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Abstract 

This paper presents a novel real-time (online) interpolation algorithm based on Finite Impulse Response 

(FIR) filters to generate smooth and accurate reference motion trajectories for machine tools and motion 

systems. Typically, reference tool-paths are composed of series of linear (G01) or circular (G02) segments. 

Basic point-to-point (P2P) feed motion can be generated by interpolating each segment with trapezoidal or S-

curved velocity profile. However, smooth and accurate transitions between path segments are necessary to 

realize non-stop contouring motion. In this study, FIR filters are utilized, and the reference tool-path is 

filtered to interpolate a non-stop rapid feed motion. By using a chain of FIR filters, acceleration and jerk 

continuous motion profiles are generated from velocity pulse commands. A segment interpolation timing 

technique is developed to control the contour errors during non-stop real-time interpolation of tool-paths. 

Furthermore, by utilizing FIR filters for interpolation, frequency spectrum of the interpolated motion profiles 

is controlled. The time constant (delay) of the filter is tuned to create notches around the lightly damped 

vibration modes of the motion system, which allows mitigation of unwanted vibrations and thus enables 

delivering accurate feed motion. Simulation studies and industrial scale experimental validations are 

provided to illustrate effectiveness of the developed interpolation technique. 

 

1. Introduction 

Reference trajectory generation plays a key role in the computer control of machine tools and motion 

systems. Generated trajectories must not only describe the desired tool path accurately, but must also have 

smooth kinematic profiles in order to maintain high tracking accuracy, and avoid exciting natural vibration 

modes of the mechanical structure or servo control system. As a matter of fact, most machining tool-paths 

are defined in terms of series of linear (G01) segments or circular (G02) arcs [1][2]. This imposes serious 

limitations in terms of delivering a non-stop smooth and rapid motion for productivity, and to achieve the 

desired final part geometry. 

There are several challenges associated with interpolating a smooth motion along these discrete tool-

paths. Consider interpolation on a single path segment; feedrate (tangential velocity) profile needs to be 

planned with smooth acceleration and decelerations to avoid excitation of the machine tool’s structural 

modes [3] and at the same time respect kinematic limits, i.e. torque, acceleration and jerk, of the drives 

[4][5][6]. Polynomial based feed profiles, such as trapezoidal velocity [1], acceleration [4] and jerk profiles 

[8] are well-known to the machine tool literature. They can be planned to fully exploit machine limits and 

generate time-optimal feed motion along predetermined paths [5][6]. However, these methods suffer from 

two bottlenecks. Firstly, they don't provide any quantitative means to control the frequency spectrum of the 

interpolated acceleration commands. In practice, the jerk limit is used to mitigate any residual vibrations [3]. 

Note that, tuning the jerk limit smoothens acceleration profile. But, it does not directly control the frequency 

spectrum. Robotics literature adapted exponential [9], trigonometric [10] or minimum jerk spline [6] based 
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acceleration profiles to help attenuate frequency spectrum of reference trajectories. In precision machine tool 

literature, input shapers (IS) [11][12] and notch filtering are utilized to filter the reference motion commands 

to attenuate the excitation around the lightly damped resonant frequencies of the machine. These techniques 

are easy to implement and robust against parameter variations [11], which makes them suitable for practice. 

However, input shaping distorts interpolated tool trajectories due to shaper dynamics and induces 

interpolation errors. Either machining velocity (feedrate) has to be lowered to reduce those errors, which is 

widely employed in practice; or, model-based compensation techniques that are mostly computationally 

costly are proposed in the literature [13]. 

Another bottleneck is the computational load of reference trajectory generators. As the degree and 

complexity of the acceleration profile becomes higher, computational cost to plan polynomial based 

trajectory generation increases [14]. Recent efforts are directed towards generating online, real-time suitable 

interpolation techniques [15][16][17]. These approaches essentially utilize a tuned dynamic system to filter 

and smoothen velocity/displacement commands. They are designed with a chain of integrators and cascaded 

feedback loops [18]. Online path smoothers can be implemented in the form of recursive difference 

equations. To attain time-optimal motion, nonlinear feedback elements such as saturation blocks are also 

introduced [19][20]. Nevertheless, unless combined with an input shaper, methods cannot control frequency 

spectrum of generated trajectories. 

