)

where βa is scalar fields normalized by the VEV, namely, βa ≡ Φa/v. The normalized

scalar fields obey the condition
∑N
a=1 βaβ

a = 1. The above equation (8.2.3) is called

the non-linear sigma model.

By taking the large-N limit in Eq. (8.2.3), the solution of Eq. (8.2.3) in the Fourier

space is given as [2]

βa(k, η) =
√
Aν

(
η

ηini

)3/2
Jν(kη)

(kη)
ν βa(k, ηini) , (8.2.4)

where ν ≡ d ln a/d ln η+1 and Aν ≡ 4Γ(2ν−1/2)Γ(ν−1/2)/ (3Γ(ν − 1)). We assume

that βa(k, ηini) are random gaussian variables. During the radiation- and matter-

dominated eras, the parameter ν takes νrad = 2 and νmat = 3, respectively. Although
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the solution of scalar fields βa depends on the phase transition time ηini, the power

spectrum of scalar fields is independent of this time [2]. The dimensionless power

spectrum for normalized scalar fields can be given as

⟨βa(k, η)β∗
b (k

′, η)⟩ = 2π2

k3
Pβ(k, η)δab(2π)3δ3d(k − k′) , (8.2.5)

Pβ(k, η) =
3Aν
N

(kη)3
(
Jν(kη)

(kη)
ν

)2

, (8.2.6)

where the initial power spectrum is determined as (see e.g., Ref. [45])

⟨βa(k, ηini)β∗
b (k

′, ηini)⟩ =

{
6π2η3ini

N δab(2π)
3δ3d(k − k′) (kηini ≪ 1)

0 (kηini ≳ 1) .
(8.2.7)

The amplitude of the solution is determined to satisfy the condition
∑N
a=1 βaβ

a = 1.

Note that, the configuration of scalar fields is not correlated on sub-horizon scales,

i.e., kηini ≳ 1. In other words, as expressed in the above equation, the correlation

of scalar fields vanishes in these scales. From Eq. (8.2.6), we can see that the power

spectrum of scalar fields does not depend on the initial time. Therefore, we have

omitted the initial time ηini from the argument of the power spectrum. The energy

momentum tensor for scalar fields is written as

Tϕµν = v2
∑
a

[
(∂µβa) (∂νβ

a)− 1

2
gµν (∂λβa)

(
∂λβa

)]
. (8.2.8)

The anisotropic stress of scalar fields corresponds to the (i, j) component of the energy

momentum tensor.

From here, we derive evolution equations for the vector and tensor metric pertur-

bations with the anisotropic stress of self-ordering scalar fields. In our study, we work

in the Poisson gauge given by

ds2 = a2(η)
[
−dη2 + 2σidηdx

i + (δij + hij) dx
idxj

]
, (8.2.9)

where we drop the scalar metric perturbation since we are interested in the vector

σi and tensor hij perturbations. Due to the gauge conditions, the vector and tensor

perturbations satisfy σi,i = hij ,i = 0.

The Einstein equations for the vector σV and tensor hT perturbations in the Fourier

space are given as

k [σ̇V(k, η) + 2HσV(k, η)] =
8π

m2
pl

πϕV(k, η) , (8.2.10)

ḧT(k, η) + 2HḣT(k, η) + k2hT(k, η) =
8π

m2
pl

πϕT(k, η) , (8.2.11)
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where a dot denotes the derivative with respect to the conformal time. Anisotropic

stresses for the vector and tensor modes can be given by the product of scalar fields

as

πϕV(k, η) =

∫
d3q

(2π)3

∫
d3p

(2π)3
δ3d(k−q−p)

[
v2

2

√
1− µ2q(k − 2qµ)

]∑
a

βa(q, η)β
a(p, η) ,

(8.2.12)

πϕT(k, η) =

∫
d3q

(2π)3

∫
d3p

(2π)3
δ3d(k − q − p)

[
v2
(
1− µ2

)
q2
]∑

a

βa(q, η)β
a(p, η) ,

(8.2.13)

where we define µ ≡ k̂ · q̂. In order to predict the weak lensing signal, we define the

dimensionless unequal-time power spectra for the vector and tensor modes which are

defined as

⟨ξX(k, η)ξ∗X(k′, η′)⟩ = (2π)3δ3d(k − k′)
2π2

k3
PX(k, η, η

′) , (8.2.14)

where ξX denotes the vector (ξX = σV) and tensor (ξX = hT) modes. We can solve

evolution equations for the vector and tensor modes in Eqs. (8.2.12) and (8.2.13)

straightforwardly. By using solutions of the vector and tensor modes, we can write

down the dimensionless unequal-time power spectrum during the matter-dominated

era (ν = 3) as

PX(kη, kη
′) = A

∫ ∞

−∞
d ln qk

∫ 1

−1

dµFX(qk, µ, kη)FX(qk, µ, kη
′) , (8.2.15)

A = 144π2A2
3ϵ

2
v ,

≈ 1.22× 107ϵ2v , (8.2.16)

FV(qk, µ, x) =
√
1− µ2 (1− 2qkµ) q

5/2
k

1

x4

∫ x

0

dx1 x
7
1

J3(qkx1)

(qkx1)3
J3(pkx1)

(pkx1)3
, (8.2.17)

