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ABSTRACT 
A multivariate count model is developed by introducing a simple and practical formula. The 

formulation begins with a modification of the standard ordered response model to adopt the count 

outcomes nature. This modification is accomplished by introducing a non-linear asymmetric 

interdependence structure among the error terms using the copula-based model. To avoid 

simulation maximum-likelihood for evaluating the multi-outcome density, we utilize the 

composite marginal likelihood (CML) approach. The proposed copula-based model with the CML 

approach allows for asymmetric (tail) dependency without a need for a simulation mechanism. 

Non-parametric graphical techniques with the empirical copula as well as conventional goodness-

of-fit statistics are utilized to guide copula selection. In addition, unobserved heterogeneity across 

observations is also addressed through a heterogeneous dispersion parameter in the proposed 

model. The heterogeneous dispersion parameter model is a suitable alternative to random 

parameter count models in that captures heterogeneity in variance, while allowing for closed form 

while the latter needs numerical integration or simulation. 

We apply these techniques to study the interdependence structure among four types of 

traffic crashes using three years (2005-2007) of cross-sectional crash data record for 274 multilane 

freeway segments in the State of Washington, USA. These four categories of crash types are the 

rear end; sideswipe; fixed objects and other crash types. The empirical results show a significant 

presence of unobserved heterogeneous dependency across these types of crashes. The results 

indicate the important role of unobserved heterogeneity in variance and covariance structure 

estimation. An important outcome of this result is that it can affect inference on the relative impact 

of roadway geometrics on crash occurrence. For example, we find that horizontal curve related 

parameters on freeway segments substantially increase the joint likelihood of rear-end, sideswipe, 

fixed objects and other crash types, when compared to the characteristics of vertical curves.   

 

Keywords: Multivariate count data; copula; composite marginal likelihood; crash type 

correlations; variance-covariance structure; heterogeneous dispersion 
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1. INTRODUCTION 

1.1 Background 
The concept of multivariate count data modeling appears in many econometric applications. 

Multivariate count data modeling arises from the need for predicting the probability of several 

random integer non-negative outcomes simultaneously. This concept offers a better understanding 

of the interdependence of several random outcomes. The state of the art in estimating the 

interdependence of multiple traffic safety outcomes involves simulation based parameter 

estimation. One recent exception to this approach is the work of Bhat et al. (2014a) who have 

addressed three major types of multivariate count data approaches regarding the econometric 

formulation structure. The authors proposed a seminal perspective along three tracks of thought: 

a) via a general multivariate count model for obtaining the joint probability (usually in non-closed 

form); b) via a combination of a discrete-continuous data model in which count data are treated as 

random outcomes; and c) via a joint discrete choice-count model that accounts for the utility of 

discrete events.   

In the first category, namely, multivariate count models, typically, there are five 

multivariate count models which offer a correlation structure among frequencies of the random 

outcomes: Multivariate Poisson model; multivariate negative binomial model; multivariate 

Poisson-gamma mixture model; multivariate Poisson-log-normal model and latent Poisson-normal 

model (Winkelmann, 2008). In the current paper, this approach is adopted to address a joint 

probability distribution that ties the random count outcomes through structural error terms (random 

unobserved heterogeneity) using the latent Poisson-normal model. Correlated counts in this model 

are explained as a realization of an underlying (latent) continuous random variable. Van Ophem 

(1999) and other studies (Castro et al., 2012; Narayanamoorthy et al., 2013; Yamamoto and 

Morikawa, 2013 and Bhat et al., 2014b; Bhat et al., 2015; Bhat et al., 2016a; Bhat et al., 2016b; 

Lavieri et al., 2017 and Bhat et al., 2017) utilized this model with the main assumption that the 

error term component is mapped from a normal distribution. The above-mentioned studies 

parameterized the threshold of a generalized ordered response (GOR) model as a function of a 

count distribution. The advantage of this model lies in its flexibility to handle both positive and 

negative dependency structure among the error terms. The flexibility in dependency is particularly 

useful in traffic crash analysis since the dependency might vary by context due to the nature of the 
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unobserved heterogeneity (for example, rural versus urban interstates; environmental 

heterogeneous contexts such as high-rain versus high-snow segments; and recreational versus 

commuting corridors, see Lavieri and Bhat 2016 and Bhat et al., 2016c). Mannering et al. (2016) 

briefly describe approaches to account for multivariate outcome modeling in the presence of 

unobserved heterogeneity. The authors stress the need for flexible correlation models that are 

unrestrictive on the nature of the dependency among outcomes. To address this need, we take an 

approach to include a non-linear asymmetric distribution dependency structure by adopting a 

copula-based concept. A copula is a tool to generate a multivariate distribution from univariate 

marginals (see for example Bhat and Eluru, 2009). Therefore, two steps are usually involved in 

the development of a copula: a) identifying the marginals, and b) determining the appropriate 

copula for accommodating the dependence structure. (So, the copula can be seen as a link between 

the marginals and the joint cumulative distribution. However, for discrete random variables, it 

must be noted that the associated copula representation may not be unique).   

In the modeling of traffic crash count data, Poisson or negative binomial (NB) distributions 

are typically used as marginal distributions. However, as opposed to the usual bivariate case, 

accommodating the dependence structure in a multivariate case through the use of dependence 

parameters for each pair of marginals remains a challenge. The published literature suggests two 

approaches. The first approach involves the use of the mixture of powers concept (MOP) with 

some restrictions (see Zimmer and Trivedi, 2006; and Nikoloulopoulos and Karlis, 2010; Shi and 

Valdex, 2014).1 Lee (1983) provided a normal copula through a transformation of non-normal 

disturbances, so that trivariate marginals can accommodate three parameters of dependency; 

however, this occurred at the expense of a closed-form. Hüsler and Reiss (1989) and Joe (1999) 

employ multivariate copulas with adequate dependence parameters, but in their approach they used 

a multivariate normal distribution only with a need for numerical integration. The second approach 

adopts the composite marginal likelihood (CML) technique. The CML approach has been used to 

overcome multi-dimensional complex dependencies without a need to evaluate the full likelihood 

function (see Ferdous et al., 2010; Sener et al., 2010; Castro et al., 2012, 2013; Paleti and Bhat, 

2013; Yamamoto and Morikawa; 2013; Bhat et al., 2014c; Bhat and Dubey, 2014; Bhat et al., 2015 

and Bhat et al.,2017). The CML approach is rooted in a general class of composite likelihood 

                                                
1 In the case of quadrivariate count outcomes the MOP approach produces three dependence parameters, so there are 
(I-1) parameter estimates of (I) count outcomes. 
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approaches (Lindsay, 1988). Both the MOP and CML approaches avoid using the simulation 

maximum likelihood method to evaluate the multivariate density of the count outcomes problem. 

With regard to applications of count models in traffic crash analysis, a substantial body of 

literature exists (see Lord and Mannering, 2010; Mannering and Bhat, 2014; Mannering et al., 

2016 for an exhaustive review). While some of the studies simultaneously considered crash 

frequency and severity (Chiou et al., 2013; Ye et al., 2013) the literature on the simultaneous 

treatment of multiple crash types dates back to Ma et al. (2008) and Park and Lord (2007). Other 

recent examples employing a Bayesian multivariate approach include Aguero et al. (2009), El-

Basyouny and Sayed (2009), Imprialou et al. (2015), Lee et al. (2015), Li et al. (2015), Heydari et 

al. (2017) and Cheng et al. (2017). Two approaches are suggested to tackle the computational time 

problem of the fully Bayesian fitting with Markov Chain Monte Carlo (MCMC) when constructing 

the multivariate Poisson lognormal model. These approaches are the parallel sampling scheme by 

Zhan et al. (2015) and the integrate nested Laplace approximation (INLA) by Wang et al. (2017). 

