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Abstract: 

In this study, we investigate buckling and postbuckling of etching-induced wiggling in a 

bilayer structure consisting of mask and masked layers. To show effects of explicit 

modeling of etching process, two mask–masked ridge models with and without etching 

(Models w/E and w/oE) are analyzed using finite element analysis. The etching process 

is explicitly introduced via step-by-step eigenvalue buckling analysis. Although Model 

w/oE predicts a constant value of the critical wavelength of wiggling regardless of the 

change in ridge width, Model w/E predicts a shorter wavelength depending on the 

decrease in ridge width and the increase in intrinsic compressive stress in the mask layer. 

In postbuckling analysis, Model w/oE predicts a monotonic increase in the wiggling 

amplitude with the constant wavelength, whereas Model w/E predicts saturation of the 

wiggling amplitude owing to the decreasing wavelength. In the explicit modeling of 

etching process, the wiggling behavior shows completely opposite tendencies. 

Dimensional analysis is performed to obtain empirical equations, which are compared 

with an experiment. 

 

Keywords: Wiggling, Etching, Bilayer structure, Buckling, Postbuckling, Finite element 

analysis  
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1. Introduction 

The etching process is considered an irreplaceable process in the fabrication of 

semiconductor devices [1–5], and is applied to bilayer structures consisting of mask and 

masked (dielectric) layers. The unmasked regions of the masked layer are selectively 

removed by dry plasma etching to produce mask–masked ridges (Fig.1). An intrinsic 

compressive stress acts inside the mask layer, the extent of which is mainly determined 

by the combination of the mask and masked materials. To create highly integrated, 

dense, high-performance semiconductor circuits, the width of the resulting ridges has 

steadily decreased each year and is forecast to reach sub-10 nm levels by 2025 [5]. The 

mask–masked ridges are expected to have a higher height-to-width aspect ratio, leading 

to structural instability because the lower stiffness of the ridges does not prevent 

buckling from releasing the elastic strain energy of the intrinsic compressive stress. That 

is, wiggling instability occurs, with a lateral undulation emerging in the longitudinal 

direction of the mask–masked ridges [1,5,6].  

 

 
Fig.1  Schematic illustrations of the formation of mask–masked ridges by plasma 

etching of a bilayer structure consisting of mask and masked layers. 

 

A similar wiggling instability has been observed in gel ridges consisting of a single 

material constrained on a substrate [7–11]. In this specific case, the increase in swelling 

of solvent molecules induces an increase in the compressive stress in the gel ridges. 

Swelling-induced wiggling can be investigated by analyzing a monolayer ridge using a 

simple approach based on Föppl–von Kármán (FVK) plate theory. More detailed finite 

element analysis can also be performed using the inhomogeneous field theories for 

polymeric gels [12–17]. However, for the analysis of a bilayer structure with mask and 
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masked layers, the mask layer includes the intrinsic compressive stress before etching, 

and the etching process causes wiggling instability, i.e., etching-induced wiggling 

occurs in mask–masked ridges. 

 

The mask–masked ridge was first analyzed using the finite element method (FEM) 

[1] and was then evaluated using a bilayer model of the FVK plate theory [5]. Darnon et 

al. [1] performed eigenvalue buckling analysis of mask–masked ridges with final 

dimensions after etching and estimated the critical compressive stress in the mask layer; 

i.e., for simplicity, the etching process was not explicitly modeled in the analysis. They 

demonstrated the effects of the ridge width, etched height, and Young’s modulus of the 

masked layer and intrinsic stress in the mask layer on the critical load of the wiggling 

instability. Although their investigation was performed without the inclusion of an 

etching process, Tanaka et al. [5] introduced the etching effect into their analytical 

framework based on FVK plate theory. In their paper, a linear system of dimensionless 

equations was successfully derived to investigate the effect of geometrical and material 

parameters on the critical load and wavenumber of the wiggling instability. The intrinsic 

compressive stress and etched height of the masked layer were used to define a 

dimensionless load, , and, furthermore, the ratio of the mask height to the etched 

height of the masked layer was defined as a measure of the etching process, . They 

plotted a normalized stability diagram as a function of  and , and demonstrated that 

most available estimates agreed well with their experiments [5]. 

 

Generally speaking, the eigenvalue buckling analysis with the final ridge profile [1] 

may be sufficient to detect whether wiggling instability occurs because buckling occurs 

during etching process if the critical compressive stress is larger than the actual intrinsic 

stress in the mask layer. However, when temporal dimensions during etching are 

estimated as the critical dimensions [5], which differ from the final dimensions, this 

difference must have substantial effects on the critical wavelength of wiggling, resulting 

in a change of the amplitude of wiggling after buckling. The aforementioned aspects 

were not considered in the previous study [5]. In addition, their modeling based on the 

FVK plate theory was restricted to analyzing buckling points with very thin ridge 

structure. It would be meaningful to consider how the etching process is implemented in 
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eigenvalue buckling and postbuckling FEM analyses. That is because if the explicit 

introduction of the etching process results in considerable differences in the tendencies 

of the critical wavelength and amplitude of wiggling, this knowledge would be 

beneficial in improving the fabrication processes of mask–masked ridges. Thus, it is 

worthwhile to investigate and understand the effects of the etching process on the 

critical wavelength of wiggling and on the evolution of the wiggling amplitude.  