FT(qk, µ, x) = 2(1−µ2)q
7/2
k

1

x3

∫ x

0

dx1 [xx1G(x, x1)]x
4
1

J3(qkx1)

(qkx1)3
J3(pkx1)

(pkx1)3
, (8.2.18)

where qk ≡ q/k, pk ≡ p/k, x ≡ kη, and G(x, x1) = xx1 (j1(x1)n1(x)− j1(x)n1(x1))

is the Green function for the evolution equation of the tensor mode (8.2.11), and

Jν(x), jν(x), and nν(x) are the Bessel function, the spherical Bessel function, and

the spherical Neumann function, respectively. The shape of the unequal-time power

spectrum does not depend on the theoretical parameters such as N and v. These

parameters change only the amplitude of the power spectrum and appear through a

special combination of N−1v4. Therefore, in this chapter, we define a new parameter

through the combination of theoretical parameters as

ϵ2v ≡ N−1 (v/mpl)
4
. (8.2.19)
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Figure.8.1 Power spectra P(kη, kη) for the vector and tensor modes from the

NLSM. For the presentation purpose, we set A = 1 in this figure. Due to the

convolution of scalar fields in Eqs. (8.2.12) and (8.2.13), the peak moves to smaller

scales than the horizon scale where kη = 1.

In this chapter, for simplicity, we evaluate the weak lensing signal by using the power

spectrum during the matter-dominated era. The correction to the radiation compo-

nent should be small since lensing signals are mainly contributed from the perturba-

tions at late times of cosmic evolution.

We depict the dimensionless equal-time power spectrum for the vector and tensor

modes in Fig. 8.1. We can see that on super (sub) horizon scales, the vector (tensor)

mode is greater than the tensor (vector) mode. In the following section, in order to

discuss the angular power spectra of the curl and B modes, we evaluate the asymp-

totic power on small scales. From here, we estimate the asymptotic power of the

dimensionless equal-time power spectrum on sub-horizon scales as follows. At first,

let us see the vector mode. By integrating Eq. (8.2.17), we obtain the notation of

FV(qk, µ, x) exactly as

FV(qk, µ, x) =
√
1− µ2q

−1/2
k p−3

k x−3 (qkJ2(qkx)J3(pkx)− pkJ3(qkx)J2(pkx)) .
(8.2.20)

Using the approximations for the Bessel function, Jν(x ≪ ν) ∝ xν and Jν(x ≫ ν) ∝
x−1/2cosx, and assuming a cutoff scale 1/x, we can integrate the auto-power spectrum

for the vector mode as

PV(x, x) ∝ x−6

∫ 1/x

dqk

[
p−6
k J2

3 (pkx)J
2
2 (qkx)

−2p−5
k q−1

k J2(pkx)J3(pkx)J2(qkx)J3(qkx) + p−4
k q−2

k J2
2 (pkx)J

2
3 (qkx)

]
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∼ α1x
−8 + α2x

−7 + α3x
−6

∝ x−6 , (8.2.21)

where α1, α2 and α3 are constants. Therefore the kη dependence of PV(kη, kη) is

∝ (kη)−6. Next, we see the tensor mode. Here we find the most dominant term of

FT(qk, µ, x), that is, the highest power of x and x1, by considering the integrand as

FT(qk, µ, x) ∼ p−3
k q

−1/2
k x−3

∫ x

dx1 [(x1 − x)cos(x− x1) + (1 + xx1)sin(x− x1)]

×x−2
1 J3(qkx1)J3(pkx1)

∼ p−3
k q

−1/2
k x−2

∫ x→1/qk

dx1x
−1
1 sin(x− x1)J3(qkx1)J3(pkx1)

∼ p−3
k q

−1/2
k x−2qkJ3(pk/qk), (8.2.22)

where we have assumed pk > qk and we can obtain the expression for the case pk < qk

in the same way. Now we are able to calculate the kη dependence of PT(x, x) as

PT(x, x) ∝
∫
dqkq

−1
k

[
p−3
k q

−1/2
k x−2qkJ3(pk/qk)

]2
∝ x−4 ∝ (kη)−4 . (8.2.23)

Here we have obtained the kη dependence of the dimensionless equal-time power

spectrum for vector and tensor modes as PV(kη, kη) ∝ (kη)−6 and PT(kη, kη) ∝
(kη)−4, respectively. These spectra leave various trails on physical values and these

estimations enable us to predict their analytic forms.

8.3 Weak lensing

In this section, we give a review about the relation between weak lensing signals

and vector and tensor perturbations from the textures following Refs. [145, 159]. We

pull parity-odd signals from the CMB lensing and the cosmic shear which are called

the curl and B modes, respectively. In the following subsection, we present details

about the curl and B modes.

8.3.1 CMB lensing curl mode

CMB photons are deflected by foreground scalar, vector, and tensor perturbations.

We decompose the deflection angle of CMB photons projected on the celestial sphere
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∆a(n̂) into the gradient (ϕ(n̂)) and curl (ϖ(n̂)) modes as

∆a(n̂) = ∇aϕ(n̂) + (∇bϖ(n̂)) ϵba , (8.3.24)

where ϵba is the covariant dimensional Levi-Civita tensor. Note that latin characters

started from a, b, · · · in the above relation denote the azimuthal and polar angles

denoted as θ and ϕ, respectively. From here, we drop the gradient mode since, in this

chapter, we are interested in the curl mode.

