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Abstract

Essentially, in a reversible programming language, for each forward com-
putation from state S to state S ′, there exists a constructive method to go
backwards from state S ′ to state S. Besides its theoretical interest, reversible
computation is a fundamental concept which is relevant in many different ar-
eas like cellular automata, bidirectional program transformation, or quantum
computing, to name a few.

In this work, we focus on term rewriting, a computation model that un-
derlies most rule-based programming languages. In general, term rewriting
is not reversible, even for injective functions; namely, given a rewrite step
t1 → t2, we do not always have a decidable method to get t1 from t2. Here, we
introduce a conservative extension of term rewriting that becomes reversible.
Furthermore, we also define two transformations, injectivization and inver-
sion, to make a rewrite system reversible using standard term rewriting. We
illustrate the usefulness of our transformations in the context of bidirectional
program transformation.
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1. Introduction

The notion of reversible computation can be traced back to Landauer’s
pioneering work [22]. Although Landauer was mainly concerned with the en-
ergy consumption of erasing data in irreversible computing, he also claimed
that every computer can be made reversible by saving the history of the
computation. However, as Landauer himself pointed out, this would only
postpone the problem of erasing the tape of a reversible Turing machine be-
fore it could be reused. Bennett [6] improved the original proposal so that the
computation now ends with a tape that only contains the output of a com-
putation and the initial source, thus deleting all remaining “garbage” data,
though it performs twice the usual computation steps. More recently, Ben-
nett’s result is extended in [9] to nondeterministic Turing machines, where
it is also proved that transforming an irreversible Turing machine into a
reversible one can be done with a quadratic loss of space. We refer the in-
terested reader to, e.g., [7, 14, 40] for a high level account of the principles
of reversible computation.

In the last decades, reversible computing and reversibilization (transform-
ing an irreversible computation device into a reversible one) have been the
subject of intense research, giving rise to successful applications in many dif-
ferent fields, e.g., cellular automata [28], where reversibility is an essential
property, bidirectional program transformation [24], where reversibility helps
to automate the generation of inverse functions (see Section 6), reversible de-
bugging [17], where one can go both forward and backward when seeking the
cause of an error, parallel discrete event simulation [34], where reversible
computation is used to undo the effects of speculative computations made
on a wrong assumption, quantum computing [39], where all computations
should be reversible, and so forth. The interested reader can find detailed
surveys in the state of the art reports of the different working groups of
COST Action IC1405 on Reversible Computation [20].

In this work, we introduce reversibility in the context of term rewriting
[4, 36], a computation model that underlies most rule-based programming
languages. In contrast to other, more ad-hoc approaches, we consider that
term rewriting is an excellent framework to rigorously define reversible com-
putation in a functional context and formally prove its main properties. We
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expect our work to be useful in different (sequential) contexts, like reversible
debugging, parallel discrete event simulation or bidirectional program trans-
formation, to name a few. In particular, Section 6 presents a first approach
to formalize bidirectional program transformation in our setting.

To be more precise, we present a general and intuitive notion of reversible
term rewriting by defining a Landauer embedding. Given a rewrite system
R and its associated (standard) rewrite relation →R, we define a reversible
extension of rewriting with two components: a forward relation ⇀R and a
backward relation ↽R, such that ⇀R is a conservative extension of→R and,
moreover, (⇀R)−1 =↽R. We note that the inverse rewrite relation, (→R)−1,
is not an appropriate basis for “reversible” rewriting since we aim at defining
a technique to undo a particular reduction. In other words, given a rewriting
reduction s →∗R t, our reversible relation aims at computing the term s
from t and R in a decidable and deterministic way, which is not possible
using (→R)−1 since it is generally non-deterministic, non-confluent, and non-
terminating, even for systems defining injective functions (see Example 6).
In contrast, our backward relation ↽R is deterministic (thus confluent) and
terminating. Moreover, our relation proceeds backwards step by step, i.e.,
the number of reduction steps in s ⇀∗R t and t ↽∗R s are the same.

In order to introduce a reversibilization transformation for rewrite sys-
tems, we use a flattening transformation so that the reduction at top posi-
tions of terms suffices to get a normal form in the transformed systems. For
instance, given the following rewrite system:

add(0, y) → y,
add(s(x), y) → s(add(x, y))

defining the addition on natural numbers built from constructors 0 and s( ),
we produce the following flattened (conditional) system:

R = { add(0, y) → y,
add(s(x), y) → s(z)⇐ add(x, y)� z }

(see Example 29 for more details). This allows us to provide an improved no-
tion of reversible rewriting in which some information (namely, the positions
where reduction takes place) is not required anymore. This opens the door to
compile the reversible extension of rewriting into the system rules. Loosely
speaking, given a system R, we produce new systems Rf and Rb such that
standard rewriting in Rf , i.e., →Rf

, coincides with the forward reversible
extension ⇀R in the original system, and analogously →Rb

is equivalent to
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↽R. E.g., for the system R above, we would produce

Rf = { addi(0, y) → 〈y, β1〉,
addi(s(x), y) → 〈s(z), β2(w)〉 ⇐ addi(x, y)� 〈z, w〉 }

Rb = { add−1(y, β1) → 〈0, y〉,
add−1(s(z), β2(w)) → 〈s(x), y〉 ⇐ add−1(z, w)→ 〈x, y〉 }

where addi is an injective version of function add, add−1 is the inverse of
addi, and β1, β2 are fresh symbols introduced to label the rules of R.

In this work, we will mostly consider conditional rewrite systems, not
only to have a more general notion of reversible rewriting, but also to define
a reversibilization technique for unconditional rewrite systems, since the ap-
plication of flattening (cf. Section 4) may introduce conditions in a system
that is originally unconditional, as illustrated above.

This paper is an extended version of [31]. In contrast to [31], our cur-
rent paper includes the proofs of technical results, the reversible extension of
term rewriting is introduced first in the unconditional case (which is simpler
and more intuitive), and presents an improved injectivization transforma-
tion when the system includes injective functions. Furthermore, a prototype
implementation of the reversibilization technique is publicly available from
http://kaz.dsic.upv.es/rev-rewriting.html.

The paper is organized as follows. After introducing some preliminaries
in Section 2, we present our approach to reversible term rewriting in Sec-
tion 3. Section 4 introduces the class of pure constructor systems where all
reductions take place at topmost positions, so that storing this information
in reversible rewrite steps becomes unnecessary. Then, Section 5 presents in-
jectivization and inversion transformations in order to make a rewrite system
reversible with standard rewriting. Here, we also present an improvement of
the transformation for injective functions. The usefulness of these transfor-
mations is illustrated in Section 6. Finally, Section 7 discusses some related
work and Section 8 concludes and points out some ideas for future research.

2. Preliminaries

We assume familiarity with basic concepts of term rewriting. We refer
the reader to, e.g., [4] and [36] for further details.

2.1. Terms and Substitutions

A signature F is a set of ranked function symbols. Given a set of variables
V with F∩V = ∅, we denote the domain of terms by T (F ,V). We use f, g, . . .
to denote functions and x, y, . . . to denote variables. Positions are used to
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address the nodes of a term viewed as a tree. A position p in a term t, in
symbols p ∈ Pos(t), is represented by a finite sequence of natural numbers,
where ε denotes the root position. We let t|p denote the subterm of t at
position p and t[s]p the result of replacing the subterm t|p by the term s.
Var(t) denotes the set of variables appearing in t. We also let Var(t1, . . . , tn)
denote Var(t1) ∪ · · · ∪ Var(tn). A term t is ground if Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x 6= σ(x)} is its domain. A substitution σ is ground
if xσ is ground for all x ∈ Dom(σ). Substitutions are extended to morphisms
from T (F ,V) to T (F ,V) in the natural way. We denote the application of a
substitution σ to a term t by tσ rather than σ(t). The identity substitution
is denoted by id. We let “◦” denote the composition of substitutions, i.e.,
σ ◦ θ(x) = (xθ)σ = xθσ. The restriction θ |̀V of a substitution θ to a set of
variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise.

2.2. Term Rewriting Systems

A set of rewrite rules l→ r such that l is a nonvariable term and r is a term
whose variables appear in l is called a term rewriting system (TRS for short);
terms l and r are called the left-hand side and the right-hand side of the rule,
respectively. We restrict ourselves to finite signatures and TRSs. Given a
TRS R over a signature F , the defined symbols DR are the root symbols
of the left-hand sides of the rules and the constructors are CR = F \ DR.
Constructor terms of R are terms over CR and V , denoted by T (CR,V).
We sometimes omit R from DR and CR if it is clear from the context. A
substitution σ is a constructor substitution (of R) if xσ ∈ T (CR,V) for all
variables x.

For a TRSR, we define the associated rewrite relation→R as the smallest
binary relation on terms satisfying the following: given terms s, t ∈ T (F ,V),
we have s →R t iff there exist a position p in s, a rewrite rule l → r ∈ R,
and a substitution σ such that s|p = lσ and t = s[rσ]p; the rewrite step is
sometimes denoted by s→p,l→r t to make explicit the position and rule used
in this step. The instantiated left-hand side lσ is called a redex. A term s is
called irreducible or in normal form with respect to a TRS R if there is no
term t with s →R t. A substitution is called normalized with respect to R
if every variable in the domain is replaced by a normal form with respect to
R. We sometimes omit “with respect to R” if it is clear from the context.
A derivation is a (possibly empty) sequence of rewrite steps. Given a binary
relation →, we denote by →∗ its reflexive and transitive closure, i.e., s→∗R t
means that s can be reduced to t in R in zero or more steps; we also use
s→n

R t to denote that s can be reduced to t in exactly n steps.
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We further assume that rewrite rules are labelled, i.e., given a TRS R,
we denote by β : l → r a rewrite rule with label β. Labels are unique in a
TRS. Also, to relate label β to fixed variables, we consider that the variables
of the rewrite rules are not renamed1 and that the reduced terms are always
ground. Equivalently, one could require terms to be variable disjoint with
the variables of the rewrite system, but we require groundness for simplicity.
We often write s→p,β t instead of s→p,l→r t if rule l→ r is labeled with β.

2.3. Conditional Term Rewrite Systems

In this paper, we also consider conditional term rewrite systems (CTRSs);
namely oriented 3-CTRSs, i.e., CTRSs where extra variables are allowed
as long as Var(r) ⊆ Var(l) ∪ Var(C) for any rule l → r ⇐ C [26]. In
oriented CTRSs, a conditional rule l → r ⇐ C has the form l → r ⇐
s1 � t1, . . . , sn � tn, where each oriented equation si � ti is interpreted as
reachability (→∗R). In the following, we denote by on a sequence of elements
o1, . . . , on for some n. We also write oi,j for the sequence oi, . . . , oj when i ≤ j
(and the empty sequence otherwise). We write o when the number of elements
is not relevant. In addition, we denote a condition o1 � o′1, . . . , on � o′n by
on � o′n.

As in the unconditional case, we consider that rules are labelled and that
labels are unique in a CTRS. And, again, to relate label β to fixed variables,
we consider that the variables of the conditional rewrite rules are not renamed
and that the reduced terms are always ground.

For a CTRS R, the associated rewrite relation →R is defined as the
smallest binary relation satisfying the following: given ground terms s, t ∈
T (F), we have s→R t iff there exist a position p in s, a rewrite rule l→ r ⇐
sn � tn ∈ R, and a ground substitution σ such that s|p = lσ, siσ →∗R tiσ
for all i = 1, . . . , n, and t = s[rσ]p.

In order to simplify the presentation, we only consider deterministic
CTRSs (DCTRSs), i.e., oriented 3-CTRSs where, for each rule l → r ⇐
sn � tn, we have Var(si) ⊆ Var(l, ti−1) for all i = 1, . . . , n (see Section 3.2
for a justification of this requirement and how it could be relaxed to arbitrary
3-CTRSs). Intuitively speaking, the use of DCTRs allows us to compute the
bindings for the variables in the condition of a rule in a deterministic way.
E.g., given a ground term s and a rule β : l→ r ⇐ sn � tn with s|p = lθ, we
have that s1θ is ground. Therefore, one can reduce s1θ to some term s′1 such
that s′1 is an instance of t1θ with some ground substitution θ1. Now, we have

1This will become useful in the next section where the reversible extension of rewriting
keeps a “history” of a computation in the form of a list of terms β(p, σ), and we want the
domain of σ to be a subset of the left-hand side of the rule labelled with β.
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that s2θθ1 is ground and we can reduce s2θθ1 to some term s′2 such that s′2
is an instance of t2θθ1 with some ground substitution θ2, and so forth. If all
equations in the condition hold using θ1, . . . , θn, we have that s →p,β s[rσ]p
with σ = θθ1 . . . θn.