 

In this study, we investigate buckling and postbuckling of etching-induced wiggling 

in a bilayer structure consisting of mask and masked layers. In Section 2, to analyze 

effects of explicit modeling of etching process, two mask–masked ridge models with 

and without etching (Models w/E and w/oE) are developed for eigenvalue buckling and 

postbuckling FEM analyses. The etching process is explicitly introduced via 

step-by-step eigenvalue buckling analysis. Sections 3 and 4 present the results of 

eigenvalue buckling and postbuckling analyses, respectively. It is found that in the 

explicit modeling of etching process, the wiggling behavior shows completely opposite 

tendencies. In Section 5, dimensional analysis is performed to obtain empirical 

equations, which is compared with an experiment. The possibility of the occurrence of a 

second bifurcation after buckling is also discussed. Finally, concluding remarks are 

provided in Section 6. 

 

2. Etching process in finite element modeling 

2.1. Models w/E and w/oE 

Fig.2 presents schematic illustrations of the two finite element models with and 

without the etching process analyzed in the present study. Here, b and L are the width 

and length of the mask–masked ridge, respectively, and h and hm are the height of the 

masked and mask layers, respectively. Fig.2a shows the final dimensions after etching, 

used as the model without the etching process (i.e., Model w/oE). Fig.2b and 2c show 

the initial dimensions before etching and the temporal dimensions during etching, 

respectively, which are used as the model with the etching process (i.e., Model w/E). 

Etching is the process used to selectively remove the unmasked regions in the masked 

layer on the lateral sides of the final dimensions. Model w/E has the ability of 

reproducing the etching process (Fig.2b,c). Etching of the unmasked regions is assumed 

to progress uniformly from the top face (y=h) to the bottom face (y=0) (Fig.1). In the 
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finite element analysis, instead of eliminating the finite elements removed by etching, a 

sufficiently small Young’s modulus is given to the etched finite elements to introduce 

the equivalent effect of eliminating them. The etched height, h ( 0 h h  ), is defined 

as the distance etched from the top face (Fig.2c). The Young’s modulus of the unmasked 

regions, Eum, changes from the value of the original material to a sufficiently small 

value as a function of the etched height; that is,  

um

(0 )

( )

E y h h
E

cE h h y h

  
 

  
,      (1)  

where E is Young’s modulus of the masked layer and c=10
6

 is used as a sufficiently 

small coefficient in the present study.  

 

 
Fig.2  Two finite element models with and without etching process: (a) finial 

dimensions after etching (Model w/oE), (b) initial dimensions before etching (Model 

w/E), and (c) temporal dimensions during etching (Model w/E).  

 

2.2. Materials and dimensions 

In experimental measurements of wiggling of the corresponding bilayer structure [5], 

the mask and masked materials were hydrogenated amorphous silicon and hydrogenated 

amorphous carbon, respectively. The Young’s modulus and Poisson’s ratio were Em=122 

GPa and m=0.3 for the mask material and E=12.8 GPa and =0.3 for the masked 

material; these values are applied in the present analysis. Although Tanaka et al. [5] 

experimented with several samples of different dimensions (h=85—265 nm, hm=24—35 

nm and b=21—27 nm), in the present study, h=258 nm and hm=26 nm are used as 

representative values, and b is assumed to fall in the range of b=10—35 nm. The intrinsic 
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compressive stress in the mask layer is approximately =1 GPa in the experiments. This 

value is used as the representative value in the present study. But, to investigate the 

effect, the value of  is also assumed to fall in the range of =0—1.2 GPa. The ridge 

width and intrinsic compressive stress, b and , are parameterized to investigate the 

effects on the wiggling behavior of the mask–masked ridges.  

 

It is noted that L=5000 nm and bum=50 nm are used but are not actual dimensions. 

The actual dimension of L is considerably longer than 5000 nm [5]. The experimentally 

observed wavelengths are smaller than 1000 nm (Section 5.3). The value of L=5000 nm 

is sufficient to capture the expected wavelengths (Appendix A). The value of bum=50 nm 

is just used as a sufficiently thick value to reproduce the constraints of the unmasked 

regions. 

 

2.3. Finite element discretization 

The finite element software Abaqus [18] is used for the eigenvalue buckling and 

post-buckling analyses. The problem to be solved is analyzed as a three-dimensional 

problem using the 8-node linear brick element with reduced integration, the element 

type C3D8R. This element type is used to obtain fine finite element solutions. The 

8-node linear brick incompatible element, C3D8I, and the 20-node quadratic brick 

element, C3D20, can also be available but the 8-node linear brick element, C3D8, 

should not be used to cause an unphysically stiff response of deformation, i.e., locking 

phenomena [18–20]. The individual lengths of L, h, hm, b, and bum are equally divided 

by 257, 81, 9, 9, and 5 nodes, respectively. These values were determined by trial and 

error analysis to obtain sufficiently fine finite element solutions. Although the shapes of 

the mask–masked ridge are simple (Fig.2), Models w/oE and w/E have 205857 and 

372393 nodes, and 180224 and 344064 elements, respectively. In addition, if 370 nm is 

considered as a shorter wavelength of wiggling (Section 3), this wavelength consists of 

approximately 19 elements. This mesh resolution is fine for eigenvalue buckling and 

postbuckling analyses because of the element type C3D8R [18,19]. 

 

For both Models w/oE and w/E, the displacements of the bottom face (y=0) are 

fixed because of the constraint of a rigid substrate, whereas the other displacements are 
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only constrained along the z-direction on the two ends of the ridges (z=0 and L). This 

constraint allows the wavelength of wiggling to be discretized depending on the length 

L in the eigenvalue buckling analysis (Appendix A).  

 

Prebuckling and postbuckling analyses of Models w/oE and w/E are performed as 

follows. Since Model w/oE consists of the final dimensions after etching, the etched 

height of the masked layer, h, is fixed at the value of the final dimension, i.e, h=h. 

