1	1368R2
2	
3	A mechanism for Nb incorporation in rutile and application of Zr-in-rutile
4	thermometry: A case study from granulite facies paragneisses of the
5	Mogok metamorphic belt, Myanmar
6	
7	
8	MAW MAW WIN ^{1, *} , M. ENAMI ^{2, †} , T. KATO ² AND YE KYAW THU ¹
9	
10	
11	¹ Department of Earth and Planetary Sciences, Graduate School of Environmental
12	Studies, Nagoya University, Nagoya 464-8601, Japan
13	² Institute for Space–Earth Environmental Research, Nagoya University, Nagoya
14	464-8601, Japan
15	* Present address: Yadanabon University, Amarapura, Mandalay, Myanmar
16	† E-mail: <u>enami@nagoya-u.jp</u>
17	
18	Running Title: Nb incorporation in rutile and application of Zr-in-rutile thermometry
19	
20	Mineralogical Magazine (2017) 81, 1503–1521.

21

ABSTRACT

22	Rutile grains extensively occur in host phases of biotite and quartz-feldspar aggregate in
23	high-temperature paragneisses of the Mogok metamorphic belt of Myanmar. They occur
24	as an isolated phase and sometimes show intergrowth texture with ilmenite. Most rutile
25	grains contain up to 3.7 wt% Nb ₂ O ₅ , which shows positive correlations with Fe a2013
26	trivalent elements. Niobium substitutes for Ti by a coupled substitution with the
27	trivalent cations (M^{3+}) of Nb ⁵⁺ M^{3+} Ti ⁴⁺ -2. Fine-grained rutile grains included in ilmenite
28	are distinctly poor in Nb (< 0.1 wt% as Nb ₂ O ₅) and contain Fe of 1.7–3.2 wt% as Fe ₂ O ₃ ,
29	suggesting vacancy-bearing substitution of $Fe^{3+}_{4}Ti^{4+}_{-3}\Box_{-1}$, where \Box indicates a vacancy.
30	The rutile grains in the felsic phases contain high Zr contents up to 4200 ppm,
31	suggesting equilibrium temperatures over 800 °C by the Ti-in-rutile geothermometer.
32	These high-temperature conditions are consistent with those estimated by conventional
33	methods reported in the literature and suggest wide occurrences of the
34	upper-amphibolite and granulite facies metamorphic rocks in the middle segment of the
35	Mogok metamorphic belt. In contrast, the Zr contents of rutile grains in biotite are
36	usually less than 1000 ppm, implying equilibrium temperatures lower than 750 $^{\circ}$ C.
37	Most of the Zr-poorer rutile grains might have been included in biotite and were
38	isolated from the zircon-bearing system during an early stage of prograde
39	metamorphism. Some other Zr-poorer rutile grains might have been an exsolved phase
40	from Ti-rich biotite during retrograde metamorphism, which was furthered by the
41	infiltration of metamorphic fluid under lower-amphibolite facies conditions.
42	
43	KEYWORDS: Niobium, Zirconium, Rutile, Mogok metamorphic rock, Myanmar
44	

45 Introduction

46 Rutile is a dominant reservoir of some high field strength elements (HFSEs) (e.g., Foley 47 et al., 2000; Klemme et al., 2005; Bowles et al., 2011). Zack et al. (2002) estimated that 48 rutile grains in an eclogite from Trescolmen, Central Alps concentrated >90 % of Ti, Nb, 49 Sb, Ta, and W and 5–45 % of V, Cr, Mo, and Sn of the whole-rock contents. Khodos et 50 al. (1988) synthetically showed that rutile is in a solid solution with up to 25 mol % Nb 51 under 1400 °C. Additionally, they concluded that (1) small amounts of Nb less than 3 52 mol % generally substitute into the rutile structure in a pentavalent state, and (2) 53 Nb-richer rutile contains Nb in a quadrivalent state, suggesting that the rutile structure 54 contains NbO₂-TiO₂ solutions. Natural occurrences of Nb-rich rutile are reported mainly 55 in pegmatites (~27.7 wt% as Nb₂O₅: Černý et al., 1999; Černý and Chapman, 2001), 56 kimberlites (~20.9 wt%: Tollo and Haggerty, 1987), and eclogite xenoliths (~11.3 wt%: 57 Sobolev et al., 2011; Korolev et al., 2014; Hirtopanu et al., 2015) and pyrope crytals 58 (~15.6 wt%: Rezvukhin et al., 2016) in kimberlites. Nb-bearing rutile occurs rarely in common metamorphic rocks, and Dymek (1983) reported rutile grains with 3.1-5.0 59 60 wt% Nb₂O₅ in cordierite-anthophyllite-garnet gneisses in the Malene supracrustal rocks 61 from West Greenland. 62 Rutile shows a strong temperature dependence on Zr substitution, and experimental 63 results and observations on rocks suggest that the Zr content in rutile, when equilibrated

64 with quartz and zircon, should be a useful thermometer for metamorphic rocks (Zack *et*

65 *al.*, 2004; Watson *et al.*, 2006; Ferry and Watson 2007; Tomkins *et al.*, 2007; Ewing *et*

al., 2013; Pape *et al.*, 2016). Rutile grains containing Zr over 7000 ppm were reported

67 from granulite facies metamorphic rocks (e.g., Zack *et al.*, 2004; Meyer *et al.*, 2011;

68 Pape *et al.*, 2016), functioning as an important Zr reservoir under high-temperature

69	conditions. Villaseca <i>et al.</i> (2007) estimated that rutile could contain 10–35 % of the
70	whole-rock content of Zr in the cases of peraluminous granulites from Spanish Central
71	System (SCS) batholith.
72	Maw Maw Win et al. (2016) briefly reported an occurrence of Nb-rich rutile (~3.7
73	wt% Nb2O5) in a paragneiss from the Sagaing ridge of the Mogok metamorphic belt,
74	Myanmar. They also described that the Zr content of the rutile in the Sagaing
75	paragneisses reached 3600 ppm, implying a high-temperature equilibrium over 850 °C.
76	Additional, systematic, and more precise analyses, including Cr, V, and other minor
77	elements have been carried out on rutile grains in the Sagaing paragneisses for
78	discussion of the mechanism of Nb incorporation in rutile and the application of
79	Zr-in-rutile thermometry. In this study, we (1) report the results of systematic analyses
80	of Nb, Zr, and other trace elements of rutile grains in the Mogok metamorphic rocks
81	from the Sagaing ridge, (2) discuss possible substitution mechanisms of Nb into rutile,
82	and (3) describe the relationship between Zr contents and modes of occurrence of rutile,
83	which might be understood by equilibria during prograde and retrograde metamorphic
84	systems.

85

86 **Outline of geology and sample description**

Rutile-bearing samples in this study were collected from the Sagaing ridge of the
Mogok metamorphic belt in Myanmar. Myanmar and the surrounding regions are
composed of Western and Eastern provinces bordered by the 1200 km long and N–S
trending right-lateral Sagaing fault (Fig. 1a). The Western province is composed of the
Burma microplate and a part of the Indochina region (e.g. Mitchell *et al.*, 2007). The
Eastern province belongs to the Sibumasu block of the Asian plate. The Mogok