Dong et al. (2014) have used a multivariate random-parameters zero-inflated negative binomial 

regression model to estimate crash frequencies of different types at intersections. Anastasopoulos 

et al. (2014) and Zeng et al. (2017) evaluated crash rates instead of crash frequencies by using the 

multivariate Tobit model to analyze the severity level on the freeway. In the injury analysis domain, 

in particular, Rana et al. (2010) used copula-based approach for addressing endogeneity in models 

of severity of traffic crash injuries while Yasmin et al. (2014) have used the same approach to 

examine driver injury severity in two vehicle crashes.  

Nashad et al. (2016) have used the copula approach to investigate pedestrian and bicycle 

crashes. In their work, they utilized the negative binomial model as a marginal distribution to 

construct the copula-based model. The authors proposed several functions to parameterize the 

copula correlation parameter, rather than parameterizing the expected crash count. Their developed 

model is suitable for two dimensions only, although suggest potential extensions to higher 

dimensions.  

In the context of the state-of-the-art econometric models, random parameters models have 

seen significant use in the address of unobserved heterogeneity among different observed 

individuals (in our case, segments). Generally, random parameter count models provides richer 

inferences compared to the classical fixed parameter (Mannering et al., 2016; Anastasopoulos and 

Mannering, 2009, 2011, 2016; Dong et al., 2014; Venkataraman et al., 2014; Coruh et al., 2015; 
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Barua et al., 2016; Bhat et al., 2017; Bhat and Lavieri, 2017). The estimation procedure for random 

parameters models involving simulation precludes their use in a variety of situations where closed 

form approaches are sufficient.    

1.2 Aims of this study 
The aim of this paper is to contribute to the literature on multivariate cross sectional count models, 

in particular, the efficient estimation of parameters while addressing unobserved heterogeneity 

across segments. The efforts in this paper are motivated by the recent work of Castro et al. (2012, 

2013) and Bhat et al. (2014c, 2017). A characteristic of these studies is that the discrete ordered 

response approach was used. Given the questions that remain from these studies, namely the 

practicality of estimation of multidimensional outcomes under the presence of flexible 

dependencies, we apply a simple and practical approach. This approach involves a copula-based 

formulation using CML estimation to model dependence across the observational units. This 

approach provides flexibility in handling multiple marginals while taking advantage of the CML 

technique.  

Our contribution to the literature is to provide for a rigorous approach to investigate 

dependency across crash types (including asymmetric tail) due to unobserved heterogeneity, 

without the need for numerical simulation of the likelihood.  We demonstrate the contributions 

through a sequence of analyses – we first show the benchmarking of various copula alternatives 

for crash types that identifies the Gumbel copula as the preferred copula; we then show that the 

heterogeneous dispersion parameter count model structure is statistically preferable to a random 

parameter structure for the crash dataset used in this study; and finally, we then use the 

heterogeneous dispersion count model structure in a multivariate Gumbel copula formulation by 

accommodating the influence of geometrics and traffic volume on the Gumbel tail dependency 

parameter.   

We then present a comprehensive discussion of the performance of the Gumbel copula 

(baselined against the independent copula) with respect to the dependency parameter variation by 

crash type pairs; in terms of the covariances of crash type pairs; and in terms of the variance in 

total crash count captured by the Gumbel copula.  The Gumbel copula is then used to evaluate 

segment level correlations of crash type pairs as well marginal effects of the statistically significant 

geometric and traffic volume variables. 
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The rest of this paper is structured as follows. The next section provides the building blocks 

of the model in terms of formulation and inference. Section three describes the dataset including 

the selection of the crash types and the explanatory variables. Section four illustrates an application 

of the proposed crash type copula model and comparisons with the empirical copula. The final 

section summarizes the important findings and conclusions from the study. 

2. METHODOLOGY 
In this section, we begin with the formulation of a multivariate constant-dispersion copula-based 

count model (MHOCC) of crash types. The basis is a generalized ordered response (GOR) model 

in which a symmetrical interdependence among the error terms of crash count types is assumed. 

Next, a non-linear flexible correlation structure is introduced using the copula function. The 

MHOCC model assumes the dispersion parameter in the negative binomial marginal distribution 

is a constant among all observed individuals (segments). This is extended later to our final model, 

multivariate heteroscedastic copula-based count model (MHECC), which is capable to 

accommodate the heterogeneity effect among the observed specific segments for each given crash 

type.   

2.1 Multivariate constant-dispersion copula-based count model 
2.1.1 Ordered response model with count data 

Following the generalized ordered model representation in Castro et al. (2012) 2, we assume q 

),...,2,1( Qq =  to represent the number of segments (or observation units), and i ),...,2,1( Ii = to 

be the index of the crash type. Assume a count crash type variable iqy  can take the values iqk , 

where ,...2,1,0=iqk  is a stochastic count crash number of a specific type of crash i on a specific 

interstate segment q. Assuming a latent variable *
iqy corresponding to the latent propensity 

underlying the observed count variable of iqy , we can write:  

1* *, if iq iqk kT
iq i iq iq iq iq i iq iy y k yε η η−= + = < <zϖ                                                          (1) 

                                                
2 Recently, Nashad et al., (2016) derived copula functions for count models directly without using ordered response 
representation. 
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where iqz  is a ( 1×L ) vector of non-intercept explanatory variables which are associated with crash 

type i, T
iϖ  is a ( 1×L ) column-vector of parameters. The latent variable *

iqy  is drawn from a 

univariate continuous distribution which is a normal distribution in the case of the ordered response 

probit model; *
iqy is bounded by the thresholds 1−iqk

iη and iqk
iη (thresholds follow the usual ordered 

response model cutpoint definitions); and iqε  is an identically distributed error term across 

segments representing the unobserved heterogeneity influencing the latent propensity of a crash 

type. Since we deal with count data, let’s assume that iqy follows a discrete-count distribution like 

Poisson, negative binomial (NB), Poisson-lognormal or zero-inflated distribution. If we assume 

that 0T
iϖ = , then we can write iqiqy ε=* , which lead to, 

( ) ( ) ( )iqiq k
iiq

k
iiqiqiqiqiq kykky ηεη ≤<=≤<−== −1Pr1PrPr .                                                   (2) 

This relationship is essential to connect the continuous to the count distributions together. We can 

write Eq. (2) in terms of the cumulative density functions, as: 

( ) ( )
( ) ( )iq

iq

k
iiiqi

k
iiqiqiq

HkF

ky

η

ηε

==

≤=≤ PrPr
                                                                                           (3) 

where iF  is a univariate cumulative density function of a count crash type variable 
iqy (e.g., 

Poisson or negative binomial); and iH  is a univariate cumulative density function of a latent 

propensity of a crash type i (
iqε ) (e.g., normal or t-student). Then we can write,  

( )[ ]





=≤

−=∞−
=

− ,....1,0Pr

1
1

iqiqiqi

iqk
i kkyH

k
iqη                                                                    (4) 

where 1−
iH  is a univariate cumulative density inverse function. This relationship defines the 

threshold value iqk
iη uniquely for any selected parametric marginal distribution ( )iqiq ky ≤Pr  for a 

continuous marginal distribution, but not unique in case of the discrete-count distributions (see 

Nelson, 2013; Joe, 2014). The threshold now is not in a linear relationship as in the GOR model, 

instead, it follows the marginal distribution form. This configuration ensures of getting always a 
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positive number for the threshold, which is the essence of our developed count model3. At the 

moment, we can write the multivariate cumulative probability density function ( )IH ,...,2,1
 for a given 

segment q as: 

( ) ( )
( )( )

( )( )∫ ∫ ∫∞− ∞− ∞−
=

=

≤≤≤=≤≤≤

qk qk Iqk
I

Iqqq

Iqqq

III

k
I

kk
I

k
IIq

k
q

k
qIqIqqqqq

dddf

H

kykyky

1
1

2
2

21

21

....|,....,,....

