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We make a theoretical prediction for the ratio of the dark energy to other components in the Universe
based on the scenario of the sequestering mechanism [1–3] which was recently proposed as one possible
way to solve the cosmological constant problem. In order to evaluate the value of dark energy and the
others, we assume a specific scale factor which describes the big-crunch scenario in the scalar-tensor
theory. We specify the parameter region where the one can explain the observed dark energy-matter ratio.
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I. INTRODUCTION

The quantum field theory is one of the pillars in the
modern theoretical physics as it has provided the profusion
of rigorous predictions for us in the various areas of the
physics. It is widely known that a strong divergence shows
up in the quantum field theory if one considers the quantum
corrections from the matters to the vacuum energy. For
example, the quantum correction from one bosonic degree
of freedom with mass m is given by

ρvacuum ¼ 1

ð2πÞ3
Z

d3k
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: ð1Þ

The right-hand side of the above quantity diverges, and in
order to regulate the divergence, one may introduce the cut-
off scale Λcutoff , to find that

ρvacuum ∼ Λ4
cutoff : ð2Þ

On the other hand, the above estimation of the vacuum
energy gives us astounding result in the cosmology, where
we have to face a notorious problem, so-called the
cosmological constant problem.
The cosmological observations suggest that the cosmo-

logical constant Λ, which could be regarded as the vacuum
energy in the Universe, is approximately equal to
ð10−3 eVÞ4. We find that the observed value of cosmo-
logical constant is much smaller than the value in (2) when
we choose the cutoff scale Λcutoff to be the Planck mass
scale MPlanck; assuming Λcutoff ∼MPlanck, we obtain

Λ1=4 ∼ 10−3 eV ≪ MPlanck ∼ 1019 GeV ¼ 1028 eV; ð3Þ

where the reduced Planck mass MPlanck ¼ 1=κ ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is a typical scale of the gravity. Then, if we use the counter
term to obtain the observed small value of the vacuum
energy from the large theoretical one in (2), we need a fine-
tuning in the extremely unnatural way. We should note that
the above fine-tuning is not so improved even if we
introduce the supersymmetry, where the fermionic contri-
butions to the vacuum energy are opposite to the bosonic
contributions. Because the supersymmetry is broken in a
high energy region, we find

ρvacuum ¼ 1

ð2πÞ3
Z

d3k

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

boson

q

−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

fermion

q �

∼ Λ2
cutoffΛ2

SUSY ð4Þ

where the scale of the supersymmetry breaking is defined
by Λ2

SUSY ¼ m2
boson −m2

fermion, where mboson is the mass of
the bosonic mode and mfermion is the mass of the fermionic
mode. The fine-tuning problem of the cosmological con-
stant, therefore, would imply the necessity of a new
paradigm which includes the breakthrough beyond the
standard knowledge based on the quantum field theory.
So far several models trying to solve the cosmological

constant problem have been proposed1 [7–37]. In these
models, an interesting mechanism, called “sequestering”
mechanism proposed in [1–3], plays an important role to
solve the fine-tuning problem. The remarkable feature of
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1For the discussion why the vacuum energy is so small, see [4]
for example. For the model using the topological field theory,
see [5,6].
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the sequestering mechanism is that two global variables are
introduced. The variations of the action with respect to
these global variables lead to the constraint equations,
where the quantum corrections coming from matters are
explicitly canceled by the classical dynamics of gravity.
After the cancellation of quantum corrections, an effective
cosmological constant remains in the equation of motion,
and it is given by the matter density averaged with respect
to the whole space-time, whose volume is given byR
d4x

ffiffiffiffiffiffi−gp
. Therefore, the model would naturally explain

that the observed vacuum energy is tiny in the large and old
Universe.
When one evaluates the value of the vacuum energy in

the theories with the sequestering mechanism, it is signifi-
cant to study whether one can obtain the appropriate cosmic
history because the space-time average is literally written in
terms of the four-dimensional volume of the Universe; thus,
the value of the effective cosmological constant depends on
the cosmological model via the space-time average, and the
whole volume of the space-time should be finite in order to
make the model well-defined.
To realize such a model where the four-dimensional

volume is finite, we study the scalar-tensor theory based
on the formulation of the reconstruction in [38,39]. We
propose a model in which the Universe started from the big-
bang and, through the accelerated expansion corresponding
to the present dark energy era, the expansion becomes to be
decelerated and turns to shrink to the big-crunch. The four-
dimensional volume in such a model is finite, and one can
calculate the space-time average of the energy density from
the matter fields. And therefore, we obtain the effective
vacuum energy corresponding to the cosmological constant
and compare the observed value.
This paper is organized as follows. First, we give a brief

introduction of the sequestering mechanism in the general
relativity and see how the large quantum corrections are
removed in the equation of motion in Sec. II. We formulate
the sequestering mechanism in the scalar-tensor theory and
review the formulation of the reconstruction in Sec. III.
Finally, we evaluate the ratio of dark energy to the matters
according to the specific cosmological evolution in Sec. IV.
We also study the parameter region in which the observed
value of the dark energy is consistent.