93	metamorphic belt lies along the western margin of the Eastern province. Yonemura et al.
94	(2013), Maw Maw Win et al. (2016), and Ye Kyaw Thu et al. (2016, 2017) reported
95	equilibrium conditions of 0.6-1.0GPa/780-950°C for paragneisses using conventional
96	geothermobarometries, and suggested that high-temperature metamorphic rocks of
97	upper amphibolite and granulite facies extensively occur in the Mandalay and Mogok
98	regions in the central Mogok metamorphic belt. The main event of metamorphism was
99	regarded to be Paleogene or younger (Bertrand et al., 1999; Searle et al., 2007;
100	Yonemura et al., 2013; Maw Maw Win et al., 2016). Maw Maw Win et al. (2016)
101	reported calculated chemical Th-U-total Pb isochron method (CHIME) monazite ages
102	in the Late Eocene and Late Oligocene epochs, which were interpreted as the peak
103	metamorphic stage of upper-amphibolite and/or granulite facies and the postdated
104	hydration stage, respectively.
105	The geological and petrographical characteristics of the Mogok metamorphic rocks of
106	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main
106 107	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite,
106 107 108	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing
106 107 108 109	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are
106 107 108 109 110	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are paragneiss-dominant units, mainly intercalating amphibolite and calc-silicate
106 107 108 109 110 111	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are paragneiss-dominant units, mainly intercalating amphibolite and calc-silicate rock/marble layers, respectively (Fig. 1b). Paragneisses, in which the rutile grains were
106 107 108 109 110 111 112	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are paragneiss-dominant units, mainly intercalating amphibolite and calc-silicate rock/marble layers, respectively (Fig. 1b). Paragneisses, in which the rutile grains were studied, are a major lithology of the Sagaing ridge and are mainly composed of garnet,
106 107 108 109 110 111 112 113	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are paragneiss-dominant units, mainly intercalating amphibolite and calc-silicate rock/marble layers, respectively (Fig. 1b). Paragneisses, in which the rutile grains were studied, are a major lithology of the Sagaing ridge and are mainly composed of garnet, biotite, plagioclase, K-feldspar, sillimanite, quartz, and minor amounts of rutile,
106 107 108 109 110 111 112 113 114	the Sagaing ridge were well described by Maw Maw Win <i>et al.</i> (2016). The main metamorphic rocks in the Sagaing ridge are paragneiss, mafic gneiss, amphibolite, calc-silicate rock, and marble. The Sagaing ridge is divided into the Sagaing Metamorphic Unit 1 (SM1) and Sagaing Metamorphic Unit 2 (SM2), which are paragneiss-dominant units, mainly intercalating amphibolite and calc-silicate rock/marble layers, respectively (Fig. 1b). Paragneisses, in which the rutile grains were studied, are a major lithology of the Sagaing ridge and are mainly composed of garnet, biotite, plagioclase, K-feldspar, sillimanite, quartz, and minor amounts of rutile, ilmenite, zircon, and graphite. Among the six paragneiss samples discussed in this study,

116	unit (Fig. 1b). Mineral assemblages and compositional characteristics of garnet, biotite,
117	and plagioclase of the analyzed samples are listed in Table 1.
118	
119	Whole-rock compositions
120	Major and trace element compositions of three samples, S22a, S22b, and S26 were
121	determined by an X-ray fluorescence spectrometer (XRF; Rigaku ZSX Primus II
122	equipped with an Rh X-ray tube operated at 60 kV and 50 mA) at Nagoya University.
123	These elements were calibrated using standard rock samples issued by the Geological
124	Survey of Japan (GSJ) (Geochemical Reference Sample Data Base,
125	https://gbank.gsj.jp/geostandards/welcome.html) and composite standards prepared by
126	Yamamoto and Morishita (1997).
127	The whole-rock compositions of three paragneisses are listed in Table 2. The data of
128	a paragneiss, which was collected from an outcrop in calc silicate marble-dominant area
129	of the Onzon area in the Mogok metamorphic belt (longitude $96^{\circ}06 \neq 043$ E, latitude
130	22°48≠423 N: Ye Kyaw Thu <i>et al.</i> , 2017), is also listed for comparison. The paragneiss
131	(S26) alternating with amphibolite layers of the SM1 unit is lower in SiO ₂ (51.7 wt%)
132	and higher in (FeO* + MnO + MgO) (17.6 wt%) contents than those occurring as layers
133	with calc-silicate rocks/marble in the SM2 unit (S22a and S22b: 62.6–67.5 wt% and
134	10.4–10.5 wt%). The Al_2O_3 content is distinctly higher in S26 (18.6 wt%) than in S22a
135	and S22b (12.6–14.9 wt%). The Onzon paragneiss contains whole-rock composition
136	similar to the samples S22a and S22b.
137	
138	Mineralogical characteristics

139 Analytical procedures

Maw Maw Win and others

140 Quantitative chemical analyses and X-ray mapping of the rutile and coexisting ilmenite 141 were carried out using a JEOL JCXA-8800R (WDS + EDS) and JCXA-733 142 electron-probe microanalyzers (EPMA) at Nagoya University. The accelerating voltage, 143 specimen current, and beam diameter for quantitative analyses were 15 kV, 12 nA on 144 the Faraday cup, and $2-3 \mu m$, respectively. Well-characterized natural and synthetic 145 phases were employed as standards. The matrix correction was performed by using the 146 α -factor table of Kato (2005). The interference of TiK β to VK α was corrected for the 147 quantitative analysis of V in rutile. The detection limits (2σ level) of Nb₂O₅, Ta₂O₅, and 148 Zr are 0.04 wt%, 0.10 wt% and 300 ppm, respectively. The representative analyses of 149 the rutile and ilmenite grains are listed in Table 3.

150

151 *Modes of occurrence and chemical compositions of rutile*

152 The rutile grains occur in host phases of biotite (Figs. 2a and b) and quartz-feldspar

153 aggregates (Figs. 2c and d), and are texturally divided into an isolated grain (Figs. 2b, c,

and d) and intergrowth grain with ilmenite (Figs. 2a and d). The isolated and

155 intergrowth types of rutile grains occur both in biotite and the felsic phases. These rutile

156 grains are textually homogeneous and do not show any lines of evidence for

157 re-equilibrium such as exsolutions of zircon needles and baddeleyite lamellae and

158 Zr-compositional zoning (Fig. 2). The total iron contents are usually less than 1.2 wt%

as Fe₂O₃ in most samples (Fig. 3). These two types of rutile grains occur in samples S26,

160 S28, and S36, and the intergrowth grains tend to be richer in Fe than the coexisting

161 isolated grains in each sample. Although, the Nb₂O₅ contents are usually less than 0.8

162 wt%, those in samples S26, S36, and S22a reach 3.7 wt%, 1.5 wt%, and 1.3 wt%,

163 respectively (Fig. 4). The Cr_2O_3 and V_2O_3 contents reach 0.25 and 0.86 wt%,

164 respectively, and show no difference due to the host phases and textures of the rutile

165 grains (Fig. 5). The rutile grains in the felsic phases are rich in Zr ($2080 \pm 610 - 3100 \pm$

- 166 250 ppm), and those in biotite have a distinctly lower Zr content $(480 \pm 150 830 \pm 300$
- 167 ppm) (Fig. 6).
- 168 In sample S26, small grains of rutile (15-35 µm in size) occur as an aggregate
- 169 included by ilmenite (Nbf-Rt in Figs. 2a and 7a). These grains are distinctly poorer in
- 170 Nb₂O₅ (less than 0.1 wt%: Fig. 4) and characteristically richer in iron (1.7–3.2 wt% as
- 171 Fe₂O₃: Fig. 3) than the other coexisting rutile grains of the intergrowth type (0.27–3.7
- 172 wt% Nb₂O₅ and 0.3–1.3 wt% Fe₂O₃), and will be denoted as "Nb-free and Fe-rich
- 173 rutile" hereafter. They are poor in Cr_2O_3 (less than 0.05 wt%), V_2O_3 (less than 0.09
- 174 wt%), and Zr (below the detection limit) contents.
- 175 The Al₂O₃, MnO, and MgO contents of rutile grains of the isolated and intergrowth
- types are generally less than 0.3, 0.1, and 0.05 wt%, respectively. The Ta₂O₅ content is
- 177 below the detection limit, and Sb and W, which are also considered to be compatible
- 178 with the rutile structure (Meinhold, 2010), were not detected by the qualitative analysis.