Example 1. Consider the following DCTRS R that defines the function
double that doubles the value of its argument when it is an even natural
number:

β1 : add(0, y) → y β4 : even(0) → true
β2 : add(s(x), y) → s(add(x, y)) β5 : even(s(s(x))) → even(x)
β3 : double(x) → add(x, x)⇐ even(x)� true

Given the term double(s(s(0))) we have, for instance, the following derivation:

double(s(s(0)))→ε,β3 add(s(s(0)), s(s(0))) since even(s(s(0)))→∗R true
with σ = {x 7→ s(s(0))}

→ε,β2 s(add(s(0), s(s(0)))) with σ = {x 7→ s(0), y 7→ s(s(0))}
→1,β2 s(s(add(0, s(s(0))))) with σ = {x 7→ 0, y 7→ s(s(0))}
→1.1,β1s(s(s(s(0)))) with σ = {y 7→ s(s(0))}

3. Reversible Term Rewriting

In this section, we present a conservative extension of the rewrite relation
which becomes reversible. In the following, we use ⇀R to denote our re-
versible (forward) term rewrite relation, and ↽R to denote its application in
the reverse (backward) direction. Note that, in principle, we do not require
↽R = ⇀−1R , i.e., we provide independent (constructive) definitions for each
relation. Nonetheless, we will prove that ↽R = ⇀−1R indeed holds (cf. The-
orems 9 and 20). In some approaches to reversible computing, both forward
and backward relations should be deterministic. Here, we will only require
deterministic backward steps, while forward steps might be non-deterministic,
as it is often the case in term rewriting.

3.1. Unconditional Term Rewrite Systems

We start with unconditional TRSs since it is conceptually simpler and
thus will help the reader to better understand the key ingredients of our
approach. In the next section, we will consider the more general case of
DCTRSs.

Given a TRS R, reversible rewriting is defined on pairs 〈t, π〉, where t is
a ground term and π is a trace (the “history” of the computation so far).
Here, a trace in R is a list of trace terms of the form β(p, σ) such that β is
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a label for some rule l→ r ∈ R, p is a position, and σ is a substitution with
Dom(σ) = Var(l)\Var(r) which will record the bindings of erased variables
when Var(l)\Var(r) 6= ∅ (and σ = id if Var(l)\Var(r) = ∅).2 Our trace
terms have some similarities with proof terms [36]. However, proof terms do
not store the bindings of erased variables (and, to the best of our knowledge,
they are only defined for unconditional TRSs, while we use trace terms both
for unconditional and conditional TRSs).

Our reversible term rewriting relation is only defined on safe pairs:

Definition 2. Let R be a TRS. The pair 〈s, π〉 is safe in R iff, for all
β(p, σ) in π, σ is a ground substitution with Dom(σ) = Var(l)\Var(r) and
β : l→ r ∈ R.

In the following, we often omit R when referring to traces and safe pairs if
the underlying TRS is clear from the context.

Safety is not necessary when applying a forward reduction step, but will
become essential for the backward relation ↽R to be correct. E.g., all traces
that come from the forward reduction of some initial pair with an empty
trace will be safe (see below). Reversible rewriting is then introduced as
follows:

Definition 3. Let R be a TRS. A reversible rewrite relation ⇀R is defined
on safe pairs 〈t, π〉, where t is a ground term and π is a trace in R. The
reversible rewrite relation extends standard rewriting as follows:3

〈s, π〉⇀R 〈t, β(p, σ′) : π〉

iff there exist a position p ∈ Pos(s), a rewrite rule β : l → r ∈ R, and a
ground substitution σ such that s|p = lσ, t = s[rσ]p, and σ′ = σ|̀Var(l)\Var(r).
The reverse relation, ↽R, is then defined as follows:

〈t, β(p, σ′) : π〉↽R 〈s, π〉

iff 〈t, β(p, σ′) : π〉 is a safe pair in R and there exist a ground substitution
θ and a rule β : l → r ∈ R such that Dom(θ) = Var(r), t|p = rθ and s =
t[lθσ′]p. Note that θσ′ = σ′θ = θ ∪ σ′, where ∪ is the union of substitutions,
since Dom(θ) = Var(r), Dom(σ′) = (Var(l)\Var(r)) and both substitutions
are ground, so Dom(θ) ∩ Dom(σ′) = ∅.

2Note that if a rule l→ r is non-erasing, i.e., Var(l) = Var(r), then σ = id.
3In the following, we consider the usual infix notation for lists where [ ] is the empty

list and x : xs is a list with head x and tail xs.
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We denote the union of both relations ⇀R ∪↽R by 
R.

Example 4. Let us consider the following TRS R defining the addition on
natural numbers built from 0 and s( ), and the function fst that returns its
first argument:

β1 : add(0, y) → y β3 : fst(x, y) → x
β2 : add(s(x), y) → s(add(x, y))

Given the term fst(add(s(0), 0), 0), we have, for instance, the following re-
versible (forward) derivation:

〈fst(add(s(0), 0), 0), [ ]〉 ⇀R 〈fst(s(add(0, 0)), 0), [β2(1, id)]〉
⇀R 〈s(add(0, 0)), [β3(ε, {y 7→ 0}), β2(1, id)]〉
⇀R 〈s(0), [β1(1, id), β3(ε, {y 7→ 0}), β2(1, id)]〉

The reader can easily check that 〈s(0), [β1(1, id), β3(ε, {y 7→ 0}), β2(1, id)]〉
is reducible to 〈fst(add(s(0), 0), 0), [ ]〉 using the backward relation ↽R by
performing exactly the same steps but in the backward direction.

An easy but essential property of ⇀R is that it is a conservative extension
of standard rewriting in the following sense (we omit its proof since it is
straightforward):

Theorem 5. Let R be a TRS. Given terms s, t, if s →∗R t, then for any
trace π there exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

Here, and in the following, we assume that ←R= (→R)−1, i.e., s →−1R t is
denoted by s←R t. Observe that the backward relation is not a conservative
extension of←R: in general, t←R s does not imply 〈t, π′〉↽R 〈s, π〉 for any
arbitrary trace π′. This is actually the purpose of our notion of reversible
rewriting: ↽R should not extend←R but is only aimed at performing exactly
the same steps of the forward computation whose trace was stored, but in
the reverse order. Nevertheless, one can still ensure that for all steps t ←R
s, there exists some trace π′ such that 〈t, π′〉 ↽R 〈s, π〉 (which is an easy
consequence of the above result and Theorem 9 below).

Example 6. Consider again the following TRS R = {β : snd(x, y) → y}.
Given the reduction snd(1, 2)→R 2, there are infinitely many reductions for
2 using ←R, e.g., 2 ←R snd(1, 2), 2 ←R snd(2, 2), 2 ←R snd(3, 2), etc. The
relation is also non-terminating: 2 ←R snd(1, 2) ←R snd(1, snd(1, 2)) ←R
· · · . In contrast, given a pair 〈2, π〉, we can only perform a single de-
terministic and finite reduction (as proved below). For instance, if π =
[β(ε, {x 7→ 1}), β(2, {x 7→ 1})], then the only possible reduction is 〈2, π〉↽R
〈snd(1, 2), [β(2, {x 7→ 1})]〉↽R 〈snd(1, snd(1, 2)), [ ]〉 6↽R.
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Now, we state a lemma which shows that safe pairs are preserved through
reversible term rewriting (both in the forward and backward directions):

Lemma 7. Let R be a TRS. Let 〈s, π〉 be a safe pair. If 〈s, π〉 
∗R 〈t, π′〉,
then 〈t, π′〉 is also safe.

Proof. We prove the claim by induction on the length k of the derivation.
Since the base case k = 0 is trivial, consider the inductive case k > 0. Assume
a derivation of the form 〈s, π〉 
∗R 〈s0, π0〉 
R 〈t, π′〉. By the induction
hypothesis, we have that 〈s0, π0〉 is a safe pair. Now, we distinguish two
cases depending on the last step. If we have 〈s0, π0〉 ⇀R 〈t, π′〉, then there
exist a position p ∈ Pos(s0), a rewrite rule β : l → r ∈ R, and a ground
substitution σ such that s0|p = lσ, t = s0[rσ]p, σ

′ = σ |̀Var(l)\Var(r), and
π′ = β(p, σ′) : π0. Then, since σ′ is ground and Dom(σ′) = Var(l)\Var(r)
by construction, the claim follows straightforwardly. If the last step has the
form 〈s0, π0〉↽R 〈t, π′〉, then the claim follows trivially since each step with
↽R only removes trace terms from π0. 2

Hence, since any pair with an empty trace is safe the following result, which
states that every pair that is reachable from an initial pair with an empty
trace is safe, straightforwardly follows from Lemma 7:

Proposition 8. Let R be a TRS. If 〈s, [ ]〉
∗R 〈t, π〉, then 〈t, π〉 is safe.

Now, we state the reversibility of ⇀R, i.e., the fact that (⇀R)−1 =↽R (and
thus the reversibility of ↽R and 
R, too).

Theorem 9. Let R be a TRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for all
n ≥ 0, 〈s, π〉⇀n

R 〈t, π′〉 iff 〈t, π′〉↽n
R 〈s, π〉.

Proof. (⇒) We prove the claim by induction on the length n of the deriva-
tion 〈s, π〉⇀n

R 〈t, π′〉. Since the base case n = 0 is trivial, let us consider the
inductive case n > 0. Consider a derivation 〈s, π〉 ⇀n−1

R 〈s0, π0〉 ⇀R 〈t, π′〉.
By Lemma 7, both 〈s0, π0〉 and 〈t, π′〉 are safe. By the induction hypothe-
sis, we have 〈s0, π0〉 ↽n−1

R 〈s, π〉. Consider now the step 〈s0, π0〉 ⇀R 〈t, π′〉.
Then, there is a position p ∈ Pos(s0), a rule β : l → r ∈ R and a ground
substitution σ such that s0|p = lσ, t = s0[rσ]p, σ

′ = σ |̀Var(l)\Var(r), and
π′ = β(p, σ′) : π0. Let θ = σ |̀Var(r). Then, we have 〈t, π′〉 ↽R 〈s′0, π0〉 with
t|p = rθ, β : l → r ∈ R and s′0 = t[lθσ′]p. Moreover, since σ = θσ′, we have
s′0 = t[lθσ′]p = t[lσ]p = s0, and the claim follows.

(⇐) This direction proceeds in a similar way. We prove the claim by
induction on the length n of the derivation 〈t, π′〉 ↽n

R 〈s, π〉. As before,

10



we only consider the inductive case n > 0. Let us consider a derivation
〈t, π′〉 ↽n−1

R 〈s0, π0〉 ↽R 〈s, π〉. By Lemma 7, both 〈s0, π0〉 and 〈s, π〉 are
safe. By the induction hypothesis, we have 〈s0, π0〉 ⇀n−1

R 〈t, π′〉. Consider
now the reduction step 〈s0, π0〉 ↽R 〈s, π〉. Then, we have π0 = β(p, σ′) : π,
β : l → r ∈ R, and there exists a ground substitution θ with Dom(θ) =
Var(r) such that s0|p = rθ and s = s0[lθσ

′]p. Moreover, since 〈s0, π0〉 is safe,
we have that Dom(σ′) = Var(l)\Var(r) and, thus, Dom(θ) ∩ Dom(σ′) = ∅.
Let σ = θσ′. Then, since s|p = lσ and Dom(σ′) = Var(l)\Var(r), we can
perform the step 〈s, π〉 ⇀R 〈s′0, β(p, σ′) : π〉 with s′0 = s[rσ]p = s[rθσ′]p =
s[rθ]p = s0[rθ]p = s0, and the claim follows. 2

The next corollary is then immediate:

Corollary 10. Let R be a TRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉, for
all n ≥ 0, 〈s, π〉
n

R 〈t, π′〉 iff 〈t, π′〉
n
R 〈s, π〉.

A key issue of our notion of reversible rewriting is that the backward rewrite
relation ↽R is deterministic (thus confluent), terminating, and has a con-
structive definition:

Theorem 11. Let R be a TRS. Given a safe pair 〈t, π′〉, there exists at most
one pair 〈s, π〉 such that 〈t, π′〉↽R 〈s, π〉.

