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Abstract

Our galaxy is continuously forming new stars. The nuclear fusion processes within those
stars create elements heavier than hydrogen and helium, many of which are returned to the
interstellar medium once the star ends its life as a red giant or a supernova. New generations of
stars then form with different levels of heavy elements, and in this way stars drive the evolution
of the galaxy, and ultimately the universe as a whole, over cosmological timescales. Therefore,
a profound understanding of stars and their formation is essential for the field of astrophysics
as a whole.

Star formation is a complex process which involves physical scales ranging from the size of
whole galaxies to that of interstellar dust particles. The focus of this thesis is the process by
which an individual star forms from the gravitational collapse of a cloud of gas, i.e. a molecular
cloud core. We are especially interested in the formation of very low-mass objects such as
brown dwarfs and sub-brown dwarfs, since this mass regime has so far been underexplored and
presents a number of scientific questions and challenges.

In order to investigate this so-called “protostellar collapse”, we first develop a new numerical
scheme for solving the radiative transfer equation in a spherically symmetric system. This
scheme does not rely on any kind of diffusion approximation and it is accurate for optically
thin, thick, and intermediate systems. We then perform various test calculations with this
method, including a simplified protostellar collapse simulation.

In the next step, we apply our scheme to the numerical simulation of brown dwarf formation
by turbulent compression. In this scenario, brown dwarfs are formed as a result of an external
turbulent pressure acting on the molecular cloud core, which would otherwise be stable to
gravitational collapse. We investigate the possibility of this mechanism and the necessary
conditions for it to occur.

Finally, we expand our method to include a more realistic equation of state that allows us to
model the whole collapse process from the initial cloud core to the formation of the protostar.
We perform a number of simulations mainly of the brown dwarf mass regime and discuss the
results.
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Chapter 1

Introduction

This chapter provides a general introduction to the physics of star formation, from molecular
clouds to the formation of a protostar. The process of protostellar collapse and the formation
of brown dwarfs are discussed in some more detail.

1.1 Molecular Clouds and Filaments
Stars form in molecular clouds - regions of the interstellar medium which are very dense (>
102/cm3) and cold (10 K), allowing for the hydrogen gas of which they consist to be present
in molecular form (H2). Molecular clouds can have sizes of tens to hundreds of light years,
and contain hundreds of thousands of solar masses. Within these clouds, there exist regions of
especially high density, usually called “prestellar cores” (or “protostellar cores” if a protostar
is present within). It is believed that star formation occurs where such cloud cores become
massive enough to collapse under their own gravity in a process called “protostellar collapse”,
which we shall describe in section 1.2 and which is the main focus of this work.

Before we consider cloud core collapse, however, we must first discuss how these cores form
in the first place. It has been firmly established by the Herschel survey (e.g. André et al.
(2014)) that the internal structure of molecular clouds is dominated by filaments, and that
the majority of prestellar and protostellar cores in star-forming regions are found within them
(see Figure 1.1 for an example). Filaments are elongated regions of higher gas density, with
a characteristic width of 0.1 pc and lengths of a few to tens of parsec. Their formation is
believed to be the result of MHD turbulence within the cloud (Padoan et al. (2001); Pudritz &
Kevlahan (2013)), of which there are many different sources in the interstellar medium, among
them supernovae, galactic spiral shocks, or gravitational and other instabilities. Simulations
of supersonic turbulence consistently show the formation of filaments, but the details are still
under investigation. For example, Padoan et al. (2001) focuses on filament formation due
to colliding sheets, while Hennebelle (2013) concentrates on the importance of shear. In any
case, filaments are created even without the inclusion of gravity, but once they have formed,
gravity becomes the decisive factor: Theoretical consideration of an isothermal, self-gravitating
cylinder (Inutsuka & Miyama (1992, 1997)) shows that filaments are gravitationally stable
only if their line mass (i.e. mass per length) does not exceed a certain critical value Mline,crit ≈
16M⊙pc−1 ×(Tgas/10K). It is evident from Figure 1.1 that pre- and protostellar cores are found
almost exclusively in regions where this stability criterion is violated. Intersections between
different filaments may create the regions most conducive to star formation, and especially
star cluster formation, due to localized higher density (Myers (2009, 2011); Schneider et al.
(2012)).

Qualitatively, we may therefore state that star formation occurs in regions of overdense,
radially collapsing filaments. More quantitatively, any star formation theory must predict the
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Figure 1.1: Column density maps of two regions in Aquila (left panel) and Polaris (right panel) (from André et al. (2010)).
The color scale shows the corresponding line mass in units of the critical line mass derived by Inutsuka & Miyama (1997), with
supercritical regions highlighted in white. There is good agreement between these supercritical regions and the observation of
candidate protostars (green stars) and prestellar cores (blue triangles) identified by Bontemps et al. (2010) and Könyves et al.
(2010), respectively. There are no supercritical regions in Polaris, suggesting that this region is stable and not forming any stars.

Figure 1.2: Core mass function (blue histogram) from the observation of Aquila by André et al. (2010). The solid red and black
curves are fits using a lognormal distribution and a power law, respectively. The IMFs by Kroupa (2001) (for single stars) and by
Chabrier (2005) (star systems) and the typical mass function of CO clumps (Kramer et al. (1998)) are included for comparison.
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number of cores of a certain mass, that is to say it must include a mechanism to produce the
core mass function (CMF) shown in Figure 1.2. Inutsuka & Miyama (1992, 1997) studied
the stability of self-gravitating cylindrical structures and found that filaments are unstable
to longitudinal perturbations, which grow and cause the filament to fragment into a number
of prestellar cores. Inutsuka (2001) further developed a formalism to predict the resulting
CMF from the power spectrum of the initial perturbations, and recent Herschel observations
of nearby filaments (Roy et al. (2015)) find a power spectrum slope of −1.6 ± 0.3, which is
very close to the value of −1.5 required by Inutsuka (2001) to produce a Saltpeter-like CMF.

1.2 Protostellar Collapse
Once a prestellar core has formed, the next step on the way to creating a star is for this core
to collapse. Under isothermal conditions, the only requirement for such a collapse is that the
core’s mass should be larger than its thermal Jeans mass. In reality, however, after sufficient
compression the system ceases to be isothermal and instead behaves closer to adiabatic. We
must therefore consider the importance of thermodynamics: Is the increase in pressure strong
enough to halt the gravitational collapse?

For simplicity, let us model the cloud core as a homogeneous sphere with total mass M ,
radius R and density ρ. We express the pressure using a polytropic equation of state, i.e.
P ∝ ργeff , where γeff is the effective ratio of specific heats. The gravitational and pressure forces
are then given by:

FG = GM

R2 (1.1)

FP = 1
ρ

∂P

∂R
∝ ργeff−1

R
(1.2)

For a homologous collapse, ρ ∝ R−3, so the relationship between pressure and radius is
FP ∝ R2−3γeff . The ratio between the two forces then scales as:

FP

FG
∝ R4−3γeff (1.3)

It follows that there is a critical value of γeff , namely 4/3. If γeff is larger than this value,
pressure becomes stronger relative to gravity as the radius decreases, which inevitably leads to a
stabilization and stop of the collapse. On the other hand, if it is smaller than this value, gravity
becomes ever more dominant over pressure as the radius decreases, leading to an accelerating
collapse.

We describe the evolution (summarized in Figure 1.3): Initially, the cloud core is essentially
isothermal (γeff = 1), since it is optically thin so that any heat gained through compression is
efficiently radiated away and the gas is kept at the temperature of the surrounding molecular
cloud, which is typically around 10 K. The temperature actually drops slightly since the core
becomes opaque to the high-frequency heating radiation of background stars while the low-
frequency cooling radiation is still able to escape, an effect which we will discuss further in
sections 5.5.1 and 5.5.5.

As the collapse progresses, compressional heating becomes ever stronger and the efficiency of
the radiative cooling diminishes. Once the heating overtakes the cooling, the system’s behavior
transitions from isothermal to adiabatic. γeff then becomes 5/3 (for temperatures below a few
hundred Kelvin) and 7/5 above that. The difference is due to the fact that for low temperatures,
the rotational degree of freedom of the hydrogen molecule is “frozen out”, preventing it from
contributing to the heat capacity. In any case, both of these values are larger than the critical
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Figure 1.3: Evolution of temperature and density at the center of a collapsing cloud core, from Inutsuka (2012). An initial
isothermal phase is followed by adiabatic contraction until the formation of the first hydrostatic core. The dissociation of hydrogen
molecules triggers the second collapse, which results in the formation of the second core (protostar).

value of 4/3, which means that the pressure force ultimately stops the gravitational contraction
and a hydrostatic object with a typical size of a few AU, the so-called “first hydrostatic core”,
is formed. Its surface is marked by a shock in which the infalling material is decelerated.
At this point, roughly one free-fall time has passed, which in the case of a solar-mass cloud
core corresponds to about 105 years. The first core then continues to increase in mass and
temperature as it accretes material from the surrounding gas envelope. Once the temperature
reaches ≈ 103 K, hydrogen molecules begin to dissociate. This is a strong cooling effect,
which acts to reduce the effective ratio of specific heats to about 1.1 and thereby triggers a
second collapse. Because of this, the first core is generally thought to exist for no more than
a few thousand years, although theoretical considerations and the surprisingly large number of
candidate objects observed suggest that it may live much longer in some cases. We will discuss
this question in detail in section 5.5.3. The second collapse continues until all the hydrogen
has been dissociated, so that γeff increases again to 5/3 and a second hydrostatic core forms,
which is also known as a protostar. The collapse phase ends here and the system’s pre-main
sequence (PMS) evolution begins.

The theoretical and numerical investigation of a spherical collapse such as we described
above is the main focus of our work. We will discuss the numerical scheme and more detailed
physics (opacities, equation of state...) in detail in the introductions to sections 4 and 5.

The above description of protostellar collapse is considerably simplified since it assumes
spherical symmetry and ignores magnetic fields and rotation. We will continue to make these
assumptions throughout this work, since we focus on 1-D radiation-hydrodynamical simulations.

1.3 Pre-Main Sequence Evolution
Once a protostar has formed, the system evolves on a much slower timescale (about 107 years
compared to the free fall time’s 105). During the PMS phase, the gas envelope surrounding the
protostar forms into a circumstellar disk of gas and dust in which planet formation can take
place. At the same time, the protostar slowly continues to increase in mass and temperature
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as it undergoes Kelvin-Helmholtz-contraction and accretes material from the disk. In the HR
diagram, it moves along the Hayashi or Henyey track during this time (Figure 1.4). However,
this simple picture of formation and contraction is now being questioned, and there appears
to be a larger variety of PMS evolutionary tracks than was assumed previously. For example,
Kunitomo et al. (2012) found that PMS evolution depends strongly on the efficiency of mass
accretion (i.e. how much of the gravitational energy of the infalling material is transformed into
internal energy), as well as on the deuterium mass mixing ratio and on the initial entropy/radius
of the protostar. The latter is of course determined by the details of the collapse process
described in the preceding section, which is an important motivation for our work. Generally
speaking, the results of protostellar collapse simulations such as ours are important to determine
the initial conditions for work dealing with the following PMS phase.

PMS evolution ends once the central temperature exceeds 107 K and nuclear fusion sets in,
so that the protostar becomes a fully developed main sequence star (except in the case of brown
dwarfs - see below). The circumstellar disk dissipates, typically after about 107 years, due to a
combination of accreting onto the star and being blown away by its radiation pressure.

Figure 1.4: Pre-main sequence evolutionary tracks in the HR diagram, from the calculations of Stahler & Palla (2008). The
numbers in blue show the object’s mass in units of M⊙.

1.4 Theory of Brown Dwarf Formation
We have outlined the star formation process as it applies to solar type stars. However, in this
work, our main focus will be on brown dwarfs. These are substellar objects with masses between
about 1 and 8 % of the solar mass. They are similar to very low-mass stars in many ways, but
the defining difference is that brown dwarfs have such low mass that their core temperature
never becomes hot enough to sustain hydrogen fusion (although deuterium fusion may occur in
some cases). This means that brown dwarfs lack an internal energy source; after their formation
they simply cool down over time, so unlike in the case of stars there is a direct relationship
between age and temperature (Figure 1.5).

Observations suggests that the number of brown dwarfs is comparable to that of low-mass
stars, but their formation has puzzled researchers for some time. The problem is easily under-
stood by considering the Jeans stability criterion: It is believed that star formation takes place
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Figure 1.5: Spectral classes of brown dwarfs, from Burgasser (2008). Since brown dwarfs have no internal heating source, the
sequence from hotter to colder objects corresponds to an evolutionary sequence from younger to older.

when a molecular cloud core exceeds its Jeans mass MJ = c3
sG
−3/2ρ−1/2. Given the typical

temperature of a molecular cloud (10 K), and assuming that the mass of the star that is formed
(M⋆) is similar to the Jeans mass, we can calculate the density that the original cloud core
must have in order to be unstable:

ρ = (c3
sG
−3/2

M⋆

)2 (1.4)

For M⋆ = M⊙, this evaluates to roughly 104cm−3, which is in line with typical observations
of high-density star-forming regions. But the required number density increases to 106cm−3

for M⋆ = 0.1M⊙ (slightly above the brown dwarf/star boundary) and 108cm−3 for M⋆ =
0.01M⊙ (a low mass brown dwarf). This far exceeds the observed densities in molecular clouds.
Hence the question arises: Which mechanism is responsible for creating such extremely high
density regions as are necessary for brown dwarf formation? Broadly speaking, there are two
possibilities:

1. The same mechanism that creates “normal” prestellar cores also produces pre-brown
dwarf cores.

2. One or more other mechanisms are important, and possibly even dominant, in brown
dwarf formation.

The core mass function and initial mass function in the very low-mass regime are poorly
known (see Figures 1.2 and 1.6), so it is still unclear whether the CMF and IMF are universal
(i.e. apply to all mass ranges from brown dwarfs to massive stars). The former case would
imply that brown dwarf formation is simply a scaled down version of low-mass star formation;
the latter would imply that alternative mechanisms are at play.