179

- 180 Other phases
- 181 The mineralogical characteristics of major phases in the samples S22a, S22b, and S26
- 182 were described in detail by Maw Maw Win *et al.* (2016). Samples S28, S30, and S36
- 183 have mineral assemblages and mineral compositions similar to these samples. Garnet
- 184 grains belong to an almandine–pyrope series with minor grossular and spessartine
- 185 components (Alm_{54–78}Prp_{14–41}Sps_{1–5}Grs_{3–7}: Maw Maw Win *et al.*, 2016; this study).
- 186 They show a zonal structure with a homogeneous core and an almandine and
- 187 spessartine-richer and pyrope-poorer thin mantle of 200–600 µm in thickness. Biotite

Maw Maw Win and others

188	grains are	e characteristicall	v rich in	TiO ₂ with	maximum	contents	from 4.	.0 wt% c	٥f
100	granno are	ental accel is creati	,	1102 111011	11100/1111100111	e oneoneo	11 0111 11		

- 189 sample S30 to 6.2 wt% of sample S22b (Table 1). Fluorine contents reach 0.9, 1.0, 2.0,
- 190 0.4, 0.2, and 1.0 wt% in samples S22a, S22b, S26, S28, S30, and S36, respectively.
- 191 Plagioclase grains show a zonal structure with a homogeneous core mantled by a less
- 192 calcic rim, and their maximum calcic compositions range from An₃₅ in sample S30 to
- 193 An₅₉ in sample S26. Ilmenite grains have near end-member compositions with $Al_2O_3 <$

194 0.04 wt%, $Cr_2O_3 < 0.10$ wt%, $V_2O_3 < 0.05$ wt%, MnO = 0.3-2.1 wt% and MgO = 0.3-2.1 wt%

- 195 0.05-1.9 wt% (Table 3). The Nb₂O₅ content is usually less than 0.1 wt%, and the Ta₂O₅
- 196 content is below the detection limit.
- 197

198 Discussion

- 199 Nb and Fe substitutions
- 200 Nb-bearing rutile

201 The rutile grains in the Sagaing paragneisses characteristically show solid solutions

202 with Nb and Fe, suggesting a coupled substitution of these two elements. The rutile

grains in sample S26 especially have wide variations of Nd_2O_5 (~3.7 wt%) and Fe (~3.2

204 wt% as Fe₂O₃), and were used to suggest a mechanism for Nb incorporation in rutile.

205 The whole-rock composition of sample S26 indicates that this sample has a

206 determinably higher Nb content (29 ppm: Table 2) than other common Mogok

207 metamorphic rocks (13–18 ppm) and typical cratonic shales (11–19 ppm: Condie, 1993)

208 including the "North American shale composite" (NASC) (Gromet et al., 1984) and

209 "Post-Archean Australian average shale" (PAAS) (Taylor and McLennan, 1988). The

210 Nb-rich characteristic of the whole-rock composition probably promoted the formation

211 of the Nb-rich rutile.

The rutile grains in samples S26 occur as isolated grains in felsic phases and intergrowth grains with ilmenite in biotite (Fig. 2a). The Nb-rich rutile occurs as the core of a zoned grain and is surrounded by a Nb-poor mantle (Figs. 7 and 8). This grain shows intergrowth texture with ilmenite. The Nb content shows positive correlations with the contents of iron and trivalent elements, suggesting coupled substitutions of these elements with Ti.

Two possible Nb-bearing substitutions into the rutile structure, $M^{3+}Nb^{5+}Ti^{4+}$ and 218 $M^{2+}Nb^{5+}{}_{2}Ti^{4+}{}_{-3}$, where M^{3+} and M^{2+} represent the trivalent and divalent cations, 219 220 respectively, were proposed (e.g. Vlassopoulos et al., 1993; Černý et al., 1999). The 221 Nb-rich rutile of sample S26 contains Al₂O₃ (up to 0.25 wt%), Cr₂O₃ (up to 0.21 wt%), 222 V₂O₃ (up to 0.61 wt%), and iron (up to 1.3 wt% as Fe₂O₃); therefore, the Nb content might be controlled mainly by the M³⁺-bearing substitution or a combination of the 223 224 M^{3+} - and M^{2+} -bearing substitutions. Iron is the only candidate for controlling the 225 M²⁺-bearing substitution, because the divalent cations such as Zn, Mg, and Mn are least 226 compatible with rutile (e.g., Meinhold, 2010) and were not detected in most of the rutile 227 grains in the Sagaing paragneisses studied (detection limits are about 0.02–0.03 wt% at 228 the 2σ level). Figure 9 illustrates the covariations between the trivalent cations and Nb' 229 $(= Nb^{5+} - 2 M^{2+})$, where Nb' indicates the niobium content that incorporates into the rutile structure by substitutions other than M²⁺Nb⁵⁺₂Ti⁴⁺₋₃. When iron in the rutile 230 231 structure is presumed to be in a trivalent state (Fig. 9a), the contents of the total trivalent cations and the Nb' show strong positive correlations (correlation coefficient $R^2 = 0.94$). 232 233 In contrast, if the total iron is treated as being in a divalent state (Fig. 9b), the Nb' values 234 are usually negative and do not show compositional trends implying any type of 235 substitution. Additionally, the number of total cations for O = 2, calculated assuming

Maw Maw Win and others

236 total iron as Fe₂O₃, are near unity $[1.002 \pm 0.002 \text{ atom per formula unit (apfu): cf. Table$ 237 3], implying lower amounts of FeO. Therefore, most of iron in the Nb-bearing rutile is 238 assumed to be Fe³⁺, and the Nb probably incorporates into the rutile structure by a 239 coupled substitution with M^{3+} s, including Fe³⁺. 240 The Nb-bearing rutile grains generally contain small but non-negligible amounts of excess M³⁺ over Nb'. Such an excess of trivalent cations over the pentavalent cations 241 242 has been discussed using the data of Nb- and Cr-rich rutile grains from the upper mantle by Vlassopoulos et al. (1993). An increasing of the estimated Fe²⁺/Fe³⁺ value 243 244 conversely causes a decrease in the Nb'/M³⁺ value as illustrated with an arrow in Fig. 9a (also compare Figs. 9a and b). Therefore the observed excess M³⁺ content over Nb' 245 246 could not be explained by an overestimation of the Fe³⁺ content and might be due to

247 Nb-free and Fe³⁺-bearing substitution as will be discussed in the following section for

the case of Nb-free and Fe-rich rutile grains included in ilmenite in sample S26 (Fig.

249 2a).

Figure 10 shows a strong negative correlation between the Ti and Nb" (= Nb⁵⁺ + M³⁺) values in Nb-rich rutile grains (inclination = -0.99 and R² = 0.99), when total iron is assumed to be Fe³⁺. The combination of the negative Ti–Nb" (Fig. 10) and positive M^{3+} –Nb' (Fig. 9a) correlations clearly suggest that the Nb incorporation into the rutile grains of the Sagaing paragneisses is largely controlled by the following substitution:

255

 $2 \text{ Ti}^{4+} = \text{Nb}^{5+} + \text{M}^{3+}$

256

257 Nb-free and Fe-rich rutile

Nb-free and iron-rich rutile is rare and was reported to occur as a symplectitic phase
with magnetite from a mafic-ultramafic layered intrusion in SW China (2.9 wt% as

Fe₂O₃: Tan *et al.*, 2015). Smith and Perseil (1997) compiled and discussed the crystal
chemistry of rutile and proposed mechanisms for maintaining the electroneutrality
correlated to the substitution of Ti⁴⁺ by M³⁺ in M⁵⁺-free rutile. Vlassopoulos *et al.*(1993) considered that the excess M³⁺ is presumably compensated by H⁺ interstitials,
which leads to the following substitution:

265
$$Ti^{4+} + O^{2-} = M^{3+} + (OH)^{-}$$

This type of substitution was considered as a typical mechanism of Al^{3+} incorporation into titanite (e.g., Smith, 1988; Oberti *et al.*, 1991; Cempírek *et al.*, 2008). The rutile structure shows tunnel sites parallel to the *z* axis; therefore, the Fe³⁺ incorporation into rutile without H⁺ is also considered by the following substitution (e.g., Vlassopoulos *et al.*, 1993; Smith and Perseil, 1997):