,....,,

,....,,Pr,....,,Pr

2121,....,2,1

21,...,2,1

22112211

η η η
εεεεεε

ηηη

ηεηεηε

Θ

         (5)  

where ( )If ,...,2,1 is the multivariate probability density function of the I-dimensions, Θ is the matrix 

of correlation among the error terms iqε . We can write the multivariate joint probability 

distribution function for a given segment q as: 

( )

( )( ) ...|,....,,.....

,....,,Pr
1

1

11
11

2
2

12
22

1 2121,....,2,1

2211

∫ ∫ ∫− − −
= = =

====
qk

qk

qk

qk

Iqk
I

Iqk
II

III

IqIqqqqq

dddf

kykyky
η

ηε

η

ηε

η

ηε
εεεεεε Θ

      (6)  

Since Eq. (6) has no closed form, we evaluate it in copula form, which allows us to solve the 

integral of the joint distribution and to seek non-linear and asymmetric patterns of relationships 

among the error terms.    

2.1.2 Copula with count data 

Sklar’s theorem (1959) provides that there exists a class of distribution function such that the n-

dimensional cumulative distribution can be expressed in terms of the copula and the marginal. 

When iqy are discrete (count) variables and iF are discrete cdf’s, the multivariate cumulative 

probability density function ( )IH ,...,2,1  for a given segment q (shown in Eq. (5)) can be constructed 

from � ( ) ( ) ( )IqIqq yFyFyF ,....,, 2211 � ( ) ( ) ( )IFRanFRanFRan ×××∈ ....21  where Ran(Fi) denotes the 

                                                
3 In the context of parameterizing the threshold, Bhat et al. (2015, 2016a, 2016b) proposed to use the cumulative 
negative binomial model ( )iqkF  to accommodate the count outcome dimension using the 

( )[ ] ( )[ ]iqiiqiqi kFkyH 11 Pr −− Φ=≤ , where 1−Φ i
 is the inverse function of the univariate cumulative standard normal 

distribution. 
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range of the marginals ( ).iF . Using the inverse cumulative density function approach via the 

multivariate copula qIC ),...,2,1( , we can write: 

    

( )
( )[ ] ( )[ ] ( )[ ]{ }

( ) ( ) ( )[ ].|,....,,
Pr,....,Pr,Pr

,....,,

2211),...,2,1(

1
22

1
211

1
1),...,2,1(

21),...,2,1(
21

θIqIqqqI

IqIqIqqqqqI

k
I

kk
qI

kFkFkFC
kyHkyHkyHH

H Iqqq

=

≤≤≤= −−−

ηηη

                                (7)  

For all ( ) ( ) ( )[ ] [ ]I
IqIqq yFyFyF 1,0,....,, 2211 ∈ ; θ is the matrix of correlation among the marginal 

distributions for a specified copula 















=

III

I

θθ

θθ







1

111

θ  

by taking the derivative of both sides of Eq. (7) we can get: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )iq

I

i
iIqIqqIIqqqqI

IqIqq

IqIqq

Iqqq

IqqqqI

yfyFyFyFcf

yFyFyF
yFyFyFCH

∏
=

=

∂∂∂

∂
=

∂∂∂

∂

1
2211,..,2,121,..,2,1

2211

2211

21

21,..,2,1

.,....,,|,....,,

,....,,
,....,,

,....,,
,....,,

θεεε

εεε
εεε

                               (8)  

where ( )Ic ,..,2,1  is the multivariate copula density function, ( )iqi yf  is the univariate density 

function of the marginal distribution ith, now we can substitute the result of Eq. (8) into Eq. (6) and 

retrieve the integration boundaries using Eq. (4) to get: 

( )
( ) ( ) ( )[( )

( )
( )
( )

( )
( )

( ) ] ( ) ( ) ( ) ( ).......|....,

,...,....

,....,,Pr

2211
1

1 1 1 2211,..,2,1

2211

11

11
1111

22

22

IqIqqiq

I

i
iIqI

kF

HkF

kF

kF

kF

kF qqI

IqIqqqqq

ydFydFydFyfyF

yFyFc

kykyky
q

qk
q

q

q

IqI

IqI

∏

∫ ∫ ∫

=






=− − −

−=

===

θ

η
                                                  (9)  

Eq. (9) is the joint probability distribution of the multivariate crash count types written in terms of 

the copula density function. The copula approach offers an extensive range of parametric and non-

parametric functions, but in general, it can be classified into two families. First, the elliptical copula, 

offers a non-closed form for Eq. (9) and the integral should be evaluated either numerically or by 

simulation. Second, the Archimedean copula offers the closed-form and can be evaluated by taking 
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differences of the copula function C for the same boundaries of Eq. (9). The model estimation is 

carried out after specifying a suitable marginal distribution F for the count outcome and an 

appropriate copula C. Discrete copulas are not unique; albeit this fact, it has been proven that such 

non-uniqueness is not a problem and the discrete count copula still inherits the dependency feature 

analogous to the continuous one. More details regarding this issue are presented by Denuit and 

Lambert (2005), Zimmer and Trividi (2006) and Genest and Nešlehová (2007). 

2.2 Multivariate heterogeneous-dispersion copula count model 
As the very basic count modeling, the count data can be modeled with a Poisson regression. The 

probability of a certain crash type count variable iqy having iqk  accidents is shown as 

( )|
!

iq iqk
iq

iq iq iq
iq

e
P y k

k

λ λ
λ

− ×
= =                                (10)  

where iqλ  is the parameter for crash type i of observed segment q. iqλ  is usually specified as a 

function of explanatory variables by log-linear function as ( )exp T
iq i iqλ = β x  where 

iqx  is a ( 1×L ) 

vector of explanatory variables including constant that influence a certain type of crash i of 

segment q with corresponding ( 1×L ) set of parameter vector βi. Analogue to the conventional 

linear regression models, it is natural to add an error term iqξ  to represent unobserved effect of 

omitted variables as ( )exp T
iq i iq iq iq iqλ ξ λ ν′ = + =β x  where ( )expiq iqν ξ= . The unconditional 

probability is given as a result of the mixture probability function, 

( ) ( ) ( )
0

Pr | ,iq iq iq iq iq iq iq iq iqy k P y k f dλ λ ν ν ν
∞

= = =∫                               (11)  

If iqν  is assumed to follow log-normal distribution, Eq. (11) becomes Poisson-lognormal model. 

Unfortunately, Poisson-lognormal model doesn’t have a closed form, so numerical integration or 

simulation is required. On the other hand, if iqν  is assumed to follow a gamma distribution with 

( )11
...

,~ −−
iqiq

dii

iq Gamma ψψν , ( ) 1=iqE ν and ( ) iqiqiqV ψν = , a negative binomial type-II distribution 

(NBII) for each marginal distribution is a result of such conjugation between Poisson and gamma 
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distribution,   

( ) ( )
( ) ( )

1
1 1

1 11 1

iq r
iq iq iq

i iq
iq iq iq iqiq

r
P y

r

ψ
ψ ψ λ

λ ψ λ ψψ

−
− −

− −−

Γ +    
=       + +Γ Γ +    

.                                  (12)  

The expected crash count is given as ( )iq iqE y λ= and variance  

(overdispersion occurs when  > 0). For each observation the NBII cdf is obtained by summing 

the crash numbers from 0 to kiq as: 

( ) ( ) ( )
0

Pr | , | ,
iqk

T T
iq iq iq i iq i iq

r
y k F k P r

=

≤ = = ∑i iβ x β x .                              (13)  

Each marginal ( )iqi kF  for each crash type i is determined conditionally on iqx , which is used to 

construct our copula model in Eq. (9) 4.  