Proof. First, if there is no step using ↽R from 〈t, π′〉, the claim follows
trivially. Now, assume there is at least one step 〈t, π′〉 ↽R 〈s, π〉. We prove
that this is the only possible step. By definition, we have π′ = β(p, σ′) : π,
p ∈ Pos(t), β : l → r ∈ R, and there exists a ground substitution θ with
Dom(θ) = Var(r) such that t|p = rθ and s = t[lθσ′]p. The only source of
nondeterminism may come from choosing a rule labeled with β and from the
computation of the substitution θ. The claim follows trivially from the fact
that labels are unique in R and that, if there is some ground substitution θ′

with θ′ = Var(r) and t|p = rθ′, then θ = θ′. 2

Therefore, ↽R is clearly deterministic and confluent. Termination holds
straightforwardly for pairs with finite traces since its length strictly decreases
with every backward step. Note however that even when ⇀R and ↽R are
terminating, the relation 
R is always non-terminating since one can keep
going back and forth.

11



3.2. Conditional Term Rewrite Systems

In this section, we extend the previous notions and results to DCTRSs.
We note that considering DCTRSs is not enough to make conditional rewrit-
ing deterministic. In general, given a rewrite step s→p,β t with p a position
of s, β : l → r ⇐ sn → tn a rule, and σ a substitution such that s|p = lσ
and siσ →∗R tiσ for all i = 1, . . . , n, there are three potential sources of non-
determinism: the selected position p, the selected rule β, and the substitution
σ. The use of DCTRSs can only make deterministic the last one, but the
choice of a position and the selection of a rule may still be non-deterministic.

For DCTRSs, the notion of a trace term used for TRSs is not sufficient
since we also need to store the traces of the subderivations associated to the
condition of the applied rule (if any). Therefore, we generalize the notion of
a trace as follows:

Definition 12 (trace). Given a CTRSR, a trace inR is recursively defined
as follows:

• the empty list is a trace;

• if π, π1, . . . , πn are traces in R, n ≥ 0, β : l → r ⇐ sn � tn ∈
R is a rule, p is a position, and σ is a ground substitution, then
β(p, σ, π1, . . . , πn) : π is a trace in R.

We refer to each component β(p, σ, π1, . . . , πn) in a trace as a trace term.

Intuitively speaking, a trace term β(p, σ, π1, . . . , πn) stores the position of a
reduction step, a substitution with the bindings that are required for the step
to be reversible (e.g., the bindings for the erased variables, but not only; see
below) and the traces associated to the subcomputations in the condition.

The notion of a safe pair is now more involved in order to deal with
conditional rules. The motivation for this definition will be explained below,
after introducing reversible rewriting for DCTRSs.

Definition 13 (safe pair). Let R be a DCTRS. A trace π is safe in R iff,
for all trace terms β(p, σ, πn) in π, σ is a ground substitution with Dom(σ) =
(Var(l)\Var(r, sn, tn))∪

⋃n
i=1 Var(ti)\Var(r, si+1,n), β : l→ r ⇐ sn � tn ∈ R,

and πn are safe too. The pair 〈s, π〉 is safe in R iff π is safe.

Reversible (conditional) rewriting can now be introduced as follows:

Definition 14 (reversible rewriting). LetR be a DCTRS. The reversible
rewrite relation ⇀R is defined on safe pairs 〈t, π〉, where t is a ground term

12



and π is a trace in R. The reversible rewrite relation extends standard con-
ditional rewriting as follows:

〈s, π〉⇀R 〈t, β(p, σ′, π1, . . . , πn) : π〉

iff there exist a position p ∈ Pos(s), a rewrite rule β : l→ r ⇐ sn � tn ∈ R,
and a ground substitution σ such that s|p = lσ, 〈siσ, [ ]〉 ⇀∗R 〈tiσ, πi〉 for
all i = 1, . . . , n, t = s[rσ]p, and σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪⋃n

i=1 Var(ti)\Var(r,si+1,n)
.

The reverse relation, ↽R, is then defined as follows:

〈t, β(p, σ′, π1, . . . , πn) : π〉↽R 〈s, π〉

iff 〈t, β(p, σ′, πn) : π〉 is a safe pair in R, β : l→ r ⇐ sn � tn ∈ R and there
is a ground substitution θ such that Dom(θ) = Var(r, sn)\Dom(σ′), t|p = rθ,
〈tiθσ′, πi〉 ↽∗R 〈siθσ′, [ ]〉 for all i = 1, . . . , n, and s = t[lθσ′]p. Note that
θσ′ = σ′θ = θ ∪ σ′ since Dom(θ) ∩ Dom(σ′) = ∅ and both substitutions are
ground.

As in the unconditional case, we denote the union of both relations ⇀R
∪↽R by 
R.

Example 15. Consider again the DCTRS R from Example 1:

β1 : add(0, y) → y β4 : even(0) → true
β2 : add(s(x), y) → s(add(x, y)) β5 : even(s(s(x))) → even(x)
β3 : double(x) → add(x, x)⇐ even(x)� true

Given the term double(s(s(0))), we have, for instance, the following forward
derivation:

〈double(s(s(0))), [ ]〉
⇀R 〈add(s(s(0)), s(s(0))), [β3(ε, id, π)]〉
⇀R · · ·
⇀R 〈s(s(s(s(0)))), [β1(1.1, id), β2(1, id), β2(ε, id), β3(ε, id, π)]〉

where π = [β4(ε, id), β5(ε, id)] since we have the following reduction:

〈even(s(s(0))), [ ]〉⇀R 〈even(0), [β5(ε, id)]〉⇀R 〈true, [β4(ε, id), β5(ε, id)]〉

The reader can easily construct the associated backward derivation:

〈add(s(s(0)), s(s(0))), [β1(1.1, id), β2(1, id), . . .]〉↽∗R 〈double(s(s(0))), [ ]〉

Let us now explain why we need to store σ′ in a step of the form 〈s, π〉 ⇀R
〈t, β(p, σ′, πn) : π〉. Given a DCTRS, for each rule l → r ⇐ sn � tn, the
following conditions hold:

13



• 3-CTRS: Var(r) ⊆ Var(l, sn, tn).

• Determinism: for all i = 1, . . . , n, we have Var(si) ⊆ Var(l, ti−1).

Intuitively, the backward relation ↽R can be seen as equivalent to the for-
ward relation ⇀R but using a reverse rule of the form r → l ⇐ tn �
sn, . . . , t1 � s1. Therefore, in order to ensure that backward reduction is
deterministic, we need the same conditions as above but on the reverse rule:4

• 3-CTRS: Var(l) ⊆ Var(r, sn, tn).

• Determinism: for all i = 1, . . . , n, Var(ti) ⊆ Var(r, si+1,n).

Since these conditions cannot be guaranteed in general, we store

σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪⋃n
i=1 Var(ti)\Var(r,si+1,n)

in the trace term so that (r → l ⇐ tn � sn, . . . , t1 � s1)σ
′ is determinis-

tic and fulfills the conditions of a 3-CTRS by construction, i.e., Var(lσ′) ⊆
Var(rσ′, snσ′, tnσ′) and for all i = 1, . . . , n, Var(tiσ

′) ⊆ Var(rσ′, si+1,nσ′); see
the proof of Theorem 21 for more details.

Example 16. Consider the following DCTRS:

β1 : f(x, y,m) → s(w)⇐ h(x)� x, g(y, 4)� w
β2 : h(0) → 0 β3 : h(1) → 1 β4 : g(x, y) → x

and the step 〈f(0, 2, 4), [ ]〉 ⇀R 〈s(2), [β1(ε, σ
′, π1, π2)]〉 with σ′ = {m 7→

4, x 7→ 0}, π1 = [β2(ε, id)] and π2 = [β4(ε, {y 7→ 4})]. The binding of variable
m is required to recover the value of the erased variable m, but the binding of
variable x is also needed to perform the subderivation 〈x, π1〉 ↽R 〈h(x), [ ]〉
when applying a backward step from 〈s(2), [β1(ε, σ

′, π1, π2)]〉. If the binding
for x were unknown, this step would not be deterministic. As mentioned
above, an instantiated reverse rule (s(w) → f(x, y,m) ⇐ w � g(y, 4), x �
h(x))σ′ = s(w) → f(0, y, 4) ⇐ w � g(y, 4), 0 � h(0) would be a legal
DCTRS rule thanks to σ′.

We note that similar conditions could be defined for arbitrary 3-CTRSs.
However, the conditions would be much more involved; e.g., one had to com-
pute first the variable dependencies between the equations in the conditions.

4We note that the notion of a non-erasing rule is extended to the DCTRSs in [32],
which results in a similar condition.
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Therefore, we prefer to keep the simpler conditions for DCTRSs (where these
dependencies are fixed), which is still quite a general class of CTRSs.

Reversible rewriting is also a conservative extension of rewriting for DC-
TRSs (we omit the proof since it is straightforward):

Theorem 17. Let R be a DCTRS. Given ground terms s, t, if s→∗R t, then
for any trace π there exists a trace π′ such that 〈s, π〉⇀∗R 〈t, π′〉.

For the following result, we need some preliminary notions (see, e.g., [36]).
For every oriented CTRS R, we inductively define the TRSs Rk, k ≥ 0, as
follows:

R0 = ∅
Rk+1 = {lσ → rσ | l→ r ⇐ sn � tn ∈ R, siσ →∗Rk

tiσ for all i = 1, . . . , n}

Observe that Rk ⊆ Rk+1 for all k ≥ 0. We have →R=
⋃
i≥0 →Ri

. We also
have s →R t iff s →Rk

t for some k ≥ 0. The minimum such k is called
the depth of s →R t, and the maximum depth k of s = s0 →Rk1

· · · →Rkm

sm = t (i.e., k is the maximum of depths k1, . . . , km) is called the depth of
the derivation. If a derivation has depth k and length m, we write s→m

Rk
t.

Analogous notions can naturally be defined for ⇀R, ↽R, and 
R.
The next result shows that safe pairs are also preserved through reversible

rewriting with DCTRSs:

Lemma 18. Let R be a DCTRS and 〈s, π〉 a safe pair. If 〈s, π〉
∗R 〈t, π′〉,
then 〈t, π′〉 is also safe.

Proof. We prove the claim by induction on the lexicographic product (k,m)
of the depth k and the length m of the derivation 〈s, π〉
m

Rk
〈t, π′〉. Since the

base case is trivial, we consider the inductive case (k,m) > (0, 0). Consider
a derivation 〈s, π〉 
m−1

Rk
〈s0, π0〉 
Rk

〈t, π′〉. By the induction hypothe-
sis, we have that 〈s0, π0〉 is safe. Now, we distinguish two cases depending
on the last step. If the last step is 〈s0, π0〉 ⇀Rk

〈t, π′〉, then there exist
a position p ∈ Pos(s0), a rewrite rule β : l → r ⇐ sn � tn ∈ R, and a
ground substitution σ such that s0|p = lσ, 〈siσ, [ ]〉 ⇀∗Rki

〈tiσ, πi〉 for all

i = 1, . . . , n, t = s0[rσ]p, σ
′ = σ |̀(Var(l)\Var(r,sn,tn))∪⋃n

i=1 Var(ti)\Var(r,si+1,n)
, and

π′ = β(p, σ′, π1, . . . , πn). Then, since ki < k, i = 1, . . . , n, σ′ is ground and
Dom(σ′) = (Var(l)\Var(r, sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1,n) by construc-

tion, the claim follows by induction. Finally, if the last step has the form
〈s0, π0〉 ↽Rk

〈t, π′〉, then the claim follows trivially since a step with ↽R
only removes trace terms from π0. 2
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As in the unconditional case, the following proposition follows straightfor-
wardly from the previous lemma since any pair with an empty trace is safe.

Proposition 19. Let R be a DCTRS. If 〈s, [ ]〉
∗R 〈t, π〉, then 〈t, π〉 is safe
in R.

Now, we can already state the reversibility of ⇀R for DCTRSs:

Theorem 20. Let R be a DCTRS. Given the safe pairs 〈s, π〉 and 〈t, π′〉,
for all k,m ≥ 0, 〈s, π〉⇀m

Rk
〈t, π′〉 iff 〈t, π′〉↽m

Rk
〈s, π〉.

Proof. (⇒) We prove the claim by induction on the lexicographic product
(k,m) of the depth k and the length m of the derivation 〈s, π〉 ⇀m

Rk
〈t, π′〉.