Finite Impulse Response (FIR) filters provide a computationally efficient framework for online trajectory 

generation. The use of FIR filtering for real-time interpolation and trajectory generation is known to the 

machine tool literature [22]. Chain of 1st order FIR filters can be used to generate smooth reference 

trajectories with trapezoidal acceleration and jerk profiles [23][24]. Time constants of filters can be assigned 

to realize time optimal motion. Furthermore, frequency response of the filter can be tuned so that the 

excitation of the reference trajectory is shifted away from the resonances of the machine tool. Finally, it can 

be implemented as a moving average filter on modern micro-processors with minimum computational effort 

[23]. 

Although FIR filtering is an effective technique for online interpolation of reference trajectories, so far, 

its use is constrained in simple point-to-point (P2P) moves. If consecutive moves, e.g. linear or circular 

segments, are interpolated continuously without a full stop at the segment junctions, large interpolation 

contouring errors occur due to sudden change in the feed direction and the dynamics of the filter. Unless 

these contour errors are confined, the use of FIR filtering for generating uninterrupted, rapid and accurate 

feed motion in precision motion systems is limited. Recent literature recognized these shortcomings and 

proposed compensation techniques[13][24][25]. However, these techniques are either computationally 

expensive because they need to estimate errors through dynamic models. This greatly limits their application 

in real-time implementation. Or, they consider contouring errors only around junction of linear segments 

[24], which is not realistic since conventional machining tool-paths consist of both mixture of linear and 

circular segments, and transitions in-between those segments must be considered for a non-stop high-speed 

contouring motion. 

This paper, for the first time, presents comprehensive interpolation techniques for generating 

uninterrupted and accurate feed motion along multi-segmented machining tool-paths based on FIR filtering. 

Contributions of the paper are laid out as follows. Section 2 first analyses high-order trajectory generation 

based on FIR filtering technique. It is followed by the introduction of accurate interpolation of linear and 

circular paths. A feedrate control technique is presented to control contour errors during interpolation of 

circular paths. Section 3 presents online interpolation of multi-segmented toolpaths based on FIR filtering. 

Dwell time control technique is presented to control the interpolation errors that occur during non-stop 

transition between linear and circular segments. Finally, Sections 4 and 5 present illustrative examples and 

rigorous experimental validations along complex tool-paths.  

 

2. Online Trajectory Generation based on FIR Filtering  



2.1. Generation of high order kinematic profiles 

Typically, “trapezoidal acceleration” or “trapezoidal jerk” based feed profiling is employed to generate 

reference trajectories for high-speed and precision motion systems [4][8]. This section outlines the basic 

methodology to generate high-order trajectories utilizing a chain of FIR filters [23]. 

A 1st order FIR filter is defined in Laplace (s) domain by the following transfer function [23][26]:  

   (1) 

where Ti is the time constant (delay) of the ith FIR filter. Observed from Eq.(1), a FIR filter consists of an 

integrator (1/s) and a pure delay  resembling a simple moving average filter [26]. The impulse response is 

evaluated by taking inverse Laplace transform of Eq.(1) as: 

   (2) 

and as shown in Figure 1, it becomes a simple rectangular pulse with a duration of Ti having a magnitude of 

1/Ti. This implies that for any Ti>0, the area underneath the impulse response is unitary. As a result, when an 

arbitrary signal is convolved with the FIR filter, area underneath the original signal does not alter. 

Furthermore, since the filter has a free integrator (1/s) it increases degree of the filtered (convolved) signal. 

This property can be used to generate high order real-time motion trajectories as follows. 