II. SEQUESTERING MECHANISM

We now review the sequestering mechanism in the
general relativity [1–3]. We begin with the following
action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R − Λþ λ4Lmðλ−2gμν;ΨÞ

�

þ σ

�
Λ

μ4λ4

�
: ð5Þ

Here Lm denotes the Lagrangian density for the matter
fields which minimally couple with the metric ~gμν ¼ λ2gμν
and κ2 ¼ 8πG, where G is the gravitational constant.
The scalar curvature R is constructed by gμν. We should
also note

ffiffiffiffiffiffi
−g

p
λ4Lmðλ−2gμν;ΨÞ ¼

ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ΨÞ: ð6Þ

The variables Λ and λ are global and they do not depend on
the space-time coordinates x. And σ is a differentiable
function of the dimensionless combination of Λ and λ with
the mass scale parameter μ introduced by the dimensional
reasons. Note that the global variable λ is responsible for
the hierarchy between the typical matter scale and the
Planck scale. For a scalar field ϕ, the field redefinition
related to scaling of the metric ~gμν ¼ λ2gμν leads to

ffiffiffiffiffiffi
−~g

p �
−
1

2
~gμν∂μϕ∂νϕ −

1

2
m2ϕ2

�

¼ ffiffiffiffiffiffi
−g

p �
−
1

2
~gμν∂μΦ∂νΦ −

1

2
m2

physΦ2

�
; ð7Þ

where Φ ¼ λϕ and the physical mass is defined by
mphys ¼ λm, thus we find

mphys

MPlanck
¼ λ

m
MPlanck

: ð8Þ

By the variation of the action with respect to δgμν, one
finds

δgS¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
1

2κ2
Gμνþ

1

2
Λ
�
δgμν−

1

2

ffiffiffiffiffiffi
−~g

p
~Tμνδ~gμν

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Gμνþ

1

2
Λ−

1

2
λ2 ~Tμν

�
δgμν; ð9Þ

where we used δ~gμν ¼ λ−2δgμν and Gμν is the Einstein
tensor, Gμν ¼ Rμν − 1

2
gμνR. The energy-momentum tensor

~Tμν is defined as

~Tμνð~gμν;ΨÞ≡ −2ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ΨÞÞ
δ~gμν

: ð10Þ

We should note that we may define another energy-
momentum tensor Tμν according to the variation with
respect to the metric gμν. The relation between the two
energy-momentum tensors, Tμν and ~Tμν, is given by
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Tμνðλ−2gμν;ΨÞ ¼
−2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

λ4Lmðλ−2gμν;ΨÞÞ
δgμν

¼ −2
λ−4

ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ΨÞÞ
λ2δ~gμν

¼ λ2 ~Tμνð~gμν;ΨÞ: ð11Þ

We finally obtain the equation of motion for the metric gμν
as follows,

1

κ2
Gμν þ Λgμν ¼ Tμν: ð12Þ

In addition to the equation of motion for gμν, the variations
with respect to Λ and λ give the constraint equations as
follows, respectively,

σ0

λ4μ4
¼

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð13Þ

4Λ
σ0

λ4μ4
¼

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμ

μ; ð14Þ

where we have used

δλð
ffiffiffiffiffiffi
−g

p
λ4Lmðλ−2gμν;ΨÞÞ ¼ δλð

ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ΨÞÞ

¼ −2λ−1 ~gμνδ~gð
ffiffiffiffiffiffi
−~g

p
Lmð~gμν;ΨÞÞ

¼ λ−1 ~Tμ
μ: ð15Þ

By dividing Eq. (14) by Eq. (13) in both sides, one finds
that the global variable Λ can be expressed in terms of the
energy-momentum tensor,

Λ ¼ 1

4
hTμ

μi; ð16Þ

where hOi is four-dimensional space-time volume average
of the quantity O, defined as follows:

hOi ¼
R
d4x

ffiffiffiffiffiffi−gp
OR

d4x
ffiffiffiffiffiffi−gp : ð17Þ

Note that, strictly speaking, the global average is well-
defined if the space-time volume

R
d4x

ffiffiffiffiffiffi−gp
is finite.

Substituting Eq. (16) into Eq. (12), the equation of motion
for the metric gμν has the following form,

1

κ2
Gμν ¼ −

1

4
hTμ

μigμν þ Tμν: ð18Þ

Next, we divide the matter Lagrangian into two parts and
extract the vacuum energy obtained from the quantum
corrections of matter fields:

ffiffiffiffiffiffi
−g

p
λ4Lðλ−2gμν;ΨÞ ¼ ffiffiffiffiffiffi

−g
p ½−Vvac þ λ4ΔLeffðλ−2gμν;ΨÞ�;

ð19Þ

or equivalently

ffiffiffiffiffiffi
−~g

p
Lð~gμν;ΨÞ ¼

ffiffiffiffiffiffi
−~g

p
½−λ−4Vvac þ ΔLeffð~gμν;ΨÞ�: ð20Þ

Then, the corresponding energy-momentum tensor
follows as

~Tμνð~gμν;ΨÞ ¼ −λ−4Vvac ~gμν þ ~τμν; ð21Þ

where τμν expresses the energy-momentum tensor of the
matter field in which the vacuum energy is subtracted:

~τμν ¼
−2ffiffiffiffiffiffi
−~g

p δð ffiffiffiffiffiffi
−~g

p
ΔLeffð~gμν;ΨÞÞ
δ~gμν

: ð22Þ

According to Eq. (11), which gives us the relation between
the energy-momentum tensors obtained by the variation
with respect to ~gμν and gμν, the energy-momentum tensor
Tμν is expressed as

Tμν ¼ −Vvacgμν þ τμν: ð23Þ

Finally, Eq. (18) is given by the following form:

1

κ2
Gμν ¼ −

1

4
hTμ

μigμν þ τμν: ð24Þ

One finds that there is a residual effective cosmological
constant coming from the space-time average of the trace of
matter fields:

Gμν þ Λeffgμν ¼ κ2τμν; ð25Þ

where

Λeff ¼
κ2

4
hTμ

μi: ð26Þ

Thus, the vacuum energy from the quantum corrections of
matter fields is canceled in the equation of motion Eq. (25),
and that the numerical value of the residual constant Λeff is
automatically small if our Universe is large enough and old.
We should note that the constraint equations (13)

and (14) give us

Λ
λ4μ4

¼ 1

4μ4
h ~Tμ

μi; ð27Þ

which leads to
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λ ¼
� σ0ð 1

4μ4
h ~Tμ

μiÞ
μ4

R
d4x

ffiffiffiffiffiffi−gp
�1=4

; Λ ¼
σ0ð 1

4μ4
h ~Tμ

μiÞ 1
4μ2

h ~Tμ
μiR

d4x
ffiffiffiffiffiffi−gp :

ð28Þ

We find that the space-time average relates to the hierarchy
between the particle mass scale and the Planck mass scale,
which is sensitive to the choice of σ. The form of function σ
is, therefore, not arbitrary but would be determined or
constrained by the phenomenological requirements.
Furthermore, Λ and λ are given as functions of the four-
dimensional volume

R
d4x

ffiffiffiffiffiffi−gp
, and the space-time volume

of the Universe is the independent variable in this theory.
We also mention about the two symmetries in the

sequestering mechanism which ensures the cancellation
of quantum corrections in the vacuum energy. First, we find
the scale invariance in the action. Under the following scale
transformation,

λ → Ωλ; gμν → Ω−2gμν; Λ → Ω4Λ; ð29Þ

the action changes by

S → SΩ ≡ 1

2κ2
Ω−2

Z
d4x

ffiffiffiffiffiffi
−g

p
R

¼ 1

2κ2
Ω−2hRi

Z
d4x

ffiffiffiffiffiffi
−g

p
: ð30Þ

In fact, the scaling symmetry is broken by the gravity sector
and the symmetry is approximate one. This symmetry
breaking is, however, generated by the mediation from the
gravitational sector through the

R
d4x

ffiffiffiffiffiffi−gp
, and therefore

the breaking is weak. Furthermore, we can find that the
action is exactly invariant under the scale transformation on
shell: The trace of the equation of motion (18) leads to

Gμ
μ ¼ Tμ

μ − hTμ
νi; ð31Þ

and, by taking the space-time average for both hand sides,
we find hRi ¼ 0.
Second symmetry is the invariance under the following

shift transformation,

L → Lþ ϵm4; Λ → Λ − ϵλ4m4: ð32Þ
Under the transformation, the variation of the action is
given by

δS ¼ σ

�
Λ

λ4μ4
− ϵ

m4

μ4

�
− σ

�
Λ

λ4μ4

�

≈ −ϵσ0
m4

μ4
: ð33Þ

The shift symmetry is broken as well as the scale symmetry,
but the breaking is also weak because

δS ≈ −ϵm4λ4 ·
σ0

λ4μ4

¼ −ϵ
�

mphys

MPlanck

�
4

M4
Planck

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð34Þ

which is small when mphys=MPlanck ≪ 1. By using the
constraints and equation of motion, we find that the shift
can be absorbed in the redefinitions of the global variables
although the metric is not changed.
These two symmetries are the key to understand how the

sequestering mechanism works. The scaling symmetry
ensures that the vacuum energy at an arbitrary order has
the same couplings with the gravity as the classical one, and
the shift symmetry removes the vacuum energy from the
Lagrangian. Thus, the quantum corrections at all orders are
canceled without any tuning in order by order.
In the general relativity, the sequestering mechanism

does not give a positive cosmological constant unless we
consider the matter sector which causes the deceleration
expansion. For example, in a non-relativistic perfect fluid,
the trace of matter field is given by τμμ ¼ −ρ. Because we
assume that the four-dimensional volume and the energy
density is positive, Λeff , (26), become negative, and it
corresponds to the negative cosmological constant. A
negative cosmological constant does not give the accel-
eration expansion era. So we need to introduce the
candidate of dark energy. In Sec. III, we will use scalar-
tensor theory, which is one of the modified gravity, to
realize the expanding Universe.