As mentioned in the introduction, unobserved heterogeneity across observations is also 

represented by the random parameter models (Mannering et al., 2016). If the coefficients are 

assumed to be randomly distributed, the coefficient vector can be represented by the sum of the 

fixed part  βi and the random part ϕi. The Poisson parameter is now given as  

( )exp T T
iq i i iq iqλ ξ = + + β x


ϕ .                              (14)  

If  ϕi is assumed to follow normal distributions as usual, it requires numerical integration or 

simulation to calculate the unconditional probability regardless of the distributional assumption on 

iqξ . Eq. (14) can be also rewritten as  

( ) ( )exp expT T T
iq i iq i iq iq iq iqλ ξ λ ν= + =β x x


ϕ .                              (15)  

where ( )expT T
iq i iq iqν ξ= +xϕ . In the case that both iϕ  and iqξ  follow normal distributions, the 

sum also follows a normal distribution, then T
iqν  follows a heterogeneous lognormal distribution 

                                                
4  Based on which distribution is selected to represent the ( )iqf ν  term, there are seven appealing possible count 
models that appear in the literature. These models are the negative binomial type I, type II (the one we use), Poisson 
inverse Gaussian mixture, Poisson lognormal, Hurdle, Zero inflated, Finite mixture (Cameron and Trivedi, 2013).  
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depending on iqx . It means that the random coefficient Poisson-lognormal model is equivalent to 

the Poisson heterogeneous lognormal mixture model. As the gamma distribution’s counterpart of 

the Poisson heterogeneous lognormal mixture model, we assume T
iqν  follows a heterogeneous 

gamma distribution depending on iqx , then the resulting model becomes Poisson heterogeneous 

gamma mixture model, which can be also called as the heterogeneous negative binomial model. 

Parameterizing the dispersion parameter in the NBII marginal distribution of each crash count 

outcome does not need for a numerical/simulation solution. In our current model framework, 

considering the heterogeneity effect by structured dispersion parameter is expected to capture the 

unobserved heterogeneity as in the random parameter count models. The dispersion parameter in 

Eq. (12) becomes in that case,  

( )exp T
iq i i iqψ γ= c δ                                     (16)  

where iγ is a necessary constant to capture the dispersion in case no significant variables in 
iqδ  

which is a ( 1×L ) vector of non-intercept explanatory variables that are associated with each 

individual dispersion variable of given crash type i. Tc  is a ( 1×L ) column-vector of parameters to 

be estimated along with the others parameters. Since the homoskedastic name is implicit, the 

MHOCC model is obtained through suppressing Eq. (16) to carry constants only, in that case the 

variance is assumed to have the same size across all observations. 

2.3 Choosing a copula function  
As previously mentioned, several types of parametric copula functions (Archimedean and 

Elliptical) are available for model development. So far, there is no robust formula that assesses the 

goodness-of-fit of a copula without the need to investigate all the other types of copulas. Four 

graphical techniques are available to aid our selection of the parametric copula – these techniques 

give an initial insight to the dependency structure of the outcomes regardless of the marginal effect. 

These techniques are: a) the PP-plot which is most general, but least effective; b) tail dependence 

plot – general and more effective than the PP-plot; c) the K-plot which is used for Archimedean 

copulas only and finally, d) the t-plot which is most restrictive - useful for elliptical copulas but 

only for model diagnostic checking. We will select the first two graphical methods, the PP-plot 

and the tail dependence plot due to their generality for both Archimedean and Elliptical copulas. 
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The PP-plot for copula also known as the “Copula PP-plot” was introduced by Sun et al. (2008). 

The Copula PP-plot evaluates the probability values at each observation point corresponding to 

the theoretical copula function (parametric copula) and the empirical copula (non-parametric). The 

tail dependence-plot (Joe, 1997) focuses on visualizing the dependence of each parametric copula 

compared to the empirical copula for the upper and lower tails using the tail concentration function. 

The tail concentration function separates the dependencies into two parts (for two-dimension 

copula) which are upper and lower tails (Boucher et al., 2008). Suppose Z [ ]1,0∈ , then we can 

write the tail concentration function as: 

( ) ( )
( )








≤≤
<≤

=
15.0if
5.00if

ZZR
ZZL

ZLR                                                              (17)  

given both, the lower ( )ZL  and the upper ( )ZR  tail functions are given as: 
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As implied above, we need to construct the empirical copula at first to conduct these graphical 

techniques. Let ( )jqiq mm ,  be a pair of observed crash counts for types i and j on segment q. The 

bivariate empirical copula function ( )
n

jiC ,
~

 (Deheuvels, 1979) is a function with a domain 

{ }2,.....,1,0:/ QaQa = and marginals aU  and bV [ ]1,0∈ , which is formulated as: 
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( ) ( ) ( )
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                           (19)  

where ( ) ( ) Qbamm bjai ≤≤ ,1 , and  are order statistics from the sample, 
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( ) ( )iqif

Q

f
iq

n
i mm

Q
mF ≤Ι= ∑

=1

1~  and ( ) ( )jqjf

Q

f
jq

n
j mm

Q
mF ≤Ι= ∑

=1

1~  are the empirical cumulative 

distribution functions of the observations, ( )iqi mR  and ( )jqj mR  are the rank functions5 of the 

observed crash count in the dataset. ( ).Ι  denotes the indicator function that can take a value equal 

to 0 whenever its argument is false, and 1 otherwise. Table (1) lists available empirical copulas, in 

which 1/Q type is used in this study (see Hernandez-Maldonado et al., (2012) and Asquith (2016) 

for more details). The tails dependence of the empirical copula is constructed using Eq. (18).  

2.4 Level of dependency of the copula function 
The bivariate copula function includes one parameter which represents a measure of dependency 

between the marginal distributions. If the marginal distributions are independent, the level of 

dependency 
ijθ  would be equal to zero and the estimation could be carried out individually for 

each marginal. In general, it’s not straightforward to interpret the level of dependency 
ijθ  like the 

case of Pearson product-moment correlation coefficient (except the case of the elliptical copula 

family), because of two reasons. First, the bivariate copula functions represent a non-linear 

relationship between the marginal distributions. Second, many of these copula functions don’t 

require that [ ]1,1: +−∈ijθ , therefore, other non-parametric measures (like Kendall’s ‘τ’ or 

Spearman’s ‘ρ’) are commonly utilized instead (Cameron et al., 2004). In case of continuous 
iqy  

variable is used, 
ijθ  is transformed to these measures, which are independent from the marginal 

distributions and bounded on the interval [ ]1,1 +− . Marshall (1996), Bouyé et al. (2000) and Tajar 

et al. (2001) state that these measures of dependence are not useful in the case of discrete variables 

because 
ijθ depends on the selection of marginal distributions, therefore extra care is required when 

interpreting 
ijθ for count data. For this reason, we will maintain the same count marginal 

distribution for the same crash type along with the modeling processes to facilitate the comparison 

among the developed models. 

                                                

5 It can be seen that the rank function is expressed as ( ) ( )∑
=

≤Ι=
Q

f
iqifiqi mmmR

1
 given that ( ) ( ) QmRmF iqiiq

n
i =~

. 

Therefore, the empirical copula can be seen as the empirical distribution of the rank transformed data as shown in the 
last part of Eq. (19).  
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To keep the consistency with the heterogeneity concept in the MHECC model, we allowed 

the level of dependency to vary across all the observed individual segments. This idea has been 

accomplished by parameterizing
ijqθ as a function of a ijqο  ( 1×L ) vector of dependency influential 

pairwise variables among the observed crash type pair (i, j) for a given segment q as 

( ) ( ) ( ),
T

ijq ijq ij ij ijqi jfθ θ= +ο d ο                                                               (20)  

where ijθ is a necessary pairwise constant to reflect the correlation value in case no significant 

parameter in ijqο . T
ijd  is a ( 1×L ) column-vector without-intercept of parameters of a given crash 

type pair (i, j) to be estimated along with the others parameters. In similar way to the dispersion 

parameter function, the constant-dispersion MHOCC model is obtained through suppressing Eq. 

