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Abstract

We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic

coin, which include one-defect models, two-phase quantum walks, and topological phase quantum

walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of

locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds,

and we prove the absence of singular continuous spectrum for U. Our analysis is based on new

commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent

interest.
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1 Introduction

Discrete-time quantum walks appear in numerous contexts [1, 2, 20, 21, 34, 47]. Among them, Gudder

[21], Meyer [34], and Ambainis et al. [2] introduced one-dimensional quantum walks as a quantum me-

chanical counterpart of classical random walks. Nowadays, these quantum walks and their generalisations

have been physically implemented in various ways [32]. Versatile applications of quantum walks can be

found in [12, 22, 36, 46] and references therein.

Recently, because of the controllability of their parameters, discrete-time quantum walks have at-

tracted attention as promising candidates to realise topological insulators. In [26, 27], Kitagawa et al. have

shown that one and two dimensional quantum walks possess topological phases, and they experimentally

observed a topologically protected bound state between two distinct phases. We refer for example to [25]

for an introductory review on topological phenomena in quantum walks, see also [11, 19, 24]. Motivated

by these studies, Endo et al. [15] (see also [13, 14]) have performed a thorough analysis of the asymptotic

behaviour of two-phase quantum walks, whose evolution is given by unitary operators UTP = SC with S a
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shift operator and C a coin operator de�ned as a multiplication by unitary matrices C(x) 2 U(2), x 2 Z.
When C(x) is given by

C(x) =


1p
2

(
1 ei�+

e�i�+ �1

)
if x � 0

1p
2

(
1 ei��

e�i�� �1

)
if x � �1

(1.1)

with �� 2 [0; 2�), the two-phase quantum walk with evolution operator UTP is called complete two-phase

quantum walk, and when C(x) satis�es the alternative condition at 0

C(0) =

(
1 0

0 �1
)
; (1.2)

the quantum walk is called two-phase quantum walk with one defect. In [14, 15], Endo et al. have proved

a weak limit theorem [28, 29] similar to the de Moivre-Laplace theorem (or the Central limit theorem)

for random walks, which describes the asymptotic behaviour of the two-phase quantum walk.

In the present paper and the companion paper [38], we consider one-dimensional quantum walks

U = SC with a coin operator C exhibiting an anisotropic behaviour at in�nity, with short-range convergence

to the asymptotics. Namely, we assume that there exist matrices C`; Cr 2 U(2) and constants "`; "r > 0

such that

C(x) =

{
C` +O

(jx j�1�"`
)

as x ! �1
Cr +O

(jx j�1�"r
)

as x !1: (1.3)

We call this type of quantum walks quantum walks with an anisotropic coin or simply anisotropic quantum

walks. They include two-phase quantum walks with coins de�ned by (1.1) and (1.2) and one-defect models

[10, 30, 31, 49] as special cases. In the case C0 := C` = Cr and "0 := "` = "r, quantum walks with an

anisotropic coin reduce to one-dimensional quantum walks with a position dependent coin

C(x) = C0 +O
(jx j�1�"0

)
; jx j ! 1;

for which the absence of the singular continuous spectrum was proved in [4] and for which a weak limit

theorem was derived in [44].

Quantum walks with an anisotropic coin are also related to Kitagawa's topological quantum walk

model called split-step quantum walk [25, 26, 27]. Indeed, if R(�) 2 U(2) is a rotation matrix with rotation

angle �=2, R(�j) the multiplication operator by R
(
�j( � )

) 2 U(2) with �j : Z ! [0; 2�), j = 1; 2, and

T#; T" shift operators satisfying S = T#T" = T"T#, then the evolution operator of the split-step quantum

walk is de�ned as

USS(�1; �2) := T#R(�2)T"R(�1):

Now, as mentioned in [25], USS(�1; �2) is unitarily equivalent to T"R(�1)T#R(�2). Thus, our evolution

operator U describes a quantum walk unitarily equivalent to the one described by USS(�1; �2) if �1 � 0

and C( �) = R
(
�2( �)

)
(see [35, 43] for the de�nition of unitary equivalence between two quantum walks).

In [25], Kitagawa dealt with the case

�2(x) :=
1
2(�2� + �2+) +

1
2(�2+ � �2�) tanh(x=3); �2�; �2+ 2 [0; 2�); x 2 Z;

which corresponds to taking the anisotropic coin (1.3) with C` = R(�2�) and Cr = R(�2+), and which

cannot be covered by two-phase models.

The main goal of the present paper and [38] is to establish a weak limit theorem for the the evolution

operator U of the quantum walk with an anisotropic coin satisfying (1.3). As put into evidence in [44],

in order to establish a weak limit theorem one has to prove along the way the following two important

results: (i) absence of singular continuous spectrum, and (ii) existence of the asymptotic velocity.
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In the present paper, we perform the spectral analysis of the evolution operator U of quantum walks

with an anisotropic coin. We determine the essential spectrum of U, we show the existence of locally

U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we

prove the absence of singular continuous spectrum for U. In the companion paper [38], we will develop the

scattering theory for the evolution operator U. We will prove the existence and the completeness of wave

operators for U and a free evolution operator U0, we will show the existence of the asymptotic velocity

for U, and we will �nally establish a weak limit theorem for U. Other interesting related topics such as

the existence and the robustness of a bound state localised around the phase boundary or a weak limit

theorem for the split-step quantum walk with �1 6= 0 are considered in [18] and [17], respectively.

The rest of this paper is structured as follows. In Section 2, we give the precise de�nition of the

evolution operator U for the quantum walk with an anisotropic coin and we state our main results on

the essential spectrum of U (Theorem 2.2), the locally U-smooth operators (Theorem 2.3), and the

eigenvalues and singular continuous spectrum of U (Theorem 2.4). Section 3 is devoted to mathematical

preliminaries. Here we develop new commutator methods for unitary operators in a two-Hilbert spaces set-

ting, which are a key ingredient for our analysis and are of independent interest. In Section 4, we prove our

main theorems as an application of the commutator methods developed in Section 3. In Subsection 4.2, we

prove Theorem 2.2 and we de�ne in Lemma 4.9 a conjugate operator A for the evolution operator U built

from conjugate operators for the asymptotic evolution operators U` := SC` and Ur := SCr, where C` and

Cr are the constant coin matrices given in (1.3). Finally, in Subsection 4.3 we prove Theorems 2.3 and 2.4.

Acknowledgements. The third author thanks the Graduate School of Mathematics of Nagoya University

for its warm hospitality in January-February 2017. The authors also thank the anonymous referee for the

valuable comments and for pointing out missing references which have been added.

2 Model and main results

In this section, we give the de�nition of the model of anisotropic quantum walks that we consider, we

state our main results on quantum walks, and we present the main tools we use for the proofs. These

tools are results of independent interest on commutator methods for unitary operators in a two-Hilbert

spaces setting. The proofs of our results on commutator methods are given in Section 3 and the proofs

of our results on quantum walks are given in Section 4.

Let H be the Hilbert space of square-summable C2-valued sequences

H := `2(Z;C2) =
{
	 : Z! C2 j∑x2Z k	(x)k22 <1};

where k � k2 is the usual norm on C2. The evolution operator of the one-dimensional quantum walk in H
that we consider is given by U := SC, with S a shift operator and C a coin operator de�ned by

(S	)(x) :=

(
	(0)(x + 1)

	(1)(x � 1)

)
; 	 =

(
	(0)

	(1)

)
2 H; x 2 Z;

(C	)(x) := C(x)	(x); 	 2 H; x 2 Z; C(x) 2 U(2):

In particular, the evolution operator U is unitary in H since both S and C are unitary in H.