This model is analyzed by increasing the value of the intrinsic compressive stress in the 

mask layer, , from 0. In contrast, since Model w/E considers the etching process, 

is first increased from 0 to , and h is then increased from 0 to h. In the present 

study, is given using the isotropic thermal expansion, while h is controlled using a 

dimensionless field variable (Appendix B). Additionally, automatic time incrementation 

is used in the Abaqus analysis. If a solution for an increment fails to converge, the 

incremental size is decreased until a converged solution is found. In the present analysis, 

when a converged solution is not found even for extremely small increments, the 

incremental analysis is regarded as no convergence.  

 

2.4. Step-by-step eigenvalue buckling and postbuckling analyses 

Eigenvalue buckling analysis (the BUCKLE option in Abaqus) is performed to 

investigate the critical points of wiggling, c for Model w/oE and hc for Model w/E. 

From the corresponding buckling mode, the critical wavelength of wiggling, c, is 

estimated (Appendix A).  

 

The eigenvalue problem is analyzed by solving the following finite element 

equations [18,21],  

 0( ) ( , )i iP P Q  K K 0 ,       (2) 

where K0(P) is the stiffness matrix at the base state, which includes the effects of 

preloads P; K(P,Q) is the differential initial stress and load stiffness matrix resulting 

from the incremental loading pattern Q; i are the eigenvalues; and i are the 

corresponding buckling modes, where i indicates the i-th buckling mode. They are 

normalized such that the maximum displacement component is 1.  
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When  0Det ( ) ( , ) 0iP P Q  K K  is checked by changing i, the critical 

buckling loads are expressed by P+iQ. If P is absent, they are expressed by iQ. If the 

adjusted magnitude of P allows the resulting base state to be at a buckling point, the 

critical buckling load is expressed by P. At least one of i is zero in Eq.(2), independent 

of the selection of Q. When 1 =0, Eq.(2) is simply reduced to  

0 1( )P K 0 ,        (3)  

Eq.(3) results in 0Det ( ) 0P K , which is the equation used to find the typical 

bifurcation point without Q [22–24].  

 

When Model w/oE is analyzed using Eq.(2), P is not needed and the buckling loads 

c are estimated by c=1 unit, i.e., unit =1 MPa is used as Q. Here, c is the 

buckling compressive stress in the mask layer, which is compared with the intrinsic 

compressive stress . This approach is identical to that of Darnon et al. [1]. In contrast, 

when Model w/E is analyzed using Eq.(2), = must be given as P beforehand, and 

hc is then expected to be given as hc=1 hunit. However, in this case, hunit is not 

available as Q because Eq.(2) is based on linear perturbation analysis, and the stiffness 

change in the etched layers (Eq.(1)) is not considered in Abaqus [18]. For this reason, 

the step-by-step increases of h must also be included in P. Moreover, the further 

compressive stress, add, from =is used as add=1 unit. In this case, add has 

no physical meanings and acts as a dummy loading parameter [25]. When eigenvalue 

buckling analysis is performed using individual base states including the step-by-step 

evolution of h, the lowest eigenvalue, 1, decreases to 0 with etching progress. The 

base state with 1=0 (in fact, 1≈0) is regarded as the buckling point described by Eq.(3). 

The value of h at this base state is estimated as hc. The effect of the dummy loading 

parameter add is canceled by searching for the critical point expressed by Eq.(3). It is 

noted that Model w/E requires additional computational costs caused by step-by-step 

eigenvalue buckling analyses; however, the costs allow Model w/E to be analyzed with 

explicit modeling of the etching process and allow the critical etching height, hc, to be 

estimated via the step-by-step analyses. 
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To analyze the evolution of the wiggling amplitude after buckling in postbuckling 

analysis, the dominant buckling mode is introduced as a geometric imperfection (the 

IMPERFECTION option in Abaqus). The perturbation, , introduced as initial 

geometrical imperfections, is expressed as  

1db   ,         (4)  

where b is the width of the mask–masked ridge and d is the scale factor. In the present 

study, d =0.001 is used as a standard value; however, for b=10 nm, d=0.01 is used 

because d=0.001 failed to trace the bifurcated path in the postbuckling analysis. 

 

3. Eigenvalue buckling analysis 

Tanaka et al. [5] derived a normalized stability diagram of wiggling instability using 

a dimensionless load, which consisted of dimensional parameters; the intrinsic 

compressive stress, ; and the width and height of the mask–masked ridge, b and h+hm, 

respectively. They did not focus on the following points in their paper; (1) the critical 

compressive stress, c, for Model w/oE, (2) the critical etched height, hc, for Model 

w/E, and (3) the resulting critical wavelength, c. But, these dimensional values are 

calculated by specifically introducing the dimensional parameters via the stability 

diagram. In this section, to investigate the critical points of Models w/oE and w/E, in 

addition to eigenvalue buckling analysis in the FEM (Section 2), the bilayer model 

based on the FVK plate theory [5] is also analyzed. The results are compared with a 

discussion of the effects of the etching process on the critical point. In all the figures in 

this section, the individual results obtained from two different approaches are simply 

tagged as FEM and FVK, respectively. 

 

Fig.3 presents the wiggling wavelength results measured from the buckling modes, 

which are solved using the eigenvalue buckling analysis of Model w/oE. Here, =1 GPa 

is used as the representative value. Individual buckling modes have wavelengths 

discretized by the positive integer n, i.e., =2L/n (Appendix A). For b=20 nm, the 1
st
 

buckling mode appears at c/=0.423 with n=8, whereas the 2
nd

 and 3
rd

 buckling 

modes occur at /=0.428 and 0.432 with n=7 and 9, respectively. The FEM results 

indicate that the critical wavelength is approximately 1250 nm in the range of 1111—
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1429 nm. 