Since the base case is trivial, we consider the inductive case (k,m) > (0, 0).
Consider a derivation 〈s, π〉⇀m−1

Rk
〈s0, π0〉⇀Rk

〈t, π′〉 whose associated prod-
uct is (k,m). By Proposition 19, both 〈s0, π0〉 and 〈t, π′〉 are safe. By the
induction hypothesis, since (k,m−1) < (k,m), we have 〈s0, π0〉↽m−1

Rk
〈s, π〉.

Consider now the step 〈s0, π0〉 ⇀Rk
〈t, π′〉. Thus, there exist a position

p ∈ Pos(s0), a rule β : l → r ⇐ sn � tn ∈ R, and a ground substitution σ
such that s0|p = lσ, 〈siσ, [ ]〉 ⇀∗Rki

〈tiσ, πi〉 for all i = 1, . . . , n, t = s0[rσ]p,

σ′ = σ|̀(Var(l)\Var(r,sn,tn))∪⋃n
i=1 Var(ti)\Var(r,si+1,n)

, and π′ = β(p, σ′, π1, . . . , πn) : π0.

By definition of ⇀Rk
, we have that ki < k and, thus, (ki,m1) < (k,m2) for all

i = 1, . . . , n and for all m1,m2. Hence, by the induction hypothesis, we have
〈tiσ, πi〉 ↽∗Rki

〈siσ, [ ]〉 for all i = 1, . . . , n. Let θ = σ |̀Var(r,sn)\Dom(σ′), so that

σ = θσ′ and Dom(θ)∩Dom(σ′) = ∅. Therefore, we have 〈t, π′〉↽Rk
〈s′0, π0〉

with t|p = rθ, β : l → r ⇐ sn � tn ∈ R and s′0 = t[lθσ′]p = t[lσ]p = s0, and
the claim follows.

(⇐) This direction proceeds in a similar way. We prove the claim by
induction on the lexicographic product (k,m) of the depth k and the length
m of the considered derivation. Since the base case is trivial, let us con-
sider the inductive case (k,m) > (0, 0). Consider a derivation 〈t, π′〉 ↽m−1

Rk

〈s0, π0〉 ↽Rk
〈s, π〉 whose associated product is (k,m). By Proposition 19,

both 〈s0, π0〉 and 〈s, π〉 are safe. By the induction hypothesis, since (k,m−
1) < (k,m), we have 〈s0, π0〉⇀m−1

Rk
〈t, π′〉. Consider now the step 〈s0, π0〉↽Rk

〈s, π〉. Then, we have π0 = β(p, σ′, π1, . . . , πn) : π, β : l→ r ⇐ sn � tn ∈ R,
and there exists a ground substitution θ with Dom(θ) = Var(r, sn)\Dom(σ′)
such that s0|p = rθ, 〈tiθσ′, πi〉 ↽∗Rki

〈siθσ′, [ ]〉 for all i = 1, . . . , n, and

s = s0[lθσ
′]p. Moreover, since 〈s0, π0〉 is safe, we have that Dom(σ′) =

(Var(l)\Var(r, sn, tn))∪
⋃n
i=1 Var(ti)\Var(r, si+1,n). By definition of ↽Rk

, we
have that ki < k and, thus, (ki,m1) < (k,m2) for all i = 1, . . . , n and for
all m1,m2. By the induction hypothesis, we have 〈siθσ′, [ ]〉 ⇀∗Rki

〈tiθσ′, πi〉
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for all i = 1, . . . , n. Let σ = θσ′, with Dom(θ) ∩ Dom(σ′) = ∅. Then, since
s|p = lσ, we can perform the step 〈s, π〉 ⇀Rk

〈s′0, β(p, σ′, π1, . . . , πn) : π〉
with s′0 = s[rσ]p = s[rθσ′]p; moreover, s[rθσ′]p = s[rθ]p = s0[rθ]p = s0 since
Dom(σ′) ∩ Var(r) = ∅, which concludes the proof. 2

In the following, we say that 〈t, π′〉↽R 〈s, π〉 is a deterministic step if there
is no other, different pair 〈s′′, π′′〉 with 〈t, π′〉 ↽R 〈s′′, π′′〉 and, moreover,
the subderivations for the equations in the condition of the applied rule (if
any) are deterministic, too. We say that a derivation 〈t, π′〉 ↽∗R 〈s, π〉 is
deterministic if each reduction step in the derivation is deterministic.

Now, we can already prove that backward reversible rewriting is also
deterministic, as in the unconditional case:

Theorem 21. Let R be a DCTRS. Let 〈t, π′〉 be a safe pair with 〈t, π′〉↽∗R
〈s, π〉 for some term s and trace π. Then 〈t, π′〉↽∗R 〈s, π〉 is deterministic.

Proof. We prove the claim by induction on the lexicographic product (k,m)
of the depth k and the length m of the steps. The case m = 0 is trivial, and
thus we let m > 0. Assume 〈t, π′〉 ↽m−1

Rk
〈u, π′′〉 ↽Rk

〈s, π〉. For the base
case k = 1, the applied rule is unconditional and the proof is analogous to
that of Theorem 11.

Let us now consider k > 1. By definition, if 〈u, π′′〉 ↽Rk
〈s, π〉, we

have π′′ = β(p, σ′, π1, . . . , πn) : π, β : l → r ⇐ sn � tn ∈ R and there
exists a ground substitution θ with Dom(θ) = Var(r) such that u|p = rθ,
〈tiθσ′, πi〉 ↽∗Rj

〈siθσ′, [ ]〉, j < k, for all i = 1, . . . , n, and s = t[lθσ′]p. By
the induction hypothesis, the subderivations 〈tiθσ′, πi〉 ↽∗Rj

〈siθσ′, [ ]〉 are
deterministic, i.e., 〈siθσ′, [ ]〉 is a unique resulting term obtained by reduc-
ing 〈tiθσ′, πi〉. Therefore, the only remaining source of nondeterminism can
come from choosing a rule labeled with β and from the computed substitu-
tion θ. On the one hand, the labels are unique in R. As for θ, we prove that
this is indeed the only possible substitution for the reduction step. Consider
the instance of rule l → r ⇐ sn � tn with σ′: lσ′ → rσ′ ⇐ snσ′ � tnσ′.
Since 〈u, π′′〉 is safe, we have that σ′ is a ground substitution and Dom(σ′) =
(Var(l)\Var(r, sn, tn))∪

⋃n
i=1 Var(ti)\Var(r, si+1,n). Then, the following prop-

erties hold:

• Var(lσ′) ⊆ Var(rσ′, snσ′, tnσ′), since σ′ is ground and it covers all the
variables in Var(l)\Var(r, sn, tn).

• Var(tiσ
′) ⊆ Var(rσ′, si+1,nσ′) for all i = 1, . . . , n, since σ′ is ground and

it covers all variables in
⋃n
i=1 Var(ti)\Var(r, si+1,n).
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The above properties guarantee that a rule of the form rσ′ → lσ′ ⇐ tnσ
′ �

snσ
′, . . . , t1σ

′ � s1σ
′ can be seen as a rule of a DCTRS and, thus, there

exists a deterministic procedure to compute θ, which completes the proof. 2

Therefore, ↽R is deterministic and confluent. Termination is trivially guar-
anteed for pairs with a finite trace since the trace’s length strictly decreases
with every backward step.

4. Removing Positions from Traces

Once we have a feasible definition of reversible rewriting, there are two
refinements that can be considered: i) reducing the size of the traces and
ii) defining a reversibilization transformation so that standard rewriting be-
comes reversible in the transformed system. In this section, we consider the
first problem, leaving the second one for the next section.

In principle, one could remove information from the traces by requir-
ing certain conditions on the considered systems. For instance, requiring
injective functions may help to remove rule labels from trace terms. Also,
requiring non-erasing rules may help to remove the second component of
trace terms (i.e., the substitutions). In this section, however, we deal with
a more challenging topic: removing positions from traces. This is useful not
only to reduce the size of the traces but it is also essential to define a re-
versibilization technique for DCTRSs in the next section.5 In particular, we
aim at transforming a given DCTRS into one that fulfills some conditions
that make storing positions unnecessary.

In the following, given a CTRS R, we say that a term t is basic [18] if it
has the form f(tn) with f ∈ DR a defined function symbol and tn ∈ T (CR,V)
constructor terms. Furthermore, in the remainder of this paper, we assume
that the right-hand sides of the equations in the conditions of the rules of
a DCTRS are constructor terms. This is not a significant restriction since
these terms cannot be reduced anyway (since we consider oriented equations
in this paper), and still covers most practical examples.

Now, we introduce the following subclass of DCTRSs:

Definition 22 (pcDCTRS [30]). We say that a DCTRSR is a pcDCTRS
(“pc” stands for pure constructor) if, for each rule l→ r ⇐ sn � tn ∈ R, we
have that l and sn are basic terms and r and tn are constructor terms.

5We note that defining a transformation with traces that include positions would be a
rather difficult task because positions are dynamic (i.e., they depend on the term being
reduced) and thus would require a complex (and inefficient) system instrumentation.
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Pure constructor systems are called normalized systems in [3]. Also, they
are mostly equivalent to the class IIIn of conditional systems in [8], where
t1, . . . , tn are required to be ground unconditional normal forms instead.6

In principle, any DCTRS with basic terms in the left-hand sides (i.e., a
constructor DCTRS) and constructor terms in the right-hand sides of the
equations of the rules can be transformed into a pcDCTRS by applying
a few simple transformations: flattening and simplification of constructor
conditions. Let us now consider each of these transformations separately.
Roughly speaking, flattening involves transforming a term (occurring, e.g.,
in the right-hand side of a DCTRS or in the condition) with nested defined
functions like f(g(x)) into a term f(y) and an (oriented) equation g(x)� y,
where y is a fresh variable. Formally,

Definition 23 (flattening). Let R be a CTRS, R = (l → r ⇐ sn � tn) ∈
R be a rule and R′ be a new rule either of the form l → r ⇐ s1 �
t1, . . . , si|p � w, si[w]p � ti, . . . , sn � tn, for some p ∈ Pos(si), 1 6 i 6 n,
or l → r[w]q ⇐ sn � tn, r|q � w, for some q ∈ Pos(r), where w is a fresh
variable.7 Then, a CTRS R′ is obtained from R by a flattening step if
R′ = (R\{R}) ∪ {R′}.

Note that, if an unconditional rule is non-erasing (i.e., Var(l) ⊆ Var(r) for
a rule l → r), any conditional rule obtained by flattening is trivially non-
erasing too, according to the notion of non-erasingness for DCTRSs in [32].8

Flattening is trivially complete since any flattening step can be undone by
binding the fresh variable again to the selected subterm and, then, proceeding
as in the original system. Soundness is more subtle though. In this work,
we prove the correctness of flattening for arbitrary DCTRSs with respect to
innermost rewriting. As usual, the innermost rewrite relation, in symbols,
i→R, is defined as the smallest binary relation satisfying the following: given

ground terms s, t ∈ T (F), we have s
i→R t iff there exist a position p in s

such that no proper subterms of s|p are reducible, a rewrite rule l → r ⇐
sn � tn ∈ R, and a normalized ground substitution σ such that s|p = lσ,

siσ
i→∗R tiσ, for all i = 1, . . . , n, and t = s[rσ]p.

In order to prove the correctness of flattening, we state the following
auxiliary lemma:

6Given a CTRS R, we define Ru = {l → r | l → r ⇐ sn � tn ∈ R}. A term is an
unconditional normal form in R, if it is a normal form in Ru.

7The positions p, q can be required to be different from ε, but this is not strictly
necessary.

8Roughly, a DCTRS is considered non-erasing in [32] if its transformation into an
unconditional TRS by an unraveling transformation gives rise to a non-erasing TRS.
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Lemma 24. Let R be a DCTRS. Given terms s and t, with t a normal form,

and a position p ∈ Pos(s), we have s
i→∗R t iff s|p

i→∗R wσ and s[wσ]p
i→∗R t,

for some fresh variable w and normalized substitution σ.

Proof. (⇒) Let us consider an arbitrary position p ∈ Pos(s). If s|p is
normalized, the proof is straightforward. Otherwise, since we use innermost
reduction (leftmost innermost, for simplicity), we can represent the derivation

s
i→∗R t as follows:

s[s|p]p
i→∗R s′[s|p]p

i→∗R s′[s′′]p
i→∗R t

where s′′ is a normal form and the subderivation s[s|p]p
i→ ∗
R s′[s|p]p re-

duces the leftmost innermost subterms that are to the left of s|p (if any).