In order to relate the curl mode and the angular power spectrum, we solve the

geodesic equation in the perturbed spacetime. By solving the perturbed geodesic

equation, the curl mode can be expressed by using the metric perturbations of the

vector and tensor modes as

ϖ:a
:a = −

∫ χS

0

dχ
χS − χ

χχS

[
d

dχ

(
χΩa:bϵ

b
a

)]
, (8.3.25)

where χ is the comoving distance measured from the observer at the origin and χS

is the comoving distance at the sources. Ωa in Eq. (8.3.25) includes the vector and

tensor perturbations as

Ωa =
(
−σi + hije

j
χ

)
eia , (8.3.26)

where eiχ and eia are the orthogonal spacelike basis along the light ray. We expand the

curl mode by using the spherical harmonics and define the angular power spectrum

for the curl mode as

ϖ(n̂) =
∑
ℓ,m

ϖℓ,mYℓ,m(n̂) , (8.3.27)

Cϖϖℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨
ϖℓ,mϖ

∗
ℓ,m

⟩
. (8.3.28)

Finally, we obtain the angular power spectrum of the curl mode in terms of the

vector (X = V) and tensor (X = T) perturbations as

C
(X)ϖϖ
ℓ = 4π

∫ ∞

0

dk

k

∫ χS

0

kdχ

∫ χS

0

kdχ′S(X)
ϖ,ℓ(kχ)S

(X)
ϖ,ℓ(kχ

′)PX(k, η0 − χ, η0 − χ′) ,

(8.3.29)

where PX(k, η, η
′) denotes the dimensionless unequal-time power spectrum of metric

perturbations. S(X)
ϖ,ℓ(kχ) is the weight function defined as

S(V)
ϖ,ℓ(x) =

√
(ℓ− 1)!

(ℓ+ 1)!

jℓ(x)

x
, (8.3.30)

S(T)
ϖ,ℓ(x) =

1

2

(ℓ− 1)!

(ℓ+ 1)!

√
(ℓ+ 2)!

(ℓ− 2)!

jℓ(x)

x2
. (8.3.31)
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In the case of the CMB lensing, the comoving distance to the source χS corresponds

to that to the CMB last scattering surface.

We assume that the curl-mode lensing potential is reconstructed by using the

quadratic estimator [171, 172]. In this case, the CMB lensing noise arises from the

lensing reconstruction noise from the cosmic variance of the lensed CMB fluctuations.

We assume an ideal experiment for the CMB lensing throughout this chapter and

neglect instrumental noise. Consequently, the noise of the CMB lensing is limited by

the reconstruction noise due to the quadratic estimator.

8.3.2 Cosmic shear B-mode

The intrinsic shape of galaxies is deformed by foreground perturbations. The de-

formation pattern is characterized by the reduced shear [173, 156]. The geodesic

deviation equation describes the deformation of the shape of galaxies. By solving

the geodesic deviation equation, we can relate the reduced shear and the vector and

tensor perturbations as [145, 159]

g = −1

2

∫ χS

0

dχ
χS − χ

χχS

[
∇a∇bΥ− d

dχ
(χ∇bΩa)

]
ea+e

b
+ − 1

4

[
habe

a
+e

b
+

]χS

0
, (8.3.32)

where Υ contains the scalar, vector, and tensor modes as

Υ = − (Ψ + Φ)− σie
i
χ +

1

2
hije

i
χe
j
χ . (8.3.33)

Note that Υ does not appear in the cosmic shear B-mode but in the cosmic shear

E-mode. Therefore, we do not focus on Υ when we study the cosmic shear B-mode.

Because the reduced shear is a spin-2 variable, we can expand the reduced shear

according to the spin-2 spherical harmonics as

g(n̂) =
∑
ℓ,m

(Eℓm + iBℓm)+2Yℓm(n̂) , (8.3.34)

where we split multipole coefficients into E and B modes by using the parity. Here-

after, we focus on the cosmic shear B-mode and drop the E-mode. As well as the

CMB lensing, the angular power spectrum of the B mode is defined as

CBBℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨BℓmB∗
ℓm⟩ . (8.3.35)
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fsky zm Ng[arcmin−2]

HSC 0.05 1.0 35

SKA 0.75 1.6 10

LSST 0.5 1.5 100

Table.8.1 The experimental specifications of the HSC, SKA, and LSST.

By solving the perturbed geodesic deviation equation, we can relate the angular power

spectrum of the B mode and the vector or tensor metric perturbations as

C
(X)BB
ℓ =

[
1

4

(ℓ+ 2)!

(ℓ− 2)!

]
4π

∫ ∞

0

dk

k

∫ ∞

0

kdχ

∫ ∞

0

kdχ′

×S(X)
B,ℓ (k, χ)S

(X)
B,ℓ (k, χ

′)PX(k, η0 − χ, η0 − χ′) , (8.3.36)

where weight functions are defined as

S(V)
B,ℓ (k, χ) =

√
(ℓ− 1)!

(ℓ+ 1)!

∫ ∞

χ

dχS
N(χS)

Ng

jℓ(kχ)

kχ
, (8.3.37)

S(T)
B,ℓ(k, χ) =

1

2

(ℓ− 1)!