 

 
Fig.3  Relations of wiggling wavelengths, , and buckling modes, i, for b=20 nm in 

Model w/oE; (a) 1
st
 buckling mode 1 (c/ =0.423, n=8, c=1250 nm), (b) 2

nd
 

buckling mode 2 (/ =0.428, n=7, =1429 nm) and (c) 3
rd

 buckling mode 3 (/ 

=0.432, n=9, =1111 nm).  

 

 
Fig.4  Compressive stress, /, as a function of wavelength, , for b=10, 20, and 30 

nm for Model w/oE.  

 

Fig.4 shows the compressive stress, /, as a function of the wavelength, . 

Comparison of the FEM and FVK results indicates that both approaches successfully 

estimate the same dependences of  and b on /. As b decreases from 30 to 10 nm, 

the difference between the FEM and FVK results is reduced, especially for b=10 nm, for 

which the profiles are almost identical. This tendency indicates that the FEM and FVK 

results reciprocally verify each other as a thin plate is assumed in the FVK plate theory. 

As a result, with increasing thickness of the plate, i.e., b, the FVK approach gradually 
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overestimates the compressive stress compared with the FEM approach. However, the 

FVK model predicts the critical wavelength c≈1248 nm independent of b with 

c/=0.118, 0.474 and 1.066 for b=10, 20 and 30 nm, respectively. Similarly, the FEM 

model also predicts c=1250 nm as the 1
st
 buckling mode regardless of b with 

c/=0.113, 0.423, and 0.895 for b=10, 20, and 30 nm, respectively. Model w/oE is 

found to predict the critical wavelength that is independent of b with the constant value 

of c≈1250 nm. 

 

Since =1 GPa is referred to as the representative value [5], the FEM results for 

Model w/oE predict c/<1 for b=10, 20, and 30 nm (Fig.4), such that wiggling 

instability is expected to occur during the etching process. Figs.5 and 6 show that Model 

w/E, i.e., introduction of the etching process, causes completely different wiggling 

responses than Model w/oE. As observed in Fig.5b, the critical wavelength, c, 

decreases dramatically from 1250 to 370 nm when b decreases from 32 to 10 nm. Fig.6 

shows the 1
st
 buckling modes at the critical etched height, hc/h, which is captured by 

step-by-step eigenvalue buckling analysis using Eqs. (2) and (3). In these figures, the 

specific finite elements, which are assumed to be eliminated by etching (Eq.(1)), are 

invisible. Fig.5a shows the effect of b on the critical etched height, hc/h. As expected 

from the results of Model w/oE, as b decreases with the intrinsic compressive stress =1 

GPa, etching-induced buckling occurs in an earlier stage of the etching process because 

the stiffness of the mask–masked ridge decreases. The dominant wiggling wavelength 

decreases with reduced etched height. This finding may be qualitatively understood by 

considering the wiggling instability of a monolayer problem because the results obey a 

scaling relation [7,8]; however, in the present study, the value of hm=26 nm is fixed. 

Thus, the mask–masked ridge structure, i.e., the bilayer structure, does not simply obey 

the scaling relation of the monolayer structure. To discuss this problem, dimensional 

analysis will be performed in Section 5.1. 
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Fig.5  Effects of b on critical buckling point predicted in Model w/E: (a) critical 

etching depth, hc/h, and (b) critical wavelength, c.  

 

 
Fig.6  1

st
 buckling mode, 1, in Model w/E for (a) b=10 nm (hc/h=0.175, n=13.5, 

c=370 nm), (b) b=20 nm (hc/h=0.475, n=6.5, c=769 nm), and (c) b=30 nm 

(hc/h=0.863, n=4, c=1250 nm).  

 

Upon comparing the FEM and FVK approaches in Figs.5 and 6, the tendencies are 

observed to be the same as those obtained using Model w/oE. The FVK approach 

gradually overestimates the critical etched height, hc/h, as b increases from 10 nm. No 

wiggling instability occurs for b>29 nm for the FVK approach, while b>32 nm for the 

FEM approach (Fig.5a). However, the critical wavelengths predicted by the FVK model 

agree well with those by the FEM model. The employment of the FVK approach [5] 

causes the overestimation of the critical value of loading parameters, i.e., c/ for 

Model w/oE and hc/h for Model w/E, when the value of b cannot be regarded as a thin 

plate. In contrast, the critical wavelength is independent of this overestimation and is in 
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good agreement with that predicted by FEM. It is noted that in Fig.5b, the FEM model 

predicts a stepwise change in the critical wavelength near b=22—32 nm. This secondary 

effect is caused by the relation of L and  (Appendix A), and is similar to the buckling 

response of a flat corona of a gel [7].  

 

4. Postbuckling analysis 

When postbuckling analysis is performed in finite element analysis (i.e., FEM) 

using Models w/oE and w/E, the evolution of the wiggling amplitude must reflect a 

monotonic increase. This amplitude evolution is analyzed by increasing /from 0 to 

1 for Model w/oE (Fig.7), and increasing h/hfrom 0 to 1 for Model w/E (Fig.8). Here, 

the maximum amplitude, A, is defined as the maximum displacement in the x-direction 

at the center line parallel to the top face (y=hm+h) of the mask–masked ridge in 

z-direction. As expected, the change in A shows a monotonic increase regardless of the 

use of Model w/oE or w/E (Figs.7 and 8); however, the difference in the critical 

wavelengths (for b=20 nm, 1250 nm for Model w/oE and 769 nm for Model w/E) 

results directly in the difference of A. The introduction of the etching process 

dramatically decreases not only the critical wavelength c (Fig.5) but also the resulting 

maximum amplitude A (Fig.8).  