III. SCALAR-TENSOR THEORY WITH
SEQUESTERING MECHANISM

A. Action and equations of motion

In the previous section, we introduced the basic property
of the sequestering mechanism. Here, we should note that
the sequestering mechanism to remove the large vacuum
energy can be used in more general frameworks because
this mechanism does not depend on the gravitational theory
itself. In this paper, we consider a particular time-evolution
of the Universe by using the reconstruction method known
in the scalar-tensor theory, and we perform the space-time
average for a perfect fluid as the baryon and dark matter.
We consider the following model with a scalar field ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R − hðϕÞð∇ϕÞ2 − VðϕÞ

− Λþ λ4Lmðλ−2gμν;ΨÞ
�
þ σ

�
Λ

μ4λ4

�
: ð35Þ

Without the contributions from the scalar field ϕ, that is,
hðϕÞ ¼ VðϕÞ ¼ 0, the model in (35) reduces to the action
of the original sequestering model Eq. (5) proposed
in [1–3].
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By the variation of the action with respect to the metric
gμν, we obtain

1

2κ2
Gμν − h∇μϕ∇νϕþ 1

2
hð∇ϕÞ2gμν þ

1

2
ðV þ ΛÞgμν

−
1

2
Tμν ¼ 0: ð36Þ

The variations with respect to Λ and λ give us the same
constraints as in Eqs. (13) and (14). Substituting these
constraints into Eq. (36), we obtain

1

2κ2
Gμ

ν − h∇μϕ∇νϕþ 1

2
hð∇ϕÞ2δμν þ 1

2
Vδμν

þ 1

4

	
1

2
Tα
α



δμν −

1

2
Tμ

ν ¼ 0: ð37Þ

Decomposing the energy-momentum tensor into the sum of
the vacuum energy and others as in Eq. (23), we find that
Eq. (37) can be expressed as

1

2κ2
Gμ

ν − h∇μϕ∇νϕþ 1

2
hð∇ϕÞ2δμν þ 1

2
Vδμν

þ 1

4

	
1

2
ταα



δμν −

1

2
τμν ¼ 0: ð38Þ

Defining Λeff by

Λeff ¼
κ2

4
hτααi; ð39Þ

we further rewrite the Eq. (38) as

1

2κ2
Gμ

ν − h∇μϕ∇νϕþ 1

2
hð∇ϕÞ2δμν þ 1

2
Vδμν

þ 1

2κ2
Λeffδ

μ
ν −

1

2
τμν ¼ 0: ð40Þ

B. Cosmological solution

By using the above equation (40) in the FRW metric, we
investigate the time-evolution of the Universe. We assume
the FRW metric as follows,

ds2 ¼ −dt2 þ aðtÞ2γijdxidxj

¼ −dt2 þ a2
�

1

1 − Kr2
dr2 þ r2dθ2 þ r2sin2θdφ2

�
;

ð41Þ

and we only consider the closed Universe where the
curvature of the space K > 0 because we require the
volume of the space-time should be finite.
We now assume τμν is given by perfect fluid,

τμν ¼ diagð−ρ; p; p; pÞ; ð42Þ

and the scalar field ϕ only depends on the cosmological
time,

ϕ ¼ ϕðtÞ: ð43Þ

Then the (0,0) component of (40) is given by

H2 ¼ κ2

3
ρ −

K
a2

þ 2κ2

3

�
1

2
h _ϕ2 þ 1

2
V þ 1

2κ2
Λeff

�
; ð44Þ

and ði; iÞ components are

3H2þ2 _H ¼ −κ2p−
K
a2

þ2κ2
�
−
1

2
h _ϕ2þ 1

2
V þ 1

2κ2
Λeff

�
:

ð45Þ

Other components become identities. By combining (44)
and (45), we find

VðϕÞ ¼ 3

κ2
H2 þ 1

κ2
_H −

1

2
ðρm − pmÞ −

1

κ2
Λeff þ

2

κ2
K
a2

;

ð46Þ

hðϕÞ _ϕ2 ¼ −
1

κ2
_H −

1

2
ðρm þ pmÞ þ

1

κ2
K
a2

: ð47Þ

Let fðϕÞ is a function of the scalar field ϕ. If the potential
VðϕÞ and the kinetic function hðϕÞ are given in terms of
fðϕÞ as follows,

VðϕÞ ¼ 3

κ2
fðϕÞ2 þ 1

κ2
f0ðϕÞ − 1

2
ρmðt ¼ ϕÞ

−
1

4
hτααi þ

2

κ2
K

aðt ¼ ϕÞ2 ;

hðϕÞ ¼ −
1

κ2
f0ðϕÞ − 1

2
ρmðt ¼ ϕÞ þ 1

κ2
K

aðt ¼ ϕÞ2 : ð48Þ

Then the solution of Eqs. (46) and (47) and therefore the
solution of (44) and (45) is given by

H ¼ fðϕ ¼ tÞ; ϕ ¼ t: ð49Þ

Therefore any evolution of the expansion in the Universe
given by the functionH ¼ fðtÞ can be realized by choosing
VðϕÞ and hðϕÞ as in (48). We should note that if hðϕÞ is
negative, the scalar field becomes ghost which generates
the negative norm states in the quantum theory and there-
fore inconsistent.