(ℓ+ 1)!

√
(ℓ+ 2)!

(ℓ− 2)!

[∫ ∞

χ

dχS
N(χS)

Ng

jℓ(kχ)

(kχ)2

]

+
1

2

√
(ℓ− 2)!

(ℓ+ 2)!

N(χ)

Ng

(
j′ℓ(kχ) + 2

jℓ(kχ)

kχ

)
. (8.3.38)

To investigate the cosmic shear signals, we need the distribution of galaxies N(χ),

which should be determined by observations. Here we assume the following form:

N(χ)dχ = Ng
3

2

z2

(0.64zm)3
exp

[
−
(

z

0.64zm

)3/2
]
dz , (8.3.39)

where zm is the mean redshift, and Ng is the number of galaxies per square arc-

minute. In our study, we assume three ongoing and forthcoming survey designs, that

is, the Subaru Hyper-Suprime Cam (HSC) [174], the Square Kilometer Array (SKA)

[175], the Large Synoptic Survey Telescope (LSST) [176]. Individual experimental

specifications are summarized in Table. 8.1. We assume that the noise of the cosmic

shear is the shot noise originated from the intrinsic shape of galaxies written as

NBB
ℓ =

⟨
γ2int
⟩

3600Ng (180/π)
2 , (8.3.40)

where
⟨
γ2int
⟩1/2

is the root-mean square ellipticity of galaxies, which is determined

about 0.3 in Ref. [177].
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Note that without the dependence of the distribution of galaxies, i.e., N(χ) =

const., there is the relation between the CMB lensing curl-mode and the cosmic shear

B-mode power spectra as [159]

Cϖϖℓ = 4
(ℓ− 2)!

(ℓ+ 2)!
CBBℓ . (8.3.41)

We use this relation in the following section to obtain the asymptotic scaling of the

angular power spectra.

Before closing this section, we mention our treatment about the unequal-time power

spectrum. To calculate weak lensing signals, we need to use the unequal-time power

spectrum for the vector and tensor modes. For simplicity, to perform the multiple

integration, we assume the case of the totally coherent model [178, 179, 93, 145]

throughout this chapter. In other words, we can write the unequal-time power spec-

trum as PX(kη, kη
′) =

√
PX(kη, kη)PX(kη′, kη′). This assumption makes the com-

putation of the angular power spectrum easy. From Eqs. (8.3.29) and (8.3.36), the

unequal-time power spectrum is multiplied by the weight functions, which correspond

to the spherical Bessel functions. The dominant contributions of the integrands on

the angular power spectrum would be ℓ ∼ kη since the spherical Bessel function jℓ(x)

rapidly decays at x > ℓ. We will show that it is sufficient to assume the totally co-

herent model on small scales by using the small-angle approximation, i.e., the Limber

approximation. Therefore, the totally coherent model is a good approximation on

small scales but not on large scales. We will discuss the detail of the effect of the

totally coherent model in the next section.

8.4 Results and discussions

In this section, we present our main results and give discussions. In Fig. 8.2, we

show weak lensing signals from the global texture modeled by the NLSM. We can

find that the contribution to the lensing signal is dominated by the tensor mode.

This is because the spherical Bessel function in Eqs. (8.3.29) and (8.3.36) projects

on the angular power spectrum around ℓ ∼ kη which corresponds to sub-horizon

scales. In Fig. 8.1, the tensor mode has larger amplitude than the vector mode on

sub-horizon scales. Therefore, the angular power spectra of the curl and B modes

are dominated by the tensor mode. Moreover, the difference between the vector and

tensor contributions on the lensing signal is greater at low redshift observation. Note

that the CMB B-mode polarization from the tensor mode of the texture has almost
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Figure.8.2 Left: The angular power spectrum of the CMB lensing curl-mode

from vector and tensor modes of the texture. Right: The angular power spectrum

of the cosmic shear B-mode from vector and tensor modes of the texture by

assuming the observation as LSST. For the same reason in Fig. 8.1, we set the

theoretical parameter set A = 1 in both figures.

the same amplitude [97].

The CMB lensing curl-mode from the texture has a broken power at ℓ ≈ 200 which

is smaller scale compared with the standard peak of the scalar lensing potential or

the lensing from the primordial gravitational waves [159, 169]. This is because the

peak of the power spectrum from the NLSM does not correspond to the horizon scale

but slightly smaller scale due to the nonlinearity (see Fig. 8.1 or Ref. [98]). On large

scales (ℓ ≲ 200), the power of the angular power spectra from the vector and tensor

modes is proportional to ℓ−2.