A number of such alternative scenarios have been proposed to explain brown dwarf for-
mation. One possibility is the gravitational fragmentation of protostellar disks (Stamatellos,
Hubber & Whitworth (2007); Stamatellos & Whitworth (2008)). While it is known that disks
can become unstable (and this mechanism, alongside the core accretion model, is often invoked
for giant planet formation), it is unclear whether sufficiently massive accretion disks can com-
monly form. Given the comparable number of brown dwarfs and low-mass stars, on average
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Figure 1.6: Measurements of the IMF in various star clusters, offset for clarity (Jeffries (2012)). The solid lines correspond to
the log-normal function that best fits the Pleiades. Overall agreement is quite good, but there are differences and a general lack of
data in the very low mass regime.

about one brown dwarf should form in the disk of every low-mass star, which at this point
seems very unlikely.

Another possibility is so-called “competitive accretion and ejection”, investigated by e.g.
Reipurth & Clarke (2001); Bate (2008): In this scenario, a higher mass prestellar core results in
the formation of multiple protostars. Gravitational interactions between these can then cause
some to be ejected from the parent cloud, so that they lose their accretion reservoir and can no
longer grow in mass. The main problem is that this scenario predicts a large velocity dispersion
for brown dwarfs, but so far observations such as those by Joergens (2006) and Kurosawa,
Harries & Littlefair (2006) suggest no significant difference between stars and brown dwarfs in
this regard.

Furthermore, Whitworth & Zinnecker (2004) have suggested that a brown dwarf can be
created when a core that is originally more massive has part of its material eroded due to
ionizing radiation from nearby OB stars (photo-erosion). However, there are no observations
showing an excess of brown dwarfs in the vicinity of massive stars, and brown dwarf formation
is certainly possible without any massive stars nearby, so this mechanism does not appear to
be dominant either.

In contrast to the filament paradigm we described in section 1.1, which is dominated by
gravity, in works like Padoan et al. (2001) and Tilley & Pudritz (2004) the formation of
prestellar cores - pre-brown dwarfs included - is described as a process dominated by turbulence.
In this paradigm, stars form wherever the collision of turbulent flows creates a sufficiently dense
(i.e. Jeans-unstable) condensation. However, these calculations are isothermal, so they do not
consider the stabilizing effect of the temperature/pressure increase in a collapsing core. This
is especially problematic for very low-mass (brown dwarf) cores, which are inherently more
difficult to collapse due to the extreme densities required. Lomax (2016) used SPH calculations
of colliding flows to simulate brown dwarf formation in this way, and they found that an
unrealistically high degree of convergence of the initial flow field is required in order to create
a gravitationally bound object (see Figure 1.7).

In chapter 4 of this thesis, we adopt a different model to tackle a similar problem, using the
radiative transfer scheme developed in section 2. Our approach does not require any assumption
about the flow field, and it allows us to estimate the scale of turbulence necessary to form brown
dwarfs by turbulent compression. On the other hand, in chapter 5 we investigate the properties
of brown dwarfs formed from initial conditions that are unstable even without any external
compression, as we would expect from the filament paradigm.
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Figure 1.7: Colliding flow simulations by Lomax (2016). The color shows column density, and different points in time are shown
along the vertical. The three columns correspond to three different calculations. They all have total mass 0.02M⊙ and initial radius
0.01pc, and the initial flow field is given by v = −v0

cr̂+(1−c)ẑ
|cr̂+(1−c)ẑ| , with v0 = 2kms−1 and r̂ and ẑ the unit position vector and unit

vector in z-direction. The convergence parameter c controls how strongly the flow converges radially towards the center. Therefore,
in the left column (c = 0), the initial flows are antiparallel in z-direction and collide in the midplane; in the right column (c = 1),
they converge perfectly. Only in this case a bound object forms, but in real molecular clouds there is no reason to assume that
flows should commonly be so strongly convergent.

As a final note, it should be mentioned that these various theories for brown dwarf formation
are not mutually exclusive. It is likely that all of them can and do occur in nature, but it is
unclear how important they are relative to each other. For instance, in a study of brown dwarfs
orbiting solar-type stars, Ma & Ge (2014) find evidence of two distinct populations (see Figure
1.8). Based on different eccentricity distributions, they suggest that objects below ≈ 43MJ in
their sample have mostly formed from disk instabilities, making them similar to giant planets.
On the other hand, the heavier objects are the result of molecular cloud core collapse, meaning
these systems are better characterized as binaries. More detailed observations, as well as
numerical simulations, are necessary to better estimate the contribution of the various possible
formation channels.

1.5 Thesis Structure
This thesis is structured in the following way: In chapter 2, we develop a new radiative transfer
scheme for spherically symmetric systems. We perform various test calculations for our method
in chapter 3 and also mention some ideas for possible future improvements. We apply our
method to an actual physical problem - the formation of brown dwarfs - in chapter 4. At that
point, we still employ several simplifications and only follow the evolution until the formation
of the first core. This is followed in chapter 5 by calculations with an expanded version of our
program which includes the second collapse, and we analyze the results of collapse calculations
in the brown dwarf regime. Finally, a summary of our work and future prospects are given in
chapter 6.
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Figure 1.8: Evidence for two distinct populations of brown dwarfs orbiting solar-type stars, from Ma & Ge (2014).
Upper panel: The distribution shows a paucity of objects with a period of less than 100 days in the mass range between about 40
and 60 MJ, suggesting two different populations.
Lower panel: The eccentricity distribution of brown dwarfs below ≈ 43MJ is similar to that of known exoplanets, showing a
decreasing trend with mass. On the other hand, heavier objects exhibit no such trend and are more suggestive of binaries. The
purple lines show the theoretical prediction for the eccentricity distribution resulting from scattering with a 20 (lower line) and 25
(upper line) MJ object (Ford & Rasio (2008)).
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Chapter 2

Method Development

This chapter is dedicated to the development of our radiative transfer scheme. We begin with
a brief introduction to radiative transfer in general and protostellar collapse calculations in
particular (section 2.1). In section 2.2, we derive the equations on which our method is based,
followed by a description of the numerical implementation.

The contents of chapters 2 and 3 have been previously compiled into a paper (Stamer &
Inutsuka (2018)), which has been accepted for publication by The Astronomical Journal and
is also available on arXiv.

2.1 Method Introduction
2.1.1 On Radiative Transfer and Protostellar Collapse Simulations
Theoretical investigations of many astrophysical problems require an accurate treatment of
radiative transfer. Since analytic solutions of the transfer equation are generally unavailable
except in trivial systems, numerical methods are employed. However, the complexity of the
problem typically means that a realistic treatment is computationally expensive. One example
of such an expensive problem is the simulation of protostellar collapse, that is the process by
which a molecular cloud core contracts under its own gravity to form a star, investigated in a
seminal paper by Larson (1969) and by others such as Winkler & Newman (1980), Masunaga,
Miyama, & Inutsuka (1998) and Vaytet & Haugbølle (2017).

Numerical simulations of protostellar collapse are challenging, which is in part due to the
extremely wide range of size and density: When forming a solar-type star, typical values for the
initial cloud core are 104AU and 10−19g cm−3, while the protostar is 10−3AU and 10−1g cm−3.
Radiative transfer presents another difficulty: While the early, isothermal phase can be approx-
imated by simple optically thin cooling, and the optically thick regions in the later stage by
radiative diffusion, neither of these approximations is valid in the optically intermediate region
near the photosphere. However, this is the most important region for the exchange with the
outer medium, which determines the temperature structure and ultimately the entropy of the
protostar. The latter determines the initial location in the HR-diagram and the subsequent
evolution.

In recent years, numerical simulations have become more and more sophisticated. The
number of physical processes included keeps increasing, among them magnetic field effects
(Tomisaka (2002); Machida et al. (2006); Commerçon et al. (2010); Federrath (2015)),
protoplanetary disk formation (Inutsuka et. al (2010); Stamatellos & Whitworth (2008);
Machida et al. (2011); Tomida, Okuzumi & Machida (2015); Seifried et al. (2016); González
et al. (2015); Nordlund et al. (2014)), chemical evolution (Visser, Bergin, & Jørgensen (2015);
Dzyurkevich et al. (2016); Hincelin et al. (2016)), and non-ideal MHD (Tsukamoto et al.
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(2015a,b); Wurster, Price, & Bate (2016); Masson et al. (2016)). There are now also synthetic
observations comparable with actual data (Commerçon et al. (2012); Frimann, Jørgensen, &
Haugbølle (2016); Seifried et al. (2016)).

At the same time, much more simplified, spherically symmetric RHD simulations such as
those by Masunaga, Miyama, & Inutsuka (1998); Masunaga & Inutsuka (2000) and, more re-
cently, Vaytet et al. (2011, 2012, 2013); Vaytet & Haugbølle (2017), are still valuable: This
one-dimensional modeling is still the only method to describe the evolution of the entire process
of protostellar collapse, since multi-dimensional modeling has to mask the central region that
requires extremely short timesteps. In this context, we aim to develop a radiative hydrody-
namics scheme for spherical systems that is both fast and accurate, so that it can be used for a
detailed exploration of the parameter space to investigate the effects of the initial conditions on
properties such as protostellar mass, radius, and entropy. Note also that the present method
can be combined with multi-dimensional modeling. In addition, even though collapse simula-
tions are the primary motivation for this work, the method is not limited to this and may well
be used in other systems that can be approximated as spherical.

Radiative transfer is often treated using either the flux-limited diffusion approximation, for
example in works such as Bodenheimer et al. (1990) and Yorke, Bodenheimer & Laughlin
(1993), or a method based on solving the moment equations of radiation (Castor (1972);

Buchler (1979)). The latter requires a closure relation, which commonly appears in the form
of the Eddington approximation, which assumes that the Eddington factor f, the ratio between
the second and the zeroth moment of radiation, is equal to 1/3. This is exactly correct only
in the case of isotropic radiation. An improvement upon this is the variable Eddington factor
method (Tscharnuter & Winkler (1979)), in which the Eddington factor is no longer constant,
but instead is calculated depending on the degree of anisotropy of the radiation field. Details
of the numerical implementation can be found for instance in Mihalas & Mihalas (1984) or
Stone, Mihalas & Norman (1992), the basis for the “ZEUS” RHD-code.

Both the diffusion and Eddington approximation are very fast, but also somewhat crude,
since they are only exact in optically thin / isotropic regions. On the other hand, the variable
Eddington factor method is very accurate, but requires considerable computational effort. In
this work, we develop a method that aims to combine the advantages of both. Our approach is
different in the sense that it uses neither the diffusion approximation nor the moment equations.
Instead, it is based on the radiative exchange between pairs of spherically symmetric shells.
It does have some resemblance to ray-tracing schemes, especially in the case of the numerical
angle integration discussed in section 2.3.3.

2.1.2 Aims
We develop a method to solve the radiation transport in a spherically symmetric fluid system.
The aim is to calculate the rate of energy gain or loss due to radiation at any radius, i.e.
dU/dt (r), where U is the specific internal energy of the fluid. Therefore the unit of this
“radiation term”, as we shall call it from now on, is power per mass.

Ultimately, our method is intended to couple to a hydrodynamic simulation by including
the radiation term in the hydrodynamic energy equation. To first order, this can be done by
subdividing the system into a finite number of shells, calculating the radiation term at some
radius representative of each shell (such as the shell center), and assuming that it does not vary
over the shell. For higher order calculations, one may interpolate the value of the radiation
term between neighboring shells.

The radiation term is the sum of radiative heating and cooling. The latter is trivial even
in a 3-D system since it depends only on the local values of density, opacity and temperature
at position r . But heating is far more complicated, as it depends on the local radiation field,
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which in turn is determined by the distribution of these variables across the entire system.

2.2 Derivation of the basic equations
2.2.1 General derivation
The monochromatic radiation transfer equation in three dimensions is

1
c

dIν

dt
+ n · ∇Iν = κνρ (Sν − Iν) , (2.1)

where Iν , κν and Sν are the intensity, opacity and source function at frequency ν. In the
following, we will leave out the index ν for convenience.

Equation (2.1) combines the effects of emission and absorption of radiation by the material.
We shall neglect the explicitly time dependent term dIν/dt throughout this work. This is
equivalent to assuming that the radiation field instantaneously adjusts to any changes in the
hydrodynamic variables. This assumption is valid as long as the time for light to cross the
system is much shorter than the time for the hydrodynamic variables to change significantly,
which is the case in most astrophysical systems.