271 3
$$Ti^{4+}$$
 + vacancy = 4 Fe^{3}

272 Ferrous iron might substitute into the rutile structure by similar mechanisms as follows:

273

$$Ti^{4+} + O^{2-}_2 = M^{2+} + (OH)^{-}_2$$

274 $Ti^{4+} + vacancy = 2 Fe^{2+}$

Figures 11a and b show correlations between Ti and total iron of rutile, assuming Fe³⁺ 275 and Fe²⁺, respectively. In both cases, vacancy-bearing substitutions explain well the 276 correlations between Ti and iron contents rather than the OH⁻-bearing substitutions. 277 Additionally, an inclination of Fe^{3+} -Ti correlation (-1.32: $R^2 = 0.96$) matches with that 278 expected by the substitution of $Fe^{3+}_{4}Ti^{4+}_{-3}\Box_{-1}$, where \Box indicates a vacancy (-1.33: Fig. 279 280 11a). There is little evidence to deny the possibility that the rutile contains some amount of ferrous iron by the substitution of $Fe^{2+}_{2}Ti^{4+}_{-1}\square_{-1}$. However, the correlation between Ti 281 and Fe^{3+} (Fig. 11a) probably suggests the solid solution towards a pseudorutile 282

component (Fe³⁺₂Ti₃O₉). The excess M³⁺ over Nb estimated in the Nb-bearing rutile (Fig. 9a) might be understood by the Fe³⁺₄Ti⁴⁺₋₃ \square_{-1} .

285

286 Coexistence of two types of rutile

287 The Nb-bearing rutile and Nb-free and Fe-rich rutile grains occur as an intergrowth 288 grain in a biotite host (Figs. 2a and 7a). However, they show critical differences in possible substitutions of Nb⁵⁺Fe³⁺Ti⁴⁺-2 (Fig. 10) and Fe³⁺ $_4$ Ti⁴⁺- $_3$ D-1 (Fig. 11a). 289 290 respectively, suggesting diverse mechanisms in their formation. The Nb-bearing rutile 291 grains partly rim ilmenite and are probably formed in equilibrium with ilmenite and/or 292 at slightly later stage than the ilmenite formation. Similar intergrowth textures were 293 reported in low- to medium-grade metasedimentary rocks of the Erzgebirge and were 294 consider to have formed by rutile crystallization from ilmenite (Luvizotto et al., 2009). 295 Another possible mechanism for the rutile formation was the decomposition of Ti-rich 296 biotite, which were reported in granulite facies paragneisses of the Ivrea-Verbano Zone 297 in the Southern Alps (Luvizotto and Zack, 2009). The breakdowns of ilmenite and 298 Ti-rich biotite both progress by prograde metamorphism. Rutile has a distinctly high 299 Nb-partitioning coefficient relative to other solid and melt phases and is a dominant 300 reservoir of Nb (e.g., Zack et al., 2002; Meinhold, 2010). Therefore, the rutile zonal 301 structute, showing a concentration of Nb at the ctystal core, has probably formed during 302 the prograde stage, similar to the bell-shaped Mn-zoning of garnet. 303 In contrast, Nb-free and Fe-rich rutile occurs as small grains included by ilmenite, 304 and shows simple Ti-Fe solid solution having a pseudorutile component (Al₂O₃ < 0.06305 wt%, $Cr_2O_3 < 0.05$ wt%, $V_2O_3 < 0.09$ wt%, MnO < 0.05 wt%, and MgO < 0.06 wt%)

 $306 \qquad \text{similar to the surrounding ilmenite (Al_2O_3 < 0.03 \text{ wt\%}, Cr_2O_3 < 0.07 \text{ wt\%}, V_2O_3 < 0.05 \text{ wt$

wt%, MnO < 0.59 wt%, and MgO < 0.6 wt%). The characteristics of the chemical
compositions and mode of occurrence of the Nb-free and Fe-rich rutile grains suggest
the possibility that these grains might have formed by exsolution process from the host
ilmenite during the retrograde stage.

311

312 Zr substitution and temperature estimation

313 The zirconium contents of rutile grains in the Sagaing paragneisses reach 4200 ppm and

are closely related to the host phases of the rutile grains (Fig. 6). Equilibrium

315 temperatures of the rutile grains in felsic phases in the matrix estimated by a Zr-in-rutile

316 geothermometer (Tomkins *et al.*, 2007) are 870 ± 35 °C, 825 ± 45 °C, and 875 ± 10 °C

at 0.8 GPa for samples S26 (Fig. 6c), S28 (Fig. 6d), and S30 (Fig. 6e), respectively.

318 These high temperature conditions are consistent with those estimated by conventional

319 geothermobarometries for the Sagaing ridge (0.6–1.0 GPa/780–850 °C: Maw Maw Win

320 *et al.*, 2016), Onzon and Thabeikkyin areas (0.60–0.84GPa/780–860°C: Ye Kyaw Thu

321 *et al.*, 2016, 2017), and Mogok area (0.65–0.87GPa/800–950°C: Yonemura *et al.*, 2013),

322 suggesting wide distributions of the upper amphibolite-granulite facies metamorphic

323 rocks in the central segment of the Mogok metamorphic belt.

324 In contrast, the rutile grains occurring in biotite show distinctly lower-temperature

325 conditions than those in the felsic phases: 685 ± 30 °C, 695 ± 30 °C, 725 ± 35 °C, and

326 680 ± 25 °C for samples S22a (Fig. 6a), S22b (Fig. 6b), S26 (Fig. 6c), and S36 (Fig. 6f),

327 respectively. The systematic differences of temperatures between the rutile grains in the

328 hosts of the biotite and felsic phases are also observed in the data for sample S26 (Fig.

329 6c). Conversely, there is no systematic difference in equilibrium temperatures between

rutile phases occurring as isolated grains and intergrowth grains with ilmenite (Fig. 6).

331 These data imply that the temperature variations retained by the rutile grains might not 332 imply the differences in peak metamorphic conditions among the samples. The bimodal 333 distributions Zr content of rutile grains were well documented from ultra-high 334 temperature metamorphic rocks from the Ivrea Zone, Italy by Pape et al. (2016). They 335 texturally grouped the rutile grains into Types I. II, and III. The type I rutile grains are 336 textually homogeneous and show high-temperature equilibria up to 1100 °C. On the 337 other hand, the Type II grains with exsolution needles/lamellae of zircon and 338 baddeleyite and the Type III grains with small zircon crystals at their grain edges 339 usually record lower-temperature conditions down to 600 °C, suggesting re-equilibrium 340 of homogeneous rutile grains during retrograde stage. Pape et al. (2016) estimated 341 closure temperature of Zr-redistribution in rutile as about 650–700 °C. In the Sagaing 342 paragneisses, rutile grains in biotite usually show lower-temperature conditions similar 343 to the closure temperature estimated using the Ivrea Zone samples. These rutile grains, 344 however, do not show any re-equilibrium textures such as the cases reported by Pape et 345 al. (2016). Therefore, the lower-temperature conditions recorded in some rutile grains 346 of the Sagaing samples are hard to be explained by Zr-redistribution in rutile during 347 retrograde stage.