Moreover, we can obtain the analytic power on small scales (ℓ ≫ 1) by using the

small-angle approximation as follows,

C
(X)ϖϖ
ℓ ∝

∫ ∞

0

dk

k

∫ χS

0

kdχ

∫ χS

0

kdχ′S(X)
ϖ,ℓ (kχ)S

(X)
ϖ,ℓ (kχ

′)PX(k, η0 − χ, η0 − χ′)

∝ 1

ℓ5

∫ χS

0

dχ
1

χ
PX

(
ℓ(η0 − χ)χ−1, ℓ(η0 − χ)χ−1

)
, (8.4.42)

where we assume the large-ℓ limit to provide the above relation and we use the so-

called Limber approximation. In the above equation, when the multipole is quite large,

the contribution from the power spectrum is mainly coming from the sub-horizon

power, that is, kη ≫ 1. From Sec. 8.2, we find that the power spectrum on large

multipoles (ℓ≫ 1) for the vector and tensor modes is therefore proportional to (kη)−6

and (kη)−4, respectively. We can derive the asymptotic power of the weak lensing

curl mode as ℓ4C
(V)ϖϖ
ℓ ∝ ℓ−7 and ℓ4C

(T)ϖϖ
ℓ ∝ ℓ−5. From Eq. (8.3.41), angular
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power spectra of the CMB lensing and cosmic shear are related as Cϖϖℓ ∝ ℓ−4CBBℓ ,

the asymptotic power of the B-mode cosmic shear can be given as ℓ2C
(V)BB
ℓ ∝ ℓ−5

and ℓ2C
(T)BB
ℓ ∝ ℓ−3. We can see these asymptotic powers from Fig. 8.2. Note

that observed lensing signal is the sum of the vector and tensor modes, i.e., C
(tot)
ℓ =

C
(V)
ℓ + C

(T)
ℓ .

From here, we discuss the detectability of the texture by using the weak lensing

signals. In the case of the CMB lensing, we consider the noise spectrum that is

due to the cosmic variance of the CMB, so called the CMB reconstruction noise,

assuming a noiseless instrument following Ref. [172]. The CMB reconstruction noise

mainly depends on the number of available multipoles. Throughout this chapter, we

use the lensed and unlensed CMB angular power spectrum up to ℓmax = 3000 when

computing the reconstruction noise. On the other hand, the noise spectrum of the

cosmic shear observations is determined by the shot noise given by Eq. (8.3.40).

We estimate the signal-to-noise ratio as(
S

N

)
<ℓ

=

[
ℓ∑

ℓ′=2

(
Cℓ′

∆Cℓ′

)2
]1/2

, (8.4.43)

∆Cℓ =

√
2

(2ℓ+ 1)fsky
(Cℓ +Nℓ) . (8.4.44)

In Fig. 8.3, we show the relation between the signal-to-noise ratio and the theoretical

parameter ϵv. We can find that the ultimate experiment of the CMB lensing without

including the instrumental noise can set an upper limit on the theoretical parameter

related to the VEV as ϵv ∼ 2.7× 10−6.

Constraints from the cosmic shear are much weaker than those from the CMB lens-

ing. This is because signals of the cosmic shear are strongly suppressed on small

scales. However, contrary to the CMB lensing observation, the signal-to-noise ratio

of cosmic shear experiments depends on parameters of the experimental specification.

Fortunately, the theoretical parameter ϵv changes only the amplitude of the angular

power spectrum, namely, Cℓ ∝ ϵ2v. From the definition of the signal-to-noise ratio

(8.4.43) and (8.4.44), the signal-to-noise ratio therefore depends on the special com-

bination ϵ2vNg. In Fig. 8.4, we show the relation between the signal-to-noise ratio and

ϵ2vNg and the mean redshift. From this result, we can give a rough estimation of the

signal-to-noise ratio as the function of ϵ2vNg and zm, such as S/N ∝ f
1/2
sky

[
ϵ2vNg

]0.2
z0.7m

for the cosmic shear observation. According to this estimation, in order to improve

the detectability, we need to push zm to higher redshift rather than adding the number

of galaxies Ng since the signal-to-noise ratio is sensitive to the mean redshift rather
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Figure.8.3 The signal-to-noise ratio by varying the theoretical parameter ϵv. In

the case of the CMB lensing denoted as “CV” in this figure, the noise spectrum

is assumed the CMB reconstruction noise [172]. In the cosmic shear case denoted

as HSC, SKA, and LSST, we assume the shot noise originated from the intrinsic

shape of galaxies in Eq. (8.3.40). In the case of the CMB lensing, we assume the

lensing reconstruction noise without the instrumental noise, namely, the cosmic-

variance limited noise denoted as CV in this figure. Moreover, for the cosmic

shear experiment, we show the signal-to-noise ratio resulting from the HSC, SKA,

and LSST experiments. We also show the vertical solid line which corresponds

to S/N = 1.

than the observing number of galaxies.

Before closing this section, we discuss the validity of the assumption, that is, the

totally coherent model. Under the Limber approximation presented in Eq. (8.4.42),

the power spectrum on small scales is determined by the equal-time power spectrum,

which is the same as the totally coherent model. Therefore, the totally coherent model

is valid on small scales.

In Fig. 8.2, we can see that the Limber approximation can explain the cosmic shear

B-mode on almost all scales. On the other hand, the angular power spectrum of the

curl mode does not correspond to the power of the Limber approximation on large

scales, i.e., ℓ ≲ 100. We can conclude that the totally coherent model works in the

case of the cosmic shear B-mode. Contrary to this, the totally coherent model is not

reliable in the case of the CMB lensing curl mode at ℓ ≲ 100.