IV. A CONCRETE MODEL OF SEQUESTERING
MECHANISM

As we have mentioned, we like to have a model where
the volume of the space-time

R
d4x

ffiffiffiffiffiffi−gp
is finite in order

that the global average hOi in Eq. (17) for relevant physical
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operator O should be well-defined. As we have shown in
the last section, arbitrary evolution of the expansion in the
Universe can be realized by choosing the potential VðϕÞ
and the kinetic factor hðϕÞ to satisfy the equations in (48) as
in the formulation of the reconstruction in [38,39]. Then in
this section, we construct a model where the curvature
of the spaceK > 0 and the Universe acceleratingly expands
in the late time (for the review about the modified gravity
theories related to the accelerating expansion of the
Universe, see [40–43]). We also require that the
Universe finally turns to shrink, and therefore, the whole
volume of the space-time is finite.
We consider the model, where the scale factor is given by

aðtÞ ¼ fa1ðtÞg1=n; a1ðtÞ≡ α

�
1

12
t4 −

1

2
t21t

2 þ C

�
;

C≡ −
1

12
t40 þ

1

2
t21t

2
0: ð50Þ

Here t0 and t1 are positive constants. When t ¼ �t0, we
find að�t0Þ ¼ 0 and therefore t ¼ −t0 corresponds to the
big-bang and t ¼ t0 to the big-crunch. The scale factor (50)
is symmetric under the reflection of the time t → −t and the
expanding Universe turns to shrink at t ¼ 0.
First we now check the signature of hðϕÞ in (48). As we

have mentioned, if hðϕ ¼ tÞ becomes negative, there
appears the ghost, and the theory becomes inconsistent.
Now hðϕÞ is explicitly given by

hðtÞ ¼ H2
0

κ
aðtÞ−3

�
α2

36nH2
0

fa1ðtÞg3
n−2fG1ðXÞ þ 36Ct21g

−
3

2
Ωm0 −ΩK0fa1ðtÞg1

n

�

¼ H2
0

κ
aðtÞ2n−5

�
α2

36nH2
0

fG1ðXÞ þ 36Ct21g

−
3

2
Ωm0fa1ðtÞg−3

nþ2 − ΩK0fa1ðtÞg−2
nþ2

�
: ð51Þ

Here X ≡ t2, H0 is the present value of the Hubble rate H,
Ωm0 and ΩK0 are the values of the present density
parameters of the dust and the curvature, and

a1ðtÞ≡ αt41
12y2

�
1 −

�
t
t0

�
2
��

6y − 1 −
�
t
t0

�
2
�
;

y≡
�
t1
t0

�
2

ð0 < y < 1Þ;

G1ðXÞ≡ XðX2 − A3X þ A4Þ;

A3 ≡ 3t21; A4 ≡ 36t41

�
1

2
−
C
t41

�
: ð52Þ

We now investigate the behavior of hðϕ ¼ tÞ when t → t0.
If n < 3

2
, because a1ðtÞ → 0 when t → t0, the second or the

third term in the r.h.s. of (51) and therefore hðϕ ¼ tÞ
becomes negative and therefore there appears the ghost.
Then we require n ≥ 3

2
. When n > 3

2
, in (51), the first term

dominates and therefore we obtain the following condition,

G1ðX ¼ t20Þ þ 36Ct21 > 0: ð53Þ

The left-hand side of Eq. (53) has the following form,

G1ðX ¼ t20Þ þ 36Ct21 ¼
4t61
y3

ð3y − 1Þ2; ð54Þ

and therefore the condition (53) is always satisfied when
t → t0. We also need to consider the signature of hðϕ ¼ tÞ
for general t in −t0 < t < t0. We should note G1ðXÞ has
minimum at X ¼ Xþ for X ¼ t2 > 0, where

X� ≡ A3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
3 − 3A4

p
3

: ð55Þ

Then because

α2

36nH2
0

fG1ðXÞ þ 36Ct21g −
3

2
Ωm0fa1ðtÞg−3

nþ2 − ΩK0fa1ðtÞg−2
nþ2

>
α2

36nH2
0

fG1ðXþÞ þ 36Ct21g −
3

2
Ωm0fa1ð0Þg−3

nþ2 − ΩK0fa1ð�t0Þg−2
nþ2

¼ α2

36nH2
0

fG1ðXþÞ þ 36Ct21g −
3

2
Ωm0fαCg−3

nþ2; ð56Þ

the sufficient condition that hðϕ ¼ tÞ > 0 is given by

α2

36nH2
0

fG1ðXþÞ þ 36Ct21g −
3

2
Ωm0fαCg−3

nþ2 > 0: ð57Þ

TSUKAMOTO, KATSURAGAWA, and NOJIRI PHYSICAL REVIEW D 96, 124003 (2017)