Then, by choosing σ = {w 7→ s′′} we have s|p
i→∗R wσ (by mimicking the

steps of s′[s|p]p
i→ ∗R s′[s′′]p), s[wσ]p

i→∗R s′[wσ]p (by mimicking the steps of

s[s|p]p
i→∗R s′[s|p]p), and s′[wσ]p

i→∗R t (by mimicking the steps of s′[s′′]p
i→∗R t),

which concludes the proof.
(⇐) This direction is perfectly analogous to the previous case. We con-

sider an arbitrary position p ∈ Pos(s) such that s|p is not normalized (oth-
erwise, the proof is trivial). Now, since derivations are innermost, we can

consider that s[wσ]p
i→ ∗R t is as follows: s[wσ]p

i→ ∗R s′[wσ]p
i→ ∗R t, where

s[wσ]p
i→∗R s′[wσ]p reduces the innermost subterms to the left of s|p. There-

fore, we have s[s|p]p
i→∗Rs′[s|p]p (by mimicking the steps of s[wσ]p

i→∗Rs′[wσ]p),

s′[s|p]p
i→∗Rs′[s′′]p (by mimicking the steps of s|p

i→∗Rwσ, with σ = {w 7→ s′′}),
and s′[s′′]p

i→∗R t (by mimicking the steps of s′[wσ]p
i→∗R t). 2

The following theorem is an easy consequence of the previous lemma:

Theorem 25. Let R be a DCTRS. If R′ is obtained from R by a flattening
step, then R′ is a DCTRS and, for all ground terms s, t, with t a normal

form, we have s
i→∗R t iff s

i→∗R′ t.

Proof. (⇒) We prove the claim by induction on the lexicographic product

(k,m) of the depth k and the length m of the derivation s
i→∗Rk

t. Since the
base case is trivial, we consider the inductive case (k,m) > (0, 0). Assume

that s
i→∗Rk

t has the form s[lσ]u
i→Rk

s[rσ]u
i→∗Rk

t with l→ r ⇐ sn � tn ∈ R
and siσ

i→∗Rki
tiσ, ki < k, i = 1, . . . , n. If l → r ⇐ sn � tn ∈ R′, the claim

follows directly by induction. Otherwise, we have that either l → r ⇐ s1 �
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t1, . . . , si|p � w, si[w]p � ti, . . . , sn � tn ∈ R′, for some p ∈ Pos(si), 1 6
i 6 n, or l → r[w]q ⇐ sn � tn, r|q � w ∈ R′, for some q ∈ Pos(r), where
w is a fresh variable. Consider first the case l → r ⇐ s1 � t1, . . . , si|p �
w, si[w]p � ti, . . . , sn � tn ∈ R′, for some p ∈ Pos(si), 1 6 i 6 n. Since

siσ
i→∗Rki

tiσ, ki < k, i = 1, . . . , n, by the induction hypothesis, we have

siσ
i→ ∗
R′ tiσ, i = 1, . . . , n. By Lemma 24, there exists σ′ = {w 7→ s′}

for some normal form s′ such that si|pσ = si|pσσ′
i→∗Rki

wσσ′ = wσ′ and

si[w]pσσ
′ = siσ[wσ′]p

i→∗Rki
ti. Moreover, since w is an extra variable, we also

have sjσσ
′ = sjσ

i→∗R′ tjσ = tjσσ
′ for j = 1, . . . , i− 1, i+ 1, . . . , n. Therefore,

since lσσ′ = lσ and rσσ′ = rσ, we have s[lσ]u
i→R s[rσ]u, and the claim

follows by induction. Consider the second case. By the induction hypothesis,

we have s[rσ]u
i→∗R′ t and siσ

i→∗R′ tiσ for all i = 1, . . . , n. By Lemma 24,
there exists a substitution σ′ = {w 7→ s′} such that s′ is the normal form of

r|qσ and we have r|qσ
i→∗R′ wσ′ and s[rσ[wσ′]q]u

i→∗R′ t. Moreover, since w is

a fresh variable, we have siσσ
′ i→∗R′ tiσσ

′ for all i = 1, . . . , n. Therefore, we

have s[lσσ′]u = s[lσ]u
i→R′ s[rσ[wσ′]q]u, which concludes the proof.

(⇐) This direction is perfectly analogous to the previous one, and follows
easily by Lemma 24 too. 2

Let us now consider the second kind of transformations: the simplification
of constructor conditions. Basically, we can drop an equation s � t when
the terms s and t are constructor, called a constructor condition, by either
applying the most general unifier (mgu) of s and t (if it exists) to the re-
maining part of the rule, or by deleting entirely the rule if they do not unify
because (under innermost rewriting) the equation will never be satisfied by
any normalized substitution. Similar transformations can be found in [33].

In order to justify these transformations, we state and prove the following
results. In the following, we let mgu(s, t) denote the most general unifier of
terms s and t if it exists, and fail otherwise.

Theorem 26 (removal of unifiable constructor conditions). LetR be
a DCTRS and let R = (l→ r ⇐ sn � tn) ∈ R be a rule with mgu(si, ti) = θ,
for some i ∈ {1, . . . , n}, where si and ti are constructor terms. Let R′ be a
new rule of the form lθ → rθ ⇐ s1θ � t1θ, . . . , si−1θ � ti−1θ, si+1θ �
ti+1θ, . . . , snθ � tnθ.9 Then R′ = (R\{R}) ∪ {R′} is a DCTRS and, for all

9In [33], the condition Dom(θ) ∩ Var(l, r, s1, t1, . . . , sn, tn) = ∅ is required, but this
condition is not really necessary.
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ground terms s and t, we have s
i→∗R t iff s

i→∗R′ t.

Proof. (⇒) First, we prove the following claim by induction on the lexi-
cographic product (k,m) of the depth k and the length m of the steps: if

s
i→m
Rk
t, then s

i→∗R′ t. It suffices to consider the case where R is applied, i.e.,

s = s[lσ]p
i→{R} s[rσ]p with sjσ

i→∗Rkj
tjσ for all j ∈ {1, . . . , n}. By definition,

σ is normalized. Hence, since si and ti are constructor terms, we have that
siσ and tiσ are trivially normal forms since the normalized subterms intro-
duced by σ cannot become reducible in a constructor context. Therefore, we
have siσ = tiσ. Thus, σ is a unifier of si and ti and, hence, θ is more general
than σ. Let δ be a substitution such that σ = θδ. Since σ is normalized, so
is δ. Since kj < k for all j = 1, . . . , n, by the induction hypothesis, we have

that sjσ = sjθδ
i→∗R′ tjθδ = tjσ for j ∈ {1, . . . , i− 1, i+ 1, . . . , n}. Therefore,

we have that s[lσ]p = s[lθδ]p
i→{R′} s[rθδ]p = s[rσ]p.

(⇐) Now, we prove the following claim by induction on the lexicographic

product (k,m) of the depth k and the length m of the steps: if s
i→m
R′

k
t,

then s
i→∗R t. It suffices to consider the case where R′ is applied, i.e., s =

s[lθδ]p
i→{R} s[rθδ]p with sjθδ

i→∗R′
kj

tjθδ for all j ∈ {1, . . . , i−1, i+1, . . . , n}.
By the assumption and the definition, θ and δ are normalized, and thus, siθδ
and tiθδ are normal forms (as in the previous case, because the normalized
subterms introduced by θδ cannot become reducible in a constructor context),
i.e., siθδ = tiθδ. Since kj < k for all j ∈ {1, . . . , i − 1, i + 1, . . . , n}, by the

induction hypothesis, we have that sjθδ
i→∗R tjθδ for j ∈ {1, . . . , i − 1, i +

1, . . . , n}. Therefore, we have that s[lσ]p = s[lθδ]p
i→{R} s[rθδ]p = s[rσ] with

σ = θδ. 2

Now we consider the case when the terms in the constructor condition do
not unify:

Theorem 27 (removal of infeasible rules). Let R be a DCTRS and let
R = (l → r ⇐ sn � tn) ∈ R be a rule with mgu(si, ti) = fail , for some
i ∈ {1, . . . , n}. Then R′ = R\{R} is a DCTRS and, for all ground terms s

and t, we have s
i→∗R t iff s

i→∗R′ t.

Proof. Since R ⊇ R′, the if part is trivial, and thus, we consider the only-
if part. To apply R to a term, there must exist a normalized substitution σ

such that siσ
i→∗R tiσ. Since si, ti are constructor terms and σ is normalized,

siσ is a normal form (because the normalized subterms introduced by σ
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cannot become reducible in a constructor context). If siσ
i→∗R tiσ is satisfied

(i.e., siσ = tiσ), then si and ti are unifiable, and thus, this contradicts the

assumption. Therefore, R is never applied to any term, and hence, s
i→∗R t

iff s
i→∗R′ t. 2

Using flattening and the simplification of constructor conditions, any con-
structor DCTRS with constructor terms in the right-hand sides of the equa-
tions of the rules can be transformed into a pcDCTRS. One can use, for
instance, the following simple algorithm. Let R be such a constructor DC-
TRS. We apply the following transformations as much as possible:

(flattening-rhs) Assume that R contains a rule of the form R = (l → r ⇐
sn � tn) where r is not a constructor term. Let r|q, q ∈ Pos(r), be a
basic subterm of r. Then, we replace rule R by a new rule of the form
l→ r[w]q ⇐ sn � tn, r|q � w, where w is a fresh variable.

(flattening-condition) Assume that R contains a rule of the form R = (l →
r ⇐ sn � tn) where si is neither a constructor term nor a basic term,
i ∈ {1, . . . , n}. Let si|q, q ∈ Pos(s1), be a basic subterm of si. Then, we
replace rule R by a new rule of the form l → r ⇐ s1 � t1, . . . , si|q �
w, si[w]q � ti, . . . , sn � tn, where w is a fresh variable.

(removal-unify) Assume that R contains a rule of the form R = (l → r ⇐
sn � tn) where si is a constructor term, i ∈ {1, . . . , n}. If mgu(si, ti) =
θ 6= fail , then we replace rule R by a new rule of the form lθ → rθ ⇐
s1θ � t1θ, . . . , si−1θ � ti−1θ, si+1θ � ti+1θ, . . . , snθ � tnθ.

(removal-fail) Assume that R contains a rule of the form R = (l → r ⇐
sn � tn) where si is a constructor term, i ∈ {1, . . . , n}. If mgu(si, ti) =
fail , then we remove rule R from R.

Trivially, by applying rule flattening-rhs as much as possible, we end up with
a DCTRS where all the right-hand sides are constructor terms; analogously,
the exhaustive application of rule flattening-condition allows us to ensure that
the left-hand sides of all equations in the conditions of the rules are either con-
structor or basic; finally, the application of rules removal-unify and removal-fail
produces a pcDCTRS by removing those equations in which the left-hand
side is a constructor term. Therefore, in the remainder of this paper, we only
consider pcDCTRSs.

A nice property of pcDCTRSs is that one can consider reductions only at
topmost positions. Formally, given a pcDCTRSR, we say that s→p,l→r⇐sn�tn
t is a top reduction step if p = ε, there is a ground substitution σ with s = lσ,
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siσ →∗R tiσ for all i = 1, . . . , n, t = rσ, and all the steps in siσ →∗R tiσ for
i = 1, . . . , n are also top reduction steps. We denote top reductions with

ε→
for standard rewriting, and

ε
⇀R,

ε
↽R for our reversible rewrite relations.

The following result basically states that
i→ and

ε→ are equivalent for
pcDCTRSs:

Theorem 28. Let R be a constructor DCTRS with constructor terms in the
right-hand sides of the equations and R′ be a pcDCTRS obtained from R by
a sequence of transformations of flattening and simplification of construc-
tor conditions. Given ground terms s and t such that s is basic and t is

normalized, we have s
i→∗R t iff s

ε→∗R′ t.

Proof. First, it is straightforward to see that an innermost reduction in
R′ can only reduce the topmost positions of terms since defined functions
can only occur at the root of terms and the terms introduced by instantia-
tion are, by definition, irreducible. Therefore, the claim is a consequence of
Theorems 25, 26 and 27, together with the above fact. 2

Therefore, when considering pcDCTRSs and top reductions, storing the re-
duced positions in the trace terms becomes redundant since they are always
ε. Thus, in practice, one can consider simpler trace terms without positions,
β(σ, π1, . . . , πn), that implicitly represent the trace term β(ε, σ, π1, . . . , πn).