One possible explanation for the different temperature conditions recorded in the rutile grains might be the differences in the stages at which the rutile was isolated from the zircon-bearing system; that is, the rutile grains in biotite might have been included during an early stage of prograde metamorphism and recorded a lower-temperature condition before the peak metamorphic stage. This interpretation is supported by the Nb zonal structure, which might have formed during prograde recrystallization, retained by the intergrowth-type rutile grains in the sample S26 (cf., Figs. 7 and 8). The estimated

355 peak metamorphic conditions of over 800 °C probably caused the partial melting of the 356 felsic phases in the matrix (e.g., Maw Maw Win et al., 2016). Therefore, the rutile 357 grains in the aggregates of the felsic phases might have been trapped during 358 solidification after peak temperature and might have recorded the high temperature 359 conditions around the peak metamorphic stage. In samples S22b, S26, and S36, the 360 origin of Zr-poor rutile grains in biotite might be understood by the prograde process. 361 However, some rutile grains in sample S22a have obviously coexisted with zircon 362 even after they were included by biotite (e.g., Fig. 2b). In such a case, it is hard to 363 explain the Zr-poor composition by isolation of the rutile grain from the zircon-bearing 364 system at an early stage of the prograde metamorphism. An alternative interpretation for 365 the Zr-poor composition of the rutile grains in biotite of sample S22a is that they were 366 later stage products compared to those in the felsic phases during the retrograde stage. 367 The biotite grains in the Sagaing ridge are usually enriched in Ti (~ 6.2 wt% as TiO₂: cf., 368 Table 1), showing a high-temperature equilibrium. In addition, in sample S22a, the 369 matrix biotite grains that are free from rutile inclusions are rich in TiO₂ up to 5.0 wt%. 370 In contrast, the rutile-bearing biotite grains in the matrix (Fig. 2b) tend to be lower in 371 TiO₂ (3.1–4.0 wt%) (Fig. 12). Additionally, the biotite around the rutile grains is locally 372 depleted in TiO₂ and has higher Mg# [= Mg/(Mg + Fe)] values within a narrow zone of 373 30–40 µm (Fig. 13). These compositional trends could not be expected to have formed 374 during a prograde metamorphic stage, and the local decrease in Ti observed in sample 375 S22a probably indicates that the Zr-poor rutile formed by an exsolution process during a 376 retrograde stage. The local increase of the Mg# value, however, cannot be explained 377 only by the exsolution of the rutile grains. The potassium content also slightly decreases 378 around the rutile grains, which probably implies leaching of the alkaline elements from

379 the biotite structure during chloritization. Secondary chlorite has a higher Mg# value 380 (0.61-0.64) than its source biotite (0.51-0.59), and, therefore Mg# of biotite is 381 considered to generally increase by chloritization processes. Consequently, the 382 postulated rutile exsolution might have been furthered by the infiltration of 383 metamorphic fluid along the cleavages that also caused weak chloritization. Maw Maw 384 Win et al. (2016) reported that the Mogok metamorphic rocks of the Sagaing ridge were 385 recrystallized under amphibolite facies conditions of 0.3–0.5GPa/600–680°C by 386 extensive infiltration of metamorphic fluid. Similar phenomena were reported also in 387 paragneisses of the Onzon and Thabeikkyin areas of the Mogok metamorphic belt (Ye 388 Kyaw Thu *et al.*, 2017). The lower-temperature conditions (695 \pm 30 °C) retained by 389 the Zr-poorer rutile grains in biotite of sample S22b are similar to those estimated for 390 the earlier stage of the retrograde equilibration. These facts might suggest that the 391 lower-temperature rutile grains are more likely to have been products of the retrograde 392 stage.

393

394 Conclusions

395 1. The rutile grains occurring in biotite and felsic phases of paragneisses from the

396 Sagaing ridge contain up to $3.7 \text{ wt\% Nb}_2\text{O}_5$, which is controlled mainly by the 397 coupled substitution Nb⁵⁺Fe³⁺Ti⁴⁺-2.

- 398 2. The rutile grains occurring as small aggregate in ilmenite of sample S26 are almost
- free of Nb₂O₅ and contain a maximum 3.2 wt% iron as Fe₂O₃. This is likely the result
- 400 of a vacancy site-bearing substitution of $Fe^{3+}_{4}Ti_{-3}\Box_{-1}$, suggesting a solid solution
- 401 towards a pseudorutile component.

Maw Maw Win and others

402 3. The rutile grains in aggregates of the felsic phases are rich in ZrO₂ (~4200 ppm Zr).

403 These grains are considered to have formed at a peak metamorphic stage under404 granulite facies conditions.

405 4. The rutile grains in biotite are poorer in ZrO_{\Box} (~1500 ppm Zr) than those in the

406 matrix of felsic phases. This type of rutile retains the lower-temperature equilibrium

407 before the peak metamorphic stage or was probably formed by exsolution and/or

408 recrystallization from the Ti-rich biotite with fluid infiltration during a retrograde409 stage of lower-amphibolite facies.

410

411 Acknowledgments

412 We thank S. Wallis and members of the petrology group of Nagoya University for their

413 participation in numerous discussions. The critical and constructive comments by two

414 anonymous reviewers and M. Arima helped to clarify and improve this manuscript.

415 This research was partially supported by Grant-in-Aids for Scientific Research (ME,

416 25400511) from the Japan Society for the Promotion of Science (JSPS) and scholarships

417 (MMW and YKY) from Ministry of Education, Culture, Sports, Science and

418 Technology in Japan (MEXT).

420

References

421	Bertrand, G., Rangin, C., Maluski, H., Han, T.A., Thein, M., Myint, O., Maw, W. and
422	Lwin, S. (1999) Cenozoic metamorphism along the Shan scarp (Myanmar):
423	evidences for ductile shear along the Sagaing fault or the northward migration of
424	the eastern Himalayan syntaxis? Geophysical Research Letters, 26, 915-918.
425	Bowles, J.F.W., Howie, R.A., Vaughan, D.J. and Zussman, J. (2011) Non-silicates :
426	oxides, hydroxides and sulphides (second edition), Rock-Forming Minerals, 5A,
427	Pp. 920. The Geological Society, London.
428	Cempírek, J., Houzar, S. and Novák, M. (2008) Complexly zoned niobian titanite from
429	hedenbergite skarn at Pisek, Czech Republic, constrained by substitutions
430	Al(Nb,Ta)Ti-2, Al(F,OH)(TiO)-1 and SnTi-1. <i>Mineralogical Magazine</i> , 72,
431	1293-1305.
432	Černý, P. and Chapman, R. (2001) Exsolution and breakdown of scandian and
433	tungstenian Nb-Ta-Ti-Fe-Mn phases in niobian rutile. Canadian Mineralogist,
434	39 , 93-101.
435	Černý, P., Chapman, R., Simmons, W.B. and Chackowsky, L.E. (1999) Niobian rutile
436	from the McGuire granitic pegmatite, Park County, Colorado: Solid solution,
437	exsolution, and oxidation. American Mineralogist, 84, 754-763.
438	Condie, K.C. (1993) Chemical composition and evolution of the upper continental
439	crust: Contrasting results from surface samples and shales. Chemical Geology,
440	104 , 1-37.
441	Dymek, R.F. (1983) Fe-Ti oxides in the Malene Supracrustals and the occurrence of
442	Nb-rich rutile. Rapport Grønlands geologiske Undersøgelse, 112, 83-94.
443	Ewing, T.A., Hermann, J. and Rubatto, D. (2013) The robustness of the Zr-in-rutile and

444	Ti-in-zircon thermometers during high-temperature metamorphism
445	(Ivrea-Verbano Zone, northern Italy). Contributions to Mineralogy and
446	Petrology, 165, 757-779.
447	Foley, S.F., Barth, M.G. and Jenner, G.A. (2000) Rutile/melt partition coefficients for
448	trace elements and an assessment of the influence of rutile on the trace element
449	characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta,
450	64 , 933-938.
451	Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The "North
452	American shale composite": Its composition, major and trace element
453	characterstics. Geochimica et Cosmochimica Acta, 48, 2469-2482.
454	Hirtopanu, P., Fairhurst, R.J. and Jakab, G. (2015) Niobian rutile and its associations at
455	Jolotca, Ditrau alkaline intrusive massif, east Carpathians, Romania.
456	Proceedings of Romania Academy, Series B, 17, 39-55.
457	Kato, T. (2005) New accurate Bence-Albee α -factors for oxides and silicates
458	calculated from the PAP correction procedure. Geostandrds and Geoanalytical
459	<i>Research</i> , 29 , 83-94.
460	Khodos, M.Y., Belysheva, G.M. and Krivosheev, N.V. (1988) Solid solutions with the
461	rutile structure in the TiO2-Nb2O5 system. Russian Journal of Inorganic
462	Chemistry, 33 , 604-606.
463	Klemme, S., Prowatke, S., Hametner, K. and Günther, D. (2005) Partitioning of trace
464	elements between rutile and silicate melts: Implications for subduction zones.
465	Geochimica et Cosmochimica Acta, 69 , 2361-2371.
466	Korolev, N.M., Marin, Y.B., Nikitina, L.P., Zinchenko, V.N. and Chissupa, H.M. (2014)
467	High-Nb rutile from upper mantle eclogite xenoliths of the diamond-bearing