Throughout the paper, we assume that the coin operator C exhibits an anisotropic behaviour at in�n-

ity. More precisely, we assume that C converges with short-range rate to two asymptotic coin operators,

one on the left and one on the right in the following way:

Assumption 2.1 (Short-range). There exist C`; Cr 2 U(2), �`; �r > 0, and "`; "r > 0 such that∥∥C(x)� C`

∥∥
B(C2)

� �` jx j�1�"` if x < 0∥∥C(x)� Cr∥∥B(C2)
� �r jx j�1�"r if x > 0,
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where the indexes ` and r stand for �left" and �right".

This assumption provides us two new unitary operators

U` := SC` and Ur := SCr (2.1)

describing the asymptotic behaviour of U on the left and on the right. The precise sense (from the

scattering point of view) in which the operators U`; Ur describe the asymptotic behaviour of U on the left

and on the right will be given in [38], and the spectral properties of U`; Ur are determined in Section 4.1.

Here, we just introduce the set

�(U) := @�(U`) [ @�(Ur);
where @�(U`); @�(Ur) denote the boundaries in the unit circle T := fz 2 C j jz j = 1g of the spectra

�(U`); �(Ur) of U`; Ur. In Section 4.1, we show that �(U) is �nite and can be interpreted as the set of

thresholds in the spectrum of U.

Our main results on U, proved in Sections 4.2 and 4.3, are the following three theorems on locally

U-smooth operators and on the structure of the spectrum of U. The symbols �ess(U), �p(U) and Q stand

for the essential spectrum of U, the pure point spectrum of U, and the position operator in H, respectively

(see (4.9) for precise de�nition of Q).

Theorem 2.2 (Essential spectrum of U). One has �ess(U) = �(U`) [ �(Ur).
Theorem 2.3 (U-smooth operators). Let G be an auxiliary Hilbert space and let � � T be an open set

with closure � � T n �(U). Then, each operator T 2 B(H;G) which extends continuously to an element

of B
(D(hQi�s);G) for some s > 1=2 is locally U-smooth on � n �p(U).

Theorem 2.4 (Spectrum of U). For any closed set � � T n �(U), the operator U has at most �nitely

many eigenvalues in �, each one of �nite multiplicity, and U has no singular continuous spectrum in �.

The content of Theorem 2.2 could be inferred from [9, Thm. 3.1], but we provide an alternative

proof. To prove these theorems, we develop in Section 3 commutator methods for unitary operators in a

two-Hilbert spaces setting: Given a triple (H; U; A) consisting in a Hilbert space H, a unitary operator U,

and a self-adjoint operator A, we determine how to obtain commutator results for (H; U; A) in terms of

commutator results for a second triple (H0; U0; A0) also consisting in a Hilbert space, a unitary operator,

and a self-adjoint operator. In the process, an identi�cation operator J : H0 ! H must also be chosen. The

intuition behind this approach comes from scattering theory which tells us that given a unitary operator

U describing some quantum system in a Hilbert space H there often exists a simpler unitary operator U0
in a second Hilbert space H0 describing the same quantum system in some asymptotic regime.

Our main results in this context are the following. First, we present in Theorem 3.6 conditions

guaranteeing that U and A satisfy a Mourre estimate on a Borel set � � T as soon as U0 and A0 satisfy

a Mourre estimate on � (equivalently, we present conditions guaranteeing that A is a conjugate operator

for U on � as soon as A0 is a conjugate operator for U0 on �). Next, we present in Proposition 3.7

conditions guaranteeing that U is regular with respect to A (that is, U 2 C1(A)) as soon as U0 is regular

with respect to A0 (that is, U0 2 C1(A0)). Finally, we give in Assumption 3.9 and Corollaries 3.10-3.11

conditions guaranteeing that the most natural choice for the operator A, namely A = JA0J
�, is indeed a

conjugate operator for U as soon as A0 is a conjugate operator for U0.

3 Unitary operators in a two-Hilbert spaces setting

In this section, we start by recalling some facts on the spectral family of unitary operators, on locally

smooth operators for unitary operators, and on commutator methods for unitary operators in one Hilbert

space. In particular, we introduce in (3.2)-(3.3) the functions % and %̃ which will play an essential role

4



in the two-Hilbert space setting and which have never been used before for unitary operators. Then, we

develop the abstract theory of commutator methods for unitary operators in a two-Hilbert spaces setting.

Note that the theory in one Hilbert space has also been introduced in [5, 6], but without the %-functions

mentioned above.

3.1 Commutator methods in one Hilbert space

Let H be a Hilbert space with norm k � kH and scalar product h � ; � iH linear in the second argument,

B(H) the set of bounded linear operators in H with norm k � kB(H), and K (H) the set of compact

linear operators in H. A unitary operator U in H is an element U 2 B(H) satisfying U�U = UU� = 1.

Since U�U = UU�, the spectral theorem for normal operators implies that U admits exactly one complex

spectral family EU , with support supp(EU) � T, such that U =
∫
C
z EU(dz). The support supp(EU) is the

set of points of non-constancy of EU , which coincides with the spectrum �(U) of U [48, Thm. 7.34(a)].

In addition, the measure EU admits a decomposition into a pure point, a singular continuous and an

absolutely continuous components, and the corresponding orthogonal decomposition

H = Hp(U)�Hsc(U)�Hac(U)

reduces the operator U. The sets �p(U) := �
(
UjHp(U)

)
, �sc(U) := �

(
UjHsc(U)

)
, and �ac(U) := �

(
UjHac(U)

)
are called pure point spectrum, singular continuous spectrum, and absolutely continuous spectrum of U,

respectively, and the set �c(U) := �sc(U)[ �ac(U) is called the continuous spectrum of U. Finally, if G is

an auxiliary Hilbert space, then an operator T 2 B(H;G) is locally U-smooth on an open set � � T if

for each closed set �0 � � there exists c�0 � 0 such that∑
n2Z

∥∥T UnEU(�0)'
∥∥2
G � c�0 k'k2H for each ' 2 H; (3.1)

and T is (globally) U-smooth if (3.1) is satis�ed with �0 = T. The condition (3.1) is invariant under

rotation by ! 2 T in the sense that if T is U-smooth on �, then T is (!U)-smooth on !� since∥∥T (!U)nE!U(!�0)'
∥∥
G =

∥∥T UnEU(�0)'
∥∥
G

for each closed set �0 � � and each ' 2 H. An important consequence of the existence of a locally

U-smooth operator T on � is the inclusion EU(�)T �G� � Hac(U), with G� the adjoint space of G (see

[7, Thm. 2.1] for a proof).

Now, we present some results on commutator methods for unitary operators in one Hilbert space,

starting with de�nitions and results borrowed from [3, 16, 42]. Let S 2 B(H) and let A be a self-adjoint

operator in H with domain D(A). For k 2 N, we say that S belongs to Ck(A), with notation S 2 Ck(A),

if the map R 3 t 7! e�itA S eitA 2 B(H) is strongly of class Ck . In the case k = 1, one has S 2 C1(A) if

and only if the quadratic form

D(A) 3 ' 7! 〈
A'; S'

〉
H �

〈
';SA'

〉
H 2 C

is continuous for the topology induced byH on D(A). The operator associated to the continuous extension
of the form is denoted by [A; S] 2 B(H), and it veri�es

[A; S] = s-lim
�!0

[A� ; S] with A� := (i�)�1
(
ei�A�1) 2 B(H); � 2 R n f0g:

Three regularity conditions slightly stronger than S 2 C1(A) are de�ned as follows: S belongs to

C1;1(A), with notation S 2 C1;1(A), if∫ 1

0

∥∥ e�itA S eitA+eitA S e�itA�2S
∥∥

B(H)

dt

t2
<1:
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S belongs to C1+0(A), with notation S 2 C1+0(A), if S 2 C1(A) and∫ 1

0

∥∥ e�itA[A; S] eitA�[A; S]
∥∥

B(H)

dt

t
<1:

S belongs to C1+"(A) for some " 2 (0; 1), with notation S 2 C1+"(A), if S 2 C1(A) and∥∥ e�itA[A; S] eitA�[A; S]
∥∥

B(H)
� Const: t" for all t 2 (0; 1).