 

  

Figure 1: Impulse response of a 1st order FIR filter 

Let us consider a simple linear movement for a length of L commanded at a velocity of F. This trajectory 

can be commanded by a rectangular pulse for a duration of Tv=L/F as shown in Figure 2a. FIR filtering this 

rectangular velocity pulse generates the well-known trapezoidal velocity profile [1] with piecewise constant 

acceleration segments (See Figure 2b). Subsequently, another FIR filter can be convolved with the trapezoidal 

velocity profile to generate smoother trapezoidal (jerk limited) acceleration profile [4]. As outlined in Figure 2, 

high-order reference kinematic profiles can be generated by filtering a reference velocity pulse though chain 

(series) of FIR filters [23][24]. Finally, the resultant velocity profile is integrated to obtain reference 

displacement profile as shown in Figure 2c. 
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Figure 2: FIR filtering based smooth trajectory generation 

Filtered kinematic profiles can be analyzed through analytical solution of convolution [26]. Consider a 

simple trapezoidal velocity profile. Convolution of a rectangular velocity pulse command v(t), with the 

impulse response of the FIR filter from Eq. (2) is written as: 
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and the filtered velocity signal v’(t) is derived by evaluating above integrals, 
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where the resultant acceleration signal is obtained by differentiation as: 

   (5) 

Finally, smooth displacement profile s’(t) is generated by integration of the velocity profile. 



The use of convolution enables analytical derivation of filtered profile kinematics. Above trapezoidal 

velocity profile is derived for the case of  and also illustrated in Figure 3a. The peak acceleration 

depends on the filter’s time constant and the commanded velocity, Apeak = F/T1. Commanded velocity F is 

reached at filter’s time constant, t = T1, and the remaining cruise velocity duration becomes Tv-T1. On the 

other hand, when the reference velocity pulse duration is equal or shorter than the filter’s time delay Tv≤T1, 

motion kinematics alters. As depicted in Figure 3b, when Tv=T1, no velocity cruise section occurs. As 

opposed, Figure 3c illustrates the case of Tv<T1. In this case, commanded velocity cannot be reached and peak 

velocity becomes Vpeak=L/T1 with a cruise phase duration of T1-Tv. Although omitted here, convolution can 

be used to analytically derive all these kinematic profiles. The overall motion duration is elongated by the 

amount of filter’s time constant . 

 

Figure 3: Trapezoidal velocity profile generated by 

single FIR filter 

 
Figure 4: Trapezoidal acceleration profile generated by 

2 FIR filters 

 



In precision motion systems jerk [4] or even snap [8] limited velocity profiles are favored to generate 

smoother, more traceable reference motion profiles. As illustrated in Figure 2, utilizing 2 FIR filters with time 

constants T1 and T2 generates the well-known trapezoidal acceleration (jerk limited) feed profile. Figure 4 

illustrates the motion profile generated by filtering a trapezoidal velocity pulse. The profile kinematics can 

be computed analytically by replacing rectangular velocity pulse command with the trapezoidal one in Eq.(3)

, and for the case of Tv>T1>T2, the generated velocity profile is derived as: 
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 , (6) 

and the corresponding filtered acceleration profile a’(t) becomes: 
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  (7) 

As observed from Eq.(6), filtered (interpolated) motion profile is determined by the filter delays, T1 and  

T2, and the length of the reference velocity pulse, Tv. There are in total 8 combinations. Owing to the linearity 

of filtering operation, the order of filters in the chain does not matter, and 3 main cases characterize the 

interpolated profiles; namely, Tv>T1+T2, Tv=T1+T2, or Tv<T1+T2. Figure 4a depicts the most common case 

when the velocity pulse is longer than total sum of filter time constants, Tv>T1+T2 and T1>T2. Note that in 

this case, a full 7-segmented jerk limited acceleration profile [4] with cruise phase can be generated (Eq.(6)). 

However, if a rapid (high speed) move on a short travel distance is commanded, Tv may become smaller. For 



instance, cruise velocity phase may disappear completely if Tv=T1+T2 as shown in Figure 4b. Furthermore, if 

Tv<T1+T2, commanded path velocity cannot be reached. In this case, peak velocity is computed as Vpeak=L/T1 

(See Figure 4c). The total motion duration is elongated by the filter delay as, Tv+ Td, where . 