468	kimberlite pipe Catoca (Angola). <i>Doklady Earth Sciences</i> , 454 , 50-53.
469	Luvizotto, G.L. and Zack, T. (2009) Nb and Zr behavior in rutile during high-grade
470	metamorphism and retrogression: An example from the Ivrea-Verbano Zone.
471	<i>Chemical Geology</i> , 261 , 303-317.
472	Luvizotto, G.L., Zack, T., Triebold, S. and von Eynatten, H. (2009) Rutile occurrence
473	and trace element behavior in medium-grade metasedimentary rocks: example
474	from the Erzgebirge, Germany. <i>Mineralogy and Petrology</i> , 97, 233–249.
475	Maw Maw Win, Enami, M. and Kato, T. (2016) Metamorphic conditions and CHIME
476	monazite ages of Late Eocene to Late Oligocene high-temperature Mogok
477	metamorphic rocks in central Myanmar. Journal of Asian Earth Sciences, 117,
478	304-316.
479	Meinhold, G. (2010) Rutile and its applications in earth sciences. Earth-Science Reviews,
480	102 , 1-28.
481	Meyer, M., John, T., Brandt, S. and Klemd, R. (2011) Trace element composition of
482	rutile and the application of Zr-in-rutile thermometry to UHT metamorphism
483	(Epupa Complex, NW Namibia). Lithos, 126, 388-401.
484	Mitchell, A.H.G., Myint Thein Htay, Htun, K.M., Myint Naing Win, Thura Oo and Tin
485	Hlaing. (2007) Rock relationships in the Mogok metamorphic belt, Tatkon to
486	Mandalay, central Myanmar. Journal of Asian Earth Sciences, 29, 891-910.
487	Oberti, R., Smith, D.C., Rossi, G. and Caucia, F. (1991) The crystal-chemistry of
488	high-aluminium titanites. European Journal of Mineralogy, 3 , 777-792.
489	Pape, J., Mezger, K. and Robyr, M. (2016) A systematic evaluation of the Zr-in-rutile
490	thermometer in ultra-high temperature (UHT) rocks. Contributions to
491	Mineralogy and Petrology, 171, 44.

492	Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Litasov, K.D., Gibsher,
493	A.A., Pokhilenko, N.P. and Sobolev, N.V. (2016) Inclusions of Cr- and
494	Cr-Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia.
495	Doklady Earth Sciences, 466, 173-176.
496	Searle, M.P., Noble, S.R., Cottle, J.M., Waters, D.J., Mitchell, A.H.G., Tin Hlaing and
497	Horstwood, M.S.A. (2007) Tectonic evolution of the Mogok metamorphic belt,
498	Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and
499	magmatic rocks. Tectonics, 26, TC3014.
500	Smith, D.C. (1988) A review of the peculiar mineralogy of the "Norwegian-eclogite
501	province," with crystal-chemical, petrological, geochemical and geodynamical
502	notes and an extensive bibliography. Pp. 1-206. in: Eclogites and
503	Eclogite-Facies Rocks (D.C. Smith, editor). 12, Elsevier, Amsterdam.
504	Smith, D.C. and Perseil, E.A. (1997) Sb-rich rutile in the manganese concentrations at
505	St. Marcel-Praborna, Aosta Valley, Italy: petrology and crystal-chemistry.
506	Mineralogical Magazine, 61 , 655-669.
507	Sobolev, N.V., Logvinova, A.M., Lavrent'ev, Y.G., Karmanov, N.S., Usova, L.V.,
508	Koz'menko, O.A. and Ragozin, A.L. (2011) Nb-rutile from eclogite
509	microxenolith of the Zagadochnaya kimberlite pipe. Doklady Earth Sciences,
510	439 , 970-973.
511	Tan, W., Wang, C.Y., He, H., Xing, C., Liang, X. and Dong, H. (2015) Magnetite-rutile
512	symplectite derived from ilmenite-hematite solid solution in the Xinjie Fe-Ti
513	oxide-bearing, mafic-ultramafic layered intrusion (SW China). American
514	Mineralogist, 100, 2348-2351.
515	Taylor, S.R. and McLennan, S.M. (1988) The significance of the rare earths in

516	geochemistry and cosmochemistry. Pp. 485-578. in: Handbook on the Physics
517	and Chemistry of Rare Earths (K.A. Gschneider, Jr. and L. Eyring, editors). 11,
518	Elsevier, Amsterdam.
519	Tollo, R.P. and Haggerty, S.E. (1987) Nb-Cr-rutile in the Orapa kimberlite, Botswana.
520	Canadian Mineralogist, 25, 251-264.
521	Tomkins, H.S., Powell, R. and Ellis, D.J. (2007) The pressure dependence of the
522	zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25,
523	703-713.
524	Villaseca, C., Orejana, D. and Paterson, B.A. (2007) Zr-LREE rich minerals in residual
525	peraluminous granulites, another factor in the origin of low Zr-LREE granitic
526	melts? Lithos, 375-386.
527	Vlassopoulos, D., Rossman, G.R. and Haggerty, S.E. (1993) Coupled substitution of H
528	and minor elements in rutile and the implications of high OH contents in Nb-and
529	Cr-rich rutile from the upper mantle. American Mineralogist, 78, 1181-1191.
530	Watson, E.B., Wark, D.A. and Thomas, J.B. (2006) Crystallization thermometers for
531	zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433.
532	Yamamoto, K. and Morishita, T. (1997) Preparation of standard composites for trace
533	element analysis by X-ray fluorescence. Journal of Geological Society of Japan,
534	103, 1037-1045 (in Japanese with English abstract).
535	Ye Kyaw Thu, Maw Maw Win, Enami, M. and Tsuboi, M. (2016) Ti-rich biotite in
536	spinel and quartz-bearing paragneiss and related rocks from the Mogok
537	metamorphic belt, central Myanmar. Journal of Mineralogical and Petrological
538	Sciences, 111, 270-282.
539	Ye Kyaw Thu, Enami, M., Kato, T. and Tsuboi, M. (2017) Granulite facies paragneisses

540	from the middle segment of the Mogok metamorphic belt, central Myanmar.
541	Journal of Mineralogical and Petrological Sciences, 112, 1-19.
542	Yonemura, K., Osanai, Y., Nakano, N., Adachi, T., Charusiri, P. and Tun Naing Zaw.
543	(2013) EPMA U-Th-Pb monazite dating of metamorphic rocks from the Mogok
544	Metamorphic Belt, central Myanmar. Journal of Mineralogical and Petrological
545	Sciences, 108 , 184-188.
546	Zack, T., Kronz, A., Foley, S.F. and Rivers, T. (2002) Trace element abundances in
547	rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184,
548	97–122.
549	Zack, T., Moraes, R. and Kronz, A. (2004) Temperature dependence of Zr in rutile:
550	empirical calibration of a rutile thermometer. Contributions to Mineralogy and
551	Petrology, 148 , 471-488.
552	

553 Captions for Tables

554	FIG. 1. Geologic maps of (a) Myanmar and adjacent regions showing major suture
555	zones, faults, and terrane boundaries (Searle et al., 2007) and (b) central
556	Myanmar, showing sample localities (compiled from unpublished geological
557	data from Myint Thein).
558	FIG. 2. Back-scattered electron images showing the modes of occurrence of rutile: (a)
559	intergrowth grain in biotite (S26), (b) isolated grain in biotite (S22a), (c)
560	isolated grains in an aggregate of felsic phases (S28), and (d) isolated and
561	intergrowth grains in an aggregate of felsic phases (S28). "Nbf-Rt" indicates
562	Nb-free- and Fe-rich rutile discussed in the text. White spots and numbers in
563	(c) and (d) imply analytical points and Zr contents (ppm), respectively.
564	Abbreviations for the minerals are: Bt, biotite; Chl, chlorite; Ilm, ilmenite; Kfs,
565	K-feldspar; Mnz, monazite; Pl, plagioclase; Qz, quartz; Rt, rutile; and Zrn,
566	zircon. Lines A-A' and B-B' show the positions of the step-scan analyses of
567	Figs. 8 and 13, respectively.
568	FIG. 3. Cumulative diagram of Fe ₂ O ₃ content (wt%) of rutile. "Nbf-Rt" indicates the
569	compositional range of aggregate of rutile grains included by ilmenite shown in
570	Fig. 2a. Abbreviations are: Fsi, rutile in felsic phases; and Bi, rutile in biotite.
571	FIG. 4. Cumulative diagram of Nb ₂ O ₅ content (wt%) of rutile. "Nbf-Rt" indicates the
572	compositional range of aggregate of rutile grains included by ilmenite shown in
573	Fig. 2a. Abbreviations are: Fsi, rutile in felsic phases; Bi, rutile in biotite; and
574	D.L., detection limit (2σ level).