As banachisable topological vector spaces, the sets C2(A), C1+"(A), C1+0(A), C1;1(A), C1(A), and

C0(A) = B(H), satisfy the continuous inclusions [3, Sec. 5.2.4]

C2(A) � C1+"(A) � C1+0(A) � C1;1(A) � C1(A) � C0(A):

Now, we adapt to the unitary framework the de�nition of two functions introduced in [3, Sec. 7.2] in

the self-adjoint setup. For that purpose, we let U be a unitary operator with U 2 C1(A), for S; T 2 B(H)

we write T & S if there exists an operator K 2 K (H) such that T + K � S, and for � 2 T and " > 0

we set

�(�; ") :=
{
�0 2 T j j arg(� � �0)j < "

}
and EU(�; ") := EU

(
�(�; ")

)
:

With these notations at hand, we de�ne the functions %AU : T! (�1;1] and %̃AU : T! (�1;1] by

%AU(�) := sup
{
a 2 R j 9" > 0 such that EU(�; ")U�1[A;U]EU(�; ") � aEU(�; ")

}
(3.2)

and

%̃AU(�) := sup
{
a 2 R j 9" > 0 such that EU(�; ")U�1[A;U]EU(�; ") & aEU(�; ")

}
: (3.3)

In applications, the function %̃AU is more convenient than the function %AU since it is de�ned in terms of a

weaker positivity condition (positivity up to compact terms). A simple argument shows that %̃AU(�) can be

de�ned in an equivalent way by

%̃AU(�) = sup
{
a 2 R j 9� 2 C1(T;R) such that �(�) 6= 0 and �(U)U�1[A;U]�(U) & a�(U)2

}
: (3.4)

Further properties of the functions %̃AU and %AU are collected in the following lemmas, with �rst lemma

corresponding to [16, Prop. 2.3].

Lemma 3.1 (Virial Theorem for U). Let U be a unitary operator in H and let A be a self-adjoint operator

in H with U 2 C1(A). Then, EU(f�g)U�1[A;U]EU(f�g) = 0 for each � 2 T. In particular, one has〈
';U�1[A;U]'

〉
H = 0 for each eigenvector ' 2 H of U.

Lemma 3.2. Let U be a unitary operator in H and let A be a self-adjoint operator in H with U 2 C1(A).

Assume there exist an open set � � T and a 2 R such that EU(�)U�1[A;U]EU(�) & aEU(�). Then,

for each � 2 � and � > 0 there exist " > 0 and a �nite rank orthogonal projection F with EU(f�g) � F

such that

EU(�; ")U�1[A;U]EU(�; ") � (a � �)(EU(�; ")� F )� �F:
In particular, if � is not an eigenvalue of U, then

EU(�; ")U�1[A;U]EU(�; ") � (a � �)EU(�; ");

while if � is an eigenvalue of U, one has only

EU(�; ")U�1[A;U]EU(�; ") � minfa � �;��gEU(�; "):

Proof. The proof relies on the Virial Theorem for U and is analogous to the proof of [3, Lemma 7.2.12]

in the self-adjoint case. One just needs to replace in that proof [iH; A] by U�1[A;U], E(J) by EU(�),

E(f�g) by EU(f�g), and E(�; 1=k) by EU(�; 1=k).
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Lemma 3.3. Let U be a unitary operator in H and let A be a self-adjoint operator in H with U 2 C1(A).

(a) The function %AU : T! (�1;1] is lower semicontinuous, and %AU(�) <1 if and only if � 2 �(U).
(b) The function %̃AU : T! (�1;1] is lower semicontinuous, and %̃AU(�) <1 if and only if � 2 �ess(U).
(c) %̃AU � %AU .

(d) If � 2 T is an eigenvalue of U and %̃AU(�) > 0, then %AU(�) = 0. Otherwise, %AU(�) = %̃AU(�).

Proof. The claims are shown as in the proofs of Lemma 7.2.1, Proposition 7.2.3(a), Proposition 7.2.6

and Theorem 7.2.13 of [3] in the self-adjoint case.

By analogy with the self-adjoint case, we say that A is conjugate to U at a point � 2 T if %̃AU(�) > 0,

and that A is strictly conjugate to U at � if %AU(�) > 0. Since %̃AU(�) � %AU(�) for each � 2 T by Lemma

3.3(c), strict conjugation is a property stronger than conjugation.

Theorem 3.4 (U-smooth operators). Let U be a unitary operator in H, let A be a self-adjoint operator

in H, and let G be an auxiliary Hilbert space. Assume either that U has a spectral gap and U 2 C1;1(A),

or that U 2 C1+0(A). Suppose also there exist an open set � � T, a number a > 0 and an operator

K 2 K (H) such that

EU(�)U�1[A;U]EU(�) � aEU(�) +K:

Then, each operator T 2 B(H;G) which extends continuously to an element of B
(D(hAis)�;G) for some

s > 1=2 is locally U-smooth on � n �p(U).
Proof. The claim follows by adapting the proof of [16, Prop. 2.9] to locally U-smooth operators T with

values in the auxiliary Hilbert space G.
The last theorem of this section corresponds to [16, Thm. 2.7]:

Theorem 3.5 (Spectrum of U). Let U be a unitary operator in H and let A be a self-adjoint operator in

H. Assume either that U has a spectral gap and U 2 C1;1(A), or that U 2 C1+0(A). Suppose also there

exist an open set � � T, a number a > 0 and an operator K 2 K (H) such that

EU(�)U�1[A;U]EU(�) � aEU(�) +K:

Then, U has at most �nitely many eigenvalues in �, each one of �nite multiplicity, and U has no singular

continuous spectrum in �.

3.2 Commutator methods in a two-Hilbert spaces setting

From now on, in addition to the triple (H; U; A), we consider a second triple (H0; U0; A0) with H0 a

Hilbert space, U0 a unitary operator in H0, and A0 a self-adjoint operator in H0. We also consider an

identi�cation operator J 2 B(H0;H). The existence of two such triples with an identi�cation operator is

quite standard in scattering theory of unitary operators, at least for the pairs (H; U) and (H0; U0) (see for

instance [8, 50]). Part of our goal in this section is to show that the existence of the conjugate operators

A and A0 is also natural, in the same way it is in the self-adjoint case [39].

In the one-Hilbert space setting, the unitary operator U is usually a multiplicative perturbation of the

unitary operator U0. In this case, if U � U0 is compact, the stability of the function %̃A0

U0
under compact

perturbations allows one to infer information on U from similar information on U0 (see [16, Cor. 2.10]).

In the two-Hilbert spaces setting, we are not aware of any general result relating the functions %̃AU and

%̃A0

U0
. The obvious reason for this being the impossibility to consider U as a direct perturbation of U0 since

these operators do not act in the same Hilbert space. Nonetheless, the next theorem provides a result in

that direction. For Hilbert spaces H1;H2 and operators S; T 2 B(H1;H2), we use the notation T � S

if (T � S) 2 K (H1;H2).
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Theorem 3.6. Let (H0; U0; A0) and (H; U; A) be as above, let J 2 B(H0;H), and assume that

(i) U0 2 C1(A0) and U 2 C1(A),

(ii) JU�10 [A0; U0]J
� � U�1[A;U] 2 K (H),

(iii) JU0 � UJ 2 K (H0;H),

(iv) For each � 2 C(C;R), �(U)(JJ� � 1)�(U) 2 K (H).

Then, one has %̃AU � %̃A0

U0
.

An induction argument together with a Stone-Weierstrass density argument shows that (iii) is equiv-

alent to the apparently stronger condition

(iii') For each � 2 C(C;R), J�(U0)� �(U)J 2 K (H0;H).

