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Abstract

This paper provides a numerical procedure for integrating the equations of

motion for electrically charged particles in magnetic fields with higher ac-

curacy than the conventional Boris integrator. It is confirmed by both of

numerical test and theoretical analysis that the proposed three-step integra-

tor has the same accuracy as the standard (two-step) Boris integrator with

a half time step.
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1. Introduction

The Particle-In-Cell (PIC) method was first developed for plasma physics,

but has now become used more widely in various scientific fields. The

PIC method includes various educational as well as fundamental numerical

schemes [1, 2]. The Boris integrator (or the Boris push) [3] is one of them,

which solves the gyration of electrically charged particles by the Lorentz

force.
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The acceleration of charged particles by the Coulomb-Lorentz force is

expressed by
d

dt
(mv) = q(E + v ×B). (1)

The central time difference of Eq.(1) is written as
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where u = cv/
√

c2 − |v|2 and Bγ = cB/
√

c2 + |u|2. Then, the acceleration

forces are separated into operators of the electric and magnetic forces as

follows [4]:
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This paper deals with the Lorentz force equation (3b) only. For solv-

ing this implicit equation, we generally need to perform a complex matrix

inversion [5]. On the other hand, Boris found a simple approximation of

(u+ + u−)/2 as follows [3]:
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Taking the inner dot product of Eq.(3b) with u+ + u−, we obtain |u+|2 −

|u−|2 = 0. This suggests that the velocity vector moves from u− to u+

along a segment of the circle satisfying |u| = const. in the velocity space as
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shown in Fig.1. Since magnetic fields do not work, the kinetic energy does

not change during the gyration in the velocity space. Equation (4a) is the

unique solution to the following equation:{
2u− +

q

m
(uτ ×Bt

γ)∆t
}
·
(
uτ ×Bt

γ

)
= 0. (5)

The procedures (3) and (4) are also called the Buneman-Boris scheme in some

literatures [2, 6], since the time-symmetric equations (3) were first discussed

by Buneman [4].1

There are several recent works showing that the Buneman-Boris scheme

follows trajectories of charged particles with more precision than the fourth-

order Runge-Kutta scheme even with the second-order (leap-frog) time step-

ping [7, 8]. The Buneman-Boris scheme has also been widely adopted in

PIC simulations for about a half century because of its property of the en-

ergy conservation and simpleness of the code implementation. It should

be noted, however, that the Boris integrator (4) itself has a numerical er-

ror in its gyration angle for one time step. As schematically illustrated in

Fig.1b, Eq.(4b) suggests that the gyration angle for one time step ωc∆t

(where ωc = q|Bt
γ|/m) is approximated as

cos2
(
ω∗
c∆t

2

)
≈ β or ω∗

c∆t ≈ 2 tan−1

(
q|Bt

γ|∆t

2m

)
. (6)

The solid line in Fig.2 shows the approximated gyration angle for one time

step ω∗
c∆t and the corresponding error ε = (ωc − ω∗

c )/ωc as a function of

1The Boris scheme corresponds to the numerical procedure (4) for the Lorentz force

equation only, although many scientists misunderstand that the Boris scheme corresponds

the procedures (3) and (4) for the entire Coulomb-Lorentz force equation.
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Figure 1: Schematic illustration of the velocity vector change in the Boris integrator.

The proposed scheme (three-step Boris integrator) (a) and the standard (two-step) Boris

integrator (b).

ωc∆t for the Boris integrator. For a small time step (ωc∆t ≪ 1), the Boris

integrator has the second-order accuracy in time. For a larger time step

(ωc∆t > 1), on the other hand, the accuracy is nonlinear and is worse. For

an example, the gyration angle of 30◦(ωc∆t ∼ 0.5236) is approximated as

29.34◦(ω∗
c∆t ≈ 0.5121) by the Boris integrator.

The purpose of the present study is to improve the accuracy of the gyra-

tion of the Boris integrator for a large time step of ωc∆t > 1. As an extension

to the the standard two-step Boris integrator, we develop a three-step inte-

grator.
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Figure 2: Approximated gyration angle for one time step ω∗
c∆t as a function of ωc∆t and

the corresponding error ε = (ωc − ω∗
c )/ωc. The “scheme 1” corresponds to the standard

(two-step) Boris integrator. The “scheme 2” corresponds to the standard Boris integrator

twice with a half time step. The “scheme 3” corresponds to the proposed three-step

integrator. The dotted line in the top panel shows ω∗
c = ωc.

2. Numerical procedures

In the present study, we compare the following three integrators. The

first scheme corresponds to the standard (two-step) Boris integrator,
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The second scheme uses the standard Boris integrator twice with a half

time step as follows,
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The third scheme corresponds to a three-step Boris integrator proposed

in the present study.

B2
2 =

(
q

m
|Bγ| ∆t

4

)2

, β2 =
1

1 +B2
2

, α =
β2

(1− 2β2B2
2)

2
+ 4β2

2B
2
2

= β2,

(9a)

uτ1 = β2

{
u− +

q

m
(u− ×Bγ)

∆t

4

}
, (9b)

uτ = α

{
u− +

q

m
(uτ1 ×Bγ)

∆t

2

}
, (9c)

u+ = u− +
q

m
(uτ ×Bγ)∆t. (9d)

The procedure of this scheme is schematically illustrated in Fig.1a. The

first and second step correspond to the standard Boris integrator with a half

time step, in which uτ1 = (u− + ut0)/2 is computed in the first step and

uτ = αut0 = (u− + u+)/2 is computed in the second step, where |u−|2 =

|ut0|2 = |u+|2. In this scheme, an approximation of (u+ +u−)/2 is given by

Eq.(9c). We find the unique solution α = β2 in Eq.(9a) by inserting Eqs.(9b)

and (9c) into Eq.(5).