124003-6



Since α is obtained from the renormalization of the scale
factor for the present time tp, (56) is given by

α2

36nH2
0

fG1ðXþÞ þ 36Ct21g −
3

2
Ωm0fαCg−3

nþ2

¼ 3zΩm0

2

�
6y − 1

6ð1 − ϵ2Þy − ð1 − ϵ4Þ
�

2

×

�
1

6y − 1
f6ð1 − ϵ2Þy − ð1 − ϵ4Þg

�3
n

×

�
Dnðy; ϵÞ −

1

z

�
; ð58Þ

where the function Dnðy; ϵÞ is defined as

Dnðy; ϵÞ≡ 16

3nΩm0

y3

ð6y − 1Þ2

×

�
1

6y − 1
f6ð1 − ϵ2Þy − ð1 − ϵ4Þg

�
−3
n

×

�
8 −

�
1

y2
ð1 − yÞð5y − 1Þ

�3
2

�
: ð59Þ

Here ϵ is defined by using the present time tp as tp ¼ ϵt0
ð0 < ϵ < 1Þ. And z is defined by z≡ 1

t2
0
H2

0

. From (58), we

alter the sign of (56) to the value of Dnðy; ϵÞ versus 1
z.

Satisfying the condition (57), we need to choose the
parameter region ðz; n; y; ϵÞ of Dnðy; ϵÞ > 1

z.
The second derivative of aðtÞ with respect the time t is

given by

äðtÞ ¼ α2

9n
fa1ðtÞg1=n−2½F1ðXÞ − 9Ct21�;

F1ðXÞ≡ 4 − n
4n

XðX2 − A1X þ A2Þ: ð60Þ

Here

A1 ≡ 8 − n
4 − n

3t21; A2 ≡ 4n
4 − n

�
2 − n
2n

þ C
t41

�
9t41: ð61Þ

Because there is a singularity at n ¼ 4 in the expressions in
(61), we restrict a constant n to be

3

2
< n < 4: ð62Þ

When n ¼ 3
2
, we also need to require,

α2

36nH2
0

fG1ðXÞ þ 36Ct21g −
3

2
Ωm0 > 0 ð63Þ

Because äðtÞ < 0 at X ¼ t2 ¼ 0when the Universe starts to
shrink, we require

C ¼ −
1

12
t40 þ

1

2
t21t

2
0 > 0: ð64Þ

On the other hand, a1ðtÞ should be always positive in
t2 < t20. We now rewrite a1ðtÞ as follows,

a1 ¼
αt41
12y2

�
1 −

�
t
t0

�
2
��

6y − 1 −
�
t
t0

�
2
�
: ð65Þ

Because t2=t20 < 1, we find 6y − 2 ≥ 0 and therefore

1

3
≤ y < 1: ð66Þ

In terms of y, C can be written as

C
t41
¼ 1

12y2
ð6y − 1Þ: ð67Þ

The r.h.s. has a local maximum at y ¼ 1
3
and when y > 1

3
,

the r.h.s. is a monotonically decreasing function of y.
Therefore by using (66), we find

5

12
<

C
t41
≤
3

4
: ð68Þ

In order that the decelerating Universe turns to accelerate
after the big-bang, and then, the accelerating Universe turns
to decelerate again, äðtÞ should vanish twice when
0 < t2 ¼ X < t20. Because

dF1ðXÞ
dt

¼ dX
dt

3ð4 − nÞ
4n

��
X −

1

3
A1

�
2

þ 1

9
ð3A2 − A2

1Þ
�
;

ð69Þ

F1ðXÞ has extrema at

X ¼ X� ≡ 1

3

�
A1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 − 3A2

q �
: ð70Þ

Because we are assuming 0 < n < 4, we find A1 > 0. Then
the conditions that äðtÞ should vanish twice when
0 < t2 ¼ X < t20 are given by

A2 > 0; A2
1 − 3A2 > 0; ð71Þ

F1ðXþÞ < 9Ct21 < F1ðX−Þ: ð72Þ

The above conditions, (71) and (72), means that the scale
factor need to have the three phases for the time evolution
of Universe in the regions −t0 < t < 0 and 0 < t < t0,
respectively. And its time evolution takes two deceleration
and one acceleration expansions. In this case, the Universe
starts in the deceleration expansion, and take the accel-
eration phase in next, and deceleration phase in the last
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phase. After that, the scale factor shrinks symmetrically,
and the Universe goes to the big crunch.
Because

F1ðX�Þ ¼
4 − n
108n

�
A1ð−2A2

1 þ 9A2Þ

∓ 2ðA2
1 − 3A2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 − 3A2

q �
; ð73Þ

A1ð−2A2
1þ9A2Þ¼

108nð8−nÞ
ð4−nÞ2 t61

�
9C
t41

þ4n2−19nþ4

nð4−nÞ
�
;