Therefore, in the sequel, we will sometimes use the condition (iii') instead of (iii).

Proof. For each � 2 C(C;R), we have

�(U)U�1[A;U]�(U) � �(U)JU�10 [A0; U0]J
��(U) � J�(U0)U

�1
0 [A0; U0]�(U0)J

� (3.5)

due to Assumption (i)-(iii). Furthermore, if there exists a 2 R such that

�(U0)U
�1
0 [A0; U0]�(U0) & a�(U0)

2;

then Assumptions (iii)-(iv) imply that

J�(U0)U
�1
0 [A0; U0]�(U0)J

� & aJ�(U0)
2J� � a�(U)JJ��(U) � a�(U)2: (3.6)

Thus, we obtain �(U)U�1[A;U]�(U) & a�(U)2 by combining (3.5) and (3.6). This last estimate, together

with the de�nition (3.4) of the functions %̃A0

U0
and %̃AU , implies the claim.

The regularity of U0 with respect to A0 is usually easy to check, while the regularity of U with respect

to A is in general di�cult to establish. For that purpose, various perturbative criteria have been developed

for self-adjoint operators in one Hilbert space, and often a distinction is made between short-range and

long-range perturbations. Roughly speaking, the two terms of the formal commutator [A;U] = AU � UA
are treated separately in the short-range case, while [A;U] is really computed in the long-range case. In

the sequel, we discuss short-range type perturbations for unitary operators in a two-Hilbert spaces setting.

The results we obtain are analogous to the ones obtained in [39, Sec. 3.1] for self-adjoint operators in a

two-Hilbert spaces setting.

We start by showing how the condition U 2 C1(A) and the assumptions (ii)-(iii) of Theorem 3.6 can

be veri�ed for a class of short-range type perturbations. Our approach is to infer the desired information

on U from equivalent information on U0, which are usually easier to obtain. Accordingly, our results exhibit

some perturbative �avor. The price one has to pay is to impose some compatibility conditions between

A0 and A. For brevity, we set

B := JU0 � UJ 2 B(H0;H) and B� := JU�0 � U�J 2 B(H0;H):

Proposition 3.7. Let U0 2 C1(A0), assume that D � H is a core for A such that J�D � D(A0), and
suppose that

BA0 � D(A0) 2 B(H0;H); B�A0 � D(A0) 2 B(H0;H) and (JA0J� � A) � D 2 B(H): (3.7)

Then, U 2 C1(A).
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Proof. For ' 2 D , a direct calculation gives〈
A';U'

〉
H �

〈
';UA'

〉
H =

〈
A';U'

〉
H �

〈
';UA'

〉
H �

〈
'; J [A0; U0]J

�'
〉
H +

〈
'; J [A0; U0]J

�'
〉
H

=
〈
';BA0J

�'
〉
H �

〈
B�A0J�';'

〉
H +

〈
U�'; (JA0J� � A)'iH

� 〈(JA0J� � A)';U'〉H +
〈
'; J [A0; U0]J

�'
〉
H:

Furthermore, we have ∣∣〈';BA0J�'〉H � 〈B�A0J�';'〉H∣∣ � Const:k'k2H
due to the �rst two conditions in (3.7), and we have∣∣〈U�'; (JA0J� � A)'〉H � 〈(JA0J� � A)';U'〉H∣∣ � Const:k'k2H
due to the third condition in (3.7). Finally, since U0 2 C1(A0) and J 2 B(H0;H) we also have∣∣〈'; J [A0; U0]J�'〉H∣∣ � Const:k'k2H:

Since D is a core for A, this implies that U 2 C1(A).

In the next proposition, we show how the assumption (ii) of Theorem 3.6 is veri�ed for short-

range type perturbations. Since the hypotheses are slightly stronger than the ones of Proposition 3.7, U

automatically belongs to C1(A).

Proposition 3.8. Let U0 2 C1(A0), assume that D � H is a core for A such that J�D � D(A0), and
suppose that

BA0 � D(A0) 2 B(H0;H); B�A0 � D(A0) 2 K (H0;H) and (JA0J� � A) � D 2 K (H): (3.8)

Then, the di�erence of bounded operators JU�10 [A0; U0]J
� � U�1[A;U] belongs to K (H).

Proof. The facts that U0 2 C1(A0) and J
�D � D(A0) imply the inclusions

U0J
�D � U0D(A0) � D(A0):

Using this and the last two conditions of (3.8), we obtain for ' 2 D and  2 U�1D that〈
 ;
(
JU�10 [A0; U0]J

� � U�1[A;U])'〉H
=
〈
 ;B�A0U0J�'

〉
H +

〈
B�A0J�U ;'

〉
H +

〈
(JA0J

� � A)U ;U'〉H � 〈 ; (JA0J� � A)'〉H
=
〈
 ;K1U0J

�'
〉
H +

〈
K1J

�U ;'
〉
H +

〈
K2U ;U'

〉
H �

〈
 ;K2'

〉
H

with K1 2 K (H0;H) and K2 2 K (H). Since D and U�1D are dense in H, it follows that the operator

JU�10 [A0; U0]J
� � U�1[A;U] belongs to K (H).

In the rest of the section, we particularize the previous results to the case A = JA0J
�. This case

deserves a special attention since it represents the most natural choice of conjugate operator A for U

when a conjugate operator A0 for U0 is given. However, one needs in this case the following assumption

to guarantee the self-adjointness of the operator A :

Assumption 3.9. There exists a set D � D(A0J�) � H such that JA0J
� � D is essentially self-adjoint,

with corresponding self-adjoint extension denoted by A.

Assumption 3.9 might be di�cult to check in general, but in concrete situations the choice of the set

D can be quite natural (see for example Lemma 4.9 for the case of quantum walks or [40, Rem. 4.3] for

the case of manifolds with asymptotically cylindrical ends). The following two corollaries follow directly

from Propositions 3.7-3.8 in the case Assumption 3.9 is satis�ed.
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Corollary 3.10. Let U0 2 C1(A0), suppose that Assumption 3.9 holds for some set D � H, and assume

that BA0 � D(A0) 2 B(H0;H) and B�A0 � D(A0) 2 B(H0;H). Then, U belongs to C1(A).

Corollary 3.11. Let U0 2 C1(A0), suppose that Assumption 3.9 holds for some set D � H, and as-

sume that BA0 � D(A0) 2 B(H0;H) and B�A0 � D(A0) 2 K (H0;H). Then, the di�erence of bounded

operators JU�10 [A0; U0]J
� � U�1[A;U] belongs to K (H).

4 Quantum walks with an anisotropic coin

In this section, we apply the abstract theory of Section 3 to prove our results on the spectrum of the

evolution operator U of the quantum walk with an anisotropic coin de�ned in Section 2. For this, we �rst

determine in Section 4.1 the spectral properties and prove a Mourre estimate for the asymptotic operators

U` and Ur. Then, in Section 4.2, we use the Mourre estimate for U` and Ur to derive a Mourre estimate

for U. Finally, in Section 4.3, we use the Mourre estimate for U to prove our results on U. We recall that

the behaviour of the coin operator C at in�nity is determined by Assumption 2.1.

4.1 Asymptotic operators U` and Ur

For the study of the asymptotic operators U` and Ur, we use the symbol ? to denote either the index ` or

the index r. Also, we introduce the subspace H�n � H of elements with �nite support

H�n :=
⋃

n2N
{
	 2 H j 	(x) = 0 if jx j � n

}
;

the Hilbert space K := L2
(
[0; 2�); dk2� ;C

2
)
, and the discrete Fourier transform F : H ! K, which is the

unitary operator de�ned as the unique continuous extension of the operator

(F	)(k) :=
∑
x2Z

e�ikx 	(x); 	 2 H�n; k 2 [0; 2�):

A direct computation shows that the operator U? is decomposable in the Fourier representation, namely,

for all f 2 K and almost every k 2 [0; 2�) we have

(F U?F �f )(k) = Û?(k)f (k) with Û?(k) :=

(
eik 0

0 e�ik

)
C? 2 U(2):

Moreover, since Û?(k) 2 U(2) the spectral theorem implies that Û?(k) can be written as

Û?(k) =

2∑
j=1

�?;j(k)�?;j(k);

with �?;j(k) the eigenvalues of Û?(k) and �?;j(k) the corresponding orthogonal projections.