With the above assumption, the solution is

I (r, n) =
∫ DB

0
κ (r + nD) ρ (r + nD) S (r + nD) e−τ(r,r+nD)dD

+ SOe−τB ,
(2.2)

where τ (r, r + nD) is the optical depth between positions r and r+nD, while DB and τB refer
to the distance and optical depth between r and the outer boundary of the system in direction
n. The first term represents radiation emitted by other points within the system, while the
second term represents radiation coming from outside. The latter’s intensity is determined
by SO, the source function of the external radiation, which must be supplied as a boundary
condition.

Equation (2.2) determines the direction-dependent intensity. The integral over all directions
gives us the radiation energy density:

ϵ (r) = 1
c

∫
Ω

(∫ DB

0
κ′ρ′S ′e−τ dD + SOe−τB

)
dΩ. (2.3)

A prime on a position-dependent quantity indicates that it is to be evaluated at r + nD rather
than r.

Let us now consider the total radiation term (heating plus cooling). Assuming that each
fluid element emits isotropically,

dU

dt
= κ (cϵ − 4πS) , (2.4)

and inserting the previously derived expression for ϵ, we obtain

dU

dt
= κ

(∫
Ω

(∫ DB

0
κ′ρ′S ′e−τ dD + SOe−τB

)
dΩ − 4πS

)
. (2.5)

Assume a case where the temperature, and therefore the source function, is constant everywhere
(S = S ′ = SO). In this case, dU

dt
must be zero and it follows that
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∫
Ω

(∫ DB

0
κ′ρ′e−τ dD + e−τB

)
dΩ = 4π. (2.6)

We can now replace the 4π in equation (2.4) with this expression:

dU

dt
= κ

∫
Ω

(∫ DB

0
κ′ρ′ (S ′ − S) e−τ dD + (SO − S) e−τB

)
dΩ. (2.7)

Consider the physical meaning of the integration in the first term: For all directions, we
integrate outwards from a point r to the system’s boundary. In other words, we are integrating
over the volume of the physical system, but using a coordinate system whose origin lies at r,
so the volume element is dr′ = D2dΩdD, and we may write

dU

dt
= κ

(∫
V

κ′ρ′ (S ′ − S) e−τ

D2 dr′ +
∫

Ω
(SO − S) e−τBdΩ

)
. (2.8)

As long as the integral is over the whole volume, we may use the usual coordinate system
and volume element. From this point onward, we shall abbreviate the product κρ as χ (the
extinction/emission coefficient). The physical interpretation of this equation is as follows:

The volume integral represents the exchange of radiative energy between different positions
within the system. Thus, the term with S (cooling term) is the radiation emitted at r and
absorbed at some other point r′, while the term with S’ (heating term) is radiation emitted at
r′ and absorbed at r.

Likewise, the SO-term in the solid angle integral represents radiation coming from outside
the system which is absorbed at r, while the S-term represents radiation emitted at r which
reaches the boundary and escapes from the system.

The factors κχ′e−τ /D2 and κ
∫

Ω e−τBdΩ can be regarded as exchange coefficients, quantifying
the efficiency of the radiative exchange between r and r′ and r and the outside radiation field,
respectively. Furthermore, equation (2.6) tells us that the volume integral over all of these
exchange coefficients, plus the exchange coefficient for the boundary, must be equal to 4πκ.
This is simply another way of saying that the radiative cooling is equal to −4πκS.

2.2.2 Spherical Symmetry
In principle, equation (2.8) can be integrated numerically to obtain the radiation term, but in
realistic problems the computational cost is prohibitively high.

Many hydrodynamical problems in astrophysics can be reasonably well approximated as
spherically symmetric, so that all variables depend only on radius. While this reduces the
computational cost, it is still quite slow because the equations include the distance and optical
depth between different points. Even in spherical symmetry, these depend on all 3 coordinates.
In this section, we shall manipulate the equation in such a way as to reduce this computational
load for the case of a spherically symmetric system.

Consider the radiative exchange between a point r and an infinitesimally thin, spherical
shell at radius r’ (Figure 2.1). Calculating the radiation term at point r is sufficient, because
spherical symmetry implies that it is the same for every point with radius r.

If we choose the coordinate system such that r lies on the cartesian y-axis, there is no longer
any dependency on the azimuthal angle, essentially reducing the system to 2-D. Equation (2.8)
tells us that the contribution of the (infinitesimal) shell r’ to the radiation term at r is
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Figure 2.1: A schematic illustration of the situation in spherical symmetry, for the case r′ > r. The idea is to calculate the
radiative exchange between the point r and the infinitesimal shell r’. The red line represents a single ray between r and a point on
r’. The full calculation requires an integration over all such rays.
The picture shows the meaning of a number of important variables: The distance between the points D, the polar angle θ′, the
direction angle θ̃, and the minimum and maximum distances between shells r and r’, which occur at θ̃ = θ′ = 0 and θ̃ = θ′ = π,
respectively. The optical depth τ is proportional to the distance, but unless χ is constant throughout the system, the proportionality
constant depends on the direction of the ray.
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Rr←r′ = κχ′ (S ′ − S)
∫

θ′

∫
ϕ′

e−τ

D2 r′
2 sin (θ′) dθ′dϕ′dr′

= 2πκχ′ (S ′ − S)
∫

θ′

e−τ

D2 r′
2 sin (θ′) dθ′dr′

= 2πκχ′ (S ′ − S) Ar←r′ .

(2.9)

Numerical integration over r’ is of course unavoidable. The main challenge is the calculation
of the angle integral:

Ar←r′ = r′
2
∫ π

0

e−τ(θ′)

D2 (θ′)
sin (θ′) dθ′dr′

Figure 2.1 illustrates the physical meaning of the variables in this equation. The next section
deals with methods of calculating Ar←r′ .

2.3 Numerical Implementation
2.3.1 General Considerations
In order to perform numerical simulations, we subdivide our system into a finite number of
spherically symmetric shells. Within each shell, density, opacity and temperature are assumed
to be constant. The contribution of shell j to the radiation term at radius r is determined by:

Ar←j =
∫ rjR

rjL
r′

2
∫ π

0

e−τ

D2 sin (θ′) dθ′dr′. (2.10)

rjL and rjR are the inner and outer boundaries of shell j, respectively. In order to obtain the
exchange coefficient between shells i and j, the above expression would have to be integrated
over shell i, i.e.

Ai←j =
∫miR

miL
Ar←j (m) dm

Mi
.

m is the mass coordinate, Mi the mass contained within shell i.
Unfortunately, the integration over shell i can only be done numerically, so this method is

slow. In addition, if we numerically integrate over j as well (as in section 2.3.3), there are large
inaccuracies for neighboring shells near the singularity that occurs at r = r′ for θ′ = 0. For
these reasons, we do not integrate over shell i, but instead we set Ai←j = Ari←j, where ri is the
radius of shell i’s center. This definition allows us to accurately calculate the radiation term at
radius ri, but note that energy conservation between shells requires that Ri←j = −Rj←i. Since
the radiation term is power per mass, this implies that Ai←jMi = Aj←iMj. With this definition,
this is generally not fulfilled since the radiation term at the shell center is not equal to the shell
average. In other words, when updating shell i, we calculate the effect of shell j on radius ri,
but when updating shell j, we calculate the effect of shell i on radius rj. This is not symmetric
between i and j, which ultimately causes a violation of energy conservation.

Alternatively, it is possible to use the following definition:

Ai←j =
Ari←jMi + Arj←iMj

2Mi

The radiation term is now defined as an average between the two directions of transfer. This
means the radiation term at ri is no longer calculated as accurately, but this expression is
symmetric to exchanging i and j and therefore conserves energy.
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The method we develop in the following sections is able to calculate the radiation term at
a specific radius exactly in the limit of infinite resolution. Therefore, for the test calculations
in this work and to investigate the effect of different resolutions, we use the non-symmetrized
definition and from now on we will refer to Ari←j simply as Ai←j. In a real application, the
symmetrized definition may be preferred since it guarantees energy conservation.

2.3.2 Homogeneous Extinction Approximation
The fastest way of calculating Ai←j is to substitute τ = χijD. This is an approximation: It
assumes that χij, the proportionality constant between distance and optical depth, is a constant
independent of θ′. But unless χ is actually constant throughout the whole system, this is clearly
not true. Consider again Figure 2.1: If χ increases towards the center, as is usually the case,
then rays going through the inner region will have larger values of χij than those who move
only outwards.

It is ultimately up to the user which value to choose for χij; the simplest method, which
we adopt here, is to take the value for θ′ = 0. If χ increases towards the center, we expect
this to cause an overestimation of Ai←j especially for the case i < j, and a somewhat smaller
overestimation for i > j. Despite this inaccuracy, this method can be useful, because it allows
us to solve the angle integral analytically and is therefore very fast. We start by expressing the
distance D as a function of ri, rj and θ′:

D2 = ri
2 + rj

2 − 2rirj cos (θ′) ,

⇒2D
dD

dθ′
= 2rirj sin (θ′) ,

⇒ sin (θ′) dθ′ = D

rirj
dD.

(2.11)

We insert this into the definition of Ai←j (equation 2.10), but ignore the integration over
shell j for the moment and set r′ = rj. Using τ = χijD, we obtain

Ai←j = rj

ri

∫ Dmax

Dmin

e−χijD

D
dD∆rj,

= rj

ri

∫ τmax

τmin

e−τ

τ
dτ∆rj.

(2.12)

The indices min and max refer to the minimum and maximum distances/optical depths between
the radii ri and rj (see Figure 2.1). The integral over τ can be reformulated using exponential
integrals. The exponential integral of order n is defined as

En (x) =
∫ ∞

x

e−t

tn
dt.

Using this, equation 2.12 becomes

Ai←j = rj

ri
(E1 (τmin) − E1 (τmax)) ∆rj. (2.13)

We have avoided the numerical integration over θ′, and instead have to solve two exponential
integrals. This is much faster since analytic formulas are available for the latter. The τmax-term
is negligible in optically thick systems, since in that case E1 (τmax) << E1 (τmin).

We now consider the integration over shell j, so we replace the constant rj with the variable
r′. Based on equation (2.13), the dependency on r′ is of the form r′E1 (τ (r′)). This can be
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integrated analytically using the relation between an exponential integral and its derivative,∫
En (x) dx = −En+1 (x) + C.

We express r′ as a function of τ , assume dr′

dτ
=const., and perform integration by parts:

∫
r′ (τ) E1 (τ) dr′

dτ
dτ

=dr′

dτ

(
−r′E2 + dr′

dτ

∫
E2dτ

)
+ C

=dr′

dτ

(
−r′E2 − dr′

dτ
E3

)
+ C.

(2.14)

The function r′ (τ) differs depending on whether we are looking at τmin or τmax, and whether
shell i is inside or outside of shell j:

r′ = ri ± τmin

χij
= ri +

τmax − 2χijri

χij
. (2.15)

Here, ± means + in the case of ri < r′ and - in the case of ri > r′. In every case, dr′

dτ
is either

χ−1
ij or −χ−1

ij , validating the above assumption dr′

dτ
=const.

To summarize, we have 3 different relations between r′ and τ : r′− (τmin), r′+ (τmin) and
r′ (τmax).

This situation arises because the minimum optical depth (case θ′ = 0) either increases or
decreases with r′ depending on whether r′ > ri or r′ < ri, but the maximum optical depth (case
θ′ = π) always increases with r′.

2.3.3 Numerical Angle Integration
We now abandon the assumption of a constant χij, which makes it impossible to solve the angle
integral analytically. For numerical integration, one may use either variant (2.7) or (2.8) of the
basic equation. We choose the latter for consistency with the previous section, but the method
discussed here is essentially independent of the formulation used.

Recall that our definition of Ai←j is

Ai←j =
∫ rjR

rjL
r′

2
∫ π

0

e−τ

D2 sin (θ′) dθ′dr′. (2.16)

We consider rays emitted from point r in directions between θ̃ = 0 and π (see again Figure
2.1 for a visualization of the situation). It is important to note that, unless r = 0, the direction
angle θ̃ is different from the polar angle θ′. τ depends on D and θ̃, so if we have a total of
n shells and the number of direction angles considered is a, for each individual frequency we
create 2-dimensional arrays of size n ∗ a in which to store the values of τ , D and θ′ for each
combination of j and θ̃. Once that is done, the integral can be calculated numerically. In
addition, implementing the numerical integration over the radius of shell j is straightforward:
Instead of stopping only at each shell center and writing τ , D and θ′ there, we do so multiple
times within each shell.

The rest of this section describes how to obtain these arrays. For each direction angle θ̃, we
start from position r and then move along the ray from shell to shell until we reach the outer
boundary. We will now summarize the algorithm for an individual direction:

First, we define variables representing the current position (initially r), distance and optical
depth (both initially 0). Then, we move along the ray from one shell to the next, all the while
updating distance and optical depth and writing the results in our arrays. θ′ can easily be
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Figure 2.2: We see here a ray moving inward from position r. The 4 different cases in section 2.3.3 are illustrated, with the
colored shells representing different target radii:
Case 1: Two solutions: The ray crosses the shell once in the positive x-direction, and once more in the negative direction which we
ignore.
Case 2: Two positive solutions: The ray crosses the shell once moving inwards, and once again coming out, both in the positive
x-direction.
Case 3: No solution: The shell is too small for this ray to hit it at all.
Case 4: Current and target radius are equal so we have a trivial solution (dx = 0), and a second solution by moving through the
inner region.
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calculated from the position. This continues until reaching the outer boundary. This scheme
is similar to the “impact parameter” method introduced by Hummer & Rybicki (1971), in the
sense that we move from shell to shell along a ray. In that method, parallel rays at different
distances (impact parameters) from the center are considered. The calculation then jumps
from one intersection of such a ray with a discrete spherical shell to the next in order to track
the changing intensity. This can then be used to calculate the moments of radiation and the
Eddington factor. The main difference in our method is the fact that we do not follow the
intensity, but instead we calculate the distance and optical depth between any two shells in a
certain direction, in order to obtain our coefficients for the radiative exchange between those
two.