 

Fig.9 shows the amplitude evolution as a function of /for Model w/oE (Fig.9a) 

and as a function of h/h for Model w/E (Fig.9b). Although Models w/oE and w/E are 

used to estimate the amplitude evolution with the representative value of =1 GPa, 

Model w/E is also used for changing  with a constant value of b=10 nm (Fig.9c). The 

results of eigenvalue buckling analysis are shown in Appendix C. First, for Model w/oE, 

the critical wavelength is c=1250 nm independent of b (Fig.4), and as b decreases, 

wiggling instability begins at an earlier stage of increasing /. Thus, the final 

amplitude increases as b decreases (Fig.9a). In contrast, surprisingly, opposite responses 

are predicted by Model w/E. In other words, the final amplitude decreases as b 

decreases except for b=30 nm (Fig.9b). This finding is observed because the decrease in 

b allows buckling to occur at an earlier stage of etching (Fig.5a) and allows the critical 

wavelength to become shorter (Fig.5b). As shown in Fig.9b, although the evolution of 

the amplitude starts directly after reaching the critical etched height, this evolution does 

not maintain a steady increase and is saturated. Etched layers after this saturation makes 

almost no contribution to the amplitude evolution. It is understood that the maximum 
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energy release due to buckling requires a long wavelength, as predicted based on the 

final dimensions (Model w/oE). However, in fact, etching-induced buckling occurring at 

the temporal dimensions (Model w/E) decreases the critical wavelength, which does not 

allow the maximum energy release, leading to a smaller energy release with a shorter 

wavelength.  

 

 
Fig.7  Snapshots of amplitude evolution for Model w/oE in postbuckling analysis 

(b=20 nm, c/=0.423, c=1250 nm) for (a) /=0.6, (b) /=0.8, and (c) /=1.  

 

 
Fig.8  Snapshots of amplitude evolution for Model w/E in postbuckling analysis (b=20 

nm, hc/h=0.475, c=769 nm) for (a) h/h=0.6, (b) h/h=0.75, and (c) h/h=0.9. 

 

In this case, to obtain an additional energy release, a second bifurcation with a 

longer wavelength may occur after buckling, especially after the saturation of the 

wiggling amplitude. In Fig.9b,c, the maker △ indicates failure of the incremental 
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analysis to obtain a converged solution (Section 2.3). As will be discussed in Section 5.2, 

this problem can be related to the second bifurcation after buckling. To obtain the final 

amplitude at h/h=1, a different version of Model w/oE with L=0.5c was analyzed. The 

results are plotted using the maker ○ in Fig.9b,c. The amplitude at the maker △ is found 

to have no difference to that at the maker ○.  

 

 
Fig.9  Amplitude evolution as a function of (a) /for Model w/oE (=1 GPa) and 

h/h for Model w/E with (b) =1 GPa and (c) b=10 nm.  

 

Fig.9b focuses on the responses of Model w/E, demonstrating that the values of the 

saturated amplitudes clearly depend on the values of b with the constant value of =1 

GPa. Fig.9c shows that these values are almost independent of the change in  for the 

constant value of b=10 nm. In Fig.10a and 10b, the final amplitudes after etching, Af, 

are plotted as a function of b and , respectively. Model w/oE has the long wavelength 

of 1250 nm such that both the decrease of b and the increase of  result in a steady 

increase of the amplitude. In contrast, owing to the introduction of the etching process, 

Model w/E has a shorter wavelength depending on both the decrease of b and increase 

of  (Figs.5 and C). Fig.10a shows that the decrease in b plays a characteristic role in 

causing an approximately linear decrease in Af although Af first increases with b 

decreasing as in Model w/oE. Fig.10b shows the change in  hardly contributes to the 

change in Af. In the next section (Section 5.1), based on the aforementioned findings 

and relations, empirical equations will be obtained from dimensional analysis.  
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Fig.10  Final amplitudes at /=1 for Model w/oE and h/h=1 for Model w/E as a 

function of (a) b with =1 GPa and (b)  with b=10 nm. 

 

5. Discussions 

5.1. Empirical equations obtained from dimensional analysis 

Sections 3 and 4 demonstrated that the introduction of the etching process, i.e., the 

use of Model w/E instead of Model w/oE, resulted in the prediction of complex 

responses in etching-induced wiggling of the mask–masked ridge. Here, dimensional 

analysis is performed to obtain empirical equations for the critical wavelength, c, and 

the final amplitude at the final dimensions, Af. The dependence of c and Af on physical 

variables is discussed.  

 

According to the Buckingham  theorem [26], the problem to be solved has two 

physical dimensions, distance dimension and pressure dimension (Section 2). Physical 

variables are hm, b, h, E, Em and . Further,  and A are added to consider c and Af. 

Since the present study considered hm=26 nm and Em=122 GPa as the constant values, it 

is natural to normalize distance and pressure dimensions using hm and Em, respectively, 

i.e., dimensionless parameters are b/hm, h/hm, E/Em, /Em, /hm and A/hm. Thus if 

these dimensionless parameters are used to obtain empirical equations for c and Af, the 

responses without hm=26 nm and Em=122 GPa can also be estimated via scaling 

relations.  

 

To reduce the dimensionless parameters, when E/Em=12.8/122=0.105 is fixed 

(Section 2.2), /hm is assumed to have a function of b/hm, h/hm and /Em. The critical 

wavelength, c, is predicted when h=h=258 nm and =c for Model w/oE and 
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when h=hc and = for Model w/E, respectively. For Model w/oE, c/hm is a 

function of b/hm with h/hm=258/26=9.923, whereas for Model w/E, c/hm is a function 

of b/hm and /Em, that is,  

mc

m

m m

,              for Model w/oE 

, ,      for Model w/E

b
f

h

h b
f

h E





  
  
  

 
 
 
 

.    (5)  

In the same manner, A/hm is assumed to have a function of b/hm, h/hm, /Em and /hm. 