Here, we show the rough estimate for the signal-to-noise ratio in the case of the

CMB lensing curl mode. In the worst case, when the contribution from ℓ ≲ 100 on
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Figure.8.4 The signal-to-noise ratio with the factor f
−1/2
sky as the function of

two parameters ϵ2vNg and zm. This figure shows contours which corresponds to

f
−1/2
sky (S/N) = 1, 10, 30, and 50. We set the maximum multipole to estimate the

signal-to-noise ratio as ℓmax = 1000.

the signal-to-noise ratio is negligible, we find that ϵv decreases as ϵv ∼ 1.8 × 10−5.

Although this value is most pessimistic constraint on the theoretical parameter of the

texture by using the CMB lensing curl mode, it is comparable to the LSST case in

the cosmic shear B-mode observation. Therefore, the constraint on the theoretical

parameter is at least ϵv ≲ 1.8× 10−5 by using the CMB lensing curl mode.

8.5 Summary

In this chapter, we investigate weak lensing effects from non-topological textures

accurately governed by the non-linear sigma model. The phase transitions of the

universe induce cosmological defects, e.g., monopoles, strings, or textures. These

defects imprint characteristic signatures on cosmological probes such as the CMB

fluctuations or the large-scale structure. We can give the constraint on cosmological

defects from various observations. Moreover, we can pull information indirectly about

cosmological phase transitions which would have happened in the early universe.
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We can decompose weak lensing effects into two types of the signature by using the

parity. The parity-odd signal in weak lensing effects is induced from only the vector

and tensor modes. The dynamics of the non-topological texture is well described by

the non-linear sigma model which induces not only scalar but also vector and tensor

modes. In order to estimate the weak lensing signal, we need to calculate the unequal-

time power spectrum for the vector and tensor modes. Throughout this chapter,

to proceed the numerical calculation, we restrict the totally coherent model for the

texture which gives the unequal-time power spectrum is written by the separable form.

We leave to future work the consideration of any other models of the unequal-time

power spectrum.

We present the CMB lensing curl-mode and cosmic shear B-mode from the non-

topological texture with the large-N limit. In both observables, we newly find that

the tensor mode dominates over the angular power spectrum of the curl and B modes.

We estimate the signal-to-noise ratio as a function of the theoretical parameter ϵv.

The parameter ϵv represents the energy scale of the VEV. In the current observations,

the upper bound of ϵv is roughly obtained from the CMB anisotropies observed by

the Planck as ϵv ≲ 1.3 × 10−5 [63]. Furthermore, the cosmic defects including the

texture also induce the CMB spectral distortion [180]. The CMB spectral distortion

constrained by the COBE FIRAS [181] also imposes the upper bound as ϵv ≲ 1.29×
10−5, which is almost the same upper bound as the CMB anisotropies. Note that, if

we naively convert the tension of cosmic strings into the parameter ϵv, ϵv for cosmic

strings reads as ϵv ≲ O(10−4) [63, 94]. The explicit bound depends on the kind of

cosmic strings.

From our analysis, we find that the CMB lensing measurement by using the

quadratic estimator without the instrumental noise would give an upper limit as

ϵv ∼ 2.7 × 10−6. In the cosmic shear measurement, we give a relation between the

signal-to-noise ratio and the survey design parameters. From this result, improving

the mean redshift is effective for studying the non-topological texture in the cosmic

shear experiment.
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Part.V

Summary





In this thesis, we have investigated observable signatures of cosmic defects focusing

on vector and tensor modes of cosmological perturbations. In part I, we reviewed

the standard cosmology and the cosmic defects. In chapter 1, we summarized the

standard cosmological model and its perturbation theory. We saw that the vector and

tensor modes can not be induced in the standard cosmological perturbation theory

because these modes are sourceless and only have decaying solutions. In contrast, if we

have external vector and tensor sources, these modes are produced in the universe. In

chapter 2, we introduced phase transitions of scalar fields due to temperature decrease

of the universe and their resulting cosmological defects. In particular, we focused on

the cosmic strings and textures, and we derived their equation of motions and energy

momentum tensors. In this thesis, we considered cosmic strings and textures, as the

sources of vector and tensor modes.

In part II, we described the magnetic fields generation on cosmological scales from

cosmic strings and textures. In chapter 3, we studied magnetic fields generated by the

Harrison mechanism where the relative velocity between the photon and baryon fluids

in the vector perturbation plays an important role. Considering the Euler equations

for the photon and baryon fluids and using the tight coupling approximation between

them, we obtained the relative velocity from which we evaluated magnetic fields.

In chapter 4, we discussed the generation of primordial magnetic fields from the

cosmic string network according to [1]. We considered the vector perturbations from

the cosmic string network by summing up the contributions from individual strings.

We adopted the velocity-dependent one-scale (VOS) model for the string network

model. Treating the vector perturbations from the string network as the source of the

relative velocity, we estimated the magnetic fields from the cosmic string network as

Bstring ∼ 10−25(Gµ/10−6) Gauss at about 100Mpc scale. In chapter 5, in the same

concept as in chapter 4, we estimated the primordial magnetic fields from the self-

ordering scalar fields, called textures 1, according to [2]. We used the non-linear sigma

model (NLSM) to represent the self-ordering scalar fields, and gave the analytical

form for the scalar field dynamics. We calculated the vector perturbations from the

texture to estimate the relative velocity between photon and baryon fluids. Then in

the same way as in the case of the cosmic string network, the magnetic fields are

produced via the Harrison mechanism, and the resulting magnetic fields we found are

Btexture ∼ 10−19ϵv Gauss at about 100 Mpc scale.