The next lemma furnishes some information on the spectrum of U?. To state it, we use the following

parametrisation for the matrices C? :

C? = ei�?=2
(
a? e

i(�?��?=2) b? e
i(�?��?=2)

�b? e�i(�?��?=2) a? e
�i(�?��?=2)

)
(4.1)

with a?; b? 2 [0; 1] satisfying a2? + b2? = 1, and �?; �?; �? 2 (��; �]. The determinant det(C?) of C? is

equal to ei�? . For brevity, we also set

�?(k) := a? cos(k + �? � �?=2);
�?(k) :=

√
1� �?(k)2;

&?(k) := a? sin(k + �? � �?=2);
�? := arccos(a?):
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Lemma 4.1 (Spectrum of U?). (a) If a? = 0, then U? has pure point spectrum

�(U?) = �p(U?) =
{
i ei�?=2;�i ei�?=2 }

with each point an eigenvalue of U? of in�nite multiplicity.

(b) If a? 2 (0; 1), then �p(U?) = ? and

�(U?) = �c(U?) =
{
ei j  2 [�?=2 + �?; � + �?=2� �?] [ [� + �?=2 + �?; 2� + �?=2� �?]

}
:

(c) If a? = 1, then �p(U?) = ? and �(U?) = �c(U?) = T.

Proof. Using the parametrisation (4.1), one gets Û?(k) = ei�?=2
(

a?(k) b?(k)

�b?(k) a?(k)

)
with the coe�cients

a?(k) := a? e
i(k+�?��?=2) and b?(k) := b? e

i(k+�?��?=2). Therefore, the spectrum of U? is given by

�(U?) =
{
�?;j(k) j j = 1; 2; k 2 [0; 2�)

}
;

with �?;j(k) the solution of the characteristic equation det
(
Û?(k)��?;j(k)

)
= 0, j = 1; 2, k 2 [0; 2�).

We now exhibit normalised eigenvectors u?;j(k) of Û?(k) for the eigenvalues �?;j(k) which are C1 in

the variable k : 
u?;j(k) :=

p
�?(k)+(�1)j�1&?(k)

b?

p
2�?(k)

(
ib?(k)

&?(k) + (�1)j�?(k)

)
if a? 2 [0; 1)

u?;1(k) :=
(
1
0

)
and u?;2(k) :=

(
0
1

)
if a? = 1.

We leave the reader check that u?;j(k) are indeed normalised eigenvectors of Û?(k) with eigenvalues

�?;j(k). In addition, since for a? 2 [0; 1) one has �?(k) > 0 and �?(k) + (�1)j�1&?(k) > 0, the 2�-

periodic map R 3 k 7! u?;j(k) 2 C2 is of class C1.

Our next goal is to construct a conjugate operator for the operator U?. For this, a few preliminaries

are necessary. First, we equip the interval [0; 2�) with the addition modulo 2�, and for any n 2 N we de�ne

the space Cn
(
[0; 2�);C2

) � K as the set of functions [0; 2�) ! C2 of class Cn. In particular, we have

u?;j 2 C1
(
[0; 2�);C2

)
, and the space FH�n � C1

(
[0; 2�);C2

)
is the set of C2-valued trigonometric

polynomials.

Next, we de�ne the asymptotic velocity operator for the operator U?. For j = 1; 2, we let v?;j :

[0; 2�)! R be the bounded function given by

v?;j(k) := i �0?;j(k)
(
�?;j(k)

)�1
; k 2 [0; 2�): (4.2)

Here, ( � )0 stands for the derivative with respect to k , and v?;j is real valued because �?;j takes values in

T. Finally, for all f 2 K and almost every k 2 [0; 2�), we de�ne the decomposable operator V̂? 2 B(K)
by (

V̂?f
)
(k) := V̂?(k)f (k) where V̂?(k) :=

2∑
j=1

v?;j(k)�?;j(k) 2 B(C2); (4.3)

and we call asymptotic velocity operator the operator V? := F � V̂?F . The basic spectral properties of V?
are collected in the following lemma.

Lemma 4.2 (Spectrum of V?). Let C? be parameterised as in (4.1).

(a) If a? = 0, then v?;j = 0 for j = 1; 2, and V? = 0.

11



(b) If a? 2 (0; 1), then v?;j(k) =
(�1)j &?(k)

�?(k)
for j = 1; 2 and k 2 [0; 2�), �p(V?) = ? and

�(V?) = �c(V?) = [�a?; a?]:

(c) If a? = 1, then v?;j = (�1)j for j = 1; 2, and V? has pure point spectrum

�(V?) = �p(V?) = f�1; 1g

with each point an eigenvalue of V? of in�nite multiplicity.

Proof. The claims follow from simple calculations using the formulas for �?;j(k) in the proof of Lemma

4.1 and the de�nition (4.2) of v?;j(k).

For any �; � 2 C([0; 2�);C2
)
, we de�ne the operator j�ih�j : C([0; 2�);C2

)! C
(
[0; 2�);C2

)
by(j�ih�jf )(k) := 〈�(k); f (k)〉

2
�(k); f 2 C([0; 2�);C2

)
; k 2 [0; 2�);

where h � ; � i2 is the usual scalar product on C2. This operator extends continuously to an element of

B(K), with norm satisfying the bound∥∥j�ih�j∥∥
B(K) � k�kL1([0;2�); dk

2�
;C2) k�kL1([0;2�); dk

2�
;C2): (4.4)

We also de�ne the self-adjoint operator P in K

P f := �i f 0; f 2 D(P ) := {f 2 K j f is absolutely continuous, f 0 2 K, and f (0) = f (2�)
}
:

With these de�nitions at hand, we can prove the self-adjointness of an operator useful for the de�nition

of our future the conjugate operator for U :

Lemma 4.3. The operator

X̂?f := �
2∑

j=1

(∣∣u?;j〉〈u?;j ∣∣P � i ∣∣u?;j〉〈u0?;j ∣∣)f ; f 2 FH�n;

is essentially self-adjoint in K, with closure denoted by the same symbol. In particular, the Fourier transform

X? := F �X̂?F of X̂? is essentially self-adjoint on H�n in H.

Proof. The proof simply consists in checking the assumptions of Nelson's commutator theorem [37,

Thm. X.37] applied with the comparison operator N := P 2 + 1.

The main relations between the operators introduced so far are summarized in the following proposi-

tion whose proof is left to the reader. To state it, we need one more decomposable operator Ĥ? 2 B(K)
de�ned for all f 2 K and almost every k 2 [0; 2�) by

(
Ĥ?f

)
(k) := Ĥ?(k)f (k) where Ĥ?(k) := �

2∑
j=1

v 0?;j(k)�?;j(k) 2 B(C2):

We also need the inverse Fourier transform H? := F �Ĥ?F of Ĥ?.

Proposition 4.4. (a) One has the equality [iX?; V?] = H? in the form sense on H�n.

(b) U?, V? and H? are mutually commuting.

(c) One has the equality [X?; U?] = U?V? in the form sense on H�n.
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Since X? is essentially self-adjoint on H�n, Proposition 4.4(a) implies that V? 2 C1(X?). Therefore,

A?	 := 1
2

(
X?V? + V?X?

)
	; 	 2 D(A?) :=

{
	 2 H j V?	 2 D(X?)