Equations (9b) and (9c) suggest that the gyration angle for one time step

ωc∆t is approximated as

cos2
(
ω∗
c∆t

4

)
≈ α or ω∗

c∆t ≈ 4 tan−1

(
q|Bt

γ|∆t

4m

)
. (10)
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Figure 3: Numerical solutions to the Lorentz force equation by Schemes 1–3 with ωc∆t =

π/6, π/3, and π/2. The circle, cross, and square marks correspond to the result with

Scheme 1 (standard two-step Boris), Scheme 2 (standard Boris twice with a half time

step), and Scheme 3 (three-step Boris), respectively. The solid lines show the theoretical

trajectories given by cosω∗
c t. The exact trajectory given by cosωct is also shown by the

dotted lines as a reference.

The approximated gyration angle for one time step ω∗
c∆t as a function of

ωc∆t and the corresponding error ε = (ωc − ω∗
c )/ωc for the proposed scheme

is shown in Fig.2. Both of the standard two-step Boris integrator and the

proposed three-step integrator have the second-order accuracy in time for a

small time step (ωc∆t ≪ 1) due to the central time difference in Eq.(3b). For

a larger time step (ωc∆t > 1), the numerical error of the proposed scheme

is smaller than that of the standard Boris scheme. One can also see that

Schemes 2 and 3 have the same accuracy theoretically.

7



3. Numerical Test and Discussion

In the present study, we check the consistency between the numerical

procedures shown in Eq.(9) and the theoretical approximation shown in

Eq.(10) by a simple numerical test as follows. We use a constant (i.e., time-

independent) magnetic fieldB given by random numbers (0 ≤ R ≤ 1). Then,

the magnitude of the magnetic field is normalized to unity. We also initiate

the velocity vector v by a different set of random numbers. We define one of

velocity components perpendicular to the magnetic field as,

vt=0
⊥1 ≡ vt=0 −

(
vt=0 · B

|B|

)
B

|B|
, (11)

where |B| = 1 in the present numerical test.

Figure 3 shows the time evolution of one of the perpendicular velocity

components vt⊥1 calculated by vt⊥1 = vt=0
⊥1 · vt/|vt|. We change the time step

as ωc∆t = π/6, π/3, and π/2, which correspond to the gyration angle for one

time step of 30◦, 60◦, and 90◦, respectively, in the velocity space. The circle,

cross, and square marks correspond to the result with Scheme 1 (standard

two-step Boris), Scheme 2 (standard Boris twice with a half time step), and

Scheme 3 (three-step Boris), respectively. The solid lines show the theoretical

trajectories given by cosω∗
c t. The exact trajectory given by cosωct is also

shown by the dotted lines as a reference. The result shows that the marks

are well on the solid lines, suggesting that the numerical solutions to the

Lorentz force equations are in excellent agreement with the theoretical time

development of the velocity component. The numerical test also confirmed

that Scheme 3 gives the exactly same result as Scheme 2.
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Proof. Inserting Eqs.(8b) and (8c) into Eq.(8d), we obtain

u+ = u−+
q

m
(uτ1×Bγ)

∆t

2
+

q

m
β2(u

t0×Bγ)
∆t

2
+

q2

m2
β2

{
(ut0 ×Bγ)×Bγ

} ∆t2

8

= u− +
q

m
(uτ ×Bγ)∆t+

q2

m2
β2

[{(
u−

2
+

ut0

2
− uτ1

)
×Bγ

}
×Bγ

]
∆t2

4
(12)

It is obvious from Fig.1 that 2uτ1 = u− + ut0 . Hence, Eq.(12) corresponds

to Eq.(9d).

We also measured the computational time. We solved the Lorentz force

equation with 10,000 particles and 10,000 time steps on a single core of an

Intel Xeon E5-2697 v4 processor. The elapse times with Schemes 1, 2, and 3

are 0.13684 sec, 0.26598 sec, and 0.17131 sec, respectively. Hence, the speed

up from Scheme 2 to Scheme 3 is a factor of 1.55.

4. Conclusion

We have developed a three-step Boris integrator for solving the Lorentz

force equation of charged particle motion. The proposed scheme solves the

Lorentz force equation with a higher accuracy than the standard Boris in-

tegrator for a large ωc∆t > 1, although the proposed scheme has the same

second-order accuracy in time with the standard one for a small ωc∆t ≪ 1.

It is confirmed by both of numerical test and theoretical analysis that the

proposed three-step scheme has the same accuracy as the standard (two-

step) Boris integrator with a half time step. The computational cost of the

proposed scheme is about 65% cheaper than that of the standard Boris inte-

grator.
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It should be noted that hybrid PIC simulations use a typical time step of

ωci∆t ∼ 0.1, whose accuracy of the standard Boris integrator is high enough

(with an error of 0.1%) and the benefit of the proposed scheme is small. Full

PIC simulations also use a typical time step of ωpe∆t ∼ 0.1. The proposed

scheme may has a merit for strongly magnetized plasma of ωce ≫ ωpe.

In conclusion, this paper gives an idea to improve the accuracy of the

Boris integrator for the Lorentz force equation by increasing the number of

steps. The development of Boris integrators with more steps is left as a future

study.
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