To move along the ray, at every step we must define a “target radius” to reach with the
next step. For outward-moving rays (θ̃ < π

2 ), the radial coordinate is always increasing, so the
target radius is always larger than the current radius. For inward-moving rays, such as the one
depicted in Figure 2.2, the situation is more complicated since the radius decreases down to
a minimum before increasing again. In addition, the ray crosses smaller shells not once, but
either twice or never (the blue and magenta shells in Figure 2.2).

If our current position is (xc, yc) at radius rc, we wish to move along the direction of the
ray by a distance ∆D until we reach the target radius rt:

∆y = ∆x

tan
(
θ̃
) , ⇒ r2

t = (xc + ∆x)2 +

yc + ∆x

tan
(
θ̃
)
2

. (2.17)

Defining g = 1/tan
(
θ̃
)
, after some manipulation we obtain the following quadratic equation

for ∆x:

∆x2 + 2xc + 2ycg

1 + g2 ∆x + r2
c − r2

t
1 + g2 = 0, (2.18)

⇒ ∆x1,2 = −xc + ycg

1 + g2 ±

√√√√(xc + ycg

1 + g2

)2

− r2
c − r2

t

1 + g2 . (2.19)

This equation tells us how far in x-direction we need to move along the ray to reach the
target radius. There are 4 possible cases, whose geometric meaning is depicted in Figure 2.2:

1. rt > rc: There are 2 solutions, one positive and one negative. Since 0 ≤ θ̃ ≤ π, all the
rays we consider move in the positive x-direction, so we choose the positive solution.

2. rt < rc and the value under the root is positive: There are 2 positive solutions. We choose
the smaller of the two since otherwise we would go through the whole inner region in a
single step.

3. rt < rc and the value under the root is negative: There is no real solution. This means
that the target radius is not reached by this ray. We set rt = rc and recalculate.

4. rt = rc: One solution is 0 and the other one is − (2xc + 2ycg) / (1 + g2). We choose the
latter.

Note that for outward-moving rays (θ̃ < π/2), only case 1 occurs since the radius is always
increasing.
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2.3.4 The Boundary Term
We have not yet considered the second term in the basic equation (2.8). This ’boundary term’
is given by

κ
∫

Ω
(SO − S) e−τBdΩ

=2πκ
∫

θ̃
(SO − S) e−τB sin

(
θ̃
)

dθ̃.
(2.20)

The index O here means the value at the outer boundary, while the index B means “from
radius r to the outer boundary”. We shall not consider the possibility of a ϕ-dependent SO
here, so that we can eliminate the azimuthal angle and treat the system as 2-D. Including the
boundary term in the numerical angle integration (2.3.3) is straightforward: We simply add
an additional element to our array for τ at the radius of the outer boundary and integrate
numerically.

For the constant-χ-method, we must numerically integrate as well since, even if SO is
isotropic, there is no analytic solution. τB can be expressed as χBDB, and

DB =
√

r2 + r2
O − 2rrO cos (θ′).

Here, the polar angle θ′ appears again so we require a relation between θ′ and θ̃.
θ̃ is simply the polar angle of a coordinate system centered at r, and D is equivalent to the

radial coordinate in that system. Since r lies on the y-axis, for any point (x′,y′):

x′ = D sin
(
θ̃
)

, (2.21)

y′ = D cos
(
θ̃
)

+ r, (2.22)

⇒ θ̃ = atan
(

x′

y′ − r

)
. (2.23)

Numerical integration is performed over θ′. For each θ′, calculate DB, x′ and y′, which leads
to θ̃ and ultimately ∆θ̃ (θ′), allowing numerical integration.

While the lack of an analytic solution makes this comparatively slow, it hardly affects the
total calculation time because the boundary term only needs to be calculated once per shell,
not n times per shell.

Nevertheless, it is possible to find an analytic solution by approximating θ̃ = θ′. This
approximation only holds if r << rO, but this can be reasonable if, for instance, one is interested
in the behavior of a small object inside a large, optically thin envelope.

If SO does not depend on θ̃, we can use equation (2.11) and τ = χBDB to write

∫
θ̃
e−τB sin (θ′) dθ′ = 1

rrBχ2
B

∫ τBmax

τBmin

e−τBdτB

= 1
rrOχ2

B

(
(1 + τBmin) e−τBmin − (1 + τBmax) e−τBmax

)
.

(2.24)

2.3.5 Optically Thick Shells
So far, we have implicitly assumed that the individual shells in our system are sufficiently
optically thin that the radiative exchange between different points of the same shell is negligible.
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The method outlined in the previous sections no longer works if that assumption does not hold.
Most of the radiative exchange then should happen within a shell, but in our method, the
temperature within each shell is constant, so this internal exchange is by definition zero. This
section explains how to expand the method to overcome this problem.

We make use of the constant-χ-approximation and use the expression from equation (2.13)
for Ai←j. We modify the definition to include (S ′ − S), which is no longer zero throughout the
shell:

Ai←i = 1
r

∫ riR

riL
r′ (S ′ − S) (E1 (τmin) − E1 (τmax)) dr′.

Concerning the applicability of the constant-χ-approximation: If a single shell is optically
intermediate or thick already, then the effect of rays which have to move through the interior
region will generally be negligible. Because of this, assuming that the direction-independent
χii is equal to χi is generally a good approximation. However, we recognize that this can
introduce some inaccuracy in certain atypical scenarios, such as an optically intermediate shell
surrounding an optically thin interior region.

We abbreviate (S ′ − S) as a function f (r′) and interpolate it within shell i. We consider
here a second-order polynomial of the form

f (r′) = a (r′ − ri)2 + b (r′ − ri) + c.

Since f (ri) = 0, it follows that c = 0, and the other two coefficients can be calculated from
the known values f (ri+1) and f (ri−1).

To integrate, r′ and f must be expressed as functions of τmin/τmax. We have already done
this for r′ in equation (2.15). Similarly for f , we obtain

f± (τmin) = a

χ2
i
τ 2

min ± b

χi
τmin, (2.25)

f (τmax) = a

χ2
i

(τmax − 2τC)2 + b

χi
(τmax − 2τC)

= a

χ2
i
τ 2

max +
(

b

χi
− 4aτC

χ2
i

)
τmax +

(
4aτC

χ2
i

− 2b

χi

)
τC.

(2.26)

Again, ± means + for r′ > ri and - for r′ < ri, and τC = χiri is the optical depth from the
center of shell i to the center of the system if χ were constant.

We split the integral into parts:

∫ riR

riL
r′f (r′) (E1 (τmin) − E1 (τmax)) dr′

= +
dr′−

dτmin

∫ 0

τminL
r′− (τmin) f− (τmin) E1 (τmin) dτmin

+
dr′+

dτmin

∫ τminR

0
r′+ (τmin) f+ (τmin) E1 (τmin) dτmin

− dr′

dτmax

∫ τmaxR

τmaxL
r′ (τmax) f (τmax) E1 (τmax) dτmax

(2.27)

The leading factors are χ−1
i or −χ−1

i . Since the shell-internal exchange only matters for opti-
cally thick systems, the third term is usually negligible unless the shell is optically intermediate
and we are so close to the center that E1 (τmax) is comparable to E1 (τmin).
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After inserting the expressions for the various functions r′ and f ′, we see that these integrals
all have the following form:

∫ (
aτ 2 + bτ + c

) (
dτ + e

)
E1 (τ) dτ

= adI3,1 +
(
ae + bd

)
I2,1 +

(
be + cd

)
I1,1 + ceI0,1dτ.

(2.28)

The coefficients a through e depend on the integral in question and

In,m (τ) =
∫

τnEmdτ

= −τnEm+1 + n
∫

τn−1Em+1dτ

= −τnEm+1 + nIn−1,m+1

(2.29)

This allows us to solve all of these integrals recursively, with
∫

I0,m (τ) = −Em+1 (τ) + C.

2.3.6 Method Summary
In our method, there are three terms contributing to the total radiation term:

1. The radiative exchange between different shells (“External Term”)

2. The radiative exchange within the same shell (“Internal Term”)

3. The radiative exchange with the background radiation field (“Boundary Term”)

The optical depth structure and the resolution determine which of these terms dominate
and which are negligible. In a completely optically thin system, the boundary term dominates
everywhere. When the system becomes optically thick, but individual shells are still optically
thin, the external term dominates the optically thick region, while the boundary term is still
important in the outer regions. Finally, if the optical depth becomes so large that individual
shells become optically thick, the internal term dominates in that region.

In terms of computational effort, the external term is by far the slowest since even with
the fast method (constant-χ-approximation, section 2.3.2), it is O (n2) for each frequency,
while the other two are O (n). With numerical integration over a angles as in section 2.3.3, it
becomes O (an2), and if splitting shell j into x subshells for numerical integration, it increases
to O (axn2).

The internal term could in theory be made obsolete by choosing a sufficiently high resolution
that all shells remain optically thin. But in realistic simulations of astrophysical objects such as
stars, the opacity and density in the inner region are so high that this is impossible in practice.
In addition, it is not desirable since the internal term is much faster than the external term.

We summarize the main advantages of our method:

1. It is accurate for both optically thin and thick systems and smoothly transitions between
the two.

2. It is fast, especially when using the constant-χ-approximation. Significant increases in
speed can be achieved by neglecting terms (especially the external term) in regions where
they are not relevant.

3. The constant-χ-method can be combined with numerical angle integration to achieve the
best compromise between speed and accuracy (see section 3.2.4 for details on this).
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4. If we ignore the weak temperature-dependency of κν , then the Ai←j for the external and
boundary term depend only on the density profile but not on the temperature. In systems
where ρ (r) changes much more slowly than T (r), these Ai←j only need to be recalculated
very rarely, making the method extremely fast.
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Chapter 3

Test Calculations

In this chapter, we test the previously developed method using successively less idealized setups,
beginning with cases where the assumption of a homogeneous extinction coefficient is correct
(section 3.1) followed by the more realistic case (section 3.2).

3.1 Homogeneous Extinction Coefficient
3.1.1 Constant Temperature
We begin with the simplest possible case: A static, fully homogeneous medium with constant
temperature. Of course, the radiation term is zero everywhere in this case, but nevertheless
we can assess the accuracy of our method by looking at the radiative cooling only. Even in
more complicated cases, the radiative cooling is known to be 4πκS, giving us an analytic result
to compare our method to. Unfortunately, an analytic solution for the heating and therefore
the total radiation term is generally not available except in this trivial case and in the thermal
relaxation test (section 3.1.2).

The accuracy of our method depends on the optical depth structure of the system. In
practice, this is different for every frequency, but for our test calculations, it is sufficient to look
at a single optical depth array. We therefore employ the gray approximation, using the Planck
opacity and expressing S as σT 4/π.

Instead of the radiation term, we calculate the total radiative cooling by simply setting
S ′ and SO to zero in all the equations. The optical depth per shell and the number of shells
determine which of the three terms in our method dominate. We consider optically thick
systems with three different values of τS (the optical depth per shell in radial direction):

• τS = 0.1: The external term dominates most of the system, but the boundary term is
important in the outer region.

• τS = 1: Internal and external terms are comparable. The boundary term is negligible
except in the outermost shell.

• τS = 10: The internal term dominates everywhere.

We discuss the relative error in the cooling rates (Figure 3.1): As expected, the constant-χ
method is nearly exact in this case, since the system’s density and opacity are homogeneous.
The only inaccuracy comes from the limited angular resolution of the boundary term (recall
from section 2.3.4 that the boundary term is integrated numerically over all angles θ′, even for
the fast method). This resolution should be chosen for each shell individually, since for shells
very close to the outer boundary, the dependency of distance and optical depth on θ′ is much
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Figure 3.1: Homogeneous system: Relative error in the cooling rate for different optical depths per shell, and for various angular
and sub-shell resolutions. The black line shows the result for the fast (constant-χ) method. For the numerical integration cases, a
is the number of angles, x is the number of points per shell.
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stronger than for shells further inside. We do not investigate the effect of this resolution in
detail since its impact on the overall calculation time is very small.

Let us now turn to the numerical integration. We investigate the dependency of the error on
two resolutions, namely the angular resolution (number of angles: a) and the radial resolution
in shell j (number of points considered in shell j: x).

Consider first the upper two plots. Both have a total optical depth of 20 and a radial size
of 1 per shell, but the optical depth per shell and the number of shells differ.

For τS = 1, in the lowest resolution case (a = 20, x = 2) the numerical integration overesti-
mates the result by about 6%. Both increasing a and increasing x helps to reduce this error. In
contrast, for τS = 0.1, the angular resolution alone determines the accuracy. This is expected
since for optically thin shells, the exponential term e−τ hardly changes between the inner and
outer boundary of the shell, so once individual (sub)shells are optically thin, further increase
of x has no effect.