ð74Þ

A2
1 − 3A2 ¼

36n
4 − n

t41

�
−5n2 þ 20nþ 16

4nð4 − nÞ −
3C
t41

�
; ð75Þ

the conditions in (71) give

C
t41
>

n − 2

2n
; ð76Þ

−5n2 þ 20nþ 16

4nð4 − nÞ −
3C
t41

> 0; ð77Þ

and the condition (72) gives

9C
t41

<
4 − n
108n

�
108nð8 − nÞ
ð4 − nÞ2

�
9C
t41

þ 4n2 − 19nþ 4

nð4 − nÞ
�

þ 2

�
36n
4 − n

�
−5n2 þ 20nþ 16

4nð4 − nÞ −
3C
t41

��
3=2

�
; ð78Þ

9C
t41

>
4 − n
108n

�
108nð8 − nÞ
ð4 − nÞ2

�
9C
t41

þ 4n2 − 19nþ 4

nð4 − nÞ
�

− 2

�
36n
4 − n

�
−5n2 þ 20nþ 16

4nð4 − nÞ −
3C
t41

��
3=2

�
: ð79Þ

Because we are considering the case that 3
2
< n < 4, we

find

n − 2

2n
<

1

4
: ð80Þ

Therefore Eq. (68) tells that the condition (76) is always
satisfied. We should also note that by using (68), again, we
obtain

−5n2 þ 20nþ 16

4nð4 − nÞ ¼ 5

4
þ 4

nð4 − nÞ >
9

4
≥
3C
t41

: ð81Þ

Therefore the condition (77) is also always satisfied.
By defining new functions A1ðn; cÞ and A2ðn; cÞ as

follows,

A1ðn; cÞ≡ 36nð4 − nÞcþ ð8 − nÞð4n2 − 19nþ 4Þ;

A2ðn; cÞ≡ 1

2
A0ðn; cÞ32;

A0ðn; cÞ≡ ð12c − 5Þðn − 2Þ2 þ 9 − 12c; ð82Þ

we rewrite the conditions (73) and (75) can be
rewritten as

A1

�
n; c ¼ C

t41

�
þ A2

�
n; c ¼ C

t41

�
> 0;

A1

�
n; c ¼ C

t41

�
− A2

�
n; c ¼ C

t41

�
< 0: ð83Þ

We now show that the second condition in (83) or (75) is
always satisfied if we assume (62) and (68). We should note
A1ðn; cÞ has a local minimum with respect n at n ¼ 2 and a
local maximum at n ¼ 13

2
− 6c. When c ¼ C

t4
1

, by using (68),

we find

2 <
13

2
− 6c < 4; ð84Þ

and therefore the local maximum appears in the range of
(62). We should note that

A1ð4; cÞ ¼ −32;

−48 < A1ð2; cÞ ¼ 144c − 108 < 76;

−47 < A1

�
3

2
; c

�
¼ 135c −

403

4
<

1

2
; ð85Þ

and

FIG. 1. The region satisfying the conditions (62), (66), and (78)
is shown by the colored region.
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A1

�
13

2
− 6c; c

�
¼ 297

4
− 585cþ 972c2 − 432c3: ð86Þ

The r.h.s. of (86) has a local minimum −32 at c ¼ 5
12
and a

local maximum at c ¼ 13
12
> 3

4
. We should also note the r.h.s.

of (86) vanishes at c ¼ 3
4
. Therefore we find

−32 <
297

4
− 585cþ 972c2 − 432c3 < 0; ð87Þ

and therefore when c ¼ C
t4
1

< 403
540

, A1ðn; cÞ is always neg-

ative. Because A2ðn; cÞ is always positive, as long as
c ¼ C

t4
1

< 403
540

, the second condition in (83) or (75) is always

satisfied. By using the numerical calculation, as long as the
conditions (62), (66), and (68) are satisfied, we confirm that

the second condition in (83) or (75) is always satisfied. On
the other hand, the region satisfying the condition (78) is
specified by the colored region in Fig. 1.
In case of n ¼ 3=2, we need to include the condition

(63). By defining z≡ 1
t2
0
H2

0

and ϵ≡ jtp=t0jð0 < ϵ < 1Þ with
the present time tp, the condition (63) for hðt0Þ > 0 when
n ¼ 3=2 can be rewritten as

Dðϵ; yÞ≡ 16

81Ωm0

�
3y − 1

1 − ϵ2

�
2
�
y −

1 − ϵ4

6ð1 − ϵ2Þ
�−2

>
1

z
:

ð88Þ

Then we find that the colored region in Fig. 2 satisfies the
necessary conditions.

FIG. 2. The regionsatisfying thecondition (88) atn ¼ 3=2 is givenby thecolored region.LetyMax themaximumvalueofywhichsatisfies all
the conditions. The left graph corresponds to 1=z¼Dð0;yMaxÞ, themiddle one to 1=z>Dð0;yMaxÞ, and the right graph to 1=z < Dð0; yMaxÞ.
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FIG. 3. These graphs show the value of Λeff=ρm0 at n ¼ 1.5, n ¼ 2.0 in ðy; ϵÞ plane. Λeff=ρm0ðn; y; ϵÞ ≤
Λeff=ρm0ð1.5; 0.33; 0.0Þ≃ 0.62, the ratio of (89) to ρm0 is less than 1. The contribution of Λeff is suppressed in the order of a
matter contribution.