(20) to carry constants only, in that case the copula function is assumed fixed across all 

observations. The function selection of Eq.(20) depends on the range of the parameter 
ijqθ of a given 

copula type to avoid any discontinuity in the copula function (see Bhat and Sener 2009; Bhat et 

al., 2010 and Nashad et al., 2016).  

2.5 Composite marginal likelihood CML 

The CML approach is useful for multi-dimensional dependencies as seen in Eq. (9) without a need 

to evaluate the full likelihood function. In this paper, we will use the pairwise marginal likelihood 

estimation method (see Ferdous et al., 2010; Sener et al., 2010; Castro et al., 2012, 2013; Paleti et 

al., 2013; Yamamoto and Morikawa, 2013 and Bhat et al., 2014c; Bhat and Dubey, 2014; Bhat et 

al., 2015; Bhat et al.,2016b and Bhat et al.,2017). The features of the bivariate copula can be 

obtained from Eq. (7) when I = 2 with the following properties: 

( )[ ] ( )[ ] 0,00, 2211 == qq yFCyFC ; ( )[ ] ( )qq yFyFC 1111 1, = ; ( )[ ] ( )qq yFyFC 2222,1 = . Let 

( )Iqqq mmm ,....,, 21  as the actual observed crash count of type i on a specific segment q. Let an 

index ( )Ij ,....,2,1= , the full length parameter vector of the MHECC model is given as 



17 

 

( ))1,()2,1()1,1(212121 ,...,,;,...,,;,....,,;,....,, −= IIIII dddcccβββζ γγγ 6  and Eq. (9) 

collapses into I(I-1)/2 pairs of bivariate probability computations and it takes the form: 
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         (21)  

where 
ijqθ  represents the level of dependency between the marginals )(),( jqjiqi mFmF  for a certain 

copula function C. Eq. (21) is constructed now in a way to accommodate all types of variations in 

both the dispersion parameters and the level of dependency. The pairwise marginal likelihood 

across all segments can be computed using ( ) ( )∏
=

=
Q

q
CMLCML q

LL
1

ζζ . The pairwise likelihood 

estimator CMLζ̂  is obtained by maximizing the logarithm of the ( )ζCMLL  function with respect to the 

vector ζ , which is consistent, and asymptotically normal distributed with asymptotic mean ζ  and 

covariance matrix given by the inverse of Godambe’s (1960) sandwich information matrix ( )ζG  

(see Zhao and Joe, 2005; Ferdous et al. 2010 and Castro et al., 2012). 
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                                                                  (22)  

                                                
6 Obviously, the dispersion parameter in Eq. (16), will be ii γψ =  and the level of dependency parameters will be 
fixed across all segments as 

ijθ in Eq.(20),  when the multivariate homoskedstic copula-based is selected, hence the 

vector will collapses into ( )θβββζ ;,....,,;,....,, 2121 II γγγ=   
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where ( )ζH and ( )ζJ  are Hessian and Jacobian matrices, respectively. Estimates of the Hessian and 

Jacobian matrices at the CML estimate ( CMLζ̂ ) as shown below are consistent with the results of 

the empirical copula: 
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2.6 Model selection 
Nikoloulopoulos and Karlis (2009); Winkelmann (2012); Cameron and Trivedi (2013) utilized the 

Akaike information criterion (AIC) while Yasmin et al. (2014) utilized Schwarz Information 

Criterion (BIC) to select the copula that provides the best fit. The BIC performed better in large 

samples, whereas the AIC tends to be superior in small samples (Shumway and Stoffer, 2010). AIC 

and BIC criteria were implemented and the copula that provides the best fit is the one that 

correspond with the lowest values of these measures. The AIC and the BIC can be defined as 

follows: ( ) ( )QLLAIC ×+×−= 2log2 and ( ) ( ) ( )QLLBIC loglog2 ×+×−= κ , where κ  is the 

number of parameters of the copula model. The AIC and BIC criteria are used to assess model fits, 

along with the non-nested likelihood ratio test (Ben-Akiva and Lerman, 1985) for evaluating all 

competing models.  

2.7 Variance covariance structure of MHECC Model 

The variance-covariance II ,V  formulated from the unobserved heterogeneity for a given segment 

q is a square matrix with dimensions IxI (I = total number or crash types {four in our crash data}), 

where the variances appear along the diagonal and covariances appear in the off-diagonal elements, 

as shown below, 
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 .                                                                 (24)  

The expected covariance between two independent random continuous variables is estimated 

directly from the data given by the sum of cross-products formula. This is not the case for the 

correlated variables where the data are not normally and identically distributed. Hoeffding’s 

formula exists to overcome this difficulty (more details on this formula, see Hoeffding, 1940 and 

D'Angelo et al., 2013). Hoeffding’s formula for the expected covariance between two continuous 

dependent variables xi and xj states that  

( ) ( ) ( )[ ] ( ) ( )[ ]{ } jijjiiijjjiiji dxxdxFxFxFxFCxx ∫ ∫
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∞−
×−=Ω θ|,, .                                 (25)  

The formula for the expected covariance between two discrete count variables in our case is 

given as,  
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More details on Eq. (26) are given in the Appendix A. The average of the expected covariance 

( )ji,Ω of all segments is calculated using,  

( )( )[ ] ( )( )jqiq

Q

q
jijiji yy

Q
yyE ,1,

1
,, ∑

=

Ω=Ω                                                                                  (27)  

and, the total covariance of crash types i and j is calculated using, 

( ) ( ) ( ) ( )[ ].,,, , jijijiji yyECovyyCov Ω+= λλ                                                                       (28) 

The variances element iΓ  in the diagonal variance-covariance matrix are calculated for each 

crash type i for the NBII model as, ( ) ( )2
iqiqiqiqi y λψλ +=Γ  (the dispersion is given as
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( )exp T
iq i i iqψ γ= c δ ) and ( ) iqiqi y λ=Γ  for the Poisson marginal distributions. The average of the 

variance iΓ  of all segments is then calculated using,  

( )[ ] ( )iq
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q
iii y

Q
yE ∑

=

Γ=Γ
1

1
                                                                                                     (29)  

The total variance magnitude is the sum of two components calculated using, 

( ) ( )[ ] ( )[ ]TTTT yVEyEVyV +=                                                                                            (30)  

where the ( )[ ]TyEV  represents the variance of the expected number of total crash which is 

constructed from the observed heterogeneity while the second component is the expected variance 

formulated from the unobserved heterogeneity given in the II ,V matrix, where both components 

are given by Eq. (31) and Eq. (32) respectively. 
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3. EMPIRICAL SETTING 
The crash data used in the analysis are obtained from Washington State Department of 

Transportation crash records for three years from 2005 to 2007. Data were collected for Interstate 

5 in the state of Washington, USA. In addition to crash data, roadway geometrics and traffic 

volume data (average daily traffic) were assembled for 274 roadway segments. These segments 

vary in lengths with roughly 0.87 (miles) mean segment length and 0.60 (miles) standard deviation. 