Example 29. Consider the following TRS R defining addition and multi-
plication on natural numbers, and its associated pcDCTRS R′:

R = { add(0, y) → y,
add(s(x), y) → s(add(x, y)),

mult(0, y) → 0,
mult(s(x), y) → add(mult(x, y), y)}

R′ = { add(0, y) → y,
add(s(x), y) → s(z)⇐ add(x, y)� z,

mult(0, y) → 0,
mult(s(x), y) → w ⇐ mult(x, y)� z, add(z, y)� w}

For instance, given the following reduction in R:

mult(s(0), s(0))
i→R add(mult(0, s(0)), s(0))

i→R add(0, s(0))
i→R s(0)

we have the following counterpart in R′:

mult(s(0), s(0))
ε→R′ s(0) with mult(0, s(0))

ε→R′ 0

and add(0, s(0))
ε→R′ s(0)
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Trivially, all results in Section 3 hold for pcDCTRSs and top reductions start-
ing from basic terms. The simpler trace terms without positions will allow
us to introduce appropriate injectivization and inversion transformations in
the next section.

5. Reversibilization

In this section, we aim at compiling the reversible extension of rewriting
into the system rules. Intuitively speaking, given a pure constructor system
R, we aim at producing new systemsRf andRb such that standard rewriting
in Rf , i.e., →Rf

, coincides with the forward reversible extension ⇀R in the
original system, and analogously →Rb

is equivalent to ↽R. Therefore, Rf

can be seen as an injectivization of R, and Rb as the inversion of Rf .
In principle, we could easily introduce a transformation for pcDCTRSs

that mimicks the behavior of the reversible extension of rewriting. For in-
stance, given the pcDCTRSR of Example 16, we could produce the following
injectivized version Rf :

10

〈f(x, y,m), ws〉 → 〈s(w), β1(m,x,w1, w2) : ws〉
⇐ 〈h(x), [ ]〉� 〈x,w1〉, 〈g(y, 4), [ ]〉� 〈w,w2〉

〈h(0), ws〉 → 〈0, β2 : ws〉
〈h(1), ws〉 → 〈1, β3 : ws〉

〈g(x, y), ws〉 → 〈x, β4(y) : ws〉

For instance, the reversible step 〈f(0, 2, 4), [ ]〉 ε
⇀R 〈s(2), [β1(σ

′, π1, π2)]〉 with
σ′ = {m 7→ 4, x 7→ 0}, π1 = [β2(id)] and π2 = [β4({y 7→ 4})], has the
following counterpart in Rf :

〈f(0, 2, 4), [ ]〉 ε→Rf
〈s(2), [β1(4, 0, [β2], [β4(4)])]〉

with 〈h(0), [ ]〉 ε→Rf
〈0, [β2]〉 and 〈g(2, 4), [ ]〉 ε→Rf

〈2, [β4(4)]〉

The only subtle difference here is that a trace term like

β1({m 7→ 4, x 7→ 0}, [β2(id)], [β4({y 7→ 4})])

is now stored in the transformed system as

β1(4, 0, [β2], [β4(4)])

10We will write just β instead of β() when no argument is required.
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Furthermore, we could produce an inverse Rb of the above system as follows:

〈s(w), β1(m,x,w1, w2) : ws〉−1 → 〈f(x, y,m), ws〉−1
⇐ 〈w,w2〉−1 � 〈g(y, 4), [ ]〉−1,
〈x,w1〉−1 � 〈h(x), [ ]〉−1

〈0, β2 : ws〉−1 → 〈h(0), ws〉−1
〈1, β3 : ws〉−1 → 〈h(1), ws〉−1

〈x, β4(y) : ws〉−1 → 〈g(x, y), ws〉−1

mainly by switching the left- and right-hand sides of each rule and condition.
The correctness of these injectivization and inversion transformations would
be straightforward.

These transformations are only aimed at mimicking, step by step, the
reversible relations ⇀R and ↽R. Roughly speaking, for each step 〈s, π〉⇀R
〈t, π′〉 in a system R, we have 〈s, π〉 →Rf

〈t, π′〉, where Rf is the injec-
tivized version of R, and for each step 〈s, π〉 ↽R 〈t, π′〉 in R, we have
〈s, π〉 →Rb

〈t, π′〉, where Rb is the inverse of Rf . More details on this ap-
proach can be found in [31]. Unfortunately, it might be much more useful to
produce injective and inverse versions of each function defined in a system
R. Note that, in the above approach, the system Rf only defines a sin-
gle function 〈 , 〉 and Rb only defines 〈 , 〉−1, i.e., we are computing systems
that define the relations ⇀R and ↽R rather than the injectivized and inverse
versions of the functions in R. In the following, we introduce more refined
transformations that can actually produce injective and inverse versions of
the original functions.

5.1. Injectivization

In principle, given a function f, one can consider that the injectivization
of a rule of the form11

β : f(s0)→ r ⇐ f1(s1)� t1, . . . , fn(sn)� tn

produces the following rule

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉 . . . , fin(sn)� 〈tn, wn〉

where {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) and wn are

fresh variables. The following example, though, illustrates that this is not
correct in general.

11By abuse of notation, here we let s0, . . . , sn denote sequences of terms of arbitrary
length, i.e., s0 = s0,1, . . . , s0,l0 , s1 = s1,1, . . . , s1,l1 , etc.
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Example 30. Consider the following pcDCTRS R:

β1 : f(x, y) → z ⇐ h(y)� w, first(x,w)� z
β2 : h(0) → 0
β3 : first(x, y) → x

together with the following top reduction:

f(2, 1)
ε→R 2 with σ = {x 7→ 2, y 7→ 1, w 7→ h(1), z 7→ 2}

where h(y)σ = h(1)
ε→∗R h(1) = wσ

and first(x,w)σ = first(2, h(1))
ε→R 2 = zσ

Following the scheme above, we would produce the following pcDCTRS

fi(x, y) → 〈z, β1(w1, w2)〉 ⇐ hi(y)� 〈w,w1〉, firsti(x,w)� 〈z, w2〉
hi(0) → 〈0, β2〉

firsti(x, y) → 〈x, β3(y)〉

Unfortunately, the corresponding reduction for fi(2, 1) above cannot be done
in this system since hi(1) cannot be reduced to 〈hi(1), [ ]〉.

In order to overcome this drawback, one could complete the function def-
initions with rules that reduce each irreducible term t to a tuple of the
form 〈t, [ ]〉. Although we find it a promising idea for future work, in this
paper we propose a simpler approach. In the following, we consider a re-
finement of innermost reduction where only constructor substitutions are
computed. Formally, the constructor reduction relation,

c→, is defined as
follows: given ground terms s, t ∈ T (F), we have s

c→R t iff there exist a
position p in s such that no proper subterms of s|p are reducible, a rewrite
rule l → r ⇐ sn � tn ∈ R, and a ground constructor substitution σ such
that s|p = lσ, siσ

c→∗R tiσ for all i = 1, . . . , n, and t = s[rσ]p. Note that the

results in the previous section also hold for
c→.

In the following, given a basic term t = f(s), we denote by ti the term
fi(s). Now, we introduce our injectivization transformation as follows:

Definition 31 (injectivization). Let R be a pcDCTRS. We produce a
new CTRS I(R) by replacing each rule β : l → r ⇐ sn � tn of R by a new
rule of the form

li → 〈r, β(y, wn)〉 ⇐ sin � 〈tn, wn〉

in I(R), where {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n) and

wn are fresh variables. Here, we assume that the variables of y are in lexico-
graphic order.
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Observe that now we do not need to keep a trace in each term, but only a
single trace term since all reductions finish in one step in a pcDCTRS. The
relation between the original trace terms and the information stored in the
injectivized system is formalized as follows:

Definition 32. Given a trace term π = β({ym 7→ tm}, π1, . . . , πn), we define
π̂ recursively as follows: π̂ = β(tm, π̂1, . . . , π̂n), where we assume that the
variables ym are in lexicographic order.

Moreover, in order to simplify the notation, we consider that a a trace term
π and a singleton list of the form [π] denote the same object. The correctness
of the injectivization transformation is stated as follows:

Theorem 33. Let R be a pcDCTRS and Rf = I(R) be its injectivization.

Then Rf is a pcDCTRS and, given a basic ground term s, we have 〈s, [ ]〉 c
⇀R

〈t, π〉 iff si
c→Rf
〈t, π̂〉.

Proof. The fact that Rf is a pcDCTRS is trivial. Regarding the second
part, we proceed as follows:

(⇒) We proceed by induction on the depth k of the step 〈s, [ ]〉 c
⇀Rk

〈t, π〉. Since the depth k = 0 is trivial, we consider the inductive case
k > 0. Thus, there is a rule β : l → r ⇐ sn � tn ∈ R, and a sub-
stitution σ such that s = lσ, 〈siσ, [ ]〉 c

⇀Rki
〈tiσ, πi〉, i = 1, . . . , n, t = rσ,

σ′ = σ |̀(Var(l)\Var(r,sn,tn))∪⋃n
i=1 Var(ti)\Var(r,si+1,n)

, and π = β(σ′, π1, . . . , πn). By
definition of ⇀Rk

, we have that ki < k for all i = 1, . . . , n and, thus, by the in-

duction hypothesis, we have (siσ)i
c→Rf
〈tiσ, π̂i〉 for all i = 1, . . . , n. Consider

now the equivalent rule in Rf : l
i → 〈r, β(y, wn)〉 ⇐ si1 � 〈t1, w1〉, . . . , sin �

〈tn, wn〉. Therefore, we have si
c→Rf

〈t, β(yσ, π̂1, . . . , π̂n)〉 where {y} =
(Var(l)\Var(r, sn, tn))∪

⋃n
i=1 Var(ti)\Var(r, si+1,n) and, thus, we can conclude

that π̂ = β(yσ, π̂1, . . . , π̂n).
(⇐) This direction is analogous. We proceed by induction on the depth

k of the step si
c→Rfk

〈t, π̂〉. Since the depth k = 0 is trivial, we consider

the inductive case k > 0. Thus, there is a rule li → 〈r, β(y, wn)〉 ⇐ si1 �
〈t1, w1〉, . . . , sin � 〈tn, wn〉 in Rf and a substitution θ such that liθ = si,

sii θ
c→Rfki

〈ti, wi〉θ, i = 1, . . . , n, and 〈r, β(y, wn)〉θ = 〈t, π̂〉. Assume that σ

is the restriction of θ to the variables of the rule, excluding the fresh vari-
ables wn, and that wiθ = π̂i for all i = 1, . . . , n. Therefore, 〈si, [ ]〉θ = 〈siσ, [ ]〉
and 〈ti, wi〉θ = 〈tiσ, π̂i〉, i = 1, . . . , n. Then, by definition of Rfki

, we have
that ki < k for all i = 1, . . . , n and, thus, by the induction hypothesis,
we have 〈siσ, [ ]〉 c

⇀R〈tiσ, πi〉, i = 1, . . . , n. Consider now the equivalent rule
in R: β : l → r ⇐ sn � tn ∈ R. Therefore, we have 〈s, [ ]〉 c

⇀R 〈t, π〉,
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σ′ = σ |̀(Var(l)\Var(r,sn,tn))∪⋃n
i=1 Var(ti)\Var(r,si+1,n)

, and π = β(σ′, π1, . . . , πn). Fi-

nally, since {y} = (Var(l)\Var(r, sn, tn)) ∪
⋃n
i=1 Var(ti)\Var(r, si+1,n), we can

conclude that π̂ = π. 2

5.2. Inversion

Given an injectivized system, inversion basically amounts to switching the
left- and right-hand sides of the rule and of every equation in the condition,
as follows:

Definition 34 (inversion). Let R be a pcDCTRS and Rf = I(R) be its
injectivization. The inverse system Rb = I−1(Rf ) is obtained from Rf by
replacing each rule12

fi(s0)→ 〈r, β(y, wn)〉 ⇐ fi1(s1)� 〈t1, w1〉, . . . , fin(sn)� 〈tn, wn〉

of Rf by a new rule of the form

f−1(r, β(y, wn))→ 〈s0〉 ⇐ f−1n (tn, wn)� 〈sn〉, . . . , f−11 (t1, w1)� 〈s1〉

in I−1(Rf ), where the variables of y are in lexicographic order.