 

2.2. Frequency shaping of interpolated trajectories 

The FIR filter structure also provides effective means to control frequency spectrum of the generated 

trajectories. Filtered acceleration a’(t) profile controls the torque/force delivered by the feed drive, which 

induces excitation to the overall motion system. If frequency spectrum of the reference acceleration profile 

contains components near the lightly damped structural modes of the machine structure, it initiates forced 

vibrations [11], [13].  

For a rectangular pulse velocity input, the acceleration command consists of set of impulses separated by 

Tv (See Figure 2a). Consider only a single acceleration impulse with a magnitude h 

   (8) 

convolved with the chain of FIR filters; the frequency spectrum of resultant acceleration profile simply 

becomes frequency response of the FIR filters in the chain, evaluated as: 

   (9) 

and frequency ( ) response of a single FIR filter can be computed from Eq.(1) as: 

   (10) 

Consequently, frequency spectrum of the acceleration profile becomes multiplication of sinc [27] functions 

from Eq. (10) as: 

   (11) 

The above property can be exploited to choose time constant of the FIR filter to avoid exciting lightly 

damped structural frequencies of the machine tool. Every sinc function creates periodic notches (ripples), 

which can be matched with the resonant frequency of the motion system by setting, 

   (12) 

An example is presented in Figure 5. Simply setting time constant of the filters in the chain to the natural 

periods of the resonant modes  introduces shortest filter delay into the motion while 

avoiding excitation of resonances. It is also notable that there is close resemblance between Input Shaper 

[11][12] and the FIR filter. Input Shapers have the property to cancel any vibration at the half of the 

vibration period, .  

 



 
Figure 5: Frequency response of FIR filter 

 

2.3. FIR based interpolation of linear and circular paths 

2.3.1.  Linear interpolation 

Interpolation of single axis motion based on FIR filtering is presented in the previous sections. This 

technique can be extended to generate point-to-point (P2P) multi-axis linear motion. Figure 6 outlines the 

process to interpolate planar P2P linear motion between two points, . Firstly, the 

path length is computed from the Euclidean distance, , and the tangential feed pulse F for a 

duration of Tv=L/F is generated as shown in Figure 6b. The feed pulse is dissolved into its Cartesian velocity 

pulse components based on the path geometry, 

   (13) 

and smooth axis velocity commands are interpolated by applying FIR filtering. Note that, time constants of 

the filters are set identical so that the resultant motion is coordinated. Finally, the interpolated axis velocity 

commands are integrated to interpolate position commands.  

 



 

Figure 6: Multi-axis interpolation based on FIR filtering 

 

Figure 7: Circular interpolation and corresponding 

velocity profiles 

 

2.3.2.  Circular interpolation 

Next, the approach for linear interpolation is adapted to interpolate circular paths. During circular 

interpolation, the total travel length becomes the arc length of the circular path  where R is the arc 

radius and  is the difference between starting and ending angular positions (See Figure 7). 

Omitting the arc center, rectangular feed pulse F is dissolved into its axis components based on the circular 

geometry as: 

   (14) 

Notice that as opposed to the linear motion, reference axis velocity commands during circular interpolation 

are not in rectangular pulse form but rather sinusoidal signals. The reference axis commands are then filtered 

through chain of FIR filters and integrated to interpolate the circular path. Figure 7 illustrates the reference 

and interpolated velocity commands during circular interpolation.  