These segments include interchange segments only, defined as segments bounded by the farthest 

ramp terminal on either side of an interchange overpass. The interchanges are spatially separated 

and regarded as independent from each other, so that the spatial dependency is not considered in 

this study, but the proposed CML approach can be extended to accommodate it as in 

Narayanamoorthy et al. (2013). These interchange segments that we considered here, come with 

many different geometric layouts e.g., directional ramps, semi directional, cloverleaf, diamond, 

single-point, clove-part, part-diamond and others. For each segment, crashes were recorded by 
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year and aggregated under each individual type of crash category. Hence, crash frequency counts 

by types were obtained for each freeway segment for three years resulting in a balanced panel of 

822 observations. A total of 13,357 crashes were analyzed in this study. A detailed description of 

this dataset is provided in Mothafer et al. (2016). While the crash type information included rear 

end; sideswipe and fixed objects and “all-other,” geometric data included: percentage of lanes 

cross section proportion by length of the segment; central angle of horizontal curves; minimum 

and maximum radii of horizontal curves; grade; minimum grade; maximum grade; grade 

differential; number of changes in grade; tangent length; number of horizontal curves per segment; 

number of vertical curves per segment; presence of exit and entrance.  

4. MODEL ESTIMATION AND PERFORMANCE 
In this section, we started formulating the empirical copula function for all the crash type pairs. 

The work was utilized to develop the graphical techniques, PP-plot and the tail-dependence as we 

explained earlier. Later, we applied the MHOCC model to our dataset. Next, we took the results 

of both the empirical copula and the MHOCC to develop our last model. The MHECC has 

confirmed our expectation of detecting the heterogeneity effect of each observed segment, through 

parametrizing the dispersion and the level of dependency parameters among our different crash 

types. It is followed by a more investigation on the variance and covariance structure and the 

correlation among the unobserved heterogeneity that triggered from the joint these crash types. 

Finally, the marginal effect is also presented to explain the effect of each individual explanatory 

variable on the crash count by type. 

4.1 Empirical copula diagnosis 
The empirical copula is formulated using Eq. (19) for each pair of the designated crash types (there 

are six pairs in total which are: rear-end/sideswipe, rear-end/fixed object, rear-end/ ‘all-others’, 

sideswipe/fixed object, sideswipe/ ‘all-others’ and fixed object/ ‘all-others’). The empirical 

copula7 of rear end and sideswipe crash types pair is given in Figure (1) (other pairs are not 

reported in this paper). We used the 1/Q empirical copula for our estimation and it was compared 

to a selected parametric copula (Gumbel) as an example (other types of empirical copula like 

                                                
7 The empirical copula is assumed that only the observations are involved and constructed from a random sample for 
both the empirical marginals ( ) ( )jq

n
jiq

n
i mFmF ~ ,~

 and no explanatory variables are included. 
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Hazen; Weibull and Bernstein did not differ significantly from our selected empirical copula for 

all other pairs). We investigated six different types of copula from two different families (elliptical: 

Independent; Gaussian, Archimedean: Frank; Gumbel; Clayton and Joe) using both the PP-plot 

and the tail dependence graphs. Figure (2) shows the PP-plot for the rear-end vs sideswipe crash 

type pair, which we used for the empirical copula and repeated for each parametric copula that we 

assigned to our developed model later. The figures show that all parametric copulas have plots far 

from the diagonal line in the smaller probability area (< 0.5) (left and lower side of the graph), but 

that independent copula has off-diagonal plots also in the larger probability area. The results 

among all other pairs (other pairs are not reported in this paper) imply that interdependency among 

crash types is obvious while the empirical copula may not follow any parametric copulas at the 

segments with no or smaller number of crashes. While PP-plots are useful for comparing 

cumulative distributions, the weakness of the PP-plots lies in their inability to distinguish 

important differences concealed by the use of cumulative distributions (Gibbons and Chakraborti, 

2011). Therefore, we conducted tests of tail dependence to investigate the tendency of the 

upper/lower tails of the crash count types distributions. The tail dependence plot depends only on 

the empirical copula and so it is not restricted to a specific class of copula. The tail dependence of 

the rear end and the sideswipe crash types is shown in Figure (3). We can see that the empirical 

copula has a large step around 0.2 at the lower tail, which represents the segments with zero crashes, 

and smaller fluctuations at the upper tail (segments with high/moderate number of crash count). In 

the upper tail, most of the observed segments exhibit a pattern closer to Gumbel copula rather than 

all other types. The same results were observed for other pairs (other pairs are not reported in this 

paper). Shirazi et al. (2016) stated that the heavy tail crash counts dataset (excessive zero crash 

count or very large crash count) can cause some problems if the NB regression model is used. We 

hope that the proposed technique here can clarify the definition of the heavy tail crash counts by 

separating it into two cases represented by the upper and lower tails as stated.  

4.2 Model specification 
Let 

iqy denotes the observed crash count outcome of type i and segment q, where i takes the value 

of “rear-end” (i=1), “sideswipe” (i=2), “fixed object” (i=3) and “all-others” (i=4) respectively. Let 

also *
iqy denotes the unobserved latent tenancies for each crash type correspondingly. We assume 
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that each crash type follows a NB-II marginal distribution with a specification ( )iqi yF  and 

dispersion parameter iψ  for the MHOCC model. In contrast to the MHOCC mode, the dispersion 

parameter and the level of dependency parameter are parameterized using Eq. (16) and Eq. (20) 

when the MHECC model is constructed. Both empirical models consider parameterizing the mean 

of the expected number of crashes for each type (denoted as 
iqλ ) as a function of all the explanatory 

variables 
iqx with the corresponding parameters iβ . Furthermore, there are 4(4-1)/2=6 pairs of 

bivariate probability computations in the CML likelihood function (Eq. (21)), which are: rear-

end/sideswipe, rear-end/fixed object, rear-end/ ‘all-others’, sideswipe/fixed object, sideswipe/ ‘all-

others’ and fixed object/ ‘all-others’. To confirm the conclusions that we obtained from the 

empirical copula, we investigated all types of copula in a sense of goodness-of-fit, through the 

advantage of our parametric MHOCC model. These parametric copulas are implemented to fit our 

dataset with unobserved heterogeneity 
iqε  that generated from each crash type latent variable. The 

standard normal distribution is selected to represent the continuous variable 
iqε  and NBII margins 

are used for the count variable 
iqy  for both the independent and the Gaussian copula.  

We begin by identifying the most significant explanatory variables 
iqx  for each crash type 

independently due to the fact that each crash type has its distinct mechanisms and characteristics. 

For this purpose, the MHOCC-independent copula is used where no correlation among crash types 

is assumed. The independent copula works as a reference to assess both our selection of these 

explanatory variables and also as a reference to compare when we select different types of 

parametric copula functions. The preliminary estimation8 of the MHOCC-independent copula of 

the independent copula suggests the use of a Poisson marginal for ‘all-others’ crash type category 

due to an insignificant dispersion parameter 4ψ .The estimation results of the MHOCC-

independent copula are presented in Table (2). It is worth to mention that the independent copula 

                                                
8 Many numerical difficulties arise from the presence of both the gamma function and the factorial function in the 
negative binomial marginal distribution. These difficulties are realized spontaneously in computing the probabilities 
if the latter are associated with large crash count number. In GAUSS reference manual (Aptech, 2014), it is stated that 
maximum allowed number of both gamma/factorial function arguments should not exceed 170. Obviously, this is not 
the case in our crash count dataset (e.g., in one of the observed interchange segments of the no.5 freeway, rear end 
crash count is recorded to 212 crashes. Avoiding the overflow problems can be easily achieved if we use the logarithm 
of both these functions. Thus, to facilitate the speed of computation, Sterling’s formula is used, which offers an 
approximation for these both functions, (in this regard see Winkelmann, (2008) for more details).  
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can be obtained9 also by setting all the correlation components 
ijθ of Gaussian copula to zero.  