Example 35. Consider again the pcDCTRS of Example 16. Here, injec-
tivization returns the following pcDCTRS I(R) = Rf :

fi(x, y,m) → 〈s(w), β1(m,x,w1, w2)〉
⇐ hi(x)� 〈x,w1〉, gi(y, 4)� 〈w,w2〉

hi(0) → 〈0, β2〉
hi(1) → 〈1, β3〉

gi(x, y) → 〈x, β4(y)〉

Then, inversion with I−1 produces the following pcDCTRS I−1(I(R)) = Rb:

f−1(s(w), β1(m,x,w1, w2)) → 〈x, y,m〉
⇐ g−1(w,w2)� 〈y, 4〉, h−1(x,w1)� 〈x〉

h−1(0, β2) → 〈0〉
h−1(1, β3) → 〈1〉

g−1(x, β4(y)) → 〈x, y〉

Finally, the correctness of the inversion transformation is stated as follows:

12Here, we assume that s0, s1,. . . , sn denote arbitrary sequences of terms, i.e., s0 =
s0,1, . . . , s0,l0 , s1 = s1,1, . . . , s1,l1 , etc. We use this notation for clarity.
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Theorem 36. Let R be a pcDCTRS, Rf = I(R) its injectivization, and
Rb = I−1(Rf ) the inversion of Rf . Then, Rb is a basic pcDCTRS and,
given a basic ground term f(s) and a constructor ground term t with 〈t, π〉 a

safe pair, we have 〈t, π〉 c
↽R 〈f(s), [ ]〉 iff f−1(t, π̂)

c→Rb
〈s〉.

Proof. The fact that Rf is a pcDCTRS is trivial. Regarding the second
part, we proceed as follows.

(⇒) We proceed by induction on the depth k of the step 〈t, π〉 c
↽Rk

〈f(s), [ ]〉. Since the depth k = 0 is trivial, we consider the inductive case
k > 0. Let π = β(σ′, πn). Thus, we have that 〈t, β(σ′, πn)〉 is a safe pair,
there is a rule β : f(s0) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn and sub-
stitution θ with Dom(θ) = (Var(r, s1, . . . , sn)\Dom(σ′)) such that t = rθ,

〈tiθσ′, πi〉
c→Rki
〈f(si)θσ′, [ ]〉 for all i = 1, . . . , n, and f(s) = f(s0)θσ

′. Note
that s0, . . . , sn denote sequences of terms of arbitrary length, i.e., s0 =
s0,1, . . . , s0,l0 , s1 = s1,1, . . . , s1,l1 , etc. Since 〈t, π〉 is a safe pair, we have that
Dom(σ′) = (Var(s0)\Var(r, s1, . . . , sn, tn)) ∪

⋃n
i=1 Var(ti)\Var(r, si+1, . . . , sn).

By definition of ↽Rk
, we have that ki < k for all i = 1, . . . , n and, by the

induction hypothesis, we have f−1(tiσ, π̂i)
c→Rb
〈siσ〉 for all i = 1, . . . , n. Let

us now consider the equivalent rule in Rb:

f−1(r, β(y, wn)))→ 〈s0〉 ⇐ f−1n (tn, wn)� 〈sn〉, . . . , f−11 (t1, w1)� 〈s1〉

Hence, we have f−1(t, β(yσ, π̂1, . . . , π̂1))→Rb
〈s0σ〉 = 〈s〉, where

{y} = (Var(s0)\Var(r, s1, . . . , sn, tn)) ∪
n⋃
i=1

Var(ti)\Var(r, si+1, . . . , sn)

and, thus, we can conclude that π̂ = β(yσ, π̂1, . . . , π̂n).
(⇐) This direction is analogous. We proceed by induction on the depth

k of the step f−1(t, π̂)
c→Rbk

〈s〉. Since the depth k = 0 is trivial, we con-

sider the inductive case k > 0. Thus, there is a rule f−1(r, β(y, wn))) →
〈s0〉 ⇐ f−1n (tn, wn)� 〈sn〉, . . . , f−11 (t1, w1)� 〈s1〉 in Rb and a substitution θ

such that f−1(r, β(y, wn))θ = f−1(t, π̂), f−1i (ti, wi)θ
c→Rbki

〈si〉θ, i = n, . . . , 1,

and f−1(r, ws)θ = 〈s〉. Assume that σ is the restriction of θ to the vari-
ables of the rule, excluding the fresh variables wn, and that wiθ = π̂i for
all i = 1, . . . , n. Therefore, f−1(r, β(y, wn))θ = f−1(rσ, β(yσ, π̂1, . . . , π̂n),
f−1i (ti, wi)θ = f−1i (tiσ, π̂i) and 〈si〉θ = 〈siσ〉, i = 1, . . . , n. Then, by defi-
nition of Rbki

, we have that ki < k for all i = 1, . . . , n and, thus, by the

induction hypothesis, we have 〈tiσ, πi〉
c
↽R〈fi(siσ), [ ]〉, i = 1, . . . , n. Consider

now the equivalent rule in R: β : f(s0) → r ⇐ f1(s1) � t1, . . . , fn(sn) � tn
in R. Therefore, we have 〈t, π〉 c

↽R 〈f(s), [ ]〉,

σ′ = σ|̀(Var(s0)\Var(r,s1,...,sn,tn))∪⋃n
i=1 Var(ti)\Var(r,si+1,...,sn)
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and π = β(σ′, π1, . . . , πn). Finally, since {y} = (Var(s0)\Var(r, s1, . . . , sn, tn))∪⋃n
i=1 Var(ti)\Var(r, si+1, . . . , sn), we can conclude that π̂ = π. 2

5.3. Improving the transformation for injective functions

When a function is injective, one can expect the injectivization transfor-
mation to be unnecessary. This is not generally true, since some additional
syntactic conditions might also be required. Furthermore, depending on the
considered setting, it can be necessary to have an injective system, rather
than an injective function. Consider, e.g., the following simple TRS:

R = { f1 → f2, f2 → 0, g1 → g2, g2 → 0 }

Here, all functions are clearly injective. However, given a reduction like
f1 →R f2 →R 0, we do not know which rule should be applied to 0 in order to
go backwards until the initial term (actually, both the second and the fourth
rules are applicable in the reverse direction).

Luckily, in our context, the injectivity of a function suffices since re-
ductions in pcDCTRSs are performed in a single step. Therefore, given a
reduction of the form fi(sn) →R t, a backward computation will have the
form f−1(t) →R 〈sn〉, so that we know that only the inverse rules of f are
applicable.

Now, we present an improvement of the injectivization transformation
presented in Section 5.1 which has some similarities with that in [24]. Here,
we consider that the initial system is a TRS R since, to the best of our
knowledge, there is no reachability analysis defined for DCTRSs. In the
following, given a term s, we let

range(s) = {t | sσ →∗R t, σ : V 7→ T (C), and t ∈ T (C)}

i.e., range(s) returns a set with the constructor normal forms of all possible
ground constructor instances of s. Although computing this set is gener-
ally undecidable, there are some overapproximations based on the use of
tree automata (see, e.g., [15] and the most recent approach for innermost
rewriting [16]). Let us consider that rangeα(s) is such an approximation,
with rangeα(s) ⊇ range(s) for all terms s. Here, we are interested in deter-
mining when the right-hand sides, r1 and r2, of two rules do not overlap,
i.e., range(r1) ∩ range(r2) = ∅. For this purpose, we will check whether
rangeα(r1) ∩ rangeα(r2) = ∅. Since finite tree automata are closed under in-
tersection and the emptiness of a finite tree automata is decidable, checking
the emptiness of rangeα(r1)∩rangeα(r2) is decidable and can be used to safely
identify non-overlapping right-hand sides, i.e., if rangeα(r1)∩ rangeα(r2) = ∅,
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then r1 and r2 are definitely non-overlapping; otherwise, they may be over-
lapping or non-overlapping.

Now, we summarize our method to simplify some trace terms. Given
a constructor TRS R and a rule β : l → r ∈ R, we check the following
conditions:

1. the right-hand side r of the rule does not overlap with the right-hand
side of any other rule defining the same function;

2. the rule is non-erasing, i.e., Var(l) = Var(r);

3. the right-hand side r contains a single occurrence of a defined function
symbol, say f ∈ D.

If these conditions hold, then the rule has the form l → r[f(s)]p with l and
f(s) basic terms,13 and r[x]p and s constructor terms, where x is a fresh
variable. In this case, we can safely produce the following injective version:14

li → 〈r[x]p, w〉 ⇐ fi(s)� 〈x,w〉

instead of
li → 〈r[x]p, β(w)〉 ⇐ fi(s)� 〈x,w〉

Let us illustrate this improved transformation with a couple of examples.

Example 37. Consider the following TRS:

R = { f(s(x))→ g(x), f(c(x))→ h(x), g(x)→ s(x), h(x)→ c(x)}

Here, it can easily be shown that rangeα(g(x)) ∩ rangeα(h(x)) = ∅, the two
rules defining f are non-erasing, and both contain a single occurrence of a
defined function symbol in the righ-hand sides. Therefore, our improved
injectivization applies and we get the following pcDCTRS Rf :

fi(s(x)) → 〈y, w〉 ⇐ gi(x)� 〈y, w〉 gi(x) → 〈s(x), β3〉
fi(c(x)) → 〈y, w〉 ⇐ hi(x)� 〈y, w〉 hi(x) → 〈c(x), β4〉

In contrast, the original injectivization transformation would return the fol-
lowing system:

fi(s(x)) → 〈y, β1(w)〉 ⇐ gi(x)� 〈y, w〉 gi(x) → 〈s(x), β3〉
fi(c(x)) → 〈y, β2(w)〉 ⇐ hi(x)� 〈y, w〉 hi(x) → 〈c(x), β4〉

13Note that l is a basic term since we initially consider a constructor TRS and, thus, all
left-hand sides are basic terms by definition.

14Since l → r is non-erasing, the pcDCTRS rule l → r[x]p ⇐ f(s) � x is trivially non-
erasing too (according to [32], i.e., (Var(l)\Var(r[x]p, f(s), x)) ∪ Var(x)\Var(r[x]p) = ∅)
and, thus, no binding should be stored during the injectivization process.
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Finally, the inverse system Rb obtained from Rf using the original transfor-
mation has the following form:

f−1(y, w) → 〈s(x)〉 ⇐ g−1(y, w)� 〈x〉 g−1(s(x), β3) → 〈x〉
f−1(y, w) → 〈c(x)〉 ⇐ h−1(y, w)� 〈x〉 h−1(c(x), β4) → 〈x〉

For instance, given the forward reduction fi(s(0)) →Rf
〈s(0), β3〉, we can

build the corresponding backward reduction: f−1(s(0), β3)→Rb
〈s(0)〉.

Note, however, that the left-hand sides of f−1 overlap and we should
reduce the conditions in order to determine which rule to apply. Therefore,
in some cases, there is a trade-off between the size of the trace terms and the
complexity of the reduction steps.

The example above, though, only produces a rather limited improvement
since the considered functions are not recursive. Our next example shows a
much significant improvement. Here, we consider the function zip (also used
in [24] to illustrate the benefits of an injectivity analysis).

Example 38. Consider the following TRS R defining the function zip:

zip([ ], ys) → [ ]
zip(xs, [ ]) → [ ]

zip(x : xs, y : ys) → pair(x, y) : zip(xs, ys)

Here, since the third rule is non-erasing, its right-hand side contains a single
occurrence of a defined function, zip, and it does not overlap with any other
right-hand side, our improved injectivization applies and we get the following
pcDCTRS Rf :

zipi([ ], ys) → 〈[ ], β1(ys)〉
zipi(xs, [ ]) → 〈[ ], β2(xs)〉

zipi(x : xs, y : ys) → 〈pair(x, y) : zs, w〉 ⇐ zipi(xs, ys)� 〈zs, w〉

In contrast, the original injectivization transformation would return the fol-
lowing system R′f :

zipi([ ], ys) → 〈[ ], β1(ys)〉
zipi(xs, [ ]) → 〈[ ], β2(xs)〉

zipi(x : xs, y : ys) → 〈pair(x, y) : zs, β3(w)〉 ⇐ zipi(xs, ys)� 〈zs, w〉

It might seem a small difference, but if we call zipi with two lists of n elements,
the systemR′f would build a trace term of the form β3(. . . β3(β1(. . .)) . . .) with
n nested constructors β3, while Rf would just build the trace term β1(. . .).
For large values of n, this is a significant improvement in memory usage.
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6. Bidirectional Program Transformation

We illustrate a practical application of our reversibilization technique in
the context of bidirectional program transformation (see [10] for a survey).
In particular, we consider the so-called view-update problem. Here, we have
a data structure (e.g., a database) called the source, which is transformed to
another data structure, called the view. Typically, we have a view function,
view: Source → View that takes the source and returns the corresponding
view, together with an update function, upd: View × Source → Source that
propagates the changes in a modified view to the original source. Two basic
properties that these functions should satisfy in order to be well-behaved are
the following [13]:

∀s ∈ Source,∀v ∈ View : view(upd(v, s)) = v
∀s ∈ Source: upd(view(s), s) = s

Bidirectionalization (first proposed in the database community [5]) basically
consists in, given a view function, “bidirectionalize” it in order to derive
an appropriate update function. For this purpose, first, a view complement
function is usually defined, say viewc, so that the tupled function

view M viewc: Source → View × Comp

becomes injective. Therefore, the update function can be defined as follows:

upd(v, s) = (view M viewc)−1(v, viewc(s))

This approach has been applied to bidirectionalize view functions in a func-
tional language in [24].