In part III, we represented the gravitational waves power spectrum from kinks on

cosmic infinite strings. We introduced the primordial gravitational waves and kinks on
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infinite strings in chapter 6. We showed that the quadrupole motion of cosmic infinite

strings can produce the gravitational waves, especially from sharp structures called

kinks. We reviewed the production, evolution, and distribution of kinks on infinite

strings in chapter 6. Then we estimated the primordial gravitational waves from kinks

on strings according to [3] in chapter 7. Here we calculated the gravitational wave

spectrum considering the time evolution of the distribution of kinks on strings and

that of the string network using the VOS model. In previous works, the gravitational

wave from the infinite string network had been calculated analytically assuming the

scaling law of the number of strings in the horizon based on the VOS model in matter

and radiation dominated epochs separately. In this work, we numerically solved the

evolution of the distribution of kinks and the evolution of the scaling law of cosmic

infinite strings simultaneously. Then we obtained O(102) times larger gravitational

waves comparing with the previous analytical work at some scales, because we take

into account the variation of the values of strings, such as the correlation length, in

the transition phase between the radiation and matter dominated epochs correctly.

The resulting spectrum is Ωstring
gw ∼ 10−8(Gµ/10−6)2 at 10−8Hz. Considering this

gravitational wave signals, aLIGO, SKA and DECIGO could test the infinite cosmic

strings whose densities are Gµ > 10−7, Gµ > 10−9 and Gµ > 10−10, respectively.

In part IV, we studied the weak lensing signals from the self-ordering scalar fields.

We considered the weak lensing signals from only the vector and tensor perturbations,

that show parity odd configurations namely the CMB lensing curl mode and the

cosmic shear B mode. We could estimate the CMB lensing curl mode by considering

the reconstruction of the curl mode of the lensing angle from the CMB using the

quadratic estimator, and the cosmic shear B mode could be obtained by decomposing

the reduced shear of galaxies into the spin-weighted spherical harmonics. In chapter

8, we calculated the spectra of the CMB lensing curl mode and the cosmic shear B

mode originated in the self-ordering scalar fields, and forecasted their detectability

according to [4]. In this thesis, we estimated the vector and tensor perturbations

from the texture described by the NLSM. Then we calculated the parity odd weak

lensing signals originated in the vector and tensor perturbations which are induced

by the texture. Here we found that both of the parity odd weak lensing signals are

produced mainly by the power spectra of the NLSM at sub-horizon scales, and the

tensor contribution is dominant. Their ℓ-dependence can be written as ℓ4Cϖϖℓ,V ∝ ℓ−7,

ℓ4Cϖϖℓ,T ∝ ℓ−5 and ℓ2CBB
ℓ,V ∝ ℓ−5, ℓ2CBB

ℓ,T ∝ ℓ−3. For the case of the CMB lensing,

considering the ideal experiment without the instrumental noise, we could obtain
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the upper limit for the combination of the VEV and the number of scalar fields ϵv

as ϵv ≤ 2.7 × 10−6. For the case of the cosmic shear B mode, allowing the mean

redshift zm and the combination ϵ2vNg to vary, we obtained the signal to noise ratio

contour. Fitting that contour, we found that the signal to noise ratio can be written

as S/N ∝ [ϵ2vNg]
0.2z0.7m , and we concluded that we should push the mean redshift zm

higher rather than counting more number of galaxies to find the texture.

We hope that these observable signatures could be used in future to find evidence of

the existence of cosmic defects and phase transitions that the defects were originated

from.
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Abelian gauge fields and cosmic strings at preheating, Phys. Rev. D 82 (Oct.,

2010) 083518, [arXiv:1006.0217].

[87] J. T. Giblin, Jr., L. R. Price, X. Siemens, and B. Vlcek, Gravitational waves

from global second order phase transitions, jcap 11 (Nov., 2012) 6,

[arXiv:1111.4014].

[88] D. G. Figueroa, M. Hindmarsh, and J. Urrestilla, Exact Scale-Invariant

Background of Gravitational Waves from Cosmic Defects, Physical Review

Letters 110 (Mar., 2013) 101302, [arXiv:1212.5458].

[89] C. Hill, D. Schramm, and T. Walker, Ultra-high-energy cosmic rays from

superconducting cosmic strings, Phys. Rev. D 36 (Aug, 1987) 1007–1016.

[90] A. J. Gill and T. W. B. Kibble, Cosmic rays from cosmic strings, prd 50

(Sept., 1994) 3660–3665, [hep-ph/9403395].

[91] M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and

D. Budker, Detecting domain walls of axionlike models using terrestrial

143

http://arxiv.org/abs/1302.4189
http://arxiv.org/abs/astro-ph/9407093
http://arxiv.org/abs/1310.3680
http://arxiv.org/abs/1410.2250
http://arxiv.org/abs/astro-ph/9311041
http://arxiv.org/abs/astro-ph/9507035
http://arxiv.org/abs/astro-ph/9811174
http://arxiv.org/abs/astro-ph/9704165
http://arxiv.org/abs/1006.0217
http://arxiv.org/abs/1111.4014
http://arxiv.org/abs/1212.5458
http://arxiv.org/abs/hep-ph/9403395


experiments, Phys. Rev. Lett. 110 (Jan, 2013) 021803.