}
;

is self-adjoint in H, and essentially self-adjoint on H�n (see [45, Lemma 2.4]). We can now state and

prove the main results of this section. The symbols Int(�) and @� denote the interior and the boundary

of a set � � T.
Proposition 4.5. (a) U? 2 C1(A?) with U

�1
? [A?; U?] = V 2

? .

(b) %A?

U?
= %̃A?

U?
, and

(i) if a? = 0, then %̃A?

U?
(�) = 0 for � 2 {i ei�?=2;�i ei�?=2 } and %̃A?

U?
(�) =1 otherwise,

(ii) if a? 2 (0; 1), then %̃A?

U?
(�) > 0 for � 2 Int

(
�(U?)

)
, %̃A?

U?
(�) = 0 for � 2 @�(U?), and %̃

A?

U?
(�) =1

otherwise,

(iii) if a? = 1, then %̃A?

U?
(�) = 1 for all � 2 T.

(c) (i) If a? 2 (0; 1), then U? has purely absolutely continuous spectrum

�(U?) = �ac(U?) =
{
ei j  2 [�?=2 + �?; � + �?=2� �?] [ [� + �?=2 + �?; 2� + �?=2� �?]

}
:

(ii) If a? = 1, then U? has purely absolutely continuous spectrum �(U?) = �ac(U?) = T.

Proof. (a) A calculation in the forme sense on H�n using points (b) and (c) of Proposition 4.4 gives

[A?; U?] =
1
2

(
V?[X?; U?] + [X?; U?]V?

)
= U?V

2
? :

Since A? is essentially self-adjoint on H�n, this implies that U? 2 C1(A?) with U
�1
? [A?; U?] = V 2

? .

(b) Take � 2 T and " > 0. Then, the result of point (a) and (4.3) imply for almost every k 2 [0; 2�)(
FEU?(�; ")U�1? [A?; U?]E

U?(�; ")F �)(k) = (FEU?(�; ")V 2
? E

U?(�; ")F �)(k)
= EÛ?(k)(�; ") V̂?(k)

2EÛ?(k)(�; ")

� min
{
v?;1(k)

2; v?;2(k)
2
}
EÛ?(k)(�; "):

Then, the de�nition (4.2) of v?;j(k) shows that v?;j(k) = 0 if and only if �0?;j(k) = 0, which occurs when

�?;j(k) 2 @�(U?). Therefore, one gets %
A?

U?
= %̃A?

U?
by Lemma 3.3(d), and to conclude one just has to take

into account the form of the boundary sets �(U?) given in Lemma 4.1.

(c) We know from point (a) that U? 2 C1(A?) with U
�1
? [A?; U?] = V 2

? , and Proposition 4.4(a) implies

that V? 2 C1(A?). Thus, U? 2 C2(A?). Therefore, if a? 2 (0; 1), we infer from point (b.ii) and Theorem

3.5 that U? has no singular continuous spectrum in Int
(
�(U?)

)
. This, together with Lemma 4.1(b), implies

the claim in the case a? 2 (0; 1). The claim in the case a? = 1 is proved in a similar way.

4.2 Mourre estimate for U

In this section, we use the Mourre estimate for the asymptotic operators U`; Ur to derive a Mourre estimate

for U. To achieve this, we apply the abstract construction introduced in Section 3.2, starting by choosing

H0 := H�H as second Hilbert space and U0 := U` � Ur as second unitary operator in H0.

The spectral properties of U0 are obtained as a consequence of Lemma 4.1(a), Proposition 4.5(c)

and the direct sum decomposition of U0 :

Lemma 4.6 (Spectrum of U0). One has �(U0) = �(U`) [ �(Ur) and �sc(U0) = ?. Furthermore,
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(a) if a` = ar = 0, then U0 has pure point spectrum

�(U0) = �p(U0) = �p(U`) [ �p(Ur) =
{
i ei�`=2;�i ei�`=2; i ei�r=2;�i ei�r=2 }

with each point an eigenvalue of U0 of in�nite multiplicity,

(b) if a` = 0 and ar 2 (0; 1], then �ac(U0) = �ac(Ur) with �ac(Ur) as in Proposition 4.5(c), and

�p(U0) = �p(U`) =
{
i ei�`=2;�i ei�`=2 }

with each point an eigenvalue of U0 of in�nite multiplicity,

(c) if a` 2 (0; 1] and ar = 0, then �ac(U0) = �ac(U`) with �ac(U`) as in Proposition 4.5(c), and

�p(U0) = �p(Ur) =
{
i ei�r=2;�i ei�r=2 }

with each point an eigenvalue of U0 of in�nite multiplicity,

(d) if a`; ar 2 (0; 1], then U0 has purely absolutely continuous spectrum

�(U0) = �ac(U0) = �ac(U`) [ �ac(Ur)

with �ac(U`) and �ac(Ur) as in Proposition 4.5(c).

Also, as intuition suggests and as already stated in Theorem 2.2, the spectrum of U0 coincides with

the essential spectrum of U, namely, �ess(U) = �(U`) [ �(Ur) = �(U0).

Proof of Theorem 2.2. The proof is based on an argument using crossed product C�-algebras inspired

from [33]. Let A be the algebra of functions Z! B(C2) admitting limits at �1, and let A0 be the ideal

of A consisting in functions Z ! B(C2) vanishing at �1. Since A is equipped with an action of Z by

translation, namely, (
Ty'

)
(x) := '(x + y); x; y 2 Z; ' 2 A;

we can consider the crossed product algebra Ao Z, and the functoriality of the crossed product implies

the identities

(Ao Z)=(A0 o Z) �= (A=A0)o Z =
(
B(C2)�B(C2)

)
o Z =

(
B(C2)o Z

)� (B(C2)o Z
)
; (4.5)

where the equality A=A0 = B(C2)�B(C2) is obtained by evaluation of the functions ' 2 A at �1.

Now, the algebras AoZ and A0 oZ can be faithfully represented in H by mapping the elements of

A and A0 to multiplication operators in H and the elements of Z to the shifts Tz . Writing A and A0 for

these representations of AoZ and A0 oZ in H, we can note three facts. First, A0 is equal to the ideal

of compact operators K (H). Secondly, the operator U belongs to A, since

U = SC = T1

(
1 0

0 0

)
C + T�1

(
0 0

0 1

)
C

with T1; T�1 shifts and ( 1 0
0 0 )C; (

0 0
0 1 )C multiplication operators in H. Thirdly, the essential spectrum of

U in A is equal to the spectrum of the image of U in the quotient algebra A=K (H) = A=A0. These

facts, together with (4.5) and Lemma 4.6, imply the equalities

�ess(U) = �
(
SC(�1)� SC(+1)

)
= �

(
SC` � SCr

)
= �(U`) [ �(Ur) = �(U0);

which prove the claim.
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Next, we de�ne the identi�cation operator J 2 B(H0;H) by

J(	`;	r) := j`	` + jr	r; (	`;	r) 2 H0;

where

jr(x) :=

{
1 if x � 0

0 if x � �1 and j` := 1� jr:

The adjoint operator J� 2 B(H;H0) satis�es J
�	 = (j`	; jr	) for 	 2 H. Using the same notation for

the functions j`; jr and the associated multiplication operators in H, one directly gets:

Lemma 4.7. J�J = j` � jr is an orthogonal projection, and JJ� = 1H.

The �rst result of the next lemma is an analogue of Proposition 4.5(a) in the Hilbert space H0. To

state it, we need to introduce the operator A0 := A`�Ar (which will be used as a conjugate operator for

U0) and the operator V0 := V` � Vr.
Lemma 4.8. (a) U0 2 C1(A0) with U

�1
0 [A0; U0] = V 2

0 .

(b) B := JU0 � UJ 2 K (H0;H) and B� := JU�0 � U�J 2 K (H0;H).