Maw Maw Win and others

575	FIG.5. Compositional variations of V_2O_3 and Cr_2O_3 contents (wt%) of rutile.
576	Abbreviations are: Fsi, rutile in felsic phases; Bi, rutile in biotite; and D.L.,
577	detection limit (2σ level).
578	FIG. 6. Histograms of Zr content (ppm) in rutile. Temperature calibration follows
579	Tomkins et al. (2007). Some data from samples S22a, S22b, and S26 are from
580	Fig. 6 of Maw Maw Win et al. (2016). Pressure conditions of the peak
581	metamorphic stage of the Mogok belt were estimated as 0.6-1.0 GPa (Maw
582	Maw Win et al., 2016; Ye Kyaw Thu et al., 2016, 2017), and, therefore the
583	pressure condition was assumed to be 0.8 GPa for the temperature estimation.
584	The pressure dependence of the Zr-in rutile geothermometer is small at about
585	50 °C/GPa in the pressure range less than 1.0 GPa.
586	FIG. 7. (a) TiK α , (b) NbL α , (c) AlK α , and (d) FeK α X-ray image maps of intergrowth
587	grains of Nb-rich rutile and ilmenite occurring as an inclusion in biotite.
588	"Nbf-Rt" indicates Nb-free- and Fe-rich rutile discussed in the text. A
589	back-scattered electron image of this grain is shown in Fig. 2a. Abbreviations
590	for minerals are: Bt, biotite; Ilm, ilmenite; and Rt, rutile. Line A-A' shows the
591	position of the step-scan analysis of Fig. 8.
592	FIG. 8. Step-scan analysis of zoned Nb-rich rutile along the line A–A' shown in Figs. 2a
593	and 7a.
594	FIG. 9. Relationship between M^{3+} and Nb' (= Nb -2M^{2+}) contents of the Nb-bearing
595	rutile in sample S26 assuming iron as (a) Fe^{3+} and (b) Fe^{2+} , where M^{3+} and M^{2+}
596	indicate the sums of the trivalent and divalent elements, respectively.

Maw Maw Win and others

597	FIG. 10. Relationship between Ti and Nb" (= Nb + M^{3+}) contents of the Nb-bearing
598	rutile in sample S26 assuming total iron as Fe^{3+} , where M^{3+} indicates the sum
599	of the trivalent elements.
600	FIG 11. Relationship between Ti and iron contents of Nb-free and Fe-rich rutile in
601	sample S26 assuming total iron as (a) Fe^{3+} and (b) Fe^{2+} , respectively.
602	FIG. 12. Compositional ranges of biotite grains with and without rutile inclusions in
603	sample S22a.
604	FIG. 13. Step-scan analysis of Ti-rich biotite surrounding a rutile inclusion (S22a) along

605 line B–B' shown in Fig. 2b.

FIG. 1. Geologic maps of (a) Myanmar and adjacent regions showing major suture zones, faults, and terrane boundaries (Searle et al., 2007) and (b) central Myanmar, showing sample localities (compiled from unpublished geological data from Myint Thein).

FIG. 2. Back-scattered electron images showing the modes of occurrence of rutile: (a) intergrowth grain in biotite (S26), (b) isolated grain in biotite (S22a), (c) isolated grains in an aggregate of felsic phases (S28), and (d) isolated and intergrowth grains in an aggregate of felsic phases (S28). "Nbf-Rt" indicates Nb-free- and Fe-rich rutile discussed in the text. White spots and numbers in (c) and (d) imply analytical points and Zr contents (ppm), respectively. Abbreviations for the minerals are: Bt, biotite; Chl, chlorite; Ilm, i Imenite; Kfs, K-feldspar; Mnz, monazite; Pl, plagioclase; Qz, quartz; Rt, rutile; and Zrn, zircon. Lines A–A' and B–B' show the positions of the step-scan analyses of Figs. 8 and 13, respectively.

FIG. 3. Cumulative diagram of Fe2O3 content (wt%) of rutile. "Nbf-Rt" indicates the compositional range of aggregate of rutile grains included by ilmenite shown in Fig. 2a. Abbreviations are: Fsi, rutile in felsic phases; and Bi, rutile in biotite.

FIG. 4. Cumulative diagram of Nb_2O_5 content (wt%) of rutile. "Ndf-Rt" indicates the compositional range of aggregate of rutile grains included by ilmenite shown in Fig. 2a. Abbreviations are: Fsi, rutile in felsic phases; Bi, rutile in biotite; D.L., detection limit (2σ level).

FIG.5. Compositional variations of V_2O_3 and Cr_2O_3 contents (wt%) of rutile. Abbreviations are: Fsi, rutile in felsic phases; Bi, rutile in biotite; D.L., detection limit (2 σ level).

FIG. 6. Histograms of Zr content (ppm) in rutile. Temperature calibration follows Tomkins et al. (2007). Some data of samples S22a, b and S26 are from Fig. 6 of Maw Maw Win et al. (2016). Pressure conditions of peak metamorphic stage of the Mogok belt were estimated as 0.6–1.0 GPa (Maw Maw Win et al., 2016; Ye Kyaw Thu et al., 2016, 2017), and thus, pressure condition was assumed to be 0.8 GPa for the temperature estimation. The pressure dependence of the Zr-in rutile geothermometer is little of about 50 °C/GPa in the pressure range less than 1.0 GPa.

FIG. 7. (a) TiKa, (b) NbLa, (c) AlKa, and (d) FeKa X-ray image maps of intergrowth grains of Nb-rich rutile and ilmenite occurring as an inclusion in biotite. "Nbf-Rt" indicates Nb-free- and Fe-rich rutile discussed in the text. Back-scattered electron image of this grain is shown in Fig. 2a. Abbreviations for minerals are: Bt, biotite; Ilm, ilmenite; Rt, rutile. Line A–A' shows the position of the step-scan analysis of Fig. 8.

Maw Maw Win and others (Fig.07)

FIG. 8. Step-scan analysis of zoned Nb-rich rutile along the line A–A' shown in Figs. 2a and 7a.

FIG. 9. Relationships between M^{3+} and Nb' (= Nb -2M^{2+}) contents of the Nb-bearing rutile in sample S26 assuming iron as (a) Fe³⁺ and (b) Fe²⁺, where M^{3+} and M^{2+} indicate the sums of the trivalent and divalent elements, respectively.

FIG. 10. Relationships between Ti and Nb" (= Nb + M^{3+}) contents of Nb-bearing rutile in sample S26 assuming total iron as Fe³⁺, where M^{3+} indicates the sum of the trivalent elements.

FIG 11. Relationships between Ti and iron contents of Nd-free and Fe-rich rutile in sample S26 assuming total iron as as (a) Fe^{3+} and (b) Fe^{2+} , respectively.

FIG. 12. Compositional ranges of biotite grains with and without rutile inclusion in sample S22a.

FIG. 13. Step-scan analysis of Ti-rich biotite surrounding a rutile inclusion (S26) along the line B–B' shown in Fig. 2b.