In the following, we apply our injectivization and inversion transforma-
tions in order to produce a bidirectionalization transformation that may be
useful in the context of the view-update problem (with some limitations).
Let us assume that we have a view function, view, that takes a source and re-
turns the corresponding view, and which is defined by means of a pcDCTRS.
Following our approach, given the original program R, we produce an injec-
tivized version Rf and the corresponding inverse Rb. Therefore, in principle,
one can use Rf ∪ Rb, which will include the functions viewi and view−1, to
define an update function as follows:

upd(v, s)→ s′ ⇐ viewi(s)� 〈v′, π〉, view−1(v, π)� 〈s′〉

where s is the original source, v is the updated view, and s′, the returned
value, is the corresponding updated source. Note that, in our context, the
function viewi is somehow equivalent to view M viewc above.
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Let us now illustrate the bidirectionalization process with an example.
Consider a particular data structure, a list of records of the form r(t, v)
where t is the type of the record (e.g., book, dvd, pen, etc.) and v is its price
tag. The following system defines a view function that takes a type and a list
of records, and returns a list with the price tags of the records of the given
type:15

view(t, nil) → nil
view(t, r(t′, v) : rs) → val(r(t′, v)) : view(t, rs)⇐ eq(t, t′)� true
view(t, r(t′, v) : rs) → view(t, rs)⇐ eq(t, t′)� false

eq(book, book) → true eq(dvd, dvd) → true
eq(book, dvd) → false eq(dvd, book) → false

val(r(t, v)) → v

However, this system is not a pcDCTRS. Here, we use a flattening transfor-
mation to produce the following (labeled) pcDCTRS R which is equivalent
for constructor derivations:

β1 : view(t, nil) → nil
β2 : view(t, r(t′, v) : rs) → p : r

⇐ eq(t, t′)� true, val(r(t′, v))� p, view(t, rs)� r
β3 : view(t, r(t′, v) : rs) → r ⇐ eq(t, t′)� false, view(t, rs)� r

β4 : eq(book, book) → true β5 : eq(dvd, dvd) → true
β6 : eq(book, dvd) → false β7 : eq(dvd, book) → false

β8 : val(r(t, v)) → v

Now, we can apply our injectivization transformation which returns the fol-
lowing pcDCTRS Rf = I(R):

viewi(t, nil) → 〈nil, β1(t)〉
viewi(t, r(t′, v) : rs) → 〈p : r, β2(w1, w2, w3)〉
⇐ eqi(t, t′)� 〈true, w1〉, vali(r(t′, v))� 〈p, w2〉, viewi(t, rs)� 〈r, w3〉

viewi(t, r(t′, v) : rs) → 〈r, β3(v, w1, w2)〉
⇐ eqi(t, t′)� 〈false, w1〉, viewi(t, rs)� 〈r, w2〉
eqi(book, book) → 〈true, β4〉 eqi(dvd, dvd) → 〈true, β5〉

eqi(book, dvd) → 〈false, β6〉 eqi(dvd, book) → 〈false, β7〉
vali(r(t, v)) → 〈v, β8(t)〉

15For simplicity, we restrict the record types to only book and dvd.
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Finally, inversion returns the following pcDCTRS Rb = I(Rf ):

view−1(nil, β1(t)) → 〈t, nil〉
view−1(p : r, β2(w1, w2, w3)) → 〈t, r(t′, v) : rs〉
⇐ eq−1(true, w1)� 〈t, t′〉, val−1(p, w2)� 〈r(t′, v)〉, view−1(r, w3)� 〈t, rs〉

view−1(r, β3(v, w1, w2)) → 〈t, r(t′, v) : rs〉
⇐ eq−1(false, w1)� 〈t, t′〉, view−1(r, w2)� 〈t, rs〉

eq−1(true, β4) → 〈book, book〉 eq−1(true, β5) → 〈dvd, dvd〉
eq−1(false, β6) → 〈book, dvd〉 eq−1(false, β7) → 〈dvd, book〉
val−1(v, β8(t)) → 〈r(t, v)〉

For instance, the term view(book, [r(book, 12), r(dvd, 24)]), reduces to [12] in
the original system R. Given a modified view, e.g., [15], we can compute the
modified source using function upd above:

upd([r(book, 12), r(dvd, 24)], [15])

Here, we have the following subcomputations:16

viewi(book, [r(book, 12), r(dvd, 24)])
→Rf

〈[12], β2(β4, β8(book), β3(24, β6, β1(book)))〉
view−1([15], β2(β4, β8(book), β3(24, β6, β1(book))))

→Rb
〈book, [r(book, 15), r(dvd, 24)]〉

Thus upd returns the updated source [r(book, 15), r(dvd, 24)], as expected.
We note that the considered example cannot be transformed using the tech-
nique in [24], the closer to our approach, since the right-hand sides of some
rules contain functions which are not treeless.17 Nevertheless, one could con-
sider a transformation from pcDCTRS to functional programs with treeless
functions so that the technique in [24] becomes applicable.

Our approach can solve a view-update problem as long as the view func-
tion can be encoded in a pcDCTRS. When this is the case, the results from
Section 5 guarantee that function upd is well defined. Formally analyzing
the class of view functions that can be represented with a pcDCTRS is an
interesting topic for further research.

7. Related Work

There is no widely accepted notion of reversible computing. In this work,
we have considered one of its most popular definitions, according to which a

16Note that, in this case, the function view requires not only the source but also the
additional parameter book.

17A call is treeless if it has the form f(x1, . . . , xn) and x1, . . . , xn are different variables.
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computation principle is reversible if there is a method to undo a (forward)
computation. Moreover, we expect to get back to an exact past state of the
computation. This is often referred to as full reversibility.

As we have mentioned in the introduction, some of the most promising
applications of reversibility include cellular automata [28], bidirectional pro-
gram transformation [24], already discussed in Section 6, reversible debugging
[17], where the ability to go both forward and backward when seeking the
cause of an error can be very useful for the programmer, parallel discrete
event simulation [34], where reversibility is used to undo the effects of specu-
lative computations made on a wrong assumption, quantum computing [39],
where all computations should be reversible, and so forth. The interested
reader can find detailed surveys in the state of the art reports of the different
working groups of COST Action IC1405 on Reversible Computation [20].

Intuitively speaking, there are two broad approaches to reversibility from
a programming language perspective:

Reversible programming languages. In this case, all constructs of the pro-
gramming language are reversible. One of the most popular languages
within the first approach is the reversible (imperative) language Janus
[23]. The language was recently rediscovered [42, 41, 43] and has since
been formalized and further developed.

Irreversible programming languages and Landauer’s embedding. Alternatively,
one can consider an irreversible programming language, and enhance
the states with some additional information (typically, the history of
the computation so far) so that computations become reversible. This
is called Landauer’s embedding.

In this work, we consider reversibility in the context of term rewriting. To the
best of our knowledge, we have presented the first approach to reversibility in
term rewriting. A closest approach was introduced by Abramsky in the con-
text of pattern matching automata [2], though his developments could easily
be applied to rewrite systems as well. In Abramsky’s approach, biorthogo-
nality was required to ensure reversibility, which would be a very significant
restriction for term rewriting systems. Basically, biorthogonality requires
that, for every pair of (different) rewrite rules l → r and l′ → r′, l and
l′ do not overlap (roughly, they do not unify) and r and r′ do not over-
lap too. Trivially, the functions of a biorthogonal system are injective and,
thus, computations are reversible without the need of a Landauer embed-
ding. Therefore, Abramsky’s work is aimed at defining a reversible language,
in contrast to our approach that is based on defining a Landauer embedding
for standard term rewriting and a general class of rewrite systems.
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Defining a Landauer embedding in order to make a computation mech-
anism reversible has been applied in different contexts and computational
models, e.g., a probabilistic guarded command language [44], a low level
virtual machine [35], the call-by-name lambda calculus [19, 21], cellular au-
tomata [38, 27], combinatory logic [11], a flowchart language [41], etc.

In the context of declarative languages, we find the work by Mu et al. [29],
where a relational reversible language is presented (in the context of bidirec-
tional programming). A similar approach was then introduced by Matsuda et
al. [24, 25] in the context of functional programs and bidirectional transfor-
mation. The functional programs considered in [24] can be seen as linear and
right-treeless18 constructor TRSs. The class of functional programs is more
general in [25], which would correspond to left-linear, right-treeless TRSs.
The reversibilization technique of [24, 25] includes both an injectivization
stage (by introducing a view complement function) and an inversion stage.
These methods are closely related to the transformations of injectivization
and inversion that we have presented in Section 5, although we developed
them from a rather different starting point. Moreover, their methods for
injectivization and inversion consider a more restricted class of systems than
those considered in this paper. On the other hand, they apply a number
of analyses to improve the result, which explains the smaller traces in their
approach. All in all, we consider that our approach gives better insights to
understand the need for some of the requirements of the program transfor-
mations and the class of considered programs. For instance, most of our
requirements come from the need to remove programs positions from the
traces, as shown in Section 4.

Finally, [37] considers the reversible language RFUN. Similarly to Janus,
computations in RFUN are reversible without the need of a Landauer embed-
ding. The paper also presents a transformation from a simple (irreversible)
functional language, FUN, to RFUN, in order to highlight how irreversibil-
ities are handled in RFUN. The transformation has some similarities with
both the approach of [24] and our improved transformation in Section 5.3;
on the other hand, though, [37] also applies the Bennett trick [6] in order to
avoid some unnecessary information.

18There are no nested defined symbols in the right-hand sides, and, moreover, any term
rooted by a defined function in the right-hand sides can only take different variables as its
proper subterms.
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8. Discussion and Future Work

In this paper, we have introduced a reversible extension of term rewriting.
In order to keep our approach as general as possible, we have initially consid-
ered DCTRSs as input systems, and proved the soundness and reversibility
of our extension of rewriting. Then, in order to introduce a reversibilization
transformation for these systems, we have also presented a transformation
from DCTRSs to pure constructor systems (pcDCTRSs) which is correct
for constructor reduction. A further improvement is presented for injective
functions, which may have a significant impact in memory usage in some
cases. Finally, we have successfully applied our approach in the context of
bidirectional program transformation.

We have developed a prototype implementation of the reversibilization
transformations introduced in Section 5. The tool can read an input TRS
file (format .trs [1]) and then it applies in a sequential way the following
transformations: flattening, simplification of constructor conditions, injec-
tivization, and inversion. The tool prints out the CTRSs obtained at each
transformation step. It is publicly available through a web interface from
http://kaz.dsic.upv.es/rev-rewriting.html, where we have included a
number of examples to easily test the tool.

As for future work, we plan to investigate new methods to further re-
duce the size of the traces. In particular, we find it interesting to define a
reachability analysis for DCTRSs. A reachability analysis for CTRSs with-
out extra-variables (1-CTRSs) can be found in [12], but the extension to
deal with extra-variables in DCTRSs (since a DCTRS is a particular case
of 3-CTRS) seems challenging. Furthermore, as mentioned in the paper, a
completion procedure to add default cases to some functions (as suggested in
Section 5.1) may help to broaden the applicability of the technique and avoid
the restriction to constructor reduction. Finally, our injectivization and in-
version transformations are correct w.r.t. innermost reduction. Extending
our results to a lazy strategy is also an interesting topic for further research.
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