Gaussian; Frank; Clayton; Gumbel and Joe copulas were evaluated using our MHOCC 

model. While all of the above parametric copulas indicated significance of correlation with respect 

to the independent copula, Table (3) provides the log-likelihood, AIC and BIC measures for each 

copula model. It is clear that Gumbel copula is the most suitable to fit our data with the highest 

value of log-likelihood and lower values of AIC and BIC respectively. The results suggest that the 

interdependency among crash types is significant as shown in the empirical copula diagnosis. Also, 

Gumbel copula are better than Frank, Gaussian, Clayton, and Joe copula, implying that the 

interdependency among crash types are better represented by the asymmetric copula than 

symmetric counterpart. Conclusively, the result that Gumbel copula is better than all other copulas 

means the interdependency among crash types has a strong upper tail dependency.  

The nested-likelihood ratio test is conducted between the MHOCC-Gaussian and the 

MHOCC-independent copula, the Gaussian copula collapses to the independent copula by 

suppressing the dependency parameters among the crash types. The value of the test statistic can 

be calculated as ( )[ ]( )06.865,1791.919,17271.109 −−−×−= , which is much greater than the 

critical value of Chi-square distribution 16.81 at six degrees of freedom for a probability level of 

0.999. The test value is statistically significant, which indicates that considering the correlation 

using Gaussian copula is more preferable rather than the independent copula.  

The non-nested likelihood ratio test is also carried out to draw our last conclusion of 

statistical model selection by comparing the MHOCC-Gumbel copula to the closest competitor 

MHOCC-Frank copula model (see Ben-Akiva and Lerman, 1985). The difference in the adjusted 

rho square (also known as McFadden pseudo R square) ( 2
iρ ) value is (0.00202). The probability that 

this difference between these two competing models is equal to (0.50080). This value is larger than 

the critical value, which means this difference could have occurred by chance, given as 

( ) ( )( )0.5
2 2.02 03 restricted 38 38E LLΦ − − × − × + −   . The critical value of the cumulative 

probability term, with ( )restricted 36,179.896LL = − ; is equal to 3448.6 −E which is almost zero, 

                                                
9 We can obtain the independent copula density function in a straightforward form by taking the difference of the 
copula between the two marginals F(y1) and F(y2) as c(F(y1), F(y2); θ) =[F(y1). F(y2)]- [F(y1-1). F(y2)]- [F(y1). F(y2-
1)]- [F(y1-1). F(y2-1)], 
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indicating that the difference in 2
iρ  between Gumbel and Frank models is statistically significant 

to reject the null hypothesis, and that Gumbel copula is more suitable to fit our crash types count 

data.  

We took the results of the work on both the empirical copula and the constant-dispersion 

parametric copula investigation through the MHOCC model to establish our final model. Gumbel 

copula is our selection to fit all the crash type pairs; the heterogeneous effect is carried out through 

parameterizing the dispersion parameters in the MHECC model as we mentioned in section 2.2. 

MHECC model also includes parameterizing the level of dependency parameter in the copula 

function as we mentioned in section 2.4. Before developing the MHECC model, we have examined 

our claim that the heterogeneous dispersion model is comparable to the random parameter models. 

In this regard, different univariate models of rear end crash type only are presented in Table (4). 

These models are univariate heterogeneous negative binomial, random parameter Poisson gamma 

(negative binomial), and random parameter Poisson lognormal. We notice the log-likelihood at 

convergence of univariate heterogeneous NBII model is closer and related (larger) to the log-

likelihood of both random parameters Poisson gamma (negative binomial) and random parameter 

Poisson lognormal. A second noticeable point arises from comparing the parameter estimates of 

these three models is that, it seems the random parameter models tend to produce a more significant 

parameter estimates compared to the heterogeneous ones. This observation can hold for sideswipe, 

fixed object and ‘all-others’ crash types which suggests that under the basic level, the 

heterogeneous model performs similar if not better to the random parameter models. One possible 

reason one might think of, is that the simulation technique in the random parameter models 

approximates the probability function, while the heterogeneous approach has a closed-form and 

no approximation is involved in the estimation. 

To make the comparison fair for the same crash type, we have reported in the end of Table 

(4) the log-likelihood of base models, which are the univariate negative binomial (NBII) (the base 

of the univariate heterogeneous NBII and random parameters NBII models) and the Poisson 

lognormal (the base of random parameters Poisson lognormal). We expect that our MHECC model 

will perform better than the multivariate random parameters for the same reason above. Only the 

significant explanatory variables in the dispersion function of the univariate heterogeneous NBII 

model are considered. They are used to parameterize our dispersion functions of each crash type 

in our multivariate developed model. Thus, no significant variables in the dispersion function of 
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the sideswipe crash type were found. The dispersion variable of the sideswipe crash type in that 

case remains a constant across all the given segments. 

We parameterized the level of dependency of Gumbel copula in the form 

( ) ( )1 exp T
ijq ijq ij ij ijqθ θ= + +ο d ο  which is compatible with the range of Gumbel copula ),1[ ∞∈ijqθ . 

The crash type pairwise marginals become independent as ijqθ approaches 1, whereas the pairwise 

marginals will be strongly correlated and Gumbel copula approaches Fréchet-Hoeffding upper 

bound as ijqθ goes to infinity (for more details see Bhat et al., 2009). The most significant pairwise 

variables which influence the dependence level parameter for each crash types pair were selected 

through several modeling estimations of the MHECC model.  

As a final step, and in analogous way to previous, we have compared the two non-nested 

developed models as an attempt to draw a final conclusion. The difference in the adjusted rho 

square ( 2
iρ ) value between MHOCC and MHECC model is (0.00182). The probability that this 

difference between these two competing models is equal to (0.50073). The term

( ) ( )( )0.5
2 1.82 03 restricted 57 38E LL Φ − − × − × + −  , with ( )restricted 36,179.896LL = − is 

equal to 3102.9 −E  which is almost zero, indicating that the difference in 2
iρ  between MHOCC 

and MHECC model is statistically significant to reject the null hypothesis, and that MHECC model, 

which addresses the heterogeneity, is more suitable to fit our crash types count data.    

4.3 Estimation results 
Estimation results of MHECC-Gumbel regression model are presented in Table (5) with the 

variables influencing the dispersion parameters for each crash types. The pairwise variables which 

influence the dependence level parameter to explain the correlation among the marginal 

distributions of crash type pairs are presented at the end of the same table and to be discussed later. 

The estimation results provide parameter estimates for four types of crashes. The dispersion 

variables across all segments is estimated, with an average 1.649, 5.765 and 5.082 (Min: 0.031, 

5.765 and 0.375), (Max: 4.477, 5.765 and 26.055) for rear end, sideswipe and fixed object crash 

type respectively, which imply an average overdispersion magnitude of 0.606 0.173 and 0.197. 

The parameters in the dispersion functions are statistically significant for the AADT of both rear 

end and fixed object as evidence by the large t-values. The MHECC-Gumbel model supports 
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different sizes of overdispersion for each crash type and over different observed segments. The 

correlations of the unobserved heterogeneity for each frequency of crash type across all observed 

segments are also considered in this model.  

            The MHECC-Gumbel copula indicates unanimously significant relationships between 

traffic crash type and AADT, segment length and lane cross section proportion (3 lane or greater). 

The number of horizontal curves variable and the diamond interchange dummy are significant for 

the rear end, sideswipe and fixed object functions. The positive sign of the horizontal curves 

parameter indicates that as the number of curves increases, the expected crash count of rear end; 

sideswipe and fixed object crashes increases as well. The horizontal curve variable captures the 

effect of speed differentials and lane offsetting on rear end and sideswipe crash likelihoods, and 

potential loss of control and roadside encroachments resulting in fixed object crash type. The rural 

indicator variable has a negative coefficient for both the rear end and sideswipe. The diamond 

interchange indicator reduces the probability of rear end, sideswipe and fixed objects crashes. The 

minimum vertical grade and maximum vertical curve elevation variables are significant in the 

sideswipe function.  

The horizontal curvature characteristics are represented by the largest horizontal curve 

central angle in segment (0.515) which is significant at 1% level for the fixed object crash type. 