When h/hm=9.923, = and =c, the final amplitude at the final dimensions, Af, is 

predicted, that is,  

f

m m m

, ,     for Models w/oE and w/E
A b

g
h h E

 
  

 
.   (6)  

In Sections 3 and 4, the parametric analysis was performed to investigate the 

dependence of c and Af on b and  (see Figs.4, 5, 10 and C). This investigation allows 

us to obtain empirical equations from Eqs.(5) and (6).  

 

First of all, for Model w/oE, c/hm is a function of b/hm (Eq.(5)). Fig.4 indicates that 

c is the constant value of c=1250 nm and is independent of b. This means that if 

E/Em=0.105 and h/hm=9.923, Eq.(5) yields  

c

m

1250
48.08,         for Model w/oE

26h


  ,     (7)  

which is rewritten as c=48.08hm=4.845h, resulting in c=4.401(hm+h). Mora and 

Boudaoud [7] derived c=3.256l for a monolayer ridge, where l is the height of the ridge, 

i.e., l=hm+h in the present study. The comparison of these relations implies that the 

bilayer ridge structure can have a similar scaling relation to the monolayer ridge 

structure. The difference between 4.401 for the bilayer structure and 3.256 for the 

monolayer structure is interpreted as a bilayer effect. The bilayer structure plays a role 

in increasing the critical wavelength. In the present study, the coefficient of 4.401 was 

obtained under E/Em=0.105 and h/hm=9.923. If h/hm→0, the coefficient of 3.256 is 
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expected because of the monolayer ridge. The coefficient is found to depend on the 

combination of E/Em and h/hm. 

 

For Model w/E, c/hm is a function of b/hm and /Em (Eq.(5)). The responses 

depicted in Fig.5b and Fig.Cb enable Eq.(5) to be approximately expressed by the 

following simple form  

c
1 2 3

m m m

,    for Model w/E
b

h h E

 
  

   
     

   
.    (8)  

where 1, 2 and 3 are dimensionless constants. These constants are determined by 

linearizing the dependence of c on b and near b=10 nm and =1 GPa (see Figs.5b 

and Cb), i.e., 1=40, 2=233Em/hm=1093 and 3=7.8 using c=370 nm at b=10 nm 

and =1 GPa, that is,  

c

m m m

40 1093 7.8,    for Model w/E
b

h h E

    
     

   
,   (9)  

which is a very convenient expression because although hm=26 nm and Em=122 GPa 

were fixed in the FEM analysis, hm and Em are used to normalize the dimensional 

variables in Eq.(9). For example, Eq.(9) predicts c→2c if hm→2hm, b→2b and 

hc→2hc, and Eq.(9) also predicts c→c if Em→2Em, →2 and →2. Since 

b/hm~1 and /Em~0.01 is considered (Section 2), two contributions of b/hm and /Em are 

found to be comparable.  

 

The comparison of Eq.(7) for Model w/oE and Eq.(9) for Model w/E clearly shows 

the importance of the explicit modeling of etching process. When hm=26 nm and 

Em=122 GPa are given, Model w/oE predicts that c obeys the simple scaling relation 

depending on h=258 nm (Eq.(7)), while Model w/E predicts that c includes the 

dependence on b and  (Eq.(9)).  

 

To derive the empirical equation for the final amplitude at the final dimensions, Af, 

the simple form of Eq.(8) is applied to Eq.(6) because the responses depicted in Fig.10 

allow us to linearize the dependence of Af on b and near b=10 nm and =1 GPa. 

Eq.(8) is approximately expressed by  
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f
1 2 3

m m m

,    for Models w/oE and w/E
A b

h h E


  
   

     
   

,   (10)  

where 1, 2 and 3 are dimensionless constants. These constants are determined from 

the gradients indicated in Fig.10. For Model w/oE, 1=0.71, 2=Em/hm=97.01 and 

3=0.805, whereas for Model w/E, 1=0.67, 2=Em/hm=2.35 and 3=0.037. Eq.(10) 

yields  

m mf

m

m m

0.71 +97.01 +0.805,      for Model w/oE 

0.67 +2.35 +0.037,          for Model w/E

b

h EA

h b

h E





    
    

    
 

   
   
   

,   (11) 

which provides the scaling relation showing the dependence of Af/hm on b/hm and /Em 

since E/Em=0.105 and h/hm=9.923 are fixed. When b/hm~1 and /Em~0.01 is considered 

(Section 2), Model w/oE predicts Af/hm consisting of near equal contributions of b/hm 

and /Em, whereas Model w/E predicts Af/hm depending mainly on the contribution of 

b/hm. In addition, as b/hm decreases, Model w/oE predicts the increase in Af/hm, whereas 

Model w/E predicts the decrease in Af/hm.  

 

The characteristic features elucidated here lead to the conclusion that when the 

etching process is explicitly introduced in etching-induced wiggling analysis (i.e., the 

use of Model w/E), completely opposite tendencies are predicted compared with the 

predictions of Model w/oE without the etching process.  