Sample	Unit	Grt	Bt*	Pl**	Kfs	Qz	Sil	Ms	Rt	Ilm	Gr	Ap	Mnz	Zrn
S22a	2	+	5.0	44	+	+	g		b		+	+	+	+
S22b	2	+	6.2	48	+	+	g		b		+	+	+	+
S26	1	+	5.3	59	+	+	g, m		b, f	+	+	+	+	+
S28	1	+	4.4	49	+	+	g		f	+	+	+	+	+
S 30	1	+	4.0	35	+	+	g, m	S	f	+	+	+	+	+
S36	2	+	4.1	50	+	+	m		b	+	+	+	+	+

Table 1. Mineral assemblages of Sagaing paragneisses of the Mogok metamorphic belt, central Myanmar

* Maximum TiO₂ content (wt%).

** Anorthite content of calcic core.

Abbreviations are: Grt, garnet; Bt, biotite; Pl, plagioclase; Kfs, K-feldspar; Qz, quartz; Sil, sillimanite; Ms, muscovite; Rt, rutile; Ilm, ilmenite; Gr, graphite; Ap, apatite; Mnz, monazite; Zrn, zircon; +, present; g, inclusion in garnet; m, matrix phase; s, secondary phase replacing sillimanite; b, inclusion in biotite; f, inclusion in felsic phases.

Sample	S22a	S22b	S26	OZ04b†
Unit	2	2	1	
Locality	Sagaing	Sagaing	Sagaing	Onzon
(wt%)				
SiO ₂	67.45	62.58	51.73	69.99
TiO ₂	0.67	0.80	1.32	0.84
Al ₂ O ₃	12.58	14.90	18.61	12.38
FeO*	7.12	7.14	11.87	5.70
MnO	0.14	0.11	0.19	0.09
MgO	3.17	3.28	5.51	3.48
CaO	1.46	1.45	2.33	1.34
Na ₂ O	1.46	1.15	1.42	1.76
K ₂ O	3.52	5.86	3.42	2.35
P_2O_5	0.05	0.10	0.10	0.07
LOI**	2.39	1.07	1.44	0.77
Total	100.01	98.44	97.95	98.77
(ppm)				
Cr	97	96	195	123
Co	17	19	30	20
Ni	31	33	57	54
Cu	7	7	37	162
Zn	67	92	163	71
Ga	13	17	22	17
Rb	120	249	149	108
Sr	305	158	181	89
Y	58	48	77	38
Zr	279	232	272	279
Nb	18	17	29	13
Ba	900	883	635	358
Rb	22	40	33	14
Th	35	32	65	21

Table 2. Whole-rock compositions of paragneisses of the Mogok metamorphic belt, central Myanmar

* Total iron as FeO.

** Loss on ignition.

[†] Paragneiss from the Onzon area (Ye Kyaw Thu *et al.*, 2017).

Sample S22a S22b			S26							
Host	Bt	Bt	Fsc		Bt					
Mineral	Rt	Rt	Rt		Rt					
Texture	Iso	Iso	Iso	Int	Int	Int	Int			
Position	core	core	core	core	rim	Nbf				
EPMA	733	733	733	8800	8800	8800	8800			
(wr%)										
SiO ₂				0.07	bd	bd	0.03			
TiO ₂	97.16	97.88	97.79	93.69	98.69	96.56	52.01			
Al ₂ O ₃	0.27	0.05	0.05	0.24	0.04	bd	bd			
Cr_2O_3	bd	0.14	0.10	0.16	0.08	bd	0.07			
V_2O_3	0.50	0.50	0.48	0.47	0.25	0.09	0.10			
Fe ₂ O ₃ *	0.55	0.31	0.32	1.24	0.71	3.23				
FeO**							46.88			
MnO	bd	bd	bd	0.03	bd	bd	0.42			
MgO	bd	bd	bd	bd	bd	bd	0.61			
Nb ₂ O ₅	1.26	0.46	0.27	3.66	0.28	bd	0.04			
Ta ₂ O ₅	bd	bd	bd							
ZrO_2	0.07	0.09	0.55	0.14	0.08	bd	bd			
Total	99.81	99.43	99.56	99.70	100.19	99.88	100.16			
Zr (ppm)	520	670	4070	1040	590					
Formulae										
0	2	2	2	2	2	2	3			
Si				0.001			0.001			
Ti	0.979	0.988	0.987	0.953	0.989	0.975	0.981			
Al	0.004	0.001	0.001	0.004	0.001					
Cr		0.001	0.001	0.002	0.001		0.001			
V	0.005	0.005	0.005	0.005	0.003	0.001	0.002			
Fe ³⁺ *	0.006	0.003	0.003	0.013	0.007	0.033	0.032†			
Fe ^{2+**}							0.951†			
Mn							0.009			
Mg							0.023			
Nb	0.008	0.003	0.002	0.022	0.002		0.000			
Та										
Zr	0.000	0.001	0.004	0.001	0.001					
Total	1.002	1.002	1.003	1.001	1.004	1.009	2.000			

Table 3. Representative analyses of rutile and ilmenite in Sagaing paragneisses from the Mogok metamorphic belt, central Myanmar

* Total iron as Fe₂O₃.

** Total iron as FeO.

† Calculated values assuming stoichiometry.

Abbreviations are: Bt, biotite; Fsc, felsic phases; Grt, garnet; Rt, rutile; Ilm, ilmenite; Iso, isolated grain; Int, Intergrowth grain; Nbf, Nb-free and Fe-rich part; 733, JCXA-733; 8800, JCXA-8800R; bd, below detection limit.

Sample		S28			S 30			S36	
Host		Fsc			Fsc	Grt		Bt	
Mineral	Rt	Rt	Ilm	Rt	Ilm	Ilm	Rt	Ilm	
Texture	Iso	Int	Int	Int	Iso	Iso	Iso	Int	
Position	core	core	core	core	core	core	core		
EPMA	8800	8800	8800	8800	8800	8800	8800	8800	
(wr%)									
SiO ₂	bd	0.03	bd	0.06	0.05	0.04	0.04	0.06	
TiO ₂	98.63	98.73	52.44	98.13	50.47	52.18	97.09	52.10	
Al ₂ O ₃	0.03	0.04	bd	0.05	bd	bd	0.05	bd	
Cr_2O_3	0.25	0.25	bd	bd	bd	bd	0.12	0.04	
V_2O_3	0.69	0.86	0.14	0.26	0.12	0.15	0.42	0.12	
Fe ₂ O ₃ *	0.19	0.18		0.25			0.85		
FeO**			46.72		46.37	46.06		44.87	
MnO	bd	bd	0.56	bd	0.26	0.50	0.04	1.73	
MgO	0.02	0.02	0.57	bd	1.81	0.20	bd	0.14	
Nb ₂ O ₅	0.50	0.38	bd	0.20	bd	bd	1.52	0.13	
Ta ₂ O ₅	bd	bd		bd	bd				
ZrO_2	0.41	0.13	bd	0.49	bd	bd	0.12	bd	
Total	100.72	100.62	100.43	99.44	99.08	99.13	100.25	99.19	
Zr (ppm)	3040	960		3630			890		
Formulae									
0	2	2	3	2	3	3	2	3	
Si		0.000		0.001	0.001	0.001	0.001	0.002	
Ti	0.984	0.985	0.987	0.990	0.951	0.998	0.976	0.996	
Al	0.000	0.001	bd	0.001	bd	bd	0.001	bd	
Cr	0.003	0.003	bd	bd	bd	bd	0.001	0.001	
V	0.007	0.009	0.003	0.003	0.002	0.003	0.004	0.002	
Fe ³⁺ *	0.002	0.002	0.024†	0.003	0.092†	0.000†	0.009	0.000†	
Fe ^{2+**}			0.953†		0.880^{+}	0.979†		0.954†	
Mn			0.012		0.006	0.011	0.000	0.037	
Mg	0.000	0.000	0.021	0.000	0.068	0.008	bd	0.005	
Nb	0.003	0.002		0.001			0.009	0.001	
Та									
Zr	0.003	0.001		0.003			0.001		
Total	1.002	1.003	2.000	1.002	2.000	2.000	1.002	1.998	

Table 3. (continuted)