Proof. The proof of point (a) is similar to the proof of Proposition 4.5(a); one just has to replace the

operators U?; A?; V? in H by the operators U0; A0; V0 in H0. For point (b), a direct computation with

(	`;	r) 2 H0 gives

B(	`;	r) =
(
j`U`	` + jrUr	r

)� U(j`	` + jr	r

)
=
(
[j`; U`]� (U � U`) j`

)
	` +

(
[jr; Ur]� (U � Ur) jr

)
	r

=
(
[j`; S]C` � S(C � C`) j`

)
	` +

(
[jr; S]Cr � S(C � Cr) jr

)
	r: (4.6)

Since we have [j?; S] 2 K (H) and (C � C?) j? 2 K (H) as a consequence of Assumption 2.1, it follows

that B 2 K (H0;H). The inclusion B� 2 K (H0;H) is proved in a similar way.

The next step is to de�ne a conjugate operator A for U by using the conjugate operator A0 for

U0. For this, we consider the operator JA0J
� which is well-de�ned and symmetric on H�n. We have the

equality

JA0J
� = j`A` j` + jrAr jr on H�n; (4.7)

and JA0J
� is essentially self-adjoint on H�n :

Lemma 4.9 (Conjugate operator for U). The operator JA0J
� is essentially self-adjoint on H�n, with

corresponding self-adjoint extension denoted by A.

Proof. The operator ĵ? := F j?F � 2 B(K) satis�es ĵ?D(P ) � D(P ) and [ĵ?; P ] = 0 on D(P ). Therefore,
we have the following equalities on FH�n

F j?A? j?F
� = 1

2F j?
(
X?V? + V?X?

)
j?F

�

= 1
2 ĵ?
(
X̂?V̂? + V̂?X̂?

)
ĵ?

= ĵ?
(
V̂?X̂? � i

2 Ĥ?

)
ĵ?

= �
2∑

j=1

(
ĵ?
∣∣v?;ju?;j〉〈u?;j ∣∣ ĵ?P � i ĵ?∣∣v?;ju?;j〉〈u0?;j ∣∣ ĵ?)� i

2 ĵ?Ĥ? ĵ?:

which give on FH�n

FJA0J
�F � = �

2∑
j=1

∑
?2f`;rg

ĵ?
∣∣v?;ju?;j〉〈u?;j ∣∣ ĵ?P + i

2∑
j=1

∑
?2f`;rg

ĵ?
∣∣v?;ju?;j〉〈u0?;j ∣∣ ĵ? � i

2

∑
?2f`;rg

ĵ?Ĥ? ĵ?:

15



The rest of the proof consists in an application of Nelson's commutator theorem [37, Thm. X.37] with the

comparison operator N := P 2+1. As a consequence, it follows that FJA0J
�F � is essentially self-adjoint

on FH�n, and thus that JA0J
� is essentially self-adjoint on H�n.

We are thus in the setup of Assumption 3.9 with D = H�n. So, the next step is to show the inclusion

U 2 C1(A). For this, we use Corollary 3.10. Using Corollary 3.11, we also get an additional compacity

result:

Lemma 4.10. U 2 C1(A) and JU�10 [A0; U0]J
� � U�1[A;U] 2 K (H).

Proof. First, we recall that U0 2 C1(A0) due to Lemma 4.8(a), and that Assumption 3.9 holds with

D = H�n. Next, we note that the expression for B(	`;	r) with (	`;	r) 2 H0 is given in (4.6), and that

B�(	`;	r) =
(
C�[j`; S�]� (C� � C�` ) j`S�

)
	` +

(
C�[jr; S�]� (C� � C�r ) jrS�

)
	r:

Furthermore, we know from Lemma 4.8(b) that B;B� 2 K (H0;H). In consequence, due to Corollar-

ies 3.10-3.11, the claims will follow if we show that BA0 � D(A0) 2 B(H0;H) and B�A0 � D(A0) 2
K (H0;H). For this, we �rst note that computations as in the proof of Lemma 4.9 imply on H�n the

equalities

A? = �F �
{
P

2∑
j=1

(∣∣u?;j〉〈v?;ju?;j ∣∣+ i ∣∣u0?;j〉〈v?;ju?;j ∣∣)
}

F + i
2H?

= QF �
{

2∑
j=1

(∣∣u?;j〉〈v?;ju?;j ∣∣+ i ∣∣u0?;j〉〈v?;ju?;j ∣∣)
}

F + i
2H? (4.8)

with Q the self-adjoint multiplication operator de�ned by(
Q	

)
(x) = x	(x); x 2 Z; 	 2 D(Q) := {	 2 H j kQ	kH <1}: (4.9)

Therefore, since all the operators on the right of Q in (4.8) are bounded, it is su�cient to show that

B(Q�Q) � D(Q)�D(Q) 2 B(H0;H) and B�(Q�Q) � D(Q)�D(Q) 2 K (H0;H):

But, this can be deduced from the Assumption 2.1 once the following observations are made:
[
j?; S

]
= Sm?

with m? : Z! B(C2) a function with compact support, [j?; S
�] = S�n? with n? : Z! B(C2) a function

with compact support, and S�Q = QS� + b with b 2 L1
(
Z;B(C2)

)
.

Recall that the set �(U) = @�(U`) [ @�(Ur) has been introduced in Section 2. Due to Lemma 4.1,

�(U) contains at most 8 values. Moreover, since we show in the next proposition that a Mourre estimate

holds outside �(U), it is natural to interpret �(U) as the set of thresholds in the spectrum of U.

Proposition 4.11 (Mourre estimate for U). We have %̃AU � %̃A0

U0
with %̃A0

U0
= min

{
%̃A`

U`
; %̃Ar

Ur

}
and %̃A`

U`
; %̃Ar

Ur

given in Proposition 4.5. In particular, %̃A0

U0
(�) > 0 if � 2 f�(U`) [ �(Ur)g n �(U).

Proof. The �rst claim follows from Theorem 3.6, with the assumptions of this theorem veri�ed in Lemmas

4.7-4.10. The second claim follows from Proposition 4.5 and standard results on the function %̃A0

U0
when

A0 and U0 are direct sums of operators (see [3, Prop. 8.3.5] for a proof in the case of direct sums of

self-adjoint operators).
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4.3 Spectral properties of U

In order to go one step further in the study of U, a regularity property of U with respect to A stronger

than U 2 C1(A) has to be established. This regularity property will be obtained by considering �rst the

operator JU0J
�, and then by analysing the di�erence U � JU0J�. We note that JU0J

� and U � JU0J�
satisfy the equalities

JU0J
� = j`U` j` + jrUr jr (4.10)

and

U � JU0J� = j`(U � U`) j` + jr(U � Ur) jr + j`U jr + jrU j`: (4.11)

Lemma 4.12. JU0J
� 2 C2(A).

Proof. The proof is based on standard results from toroidal pseudodi�erential calculus, as presented for

example in [41, Chap. 4]. The normalisation we use for the Fourier transform di�ers from the one used

in [41], but the di�erence is harmless.

(i) First, we note that ĵ? is a toroidal pseudodi�erential operator on FH�n with symbol in S0�;0(T�Z)
for each � > 0 (see the de�nitions 4.1.7 and 4.1.9 of [41]). Similarly, the equation (4.8) shows that Â? is a

�rst order di�erential operator on FH�n with matrix coe�cients in M
(
2; C1(T)

) � M
(
2; S0�;0(T�Z)

)
for

each � > 0. In consequence, it follows from [41, Thm. 4.7.10] that the commutator
[
ĵ?; Â?

]
on FH�n is

well-de�ned and equal to a toroidal pseudodi�erential operator with matrix coe�cients in M
(
2; S1��

�;0 (T�
Z)
)
for each � > 0. This implies that

[
ĵ?; Â?

]
is bounded on FH�n, and thus that ĵ? 2 C1(Â?) since

FH�n is dense in D(Â?). By Fourier transform, it follows that j? 2 C1(A?).