[92] V. Stadnik, Y. and V. Flambaum, V. Searching for topological defect dark

matter via nongravitational signatures, Phys. Rev. Lett. 113 (Oct, 2014)

151301.

[93] R. Durrer, M. Kunz, and A. Melchiorri, Cosmic structure formation with

topological defects, Phys. Rep. 364 (June, 2002) 1–81, [astro-ph/0110348].

[94] J. Urrestilla, N. Bevis, M. Hindmarsh, and M. Kunz, Cosmic string parameter

constraints and model analysis using small scale Cosmic Microwave

Background data, jcap 12 (Dec., 2011) 021, [arXiv:1108.2730].

[95] BICEP2 Collaboration Collaboration, P. Ade et al., Detection of B-Mode

Polarization at Degree Angular Scales by BICEP2, Phys.Rev.Lett. 112 (2014)

241101, [arXiv:1403.3985].

[96] L. M. Krauss, Gravitational waves from global phase transitions, Phys.Lett.

B284 (1992) 229–233.

[97] E. Fenu, D. G. Figueroa, R. Durrer, J. Garcia-Bellido, and M. Kunz, Cosmic

Microwave Background temperature and polarization anisotropies from the

large-N limit of global defects, arXiv:1311.3225.

[98] R. Durrer, D. G. Figueroa, and M. Kunz, Can Self-Ordering Scalar Fields

explain the BICEP2 B-mode signal?, JCAP 1408 (2014) 029,

[arXiv:1404.3855].

[99] J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh, M. Kunz, et al.,

Constraining topological defects with temperature and polarization anisotropies,

arXiv:1408.4126.

[100] K. L. Pandey and S. K. Sethi, Probing Primordial Magnetic Fields Using Lyα

Clouds, apj 762 (Jan., 2013) 15, [arXiv:1210.3298].

[101] M. L. Bernet, F. Miniati, S. J. Lilly, P. P. Kronberg, and

M. Dessauges-Zavadsky, Strong magnetic fields in normal galaxies at high

redshifts, Nature 454 (2008) 302–304, [arXiv:0807.3347].

[102] Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results.

XVI. Cosmological parameters, Astron.Astrophys. (2014) [arXiv:1303.5076].

[103] S. Saga, M. Shiraishi, K. Ichiki, and N. Sugiyama, Generation of magnetic

fields in Einstein-Aether gravity, Phys.Rev. D87 (2013), no. 10 104025,

[arXiv:1302.4189].

[104] T. Damour and A. Vilenkin, Gravitational radiation from cosmic

(super)strings: Bursts, stochastic background, and observational windows,

144

http://arxiv.org/abs/astro-ph/0110348
http://arxiv.org/abs/1108.2730
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/1311.3225
http://arxiv.org/abs/1404.3855
http://arxiv.org/abs/1408.4126
http://arxiv.org/abs/1210.3298
http://arxiv.org/abs/0807.3347
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1302.4189


Phys. Rev. D71 (2005) 063510, [hep-th/0410222].

[105] X. Siemens, V. Mandic, and J. Creighton, Gravitational wave stochastic

background from cosmic (super)strings, Phys. Rev. Lett. 98 (2007) 111101,

[astro-ph/0610920].

[106] M. R. DePies and C. J. Hogan, Stochastic Gravitational Wave Background

from Light Cosmic Strings, Phys. Rev. D75 (2007) 125006,

[astro-ph/0702335].

[107] S. Olmez, V. Mandic, and X. Siemens, Gravitational-Wave Stochastic

Background from Kinks and Cusps on Cosmic Strings, Phys. Rev. D81 (2010)

104028, [arXiv:1004.0890].

[108] P. Binetruy, A. Bohe, T. Hertog, and D. A. Steer, Gravitational wave

signatures from kink proliferation on cosmic (super-) strings, Phys. Rev. D82

(2010) 126007, [arXiv:1009.2484].

[109] S. A. Sanidas, R. A. Battye, and B. W. Stappers, Constraints on cosmic string

tension imposed by the limit on the stochastic gravitational wave background

from the European Pulsar Timing Array, Phys. Rev. D85 (2012) 122003,

[arXiv:1201.2419].

[110] S. A. Sanidas, R. A. Battye, and B. W. Stappers, Projected constraints on the

cosmic (super)string tension with future gravitational wave detection

experiments, Astrophys. J. 764 (2013) 108, [arXiv:1211.5042].

[111] P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux, Cosmological Backgrounds

of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings

and Other Sources, JCAP 1206 (2012) 027, [arXiv:1201.0983].

[112] S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, and J. Silk, Forecast

constraints on cosmic strings from future CMB, pulsar timing and

gravitational wave direct detection experiments, Phys. Rev. D87 (2013), no. 2

023522, [arXiv:1210.2829]. [Erratum: Phys. Rev.D87,no.6,069903(2013)].

[113] L. Sousa and P. P. Avelino, Stochastic Gravitational Wave Background

generated by Cosmic String Networks: Velocity-Dependent One-Scale model

versus Scale-Invariant Evolution, Phys. Rev. D88 (2013), no. 2 023516,

[arXiv:1304.2445].
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