We further notice that in the case of optically thin shells, the error is not constant but
increases towards the system center up to a maximum, and then decreases again. In addition,
higher angular resolution is required to achieve a similar accuracy as the τS = 1 case. To
understand this behavior, refer to case 3 in Figure 2.2: When calculating the exchange between
shell i and a smaller shell j, only a subset of all direction angles θ̃ actually interact with shell
j. This subset becomes smaller as the ratio of rj to ri becomes smaller, effectively decreasing
the angular resolution, until it eventually becomes zero. In other words, the exchange with
shells smaller than i becomes first inaccurate and then neglected, causing an underestimation
of Ai←j. This also explains why the error decreases again near the center, since shells there
mainly interact with shells larger than themselves. In the case of τS = 1, this error does not
appear since only the first few neighboring shells contribute, and their radius is very similar to
ri.

The magnitude of this error is limited by the fact that smaller shells also have a smaller
surface area, decreasing their overall contribution, but care must be taken: Just because some
shell j is negligible for the cooling (i.e. it only absorbs a very small amount of the radiation
emitted by shell i), does not necessarily mean that it is negligible for the heating as well, since
the shell may be very hot. In such a case, it must be ensured that the angular resolution is
high enough to capture all shells that are relevant for the heating.

Finally, the case of τS = 10 shows only a tiny error even with very low angular and radial
resolution. This is understandable since the internal term, which is the only term that matters
in this case, depends on neither of these. It does not matter how accurately the external and
boundary terms are calculated because they are negligible anyway.

3.1.2 Thermal Relaxation Test
A small temperature perturbation in an otherwise homogeneous system will be smoothed out
over time by radiation (“thermal relaxation”), and in this special case an analytic solution can
be found. This was first done by Spiegel (1957) for a plane wave, and Masunaga, Miyama,
& Inutsuka (1998) showed that the thermal relaxation rate for a spherical wave is exactly the
same, provided that the initial perturbation has the form of the zeroth-order spherical Bessel
function j0 (r) = sin (kr) / (kr) (see Figure 3.2 for the concept). This was also confirmed by
Stamatellos, Hubber & Whitworth (2007), in which they applied their radiative transfer scheme
for SPH simulations to a spherical thermal relaxation test.

Similarly, we test our method by superimposing small perturbations on a base temperature
of 10K. We then measure the decay rate for various values of k/χ. Figure 3.3 shows very
good agreement with the analytic result, confirming that our method works in the case of a
homogeneous system.
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Figure 3.2: Concept of the thermal relaxation mode in spherical symmetry. An initial temperature perturbation with the shape
of the zeroth-order spherical Bessel function decays over time (various time steps shown in different colors). The decay rate n(k)
can be calculated analytically. For a detailed derivation, see Masunaga, Miyama, & Inutsuka (1998).

Figure 3.3: Result of the thermal relaxation test. This plot was obtained with the constant-χ-method, but results for the
numerical angle integration are indistinguishable even at low resolutions. These results include both calculations with optically
thin and optically thick shells. For very large values of k/χ, the result converges towards simple optically thin cooling.
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3.2 Variable Extinction Coefficient: Protostellar Collapse
Calculations

As an example for a system where χ is not constant, we consider the gravitational collapse of
a molecular cloud core. This is the mechanism by which high-density cores within molecular
clouds form into stars. From chapter 4, we will apply our method to detailed simulations of
this process, but for now, we simply use it as a test for the method. The system transitions
from an initially optically thin, constant-temperature, constant-χ state into a a system with a
small, hot, optically thick core surrounded by a cold and thin envelope. Therefore, at different
stages and different radii over the course of the collapse, all of the three terms in our method
become important. For the hydrodynamics part of the simulation, we use an ideal gas equation
of state with γ = 5/3 and a second order Godunov scheme based on Colella & Woodward
(1984). We start from the following initial conditions:

• Core mass: 1M∗

• Initial radius: 104 AU

• Initial and background temperature: 10 K

• Initial (constant) number density: 104cm−3

Figure 3.4 shows the profiles of density and temperature in the late stage of the collapse,
when the total (Planck) optical depth τ from the core to the outside has reached 2500.

At this point, we are not looking to provide a realistic simulation of protostellar collapse. We
use optically thin cooling until the total optical depth reaches 0.1, and the constant-χ-method
with the gray approximation after that. Whenever the system’s total (Planck) optical depth
crosses certain thresholds (τ=1, 5 , 1000 and 2500), we perform multiple calculations in a single
time step (Constant-χ-method as well as numerical angle integration with various resolutions).
This provides snapshots of the difference in the results at these time steps.

Since no analytic solution for the heating is available, we have to evaluate the accuracy by
considering the total radiative cooling (same as in section 3.1.1). It must be mentioned that this
is not unproblematic, because the error in the total cooling is not necessarily representative
of the error in the heating and, therefore, in the total radiation term. This is because the
radiative exchange between shells i and j is proportional to Ai←j (Sj − Si), so the total cooling
is proportional to Si

∑
j Ai←j, but the total heating is proportional to ∑j Ai←jSj. This means

that, depending on the temperature of shell j, a given error in the calculation of Ai←j may have
a much larger or much smaller effect on the heating than on the cooling. In consequence, the
error in the total radiation term may be quite different from the error in the cooling alone. We
will consider the total radiation term in section 3.2.3, but in this section, we will only evaluate
the relative error in the cooling.

3.2.1 Homogeneous Extinction Approximation
Consider first the results for the constant-χ-method (Figure 3.5). Recall that for this method,
we took the average value of χ between i and j in the radial direction, and assumed that this
same value can be used for every direction. Since in reality, χ near the center is now much
larger than further outside, we expect this method to significantly overestimate the radiative
exchange in the region where the external exchange is important. The plot confirms this: While
the result is nearly exact close to the outer boundary, the overestimation increases towards the
inside and reaches a maximum near the photosphere. After that, the error decreases again for
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Figure 3.4: Density and temperature plotted against Planck optical depth, in the late stage of a simplified protostellar collapse
simulation. A hot and dense interior region (the first hydrostatic core or Larson core) has formed, surrounded by a cold and thin
envelope.
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Figure 3.5: Relative error in the cooling rate for the constant-χ-method at different stages in the collapse.

several reasons: In the optically thick region, directions that are much different from the radial
direction play a small role; near the center, χ does actually approach direction-independency
due to symmetry; and for the very optically thick cases, the external term becomes negligible
compared to the internal term.

The maximum error is about 20% in the optically intermediate (τ = 1) case, but increases
to 35% when the core is fully optically thick. At this point, the core’s optical thickness is
essentially infinite so further increases have no more effect.

3.2.2 Numerical Angle Integration
The error in the cooling rate at the same time steps as in section 3.2.1 is shown in Figure 3.6.

Figure 3.6: Relative error in the cooling rate for numerical angle integration at different stages in the collapse. Subshell resolutions
x = 4 and x = 10, and angular resolutions a = 100 and a = 500 are shown.

As expected, there is no error in the far outer and deep inner regions. Near the photo-
sphere, we see two different kinds of erroneous behavior: For all optical depths, there is an
underestimation of the result reminiscent of Figure 3.1 ’s τS = 0.1 case. The magnitude of this
error depends on the angular resolution. In addition, for the very optically thick cases, there
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is also an overestimation behind the photosphere. The magnitude of this error depends on the
subshell resolution.

The latter error naturally increases with the optical depth per shell, but reaches a maximum
at τS ≈ 3. At even larger values, the internal term starts to dominate the external term, so the
error in the latter becomes irrelevant. The internal term does not suffer from this error since
it integrates over the radius analytically.

3.2.3 Total Radiation Term
Except for the thermal relaxation test (section 3.1.2), up to this point, we have tried to evaluate
our method by comparing the total radiative cooling to the analytic value. As was mentioned
in section 3.2, unlike the radiative cooling, the error in the heating depends not only on the
optical depth, but also on the temperature profile. This makes it difficult to predict how a
given error in the cooling will translate to an error in the total.

Figure 3.7 compares the total radiation terms for different resolutions and for the constant-
χ-method at various stages in the collapse. We also include a high-resolution calculation for
the symmetric version of the method discussed in section 2.3.1.

We concentrate on the photospheric region since the differences are due to the external
term, which is negligible in the deep interior and far outside. We notice several tendencies:

• The net effect of radiation is a radially outward transfer of energy, as should be expected
(net cooling inside, net heating outside).

• The constant-χ-method consistently shows a smaller value than the numerical integration.
This is understandable since, as was mentioned briefly in section 2.3.2, the overestimation
of Ai←j is smaller for i > j than for i < j. This leads to the relative overestimation in the
heating being smaller than in the cooling, since the former comes mostly from the inside.

• As the total optical depth increases, so does the jump in χ at the boundary of the first
core, which becomes more and more sharply defined. Because of this, the number of shells
where the external term is relevant continues to decrease. This is advantageous for the
computational speed; however, if a higher resolution of the (post-)photospheric region is
desired, some kind of mesh refinement method is needed.

• The differences are most noticeable in the τ ≈ 100 case, when there is an optically thick
region where individual shells are still optically thin. The error in the fast method is more
significant here. Because of this, the pure constant-χ-method may not be a good choice
for a realistic calculation.

• Concerning the resolution of the numerical integration: Similar to the results in Figure
3.6, we see that low angular resolution leads to an overall underestimation, while low
subshell resolution leads to an overestimation in the optically thick region but has almost
no effect further outside. The behaviour of the fast method essentially corresponds to a
calculation with minimal angular and infinite subshell resolution. The differences between
a = 100,x = 4 and a = 500,x = 10 are small, showing that the method has converged.

• The use of the symmetric definition of Aij has only a small effect for optically thin shells,
since there is little difference then between fixing the position in shell i and integrating over
shell j or doing it the other way around. It also does not matter for very optically thick
shells, where the internal term dominates. However, for the intermediate case (interior
region of the middle panel in Figure 3.7) the result is significantly different from the non-
symmetric case, despite using the same angular and subshell resolutions. Note that the
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Figure 3.7: Total radiation terms for different resolutions at various stages during the collapse. Note that in the upper panel only,
the x-axis is linear instead of logarithmic. The resolution for the symmetric version is a=500,x=10. The results for a flux-limited
diffusion (FLD) calculation are also included for comparison.
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differences here do not necessarily mean that the symmetric version is less accurate; it is
rather that the two versions attempt to do different things. The non-symmetric version
is designed to calculate the radiation term at the shell center as accurately as possible,
while the symmetric version is intended to calculate a shell-average that guarantees energy
conservation.

• As should be expected, the flux-limited diffusion approximation causes significant errors
in the photospheric region where individual shells are not yet optically thick.

These results are specific for this particular optical depth and temperature profile, so when
applying the method to a different system, the results may differ as well. However, the general
situation of a hot, optically thick interior surrounded by a cold, thin envelope is a rather
common state in astrophysics.

The differences between the symmetric and non-symmetric versions of the method are ex-
pected to disappear in the limit of optically thin shells, since in that case the variation of the
radiation term within a shell should vanish. In principle, we could confirm this by performing
a protostellar collapse calculation with sufficiently high resolution to keep all shells optically
thin throughout the simulation. In practice, the computational cost makes this impossible:
The system optical depth after first core formation is already larger than 103, so the required
number of shells would be 104 at the very least, and 105 for truly optically thin shells. The
presence of optically thick shells is not an issue since they are dominated by the internal term,
which is the same for both variants of the methods. However, there will always be a region in
which shells are neither fully thin nor fully thick. This is the problematic region in which the
external term is important. Increasing the resolution will not make this region disappear, but
only move it closer to the system center.

Therefore, we test the convergence of the two variants by using a simplified system in which
the density is constant, the velocity is zero and all hydrodynamic calculations are switched off.
We introduce a temperature gradient (temperature decreasing outwards from the center) to cre-
ate a situation similar to the realistic simulation, and the (gray) opacity increases quadratically
with temperature. The latter is important to introduce some asymmetry between the different
shells: If density, opacity, and radial size of all shells are the same, then the asymmetry that
causes the differences between the two variants of the method (section 2.3.1) disappears, and
both variants give identical results irrespective of the temperature profile.

Figure 3.8 clearly shows that the two variants, whose results differ substantially in the
low-resolution case (optically intermediate shells), are converged for sufficiently high resolution
(optically thin shells). Interestingly, the high-resolution results are closer to the low-resolution
results of the symmetric than of the non-symmetric method, which indicates that, at least for
this setup, the former may be preferable. The flux-limited diffusion results are also included,
but as should be expected in this region of optically thin/intermediate shells, they are quite
different from the results of our method.

3.2.4 Combined Method
In section 3.2.3, we found that the constant-χ-method is too inaccurate to be used for the whole
calculation, at least during the time when there is an optically thick region with optically thin
shells. The numerical angle integration is much more accurate, but also much slower. In this
section, we will attempt to combine the two in order to arrive at a compromise between speed
and accuracy.