 

5.2. Investigation of second bifurcation in postbuckling analysis 

   Step-by-step eigenvalue buckling analysis (Section 2.4) enables an investigate of the 

possibility of second bifurcation under the bifurcated path in the Abaqus analysis. The 

additional increase of the compressive stress in the mask layer, add, is used as a 

dummy loading parameter (Section 2). In Fig.11, add/ is plotted as a function of h/h 

for b=20 nm and =1 GPa. The blue ▼ label represents the critical point of first 

bifurcation under the primary path (see Fig.5 and Fig.6b). In the postbuckling analysis, 

if add/ approaches 0 again, the corresponding point is regarded as the critical point 

of second bifurcation (Eqs.(2) and (3)). If add/ remains positive, no second 
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bifurcation occurs. In other words, add/can be regarded as a measure of the energy 

barrier needed to transform a different wiggling mode. Etching (i.e., the increase in 

h/h) decreases this energy barrier. When add/=0, bifurcations occur. Fig.11 shows 

that the second bifurcation occurs at h/h≈0.9 (red ▼ label). This point is almost 

identical to that at which the incremental analysis failed in the postbuckling analysis 

(Fig.9b). This agreement indicates that the interaction between the occurrence of second 

bifurcation and the explicit modeling of the etching process can cause no convergence 

under incremental analysis in postbuckling (Fig.9b,c). 

 

 
Fig.11  add/ as a function of h/h, which is selected as the base state for 

step-by-step eigenvalue analysis under postbuckling analysis for Model w/E with b=20 

nm.  

 

Fig.12 shows the 1
st
 buckling modes for points × and ○ in Fig.11 for the 

postbuckling analysis. Fig.12a may be meaningless because this buckling mode only 

appears when add/ is positive. In contrast, when add/ approaches 0, the dominant 

buckling mode changes to the mode observed in Fig.12b. In Fig.12, the buckling modes 

are superposed on the deformation states at each value of h/h=0.563 and 0.888 (i.e., 

A≈10—15 nm with c=769 nm). As observed in Fig.12, the amplitude of the buckling 

modes is sufficiently larger than the amplitude of wiggling because of the first 

bifurcation. Fig.12b indicates that the second bifurcation mode does not have a simple 

sinusoidal wave profile (cf. Fig.6b); however, the average wavelength of this 

non-uniform wave profile is estimated to be approximately 1000 nm (cf. 769 nm of first 

bifurcation). This finding indicates that the second bifurcation can occur and has the 
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tendency to increase the wavelength, which can be expected to contribute to further 

elastic energy release; however, this wavelength is shorter than that predicted by Model 

w/oE without the etching process (i.e., 1250 nm). A third bifurcation may also occur 

after the second bifurcation, especially for b=10 and 15 nm because the period after no 

convergence (Fig.9b) becomes relatively long. It must be interesting and challenging to 

study the postbuckling behavior after the second bifurcation [24,27]. In the present 

study, the authors did not perform further investigations after the second bifurcation and 

will further examine this problem in a future study.  

 

 
Fig.12  1

st
 buckling mode, 1, under postbuckling analysis for Model w/E with b=20 

nm: representative buckling modes at points (a) × and (b) ○ in Fig.11.  

 

5.3. Comparison with experimental observation 

The empirical equations derived in Section 5.1 are used to compare the predictions 

of Models w/oE and w/E with the experimental observation by Tanaka et al. [5]. 

Although Tanaka et al. [5] experimented with several samples of different dimensions 

(h=85—265 nm, hm=24—35 nm and b=21—27 nm), the values of the observed 

wavelengths and final amplitudes were not measured in their paper. However, one SEM 

image (see the figure 2b in [5]) showed the deformation state after etching of the sample 

with hm=25 nm, b=27 nm and h=265 nm (see the table 2 in [5]). In addition, E=12.8 

GPa, Em=122 GPa and =0.927 GPa (see the table 1 in [5]). From the SEM image, the 

critical wavelength, c, and the final amplitude, Af, were obtained, i.e., c=600–1000 nm 

and Af=10–20 nm. It is noted that it was not easy to perform a more correct 

measurement because the SEM image was pictured from an unknown angle. 
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Since h/hm=265/25=10.600≈9.923 and E/Em=0.105, the empirical equations derived 

in Section 5.1 are available. The critical wavelength is predicted using Eq.(7) for Model 

w/oE and Eq.(9) for Model w/E:  

c

1202 nm,     for Model w/oE 

1067 nm,     for Model w/E



 


,      (12) 

which mean that the explicit modeling of etching process decreases c from 1202 nm to 

1067 nm. Since Fig.9b implies that this sample does not cause second bifurcation 

(Section 5.2), Model w/E successfully predicts a more reasonable value of c than 

Model w/oE (i.e., c=600–1000 nm in the experiment). A small difference of Models 

w/oE and w/E depends on b=27 nm. As b decreases from 30 nm to 10 nm, the effect of 

etching process decreases c dramatically (Fig.5b). Eq.(12) also implies that a further 

decrease in c needs a different mechanism which was not considered in the FEM 

analysis of the present study. For example, the lateral sides of the mask–masked ridge 

are slightly etched during etching process [5]. If b decreases during etching process, the 

critical etched height decreases so that the critical wavelength can also become shorter.  

 

Although the final amplitude is predicted using Eq.(11), it may not be appropriate to 

enter b=27 nm because (1) the simple form of Eq.(10) was determined to reproduce the 

characteristic linear response of Af at b=10–20 nm (Fig.10a), and (2) the critical 

wavelength predicted by Eq.(12) was more or less longer than the range expected for 

experimental observation. Model w/E can provide the more reasonable value of c than 

Model w/oE. When the use of Model w/E is focused on, the substitution of b=27 nm 

into Eq.(11) gives  

f 19.5 nm,     for Model w/EA  .      (13) 

Model w/E is found to predict a reasonable value of Af (i.e., Af=10–20 nm in the 

experiment). However, Fig.10a indicates that the prediction by Model w/E has the 

tendency to overestimate Af at b=27 nm. To overcome this problem, a more complex 

form is needed instead of assuming the simple form of Eq.(10). In addition, if the 

critical wavelength decreases from the larger value (Eq.(12)) to 600–1000 nm in the 

experiment, this decrease causes a decrease in Af (Figs.5b and 10a). Model w/E has a 
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potential to approach the experimental value of Af=10–20 nm when the prediction of the 

critical wavelength is improved.  