SEQUESTERING MECHANISM IN SCALAR-TENSOR GRAVITY PHYSICAL REVIEW D 96, 124003 (2017)

124003-9



We now estimate Λeff in the parameter region where the
model becomes consistent. We now assume that the
Universe is fulfilled with nonrelativistic matters (dust)
and neglect the contribution from the relativistic matter
(radiation). Then we find

14hτααi
¼ ρm0

4
dðy;n;ϵÞ

�Z
1

0

ðx4−6yx2þ6y−1Þ3=ndx
�
−1
;

dðy;n;ϵÞ≡
�
6ð1−ϵ2Þ

�
y−

1− ϵ4

6ð1− ϵ2Þ
��

3=n
: ð89Þ

Here x ¼ t=t0 ð0 < x < 1Þ. As shown in Fig. 3, by
adjusting the value of ϵ, we can choose ΩΛeff

to be less
than Ωm. However, from Fig. 3, we can see that the ratio of
(89) to ρm0 is less than unity in all range of ϵ and in y’s
range. So we can always choose the parameters for each n
in which no large contribution to Λeff happen again. In
n ¼ 3=2, there is the relations between ϵ and y. In this case,
however, we always can choose the parameters like
that, too.

V. SUMMARY AND CONCLUSION

In this paper, we have introduced the scalar-tensor theory
in order to realize the sequestering mechanism in the
acceleratingly expanding Universe because the original
model of the sequestering mechanism cannot realize the
accelerating expansion. The reason why the sequestering
mechanism cannot realize the accelerating expansion in the
original model is that the effective cosmological constant
Λeff becomes negative and works as the negative cosmo-
logical constant in the general relativity. Thus, we need to
introduce other candidates of dark energy. We also have
found that even though the gravitational model is modified,
the large contribution from the quantum corrections of the
matter sector to the vacuum energy is canceled out in
the same way as in the original sequestering mechanism.
The effective cosmological constant Λeff is also described
by the global average of the trace of energy-momentum
tensor.
We have also estimated the value ofΛeff in an example of

the models. Due to the reconstruction, all physical quan-
tities can be described by the scale factor. Thus, when we
give the form of the scale factor, we can determine the time
evolution of these quantities and evaluate these quantities.
Because the given scale factor needs to be consistent with
the cosmological history, and there should not exist the
ghost mode, we have restricted the parameter regions of the
scale factor. In our model, we have found the parameter
regions to make Λeff , given by Eqs. (26) and (89), be less
than the value of the present energy density of matters. So,
we have obtained the solutions of the scale factor with a
small Λeff . In Sec. IV, we have introduced a scalar field as
the source of dark energy. And we have found the above
residual term Λeff also work as dark energy. So we may

regard the total dark energy as the sum of Λeff and the
energy density of scalar field. In this paper, we have
reconstructed the motion of the scalar field and set up
the model to give the present Universe. The scalar field
takes on the part of dark energy apart from that of Λeff , and
the total energy density of dark energy takes the present
observational value. We have found that the energy density
of the total dark energy is comparable to that of the matter
sector at the present time.
In the formulation of the present work, however, we need

to assume the form of the scale factor, and then we need to
determine the time evolution of the future. This is prob-
lematic because we cannot know the future. So, we need to
solve the differential equation for the scale factor under a
suitable condition. After that, we can determine the value
of Λeff .
As it has been pointed out in Sec. IV, we have assumed

the model where the spatial volume and lifetime of the
Universe are finite, so that the four-dimensional space-time
average as in Eq. (16) could be well defined. And then, the
spatial curvature does not vanish because the spatial
volume is finite.
The observation of cosmic microwave background

(CMB) tells us that the spatial curvature should be
negligibly small, which suggests that the radius of the
Universe was large enough and the spatial curvature was
small enough when the Universe became transparent to
radiation. This may give us some constraints on the model.
The consistent inflation scenario with the sequestering
mechanism was discussed in [2], and one can expect that
the CMB power spectrum would be obtained in the
ordinary manner after the quantum corrections are sepa-
rated from the matter field in Eq. (23).
Instead of the case that the lifetime of the Universe is

finite, one can consider an alternative scenario that the
Universe has a periodicity in time; that is, the cyclic
Universe. By following the ekpyrotic scenario, where the
hot big-bang is driven by the collision of the two brane-
worlds [44], it has been proposed that the collisions occur
iteratively and the Universe undergoes an endless sequence
of cosmic epochs of each beginning with a big-bang and
ending in a big-crunch [45]. This scenario explains natu-
rally the uniform and flat Universe with large scale
structure. Therefore it could be interesting to embed our
model into this kind of scenario. The analysis of other
models and their constrains from observational data will be
treated in the future works.
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