This can be done in the following way: At time step t, both slow and fast methods are
used to calculate the Ai←j. Then, the ratio of the two is written into an array of correction
factors Ci←j = Ai←j (fast) /Ai←j (slow). For the following time steps, only the fast method is
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Figure 3.8: Convergence test for the symmetric and non-symmetric versions of the method. The upper panel shows the temperature
profile used for this test. The number of shells in the middle panel is 250, and the optical depth per shell is close to 1 near τ = 101

and decreases further outwards. In the lower panel, the number of shells is 1000 and the optical depth per shell at 101 is around
0.2, i.e. the shells are optically thin throughout the relevant region.
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used, and the resulting Ai←j are divided by Ci←j. After n time steps, both methods are used
and the correction factors recalibrated. From Figure 3.9, we can see that after 5 steps, the
results have already become quite inaccurate, so this combined method could only reduce the
computational cost by a factor of a few at most. However, this is not true over the whole
calculation: Figure 3.9 represents the worst case, as it is during the transition phase when the
optical depth structure is changing quickly. In earlier and later stages, acceptable values of n
can be much larger. Therefore, instead of being constant, n should be changed dynamically
during runtime. We suggest the following method:

First, we choose a number m (for example, m = 0 initially) and set n = 2m. Every n
timesteps, we perform both slow and fast calculations as described above to obtain the radiation
terms dU/dtfast and dU/dtslow. We then calculate the relative error in the internal energy that
would result after n timesteps:

δU = |dU/dtfast − dU/dtslow|n∆t

U
. (3.1)

We evaluate this for every shell, and if it is larger than some critical value in any shell, we
reduce m by 1. If it is smaller than some other critical value in every shell, we increase m by
1. In this way, the frequency of slow and accurate radiative calculations changes dynamically
during the calculation. This method still risks having large errors in some timesteps when m
is too large before it can adapt. We can avoid this by including a rollback function as a safety:
Every time we perform a slow calculation, we also store all the basic variable arrays such as
density, temperature etc. If the error in the next slow timestep (n timesteps later) is too large,
in addition to reducing m, we also jump back to the stored values. This guarantees that the
maximum error is always smaller than some critical value defined by the user. In practice,
this method succeeds in significantly increasing the computational speed compared to the pure
slow method, since numerical calculations are only very rarely needed after the first core has
established itself and the optical depth structure no longer changes quickly.

Figure 3.9: Combined method. Snapshots of the photospheric region at a time step when τP ≈ 100, equivalent to the middle
panel of Figure 3.7. n indicates the number of time steps since the correction factors Ci←j were last calibrated.

3.2.5 Computational Speed and Optimization
Table 3.2.5 shows the wall-clock time for calculations using the pure fast or pure slow methods.
In our calculation, there are three different constraints on the timestep:
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Method Type Shells Angles Subshells Wall-clock time (minutes)
No rad. transfer 200 - - < 0.5

Fast 200 - - 6
Fast 400 - - 21
Slow 200 20 2 17
Slow 200 100 2 61
Slow 200 20 4 27
Slow 400 20 2 71
FLD 200 - - 9
FLD 400 - - 17

Table 3.1: Simplified gray collapse calculations for various shell, angle, and subshell resolutions. The tests were run on a single
3.4 GHz processor and stopped once the total optical depth reached 1500.

• The basic hydrodynamical timestep, determined by the condition that neighboring shells
must not overtake each other, i.e. ∆t = x∆r/(∆v + cs), where ∆r and ∆v are the
differences in radius and velocity of two neighboring shells, and x is a number between 0
and 1. Here we choose x=0.1.

• The radiation timestep. Since the radiation term is very sensitive to temperature, it must
be recalculated after the temperature in any shell has changed by more than a certain
percentage. Here we choose 1 percent. Note that the exchange coefficients Aij are not
updated at this point.

• The opacity timestep. The Aij depend on the optical depth structure of the system,
which in turn is determined mostly by the density structure. We update these coefficients
whenever the density in any shell has changed by more than 1 percent since the last
update. Whenever this is done, the radiation term is also recalculated.

The purely hydrodynamical timestep requires much less computational effort than the ones
related to the radiative transfer, as evidenced by the fact that the calculation without RT takes
less than a minute. The radiation timestep and especially the opacity timestep are far more
time-consuming, the latter even more so if numerical angle integration is used. The calculations
shown in Table 3.2.5 required roughly 7500-10000 hydrodynamical timesteps (depending on
the number of shells), 3000 radiation timesteps without Aij updates, and 1500-2000 opacity
timesteps. Note that the ratios of these numbers may be vastly different in other systems,
depending on the time scales at play. The flux-limited diffusion method is comparable in speed
to the fast method at 200 shells, but scales better with higher resolutions since it is O (fn). Its
speed depends on how many steps are allowed for the radiation field to converge, however.

As mentioned before, the external term is by far the slowest of the three terms in the
radiative calculation. If the number of shells is n and the number of frequencies considered
is f , the fast method’s external term scales as O (fn2), while the numerical integration over
a angles and with x subshells scales as O (axfn2), which for reasonable resolutions is two to
three orders of magnitude slower. This is why optimization requires minimizing the number of
numerical integrations, as we did in the previous section.

The separation of the computationally expensive external term from the other two, and the
fact that it can be ignored in many regions, is of primary importance. In order to optimize
speed, it is imperative to neglect the external term wherever possible, especially in the slow
method. In our collapse simulations, we may ignore the external term in the far outer regions,
and after first core formation also in the interior because individual shells there are optically
thick. In addition, there may be regions where the external term is not negligible, but high
accuracy is not required. In this case, instead of completely neglecting it, one may calculate
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it using only the fast method. These optimizations can reduce the actual time required by
an order of magnitude or more compared to the values seen in Table 3.2.5. In any case, the
optimization strategy must be adapted according to the problem.

3.3 Conclusion and Future Development
In this work, we have developed a new method of treating the radiative transfer in a spherically
symmetric fluid system. Based on the transfer equation, we derived a scheme that is reduced to
the calculation of exchange coefficients Ai←j between pairs of shells (“external term”), between
a shell and the radiation coming from outside the computational domain (“boundary term”),
and between the shell center and other points within the same shell (“internal term”). The
external term is by far the most problematic of these, since the calculations of the other two
are both much faster and produce (nearly) exact results.

Numerical integration over all angles can solve the external term to a high degree of accu-
racy if a sufficiently large number of angles is used, however it is quite slow. By assuming a
direction-independent absorption coefficient, the speed can be increased by two to three orders
of magnitude, but at the cost of reduced accuracy. The resulting error is most evident in regions
that are optically thick while individual shells are still optically thin. A combined method of nu-
merical angle integration and constant-χ-approximation can be used as a compromise between
speed and accuracy.

Future improvements of the method will likely focus on speed optimization, either directly
by increasing the speed of the numerical angle integration, or indirectly by increasing the
accuracy of the fast method to make it more usable. Several approaches are possible:

• Flexible resolutions: In this work, we have taken the angular and subshell resolutions to
be constant throughout a given test run. It may be far more effective to change them
during runtime. For example, x only needs to be larger than 1 for shells in a certain
optical depth range between about 0.1 and a few, and a can be smaller near the center,
where there is little exchange with shells smaller than i.

• For the constant-χ-method, we use the average χ between shells i and j in direction θ̃ = 0.
There may be better options, such as a weighted average between the θ̃ = 0 and θ̃ = π
directions. In addition, the effect of the optically thick core could be approximated by
defining a “shadow region” in the interior and reducing Ai←j accordingly.

• The main reason that the numerical integration is so slow is because of the high angular
resolution required, which is a consequence of the fact that many rays emanating from
a given shell i fail to interact with shell j if the latter is much smaller than i (case 3 in
Figure 2.2). However, instead of calculating Ai←j and Aj←i separately, one may calculate
Ai←j only for the case of i < j and reuse this value when updating shell j. Aside from the
obvious decrease by a factor of 2 in the computation time, this also reduces the angular
resolution required, and has the additional advantage of guaranteeing energy conservation.
But this method is problematic: Ai←j is the exchange coefficient between ri and the whole
of shell j. As we discussed in section 2.3.1, this is conceptually different from Aj←i, the
exchange coefficient between rj and the whole of shell i. If one is willing to accept this
inconsistency, a significant performance increase may be possible.

In conclusion, the performance of the method will depend strongly on steps taken for op-
timization, and which methods of optimization are effective will depend on the optical depth
and temperature structure of the system in question.
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Chapter 4

On the Initial Conditions of Brown
Dwarf Formation

We now apply our newly developed scheme to an actual physical problem: The formation of
brown dwarfs. This chapter focuses on the creation of brown dwarfs through the turbulent com-
pression scenario, as discussed in section 1.4. We give a detailed explanation of the simulation’s
setup (most of which also applies to chapter 5), followed by a discussion of our results.

4.1 Simulation Setup
The numerical simulations described in this chapter are simplified in so far that they use an
ideal gas equation of state and a constant ratio of specific heats, γ = 5/3. For the present
purpose, this is sufficient since we are only interested in whether or not a first core forms.
The further evolution, namely the second collapse and second core formation, requires a more
realistic equation of state to incorporate the effect of hydrogen dissociation. This will be done
in section 5.

Our hydrodynamics module is based on Colella & Woodward (1984)), although we use a
spatially second-order (piecewise linear) Godunov scheme rather than their piecewise parabolic
one. The governing equations of the system in Lagrangian conservation form are as follows:

dV

dt
= d(r2v)

dm
(4.1)

dv

dt
= −r2 dp

dm
− ∇Φ (4.2)

dU

dt
= −d(r2vp)

dm
− v∇Φ +

(
dU

dt

)
rad

(4.3)

∆Φ = 4πG

V
(4.4)

p = (γ − 1)(U − v2/2)
V

(4.5)

The equations are formulated in terms of the mass coordinate m(r), which is equal to the
enclosed mass divided by 4π. V , v and U are the specific volume, velocity, and specific energy.
The effect of radiation is included as the term

(
dU
dt

)
rad

in the energy equation. This is the
radiation term whose calculation we described in the method development (chapter 2). We
ignore the effect of radiation pressure throughout this work.

When testing our program, we encountered a problem with the term v∇Φ in the energy
equation. This term represents the energy gained or lost by the fluid due to gravity. Colella
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& Woodward (1984) include a non-specified “external body force” g in their scheme, in which
case the numerical implementation of the resulting term vg is an average of the value before
the current timestep and the value after the timestep, i.e. (vngn + vn+1gn+1)/2. This is only
an approximation and hence not perfectly conservative. In fact, we found that in our self-
gravitating case this approximation caused a continuous increase in the total energy of the
system. In other words, the increase in the fluid energy in each time step was larger than
the corresponding decrease in gravitational potential energy, leading to an abnormally strong
increase in pressure and a general “bounciness” of the collapsing core. We have solved this issue
by manually calculating the gravitational energy in each shell before and after the time step,
and inserting the difference in the energy equation in place of the term −v∇Φ. This method
achieves perfect energy conservation within the hydrodynamic part of the calculation.

The boundary condition at the center is v = 0, while the outer boundary is infalling. This
infall velocity is calculated from the velocity of the outermost shell, under the assumption that
v varies linearly over the shell. As for the radiative boundary condition, we take the system to
be surrounded by a homogeneous, 10 K blackbody radiation which keeps the core at its initial
temperature of 10 K. We will consider a less idealized boundary condition in section 5.

We use the frequency-dependent dust opacities computed by Semenov et al. (2003), sampled
into 40 log-equally spaced frequency bins. At the higher temperatures encountered in later
stages of the collapse, the dust grains evaporate and the opacity becomes dominated first by
molecular and then by atomic absorption. These effects will be included in section 5, but at
this point we only consider the dust opacity.

We envision an isothermal, brown dwarf mass cloud core which is initially in hydrostatic
equilibrium and stable to gravitational collapse, i.e. a subcritical Bonnor-Ebert sphere (Bonnor
(1956); Ebert (1955)). If this cloud core is overrun by a region of high turbulent pressure, it
will be compressed to a higher density, and if this compression if sufficiently strong, it may be
destabilized and collapse. We model this process by adding an external pressure at the outer
boundary of our system:

Pext = Pext,inite
− t

tD ,

where tD is the timescale at which this external pressure decays. This decay is to simulate
the fact that the turbulent high pressure region is itself moving, so the core will only be affected
by it for a certain time. Our simulation has the following parameters:

• nC (central number density)

• RO (initial radius)

• Pext,init (initial external pressure)

• tD (time scale for the external pressure to decay)
Hydrostatic equilibrium for a self-gravitating, isothermal sphere can be described by the

following equation:

dP

dr
= −G

M(r)
r2 , (4.6)

where M(r) is the enclosed mass at radius r. We assume a constant temperature of 10 K and
set up the system by fixing nC and RO and numerically integrating this equation outward from
the center. The total mass is then determined, as is PO, the pressure at the outer boundary.
The external pressure is then added on top of PO. An important derived parameter is the
Bonnor-Ebert mass MBE = 1.18c4

sP
−1/2
O G−3/2, which is the critical mass above which the core

would be unstable to gravitational collapse even without any external pressure. For all the
calculations in this section, M < MBE.
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Figure 4.1: Forming brown dwarfs by turbulent compression. The initial temperature is 10K and the total core mass is 0.06M⊙.
The three boxes correspond to three different central densities. Within each box different columns represent different values for the
initial external pressure, and different lines represent different values for the decay timescale. For each box, the initial core radius,
the free-fall time and the mass in units of the Bonnor-Ebert mass are given. A blue circle for a combination of parameters signals
that a collapse occured in that calculation, i.e. a proto-brown dwarf was formed. Red X-symbols mean that in this calculation, the
core only oscillated without ever collapsing.