The number of vertical curves variable influences the fixed object likelihood in a negative manner, 

resulting in fewer run off the road crashes involving objects on the roadside.  

4.4 Representativeness of variance and covariance structure 
As shown in lower part of Table (5), the dependency influential pairwise variables show several 

significant variables except for the pair of fixed object and other types. For example, ADT is 

statistically significant for rear-end/sideswipe, rear-end/fixed object, rear-end/all others, 

sideswipe/fixed object and sideswipe/all others, pairs indicating most likely of these crash pairs to 

occur. Analogously, the length of the segment is statistically significant for the pairs rear-end/fixed 

object and sideswipe/fixed object only. Finally, the rural indicator variable, lane cross section 

proportion and number of horizontal curves are found to be statistically significant for the pairs 

rear-end/other types and sideswipe/fixed object respectively. As it is pointed by Chandra et al. 

(2010), it is hard to interpret the influence of the parameter estimate signs of the above variables 

on the level of dependency function, since the T
ijd  vectors incorporated in the exponential function 
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when we parameterized the Gumbel copula. Each ijqθ dependency parameters represents common 

unobserved factors in the latent variable functions for each observed segment and for each given 

crash types pair. Table (6) shows the average, minimum and maximum values of the level of 

dependency variables, which are estimated using the MHECC model. The average values of ijqθ  

indicate an association between the unobserved factors of each crash type in the corresponding 

pair with all pairwise correlations. The non-parametric Kendall’s ‘τijq’ measure was utilized to 

interpret the level of dependency ijqθ , and the results are presented in Table (7). The correlation 

ranges between 0.075 and 0.203, which demonstrates the presence of common unobserved factors 

association of the unobserved latent propensity for each crash type. The rear-end, sideswipe and 

fixed object/other types pairs appear to have weak correlations compared to the other crash type 

pairs, with the rear-end/sideswipe correlation being the strongest. This is intuitive since they are 

the same direction, multi-vehicle interactions that occur within lane or in adjacent lanes. One 

would expect the adjacent and in-lane dynamics to contribute the most to crash type correlations. 

The II ,V matrix was calculated10 for MHECC-Gumbel copula considering the average 

values among all segments using both Eq. (27) and Eq. (29) and it’s equal to, 



















=

66.131.214.473.13
01.432.621.24

82.581.47
78.79

4,4V                                                                                   (33)  

The total covariance of crash types i and j is a sum of two components, the covariance resulting 

from estimated expected number of crash specific type and the one from the association of the 

stochastic error terms generated from each marginal pair given in Eq. (26). The total covariance 

of crash types is calculated for MHECC-Gumbel, MHOCC-independent copula models using Eq. 

(28) and presented in Table (8). The results suggest that MHECC-Gumbel copula represents 

accurately the covariance structure among the crash types.  

                                                
10 It is worth to mention that evaluating the expected covariance elements in Eq. (26) can be also done by Eq. (A-1), 
but the amount of computation time increases rapidly as the maximum number of crashes for a certain type of crash 
and a given segment increases. This is because Eq. (A-1) requires to calculate the probability using the differences 
between the upper and lower bounds for each crash type pair as given in Eq. (21). Theoretically the maximum number 
of crashes should be set to (+∞) as given by Hoeffding’s formula, but we found that a 500 crashes count (upper bound) 
for each type are adequate to get stability in calculating the expected covariance value for each pair. 
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The total variance value is also a sum of two components, variance of the expected number 

of crashes and expected variance among the segments calculated using Eq. (31) and Eq. (32) 

respectively. Total variance components of MHECC-Gumbel, and MHOCC-independent copula 

models are presented in Table (9). The results suggest that MHOCC-Gumbel copula also 

represents the total variance structure more accurately compared to the other model. Finally, we 

have calculated the estimated correlation for a given segment using the following formula (Ophem, 

1999) which are presented in Table (10). 

( ) ( )
jqiq yy

jqiq
jqiq

yy
yy

σσ
ρ

×
Ω

=
,

,                                                                                                    (34)  

4.5 Marginal effects 
The marginal effect of an explanatory variable xv (where ....3,2,1=ν represents the number of 

explanatory variable in the vector x) can be obtained by taking the first derivative of the expected 

number of type specific crash function iqλ  with respect to xv in the MHECC-Gumbel copula model. 

( )expiq T
iv i iq

ivx
λ

β
∂

=
∂

β x                                                                                                       (35)  

The marginal effect values of all the explanatory variables of MHECC-Gumbel along with 

MHOCC-independent copula model for each crash type are presented in Table (11). The marginal 

effects in the rear end crash type are larger in absolute value than any other crash types regardless 

of explanatory variables. The results suggest that interstate rear end crash likelihood is more 

sensitive to geometric and traffic conditions which match the finding of Mothafer et al. (2016). 

Comparing MHECC-Gumbel copula model and MHOCC-independent copula model, most of the 

variables have the similar marginal effects within ten percent difference. However, the largest 

beginning vertical curve elevation in segment for the sideswipe and Number of horizontal curves 

per segment for fixed object have larger difference in the marginal effect between the two models. 

These two variables have coefficient estimates not statistically very significant (only at 10% 

significance level) as shown in Table (11), so the lower accuracy in the parameter estimate might 

have caused the difference in the estimation of the marginal effects. On the contrary, lane cross 

section proportion of rear-end, sideswipe and fixed object; largest horizontal curve central angle 

in segment of fixed object have a very significant coefficient estimate as shown in Table (5), and 
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the dispersion parameter is also statistically significantly heterogeneous these crash types. Thus, 

the results suggest that the marginal effect of these variables might be biased if the interdependency 

among the crash types and the heteroscedasticity of the dispersion parameter are not considered. 

5. CONCLUSIONS 
This paper presents a multivariate copula-based ordered response model for non-negative integer 

counts outcomes. The advantages of the proposed model are that it offers a joint distribution 

without any restrictions on the nature of the correlation (both positive and negative correlations). 

Second, capability in addressing the variations (heterogeneity) across the observed segments is 

provided. Third, the need for a simulation-based technique is circumvented. The proposed model 

uses an alternative way to utilize a latent continuous variable of the ordered response model and 

match the probability of this latent variable to a corresponding count outcome variable probability. 

The error term components are assumed as equivalent to the corresponding latent variables that 

represent different count outcomes. The bivariate copula function in the CML technique is used to 

pair two count marginal distributions that reflect two different count outcomes. The proposed 

model is parametric; straightforward to implement and more flexible via allowance for 

parameterization of the count marginal distribution. The proposed model also offers a non-linear 

asymmetric interdependence structure among error term components. The correlations among the 

error components are obtained from transferring the level of dependency of the copula function 

into a non-parametric Kendall’s ‘τ’ measure. 

The above described model framework is demonstrated empirically through the evaluation 

of dependence among four different crash types that commonly occur on freeway segments located 

on interstate 5 in the State of Washington. Accounting for the effects of geometry and traffic 

characteristics of the freeway segments we evaluated five different copula functions using the NB-

II marginal. The empirical results show that Gumbel copula is a plausible alternative for 

accommodating asymmetric tail dependence in heterogeneity among freeway crash types.   

APPENDIX A 

For discrete count random variables iqy  and jqy , any bivariate joint probability cumulative 

functions C of iqy  and jqy with margins iF  and jF  can satisfy the condition, 
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For any event π  of jqy , one has 
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similarly,  
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for any event µ  of iqy . It follows from the identities Eq. (A-2) and Eq. (A-3) that  
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and 
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Then we can write the covariance in the form of the copula function as (see Lee, 2001), 
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which is identical to Hoeffding’s formula given in Eq. (24) and it can be used to get the covariance 

between two count dependent random variables. 
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