 

As mentioned in this section, if the prediction of the critical wavelength is improved, 

a shorter wavelength allows the amplitude to be saturated during etching process, 

resulting in decreasing the final amplitude. To obtain more correct empirical equations, 

the finite element modeling is needed to be more complicated, and the FEM analysis is 

needed to provide more accurate values. However, the empirical equations derived in 

Section 5.1 have the simple forms and show the importance of the explicit modeling of 

etching process. This effect appears dramatically as b decreases from 30 nm to 10 nm. 

 

6. Concluding remarks 

In the present study, etching-induced wiggling in a mask–masked layer structure 

was investigated using buckling and postbuckling analyses. It was assumed that the 

intrinsic compressive stress was included in the mask layer and that the etching process 

selectively removed the unmasked regions in the masked layer to create the mask–

masked ridge of the final dimensions. Two mask–masked ridge models without and 

with the etching process (i.e., Models w/oE and w/E, respectively) were employed. 

Model w/E was investigated using a step-by-step eigenvalue buckling analysis. The 

main findings of this study are as follows. 

 

In the explicit modeling of etching process, the wiggling behavior showed 

completely opposite tendencies. Model w/oE predicted a constant value of the critical 

wavelength of wiggling regardless of the change in ridge width, and a monotonic 

increase in the wiggling amplitude with the constant wavelength. In contrast, Model 

w/E predicted a shorter wavelength depending on the decrease in ridge width and the 

increase in the intrinsic compressive stress, and the saturation of the wiggling amplitude 

owing to the decrease in the critical wavelength. Although the maximum energy release 

due to buckling is achieved by a longer wavelength predicted by Model w/oE, 

etching-induced buckling enables the temporal dimensions during etching to cause 

buckling, resulting in a smaller energy release with a shorter wavelength. Thus, an 

additional energy release may be caused by the occurrence of second bifurcation. In 
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addition, the empirical equations for the critical wavelength and the final amplitude 

were obtained from dimensional analysis. The comparison of the empirical equations 

with experimental observation showed that Model w/E successfully predicts a more 

reasonable value of the critical wavelength than Model w/oE. Thus, the importance of 

the explicit modeling of etching process was confirmed. However, to obtain more 

correct empirical equations, the finite element modeling will be needed to be more 

complicated, and the FEM analysis will be needed to provide more accurate predictions. 

The aforementioned findings will be helpful for the development of more sophisticated 

fabrication process for the mask–masked ridges. 

 

Finally, in a different point of view, the concept of step-by-step eigenvalue buckling 

analysis will be useful for bifurcation analysis of advanced materials, such as swollen 

elastomers [12,28–30], growing matter [31] and dielectric elastomers [32]. That is 

because when these advanced constitutive models are implemented into commercial 

finite element packages using user-defined material subroutines (UHYPER or UMAT in 

Abaqus), the external stimuli and changes inducing the characteristic deformations 

cannot be used as a loading parameter (Q in Eq.(2)). Bifurcation analyses for the 

advanced materials are definitely challengeable and should be conducted in the near 

future. 
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Appendix A. Relation of L and  

As described in Section 2.3, the displacements are constrained along the z-direction 

on the two ends of the ridges (z=0 and L). This constraint allows the wavelength of 

wiggling to be discretized depending on the length L in the eigenvalue buckling analysis. 

The value of the discretized wavelengths, , is expressed using the relation =2L/n, 

where n is a positive integer. In the present case of L=5000 nm, eigenvalue buckling 
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analysis can capture the wavelengths of =10000, 5000, 3333, 2500, 2000, 1667, 1429, 

1250, 1111, 1000, 909, 833, 769, 714,… nm as individual buckling modes. This 

resolution is sufficient to compare with the experimentally observed wavelength smaller 

than 1000 nm (Section 5.3).  

 

Appendix B. Introduction of  and h  

The compressive stress in the mask layer, , and the etching height, h, are 

introduced into the Abaqus analysis. First, the displacements are constrained along the 

z-direction on the two ends of the ridges such that the compressive stress, , in the 

direction is generated using the isotropic thermal expansion, i.e., =EmT, where  

is the thermal expansion coefficient and T is the incremental temperature. The 

individual values of  and T have no meaning in the analysis, and  is adjusted to 

scale T=1000 K to =1000 MPa (=1 GPa). Next, a dimensionless field valuable, S, is 

introduced to control the etching height, h, in the analysis of Model w/E, and to scale 

S=80 to h=h (=258 nm in the present study) because the unmasked layer supposed to 

be etched is equally divided into 80 layers in the y-direction (Section 2.3). The increase 

in S from 0 to 80 is used as the loading parameter to reproduce the etching from the 

top face (h =0) to the bottom face (h=h). The thickness of one layer is approximately 

3.2 nm (=258 nm/80 layers). 

 

Appendix C. Effect of on hc and c 

   Fig.C shows the effects of  on the critical buckling point predicted in Model w/E. 

To this end, the ridge width is fixed at b=10 nm. In the postbuckling analysis (Fig.9c), 

the 1
st
 buckling modes for individual values of  were used as imperfections. The 

difference between the FVK and FEM approaches is almost undetectable in Fig.C 

because of the small value of b=10 nm (see Fig.4) regardless of the change of , as a 

thin plate is assumed in the FVK plate theory [5]. 
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Fig.C  Effect of  on the critical buckling point predicted in Model w/E: (a) critical 

etching depth, hc/h, and (b) critical wavelength, c.  
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