4.2 Results
We perform a number of simulations while varying the parameters described in the previous
section, and check whether the collapse proceeds to form a first hydrostatic core or whether it
only oscillates without collapsing. The results are shown in Figure 4.1. We notice the following
patterns:

• Larger external pressures and longer decay times are more favorable in order to trigger a
collapse, as should be expected.

• Setups with higher central density appear to be more resistant to collapse. This may
seem unintuitive at first, but it becomes clear when one considers the thermal pressure.
For example, in the case of nC = 106cm−3 and T = 10K, the internal pressure is 107/kB.
It is obvious that an additional external pressure that is much lower than this will have
no significant effect on the overall evolution, no matter for how long it acts. Thus the
difference between the internal and external pressure is important.

• With the previous consideration, we see that the higher-density cores, whose ratio of M to
MBE is larger, are actually more unstable. For example, in the case of nC = 104cm−3, an
external pressure one or even two orders of magnitude larger than the internal pressure still
fails to cause a collapse if the decay time is short. On the other hand, for nC = 106cm−3,
even an external pressure equal to the internal pressure can cause a collapse.

In summary, then, the qualitative behavior of the above results is as expected. Next, we
wish to interpret them quantitatively: Assuming typical molecular cloud conditions, how likely
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is it that a turbulent high pressure region will affect a pre-brown dwarf core for long enough to
cause it to collapse?

A typical number density for a molecular cloud is 102cm−3 and the typical turbulent velocity
is on the order of 1 km/s, giving a turbulent pressure Pext,init/kB ≈ 3 × 106. Let us be generous
and assume Pext,init/kB = 107. From our simulations, we know that this pressure must act on the
core for tD = 103yr (lower boundary) in order to create a brown dwarf, for both nC = 104cm−3

and nC = 105cm−3. Using the initial core radius RO, and assuming that the high-pressure region
also moves at v = 1 km/s, we can translate the time scale requirement into a size requirement
for this region. For the case nC = 104cm−3:

Rmin = RO + vtD ≈ 8, 000AU

With the even more favorable nC = 105cm−3, the result becomes Rmin ≈ 4900AU due to
the smaller value of RO. The required time scales are the same for both cases because of the
limited amount of calculations; in practice, the higher-density core’s tD will be closer to the
lower bound of 103yr which we have assumed for both cases here.

Despite our optimistic assumptions, this is a very large scale. It seems unlikely that coherent
high-pressure regions of this size are common enough in molecular clouds to explain the observed
number of brown dwarfs. However, if they do exist, they should be observable, so this could be
used as an observational test: Unless such regions are found, we conclude that the turbulent
compression scenario is not a main formation channel for brown dwarfs, although it may occur
on rare occasions where conditions are especially favorable. Note also that our simulation is
spherically symmetric and does not include the magnetic field, which tends to have a stabilizing
effect and should make it even harder to trigger a collapse.
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Chapter 5

Full Protostellar Collapse Calculations

In this chapter, we expand our code to include effects necessary to accurately simulate the sec-
ond collapse phase: A realistic, non-ideal equation of state which reflects the effect of hydrogen
dissociation, and molecular and gas opacities for high temperatures at which dust grains have
evaporated. We then perform simulation runs of the whole protostellar collapse process for
varying initial conditions, with a special focus on the brown dwarf regime.

5.1 Equation of State
In place of the ideal equation of state (equation 4.5), we use an EOS table developed by
Kengo Tomida (Princeton University) and Yasunori Hori (National Astronomical Observatory
of Japan), which is described in detail in Tomida et al. (2012) and Tomida, Okuzumi & Machida
(2015) and whose effect is visualized in Figure 5.1. This table was calculated under the as-
sumptions of local thermodynamical and chemical equilibrium. The latter is only valid if the
timescale for chemical reactions is much shorter than the dynamical timescale, but since we are
dealing with very dense gas this condition holds. Furthermore, the EOS table assumes solar
abundance (X = 0.7, Y = 0.3, heavy metals are not considered), and a constant ratio of ortho-
to parahydrogen of 3:1. This ratio affects the thermodynamic properties of the gas, but its
actual value in molecular cloud cores is poorly constrained. We do not investigate its effect
at this point. Finally, as the authors themselves note in appendix A of Tomida et al. (2012),
the EOS becomes unphysical in very high density regions (ρ > 0.1 g cm−3) since the neglected
non-ideal effects are important in that region. This is not an issue for us since our calculations
only reach densities about an order of magnitude lower.

5.2 Opacity
We use the monochromatic opacities by Vaytet & Haugbølle (2017), available for download
at http://starformation.hpc.ku.dk/?q=grid-of-protostars. These are a combination of
the Semenov et al. (2003) dust opacities for temperatures below 1500 K, molecular opacities
calculated based on Ferguson et al. (2005) for the temperature range between 1500 and 3200
K, and atomic opacities from the Opacity Project (Badnell et al. (2005)) above 3200 K.
The minimum and maximum frequencies as well as the number of frequency points differ for
these three regimes, and the opacities themselves depend on temperature and density. Thus, the
actual opacity data used when calculating the radiation term for a given shell in our calculation
are chosen depending on that shell’s temperature and density. We use 40 frequency bins for all
our runs. The frequency and opacity values for each bin are obtained by averaging over several
neighboring values in the original opacity data.

44

http://starformation.hpc.ku.dk/?q=grid-of-protostars


Figure 5.1: Visual representation of the realistic EOS by Tomida et al. (2012). The black line shows a typical evolutionary track
in the ρ-T-plane (see also Figure 1.3), while the colored background shows the value of the adiabatic index γ at that point. Note
the initial decrease in temperature caused by the attenuation of background stellar radiation, which is only captured in frequency-
dependent calculations (section 5.5.1). The region below about 100K corresponds to γ = 5/3, the value for a monatomic gas, due to
the hydrogen molecule’s rotational degree of freedom being inactive at these temperatures. At higher temperatures, it decreases to
γ = 7/5, the value expected for a diatomic gas. The four bands of lowered γ correspond, from bottom to top, to four endothermic
reactions: The dissociation of H2, the ionization of hydrogen, and the first and second ionization of helium.
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5.3 Initial and Boundary Conditions
Apart from the differences discussed in the preceding two sections and the lack of an external
pressure, the overall method is the same as in section 4. However, one further change concerns
the radiative boundary condition: Instead of a 10 K blackbody background radiation, we now
employ the more realistic setup of Masunaga & Inutsuka (2000), where the heating from the
outside is a combination of three separate contributions:

• Heating due to cosmic rays, for which we adopt the value of 6.4×10−28n(H2) erg m−3 s−1

(Goldsmith & Langer (1978)). This is implemented simply as an additional, constant
term in the energy equation.

• A 2.7 K blackbody radiation representing the cosmic microwave background.

• A 6000 K blackbody radiation representing background stellar photons, diluted by a
factor so as to keep the initial cloud at ≈ 10 K.

Following Vaytet & Haugbølle (2017), we stop each run once the density in the central shell
decreases from one time step to the next for the first time after the beginning of the second
collapse. There are several reasons for this: First, it allows a comparison of different runs at
the same point during their evolution, namely the point where the second collapse ends and a
first “hydrostatic bounce” occurs. Second, our EOS becomes invalid at densities above ≈ 0.1
g cm−3, so we should stop the calculation before such densities are reached. And finally, the
main accretion phase that follows the second collapse is difficult to deal with in a Lagrangian
scheme because the time steps become extremely short, on the order of hours and less. For
this reason, an effective treatment of the further evolution requires a change in method, such
as switching to a Eulerian grid or using an implicit scheme. Finally, it should be noted that
the exact density at which the hydrostatic bounce occurs depends on the resolution. We have
chosen to use 500 shells for all calculations presented here.

We perform simulation runs with initial central densities between 5 × 10−17 and 5 × 10−15

g cm−3 and initial radii between 65 and 750 AU. These are very dense and compact objects,
which is necessary for them to be gravitationally unstable. The masses are between 0.8 and
10 percent of the solar mass, covering the brown dwarf and some of the sub-brown dwarf mass
regime (the deuterium burning limit, conventionally used as the lower bound for brown dwarfs,
lies at ≈ 1.3 percent of solar mass).

We consider two different initial density structures: One is a simple homogeneous density,
which makes for a very unstable setup. The labels of these runs begin with the letter A. The
second setup is a hydrostatic, Bonnor-Ebert sphere profile similar to chapter 4, except that
this time the mass is larger than the Bonnor-Ebert mass so that the sphere is unstable to
gravitational collapse even without any external compression. The labels of these runs begin
with the letter B. In addition, we include a one solar mass run with initial conditions identical
to Masunaga & Inutsuka (2000) for comparison (run C0), as well as a number of runs to test
for first core-less collapses (runs D0 through D3; see section 5.5.5). A complete overview of all
the runs is given in Table 5.3.

5.4 Spurious Re-Expansion after Second Core Formation
When we were testing our program, we encountered an unexpected behavior: After the forma-
tion of the second core, the system expanded again to first core densities and below. Suspecting
a numerical error, we analyzed the development of the total energy, shown in Figure 5.2’s upper
panel. In this plot, the formation of the first core takes place around timestep 5000, and that of
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Figure 5.2: Evolution of the system’s total energy and its individual constituents in the original calculation (upper panel) and in
the corrected version (lower panel). See text for details.
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the second core around timestep 27000. In the early phase, the internal energy oscillates rapidly
as the system’s energetics is dominated by the radiative exchange with the background. The
magnitude of these oscillations depends on the size of the timestep. During the first core phase,
we see a different kind of oscillation in the internal and gravitational energy. This is because
the first core periodically expands and contracts slightly. During this time, the total energy
slowly decreases due to radiation escaping from the system. The problem becomes apparent
at the formation of the second core, when the total energy starts to increase steeply. This
is obviously unphysical, since at this stage, radiative cooling should far exceed radiative and
cosmic ray heating, and there are no other diabatic processes. In fact, this spurious increase
occurred even when completely deactivating radiation and cosmic rays, implying that the cause
is in the hydrodynamics module.

We found that the term −v∇Φ in equation 4.3 (the energy equation) was responsible for
this error. This term represents the energy gained or lost by the fluid due to gravity. Colella
& Woodward (1984) include a non-specified “external body force” g in their scheme, in which
case the numerical implementation of the resulting term vg is an average of the value before
the current timestep and the value after the timestep, i.e. (vngn + vn+1gn+1)/2. This is only
an approximation and hence not perfectly conservative. In our self-gravitating system, where
g is calculated from the enclosed mass, this inaccuracy leads to a continuous increase in the
total energy of the system. In other words, the increase in the internal energy in each time
step is larger than the corresponding decrease in gravitational potential energy. In the early
stages of the collapse and during the first core phase, the effects of this error are too small
to counteract the radiative losses, but during second core formation much more gravitational
energy is converted to internal energy, and the abnormally large increase in pressure ultimately
blows apart the second core.

We have solved this problem by explicitly calculating the gravitational energy in each shell
before and after the time step, and inserting the difference in the energy equation in place of
the term −v∇Φ. The gravitational potential energy of any shell is given by

Egrav = −4πG
∫ mO

mI

m

r(m)
dm, (5.1)

where m is equal to the enclosed mass divided by 4π. mI and mO are the values of this
mass coordinate at the inner and outer boundary of the shell. Expressing the radial coordinate
r as a function of m, we obtain

Egrav = −4πG
∫ mO

mI

m(
3m−mL

ρ
+ r3

I

)1/3 dm. (5.2)

The integral in the above equation can be solved analytically:

∫ m(
3m−mL

ρ
+ r3

I

)1/3 dm

= 1
10

ρ
(
3mL − ρr3

L + 2m
)(−3mL + ρr3

L + 3m

ρ

)2/3

+ C.

(5.3)

Since all necessary values are known both before and after the timestep, the change in
gravitational energy can be calculated and inserted into the energy equation.

The lower panel of Figure 5.2 shows the behavior after applying this correction. The main
difference is that there is no longer any increase in total energy at the point of second core
formation, which here occurs around timestep 37000. In addition, the oscillations during the
first core phase are significantly smaller.
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Figure 5.3: Evolution of the central density in the original calculation and in the corrected version. Only the former shows the
unexpected re-expansion and destruction of the second core.

Figure 5.3 shows the evolution of the central density before and after the correction. In the
improved version, the second core is stable and no unphysical re-expansion occurs.

5.5 Results
5.5.1 Core Evolution
Figure 5.4 shows the evolution in the temperature-density plane of a fluid element near the
center of the system (Run C0). It generally behaves as expected (see Figures 1.3 and 5.1), with
a near-isothermal phase until ≈ 10−12 g cm−3, followed by an adiabatic phase until ≈ 10−8

g cm−3 and the second collapse until ≈ 10−3 g cm−3, when hydrogen molecule dissociation is
complete and the equation of state again becomes stiffer.

It is noteworthy, however, that the initial contraction is not completely isothermal. Instead,
the temperature drops from the initial value of ≈ 10 K to a minimum of ≈ 6 K before increasing
again. This effect is only captured in frequency-dependent radiative transfer calculations such
as this work or Masunaga & Inutsuka (2000), but not in gray cases such as Vaytet & Haugbølle
(2017) and Tomida et al. (2010). The cause is due to the increased opacity for radiation from

the outside: As the cloud core starts to contract, its optical thickness begins to increase. Since
the opacity is generally larger at higher frequencies, the system first becomes optically thick
to high-frequency photons while still remaining optically thin to low frequencies. The inner
regions are thus shielded from the background stellar radiation, so that heating is supplied only
by cosmic rays and the CMB, but the cooling radiation emitted from the dust can still escape.