(ii) A calculation in the form sense on H�n using equations (4.7) and (4.10) and the identities

j` jr = 0 = jr j` gives [
JU0J

�; A
]
=
[
j`U` j`; j`A` j`

]
+
[
jrUr jr; jrAr jr

]
=
∑

?2f`;rg
j?
(
U? j?A? � A? j?U?

)
j?

=
∑

?2f`;rg
j?
([
U?; j?

]
A? +

[
j?U?; A?

])
j?: (4.12)

Since j?U? 2 C1(A?) by Proposition 4.5(a), point (i) and [3, Prop. 5.1.5], the second term on the r.h.s.

of (4.12) belongs to B(H). Furthermore, a calculation using the de�nition of the shift operator S shows

that
[
U?; j?

]
=
[
S; j?

]
C? = B?m? with B? 2 B(H) and m? : Z ! B(C2) a function with compact

support. It follows from (4.8) that
[
U?; j?

]
A? is bounded on H�n. Therefore, both terms on the r.h.s. of

(4.12) are bounded on H�n, and thus we infer from the density of H�n in D(A) that JU0J� 2 C1(A).

(iii) To show that JU0J
� 2 C2(A), one has to commute the r.h.s. of (4.12) once more with A. Doing

this in the form sense on H�n with the notation
∑

?2f`;rg j?D? j? with D? := [U?; j?]A? + [j?U?; A?] for the

r.h.s. of (4.12), one gets that JU0J
� 2 C2(A) if the operators [D?; A?], [D?; j?]A? and A?[D?; j?] de�ned

in the form sense on H�n extend continuously to elements of B(H).

For the �rst operator, we have in the form sense on H�n the equalities

[D?; A?] =
[
[U?; j?]A? + j?[U?; A?] + [j?; A?]U?; A?

]
=
[
[U?; j?]A?; A?

]
+ j?

[
[U?; A?]; A?

]
+ [j?; A?][U?; A?] + [j?; A?][U?; A?] +

[
[j?; A?]; A?

]
U? :

(4.13)

Then, simple adaptations of the arguments presented in points (i) and (ii) show that the operators

[j?; A?]; [U?; j?] 2 B(H) can be multiplied in the form sense on H�n by several operators A? on the

left and/or on the right and that the resultant operators extend continuously to elements of B(H).

Therefore, the �rst, the third, the fourth and the �fth terms in (4.13) extend continuously to elements

17



of B(H). For the second term, we note from Propositions 4.4(a) and 4.5(a) that U?; V? 2 C1(A?) with

[U?; A?] = �U?V
2
? . In consequence, we have U?V

2
? 2 C1(A?) by [3, Prop. 5.1.5] and

j?
[
[U?; A?]; A?

]
= �j?

[
U?V

2
? ; A?

] 2 B(H):

The proof that the operators [D?; j?]A? and A?[D?; j?] de�ned in the form sense on H�n extend

continuously to elements of B(H) is similar. The only noticeable di�erence is the appearance of terms

[U?V
2
? ; j?]A? and A?[U?V

2
? ; j?]. However, by observing that V 2

? 2 C1(A?) and that [V 2
? ; j?] is a toroidal

pseudodi�erential operator with matrix coe�cients in M
(
2; S��

�;0(T� Z)
)
for each � > 0, one infers that

[U?V
2
? ; j?]A? and A?[U?V

2
? ; j?] extend continuously to elements of B(H).

In the next lemma, we prove that U satis�es su�cient regularity with respect to A, namely that

U 2 C1+"(A) for some " 2 (0; 1). We recall from Section 3.1 that the sets C2(A), C1+"(A), C1+0(A)

and C1;1(A) satisfy the continuous inclusions C2(A) � C1+"(A) � C1+0(A) � C1;1(A).

Lemma 4.13. U 2 C1+"(A) for each " 2 (0; 1) with " � minf"`; "rg.
Proof. (i) Since JU0J

� 2 C2(A) by Lemma 4.12 and C2(A) � C1+"(A), it is su�cient to show that

U � JU0J� 2 C1+"(A), with U � JU0J� given by (4.11). Moreover, calculations as in the proof of Lemma

4.12 show that the last two terms j`U jr and jrU j` of (4.11) belong to C2(A). So, it only remains to show

that j`(U � U`) j` + jr(U � Ur) jr 2 C1+"(A).

(ii) In order to show this inclusion, we �rst observe from (2.1) and (4.7) that we have in the form

sense on H�n the equalities[
j`(U � U`) j` + jr(U � Ur) jr; A

]
=
∑

?2f`;rg

[
j?(U � U?) j?; j?A? j?

]
=
∑

?2f`;rg

(
j?S(C � C?) j?A? j? � j?A? j?S(C � C?) j?

)
: (4.14)

Then, using Assumption 2.1, the formula (4.8) for A? on H�n, and a similar formula with the operator

Q on the right (recall that Q is the position operator de�ned in (4.9)), one obtains that the operator on

the r.h.s. of (4.14) de�ned as

D? := j?S(C � C?) j?A? j? � j?A? j?S(C � C?) j?

extends continuously to an element of B(H). Since H�n is dense in D(A), this implies that j`(U�U`) j`+

jr(U � Ur) jr 2 C1(A).

(iii) To show that j`(U � U`) j` + jr(U � Ur) jr 2 C1+"(A), it remains to check that∥∥ e�itAD? e
itA�D?

∥∥
B(H)

� Const: t" for all t 2 (0; 1).

But, algebraic manipulations as presented in [3, p. 325-326] show that for all t 2 (0; 1)∥∥ e�itAD? e
itA�D?

∥∥
B(H)

� Const:
(k sin(tA)D?kB(H) + k sin(tA)(D?)

�kB(H)

)
� Const:

(ktA(tA+ i)�1D?kB(H) + ktA(tA+ i)�1(D?)
�kB(H)

)
:

Furthermore, if we set At := tA(tA+ i)�1 and �t := thQi(thQi+ i)�1, we obtain that

At =
(
At + i(tA+ i)�1AhQi�1)�t

with AhQi�1 2 B(H) due to (4.7)-(4.8). Thus, since
∥∥At + i(tA + i)�1A hQi�1

∥∥
B(H)

is bounded by a

constant independent of t 2 (0; 1), it is su�cient to prove that

k�tD?kB(H) + k�t(D?)
�kB(H) � Const: t" for all t 2 (0; 1).
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Now, this estimate will hold if we show that the operators hQi"D? and hQi"(D?)
� de�ned in the form

sense on H�n extend continuously to elements of B(H). For this, we �x " 2 (0; 1) with " � minf"`; "rg,
and note that hQi1+"(C � C?) j? 2 B(H). With this inclusion and the fact that hQi�1A? de�ned in

the form sense on H�n extend continuously to elements of B(H), one readily obtains that hQi"D? and

hQi"(D?)
� de�ned in the form sense on H�n extend continuously to elements of B(H), as desired.

With what precedes, we can now prove our last two main results on U which have been stated in

Section 2.

Proof of Theorem 2.3. Theorem 3.4, whose assumptions are veri�ed in Proposition 4.11 and Lemma

4.13, implies that each T 2 B(H;G) which extends continuously to an element of B
(D(hAis)�;G) for

some s > 1=2 is locally U-smooth on � n �p(U). Moreover, we know from the proof of of Lemma 4.13

that D(Q) � D(A). Therefore, we have D(hQis) � D(hAis) for each s > 1=2, and it follows by duality

that D(hAis)� � D(hQis)� � D(hQi�s) for each s > 1=2. In consequence, any operator T 2 B(H;G)
which extends continuously to an element of B

(D(hQi�s);G) some s > 1=2 also extends continuously

to an element of B
(D(hAis)�;G). This concludes the proof.

Proof of Theorem 2.4. The claim follows from Theorem 3.5, whose hypotheses are veri�ed in Lemma

4.13 and Proposition 4.11.
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