5.5.2 Radial Profiles
The evolution of run C0’s radial profiles of density, temperature and velocity is plotted in
Figure 5.5. The formation of the first and second cores at ≈ 101 and ≤ 10−2 AU, respectively,
is evident as a sudden increase in density and temperature and as a maximum in the infall
velocity (accretion shock). Snapshot 2 also shows the initial temperature decrease mentioned
in the previous section, and it can be seen that this decrease affects the whole inner region of
the cloud core, but not the outermost regions.

The final radial profiles (Figure 5.6) show that the second core’s properties (density, radius)
are essentially independent of the initial conditions. They are all very similar irrespective of the
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Figure 5.4: Evolution in the temperature-density plane at the center of the collapsing cloud core for run C0.

cloud core mass, initial density and density structure. This agrees with the results of Vaytet &
Haugbølle (2017) for higher masses, but here we show that it holds true in the brown dwarf
regime as well.

However, we do find significant differences in the first core. Specifically, the very low mass
runs A0 - A4 and B0 - B4 look qualitatively different, with a very small first core (< 1 AU)
which essentially makes up the whole system. The unusual behavior of these runs is closely
related to the question of first core lifetime and will be discussed in the following section.

5.5.3 First Core Lifetimes
The first hydrostatic core is generally believed to be a very short-lived object, which combined
with the low luminosity should make it very hard to observe. Nevertheless, in recent years a
number of candidate objects have been found, for example by Pineda et al. (2011), Dunham
et al. (2011), Chen et al. (2010) and Chen & Arce (2010). This may indicate that first
cores are more long-lived and therefore more common than typically believed. Tomida et al.
(2010) investigated first core lifetimes using 3D RHD simulations and found that for low mass
cores (< 0.1M⊙), the lifetime can be in excess of 104 years. The reason for this is that for the
second collapse to start, the first core must reach a critical temperature of about 2000 K. How
quickly that temperature is reached depends on the mass accretion rate. However, in a very
low-mass case the mass reservoir may essentially be used up so that the accretion onto the first
core becomes very weak before the temperature has risen sufficiently. This is what we see in
the radial profiles of the very low mass runs A0 - A4 and B0 - B4 (Figure 5.6): The first core
basically makes up the whole system. In this situation, radiative cooling then plays a crucial
role in removing entropy from the system and thus allowing further contraction and heating in
a Kelvin-Helmholtz-like process on a much slower timescale.

As shown in table 5.3, our calculations confirm that the first core lifetime rises drastically
for these very low-mass runs, when it becomes comparable to or even much larger than the free-
fall time. However, this only becomes evident below about 0.02M⊙, not 0.1M⊙ as suggested
by Tomida et al. (2010), and a lifetime of 104 years is only reached in the sub-brown dwarf
regime. This is likely to be due to differences in the numerical method: As a 3-D calculation,
Tomida et al. (2010) include the effect of rotation, but on the other hand they use an idealized
EOS with γ = 5/3 and a much more simplified radiative transfer scheme (gray flux-limited
diffusion approximation). Vaytet & Haugbølle (2017) find an anticorrelation of the first core
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Figure 5.5: Evolution of the radial profiles of density, temperature and velocity for run C0. 7 snapshots are shown, numbered
sequentially after their elapsed time.
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Figure 5.6: Density, temperature and velocity profiles at the end of the simulation for various runs. The left side shows runs with
an initially homogeneous density profile, while the right side shows initially Bonnor-Ebert profiles.

lifetime with an instability parameter given by the ratio of mass to Bonnor-Ebert mass 1, where
the lifetime drops at first slowly and then significantly for very large ratios of M/MBE >≈ 5.
However, the lowest mass they consider is 0.2 M⊙, so they do not probe the very low mass
regime, where the behavior is different. Figure 5.7 shows that for the very low-mass end, the
first core lifetime depends strongly on the mass of the cloud core rather than on the instability
parameter.

In conclusion, despite the quantitative differences with Tomida et al. (2010), our results
confirm their prediction that very low-mass first cores can be very long-lived due to exhaustion of
the accretion reservoir, and that generally the behavior of the first core lifetime is qualitatively
different from higher mass ranges. This may account for the surprisingly large number of
observational candidates. Furthermore, we predict that future discoveries of first cores will
show a bias towards low mass objects due to their longer lifetimes.

5.5.4 Spectral Energy Distribution
We discuss the observational signature that would be expected from a brown dwarf in the
process of formation. Since our simulations allow us to calculate the radiation escaping from
the system at any point in time, we may use this to compute the spectral energy distribution
(SED) that would be observed (Figure 5.8). We note that for a typical case, in this case the
run B10, the emission is dominated by the cold envelope at all stages, i.e. the hot core region
is obscured. This is also the main reason why observation of the early phases of star formation
is difficult. The situation is exacerbated in the case of brown dwarfs because of their even
lower luminosity compared to solar-type stars. A smaller beamsize helps to better distinguish

1Note that Vaytet & Haugbølle (2017) originally define a stability parameter ϵ = MBE/M0 in their method
section, but later write ϵ = M0/MBE at various points, which requires special care in interpreting their findings.
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Figure 5.7: Correlation of the first core lifetime τFC with the mass. While there is little effect at masses larger than about
10−2M⊙, a very significant increase in the lifetime can be observed at extremely low masses.

different stages of the collapse, since the effect of the contribution of the envelope is reduced.
These results essentially confirm those of Masunaga, Miyama, & Inutsuka (1998) and Masunaga
& Inutsuka (2000), although the latter also found that the SED becomes markedly different in
the following main accretion phase, which we have not considered.

The situation is somewhat different for the very low-mass cases, as seen in the lowest panel
of Figure 5.8. Here, the surrounding envelope has disappeared in the later stages, allowing the
observer to look deeper into the warm interior. Therefore the SED is clearly warmer than at
the beginning, and this effect may make very low-mass protostars easier to observe, further
increasing the observational bias towards such objects that already exists due to the longer first
core lifetimes (see section 5.5.3).

5.5.5 Collapses Without First Cores
Vaytet & Haugbølle (2017) found that for certain very unstable setups (M/MBE >≈ 10), the
collapse can proceed without the formation of a first core. This occurs because the vigorous
collapse creates such a high ram pressure that the thermal pressure does not become strong
enough to balance it before the temperature reaches 2000 K and thus directly proceeds to the
second collapse.

We confirm this behavior in our runs D0 through D3 (Figure 5.9). The initial conditions of
D3 are identical to the ones Vaytet & Haugbølle (2017) used to investigate this phenomenon.
The other three runs differ from D3 only in that their initial radii are smaller, which also implies
a smaller mass and a smaller degree of instability. Figure 5.9 shows the transition between the
cases with and without the first core. The first core’s signature in the density profile, clearly
visible at around 10 AU in runs D0 and D1, is absent in runs D2 and D3. The lower panel of
Figure 5.9 confirms the importance of the ratio between thermal and ram pressure. In the first
core-less cases, this ratio is smaller than unity everywhere outside the second core. The most
favorable conditions for skipping the first core phase are those in which the ram pressure is
very large (high degree of instability leading to large infall velocity), while the thermal pressure
is relatively low. With respect to the initial temperature of the cloud, there is one difference
between our result and Vaytet & Haugbølle (2017): They report that a collapse without the
first core occurs only for an initial temperature of 5 K, but not for higher values such as 10
K or above, although our calculations show that it occurs even with 10 K. The boundary
condition for all of our runs is calibrated such as to keep the initial temperature at 10 K, but
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Figure 5.9: Upper panel: Final density profiles for runs D0 through D4, showing the transition to a collapse without the first core
phase. Lower panel: Ratio of thermal to ram pressure at the end of the simulation for the same four runs.

the frequency-dependent radiative transfer then causes a decrease to ≈ 6 K (see section 5.5.1),
so that the first core phase can be skipped despite the relatively high initial temperature. This
example illustrates that, even though in most cases the overall behavior of gray and frequency-
dependent calculations is similar, in certain cases such as this they may produce significantly
different results. In summary, the unique condition for the formation of a protostar without
the first core phase is that the initial core mass must be much larger than the Bonnor-Ebert
mass.
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Chapter 6

Summary and Future Work

In this thesis, we have developed a new numerical method of calculating the radiative transfer
in spherically symmetric systems. This method avoids the use of any kind of diffusion approxi-
mation and is therefore applicable in optically thick, thin, and intermediate systems. It is also
very fast, especially if the approximation of a homogeneous extinction coefficient is used. This
method can be combined with a slower one which is also accurate for inhomogeneous cases. By
determining correction factors between the results of the two methods and applying them to
the fast method, a compromise between speed and accuracy can be achieved. The performance
depends strongly on the system that is being investigated, particularly on the optical depth
structure and its rate of change, which determines which computationally intensive terms in
the equations can be neglected.

Using our newly developed numerical scheme, we performed simulations of brown dwarf
formation by turbulent compression. A longstanding problem in the question of brown dwarf
formation is the fact that very low mass cloud cores need very high densities in order to become
gravitationally unstable according to the Jeans criterion. One possibility to achieve these
densities is by compressing the cloud core with an external pressure, and the turbulence which is
known to exist in molecular clouds is a possible source of such a pressure. However, the results
of our simulations showed that, assuming typical molecular cloud conditions, brown dwarf
formation requires very large (thousands of AU) coherent regions of high turbulent pressure.
We conclude that this mechanism is unlikely to play a dominant role in brown dwarf formation,
although if such large-scale high pressure regions exist, it should be possible to observe them.

In the next step, we expanded our simulation program to include a realistic equation of
state to account for the effect of hydrogen dissociation, which plays a crucial role in the sec-
ond collapse phase of star formation. We also included molecular and atomic opacities which
become important at the higher temperatures encountered in this part of the process. We
then performed simulation runs of the complete protostellar collapse process, beginning with a
molecular cloud core and ending with the formation of a second core a.k.a. protostar. When we
were exploring numerical results with various initial conditions, we noticed a numerical prob-
lem with the hydrodynamics code that may be relevant to other investigations of self-similar
gravitational collapse processes. To our knowledge, the solution for the problem has not been
mentioned in the literature. Specifically, we found that in this self-gravitating system, a viola-
tion of energy conservation occurs if the effect of gravity in the energy equation is calculated
according to the method of Colella & Woodward (1984). Over time, this causes a spurious
increase in the total energy, which in certain cases can blow the whole system apart due to the
increased pressure. We provide a method to overcome this problem by explicitly calculating
the gravitational energy in each shell before and after each timestep.

We found that for a typical case of 1 solar mass, our results agree with those of previous work,
and that for brown dwarfs and sub-brown dwarfs, the mass and size of the protostar directly
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after its formation are essentially independent of the initial conditions. This had already been
found by previous research for higher masses, but we confirmed that it is still the case even in
the very low-mass regime. We also found that for extremely low masses below about 0.02 M⊙,
the collapse process becomes qualitatively different. While the final result - the protostar - still
shows basically the same properties as in other cases, the first core’s lifetime becomes extremely
long, exceeding 10,000 years. This occurs because for sufficiently low masses, the accretion
reservoir becomes exhausted so that accretion onto the first core essentially stops before the
temperature has reached the 2000 K necessary to trigger the second collapse. The object then
slowly contracts due to radiative cooling in a Kelvin-Helmholtz process, which explains the
much longer timescale. This behavior has previously been shown by other simulations, but
quantitatively our results are quite different, which is probably a result of different numerical
methods. These longer first core lifetimes may in part explain the surprisingly large number of
first core candidates observed so far, and we also suggest that it may cause an observational bias
towards very low-mass objects. We also calculated spectral energy distributions, which show
that in cases where the surrounding envelope has disappeared, a warmer SED emerges from
the object. This would make such objects easier to observe and thus add to this observational
bias.

Finally, we investigated the phenomenon of collapses entirely without a first core phase.
We confirmed that for sufficiently unstable initial conditions, the first core phase can indeed
be skipped. Contrary to previous research, we found that this is not dependent on the initial
cloud core being very cold. Because of our frequency-dependent radiative transfer and realistic
boundary condition, the temperature near the center always becomes very cold even if the
initial cloud was relatively warm. For future work, we are considering a number of possible
projects:

• Further development of the radiative transfer scheme. As mentioned in section 3.3, there
are still a number of possible improvements that may increase the speed and/or accuracy
of the method.

• Including the main accretion phase. This phase follows the formation of the second core,
at which point our simulations currently end. Numerically, it is problematic since the
timesteps become extremely short. This can be solved by using an implicit scheme or by
switching to a Eulerian grid at this stage.

• Larger variety of initial conditions for protostellar collapse calculations. Since our scheme
is so fast, it is well suited to perform a large number of runs in order to investigate the
parameter space.

• Application of the radiative transfer scheme to other physical processes. It is not limited
to star formation, but can in principle be used wherever a system can be treated as
spherically symmetric. Possible applications include the effect of radiation in massive
stars or the formation of giant planets within a protoplanetary disk.
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