Notice that sinusoidal axis motion commands are generated at the rotational frequency of , and 

they are modulated by the frequency response of FIR filters. At steady state, the filtered axis motion 

commands can be written from Eqs.(14) and (1) as: 
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 is frequency response function of FIR filter. The discrepancy between reference and 

interpolated (filtered) circular motion commands result in an interpolation contour error  as shown in 

Figure 7. This contour error is measured normal to the commanded circle, and its steady state value can be 

calculated from Eqs.(14) and (15) as: 
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The steady state value of the contour error is controlled by magnitude of the frequency response of the 

FIR filter at the fundamental frequency of the circular motion, . By lowering the feedrate F, excitation 

frequency can be altered, and  can be confined by a user-specified tolerance value. Without losing 

generality, let us consider a trapezoidal acceleration profile generated by 2-FIR filters. The magnitude of the 

frequency response at  can be evaluated from Eq. (11) as: 
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4-term Taylor expansion can be applied to Eq.(17) to obtain a polynomial expression: 
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and substituting Eq.(18) into Eq. (16) yields the relationship between the contouring error and the feedrate 

as: 
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where 

   (20) 

Eq.(19) is a 4th order polynomial whose roots can be solved conveniently in real-time, and the maximum 

feedrate to bound the contour error by a tolerance value can be obtained from Eq.(20). It should be noted that 

the polynomial approximation used in Eq.(18) only approximates FIRG  at low frequency; namely, below the 



first notch (ripple) of FIR filters. The first notch is typically matched with one of the structural resonances to 

mitigate vibrations [1][12][24] and to minimize overall filter delay. Hence, the 4-term Taylor expansion is 

suitable for practice. 

 

3. Multi-segmented tool-path interpolation strategy 

Previous section discussed generation of basic linear and circular trajectories based on FIR filtering of 

axis velocity pulse commands. This section focuses on continuous and accurate interpolation of multi-

segmented tool-paths.  

Figure 8 presents the overall strategy for online FIR based interpolation of multi-segmented NC tool-

paths. Each segment of the tool-path in a NC block/G-code is represented by a timed feed pulse. As 

introduced in the previous section, depending on the interpolation type, e.g. linear or circular, tangential feed 

pulse is dissolved into its axis velocity pulses, which are then filtered through chain of FIR filters to generate 

smooth axis reference motion commands. The NC part program can be interpolated based on two types of 

motion; namely, “point-to-point” (P2P), or non-stop “contouring”. The motion type can be controlled by 

adjusting the “dwell” time between consecutive feed pulses (See Figure 8). For instance, in P2P mode, an 

instantaneous stop between the programmed segments is desired. This kind of motion strategy is typically 

employed in pick-and-place operations, ultra-precision machining and measurement. P2P motion can be 

achieved by simply accounting for the FIR filter delay and adding a dwell time between consecutive feed 

pulses that is equal to the filter delay Td as outlined in Figure 8. Figure 9a shows an example P2P motion 

generated along 2 linear segments. Consecutive feed pulses are filtered with a dwell time of Td=T1+T2 (in 

case of 2 FIR filters) to generate a full stop at P1 and the corresponding velocity profile is shown in Figure 9b. 



 

Figure 8: Overall path interpolation strategy 

 

 

Figure 9: Kinematic profiles during contouring motion 

 

 

3.1. Contour error control during non-stop linear interpolation  

On the other hand, in high-speed machining, uninterrupted accurate contouring motion is desired. As 

presented in Figure 8, non-stop “contouring” motion can be generated by interpolating consecutive feed 

pulses without fully waiting for the filter delay to die out. This enforces convolution of consecutive feed 

pulse to begin with non-zero initial conditions, and through precise control of the dwell time, contouring 

errors [29][30] along segment transitions can be confined. 



Firstly, let us define an “overlapping time”, Tk, to control the overlap of convolution of the consecutive feed 

pulses: 

   (21) 

If Tk=0, the dwell time is equal to the total filter delay Td, and as shown in Figure 9a and b, a P2P motion 

is generated. Figure 9c illustrates the case when Tk=Td/2. In this case, consecutive segment interpolation is 

initiated before feed motion of the 1st block comes to a full-stop. As a result, feed direction is altered 

continuously. Due to this gradual change in the feed direction an interpolation error, , occurs around the 

junction point of consecutive path segments (See Figure 9a). When the overlapping time Tk is increased to its 

upper limit Tk=Td, no dwell time is inserted between consecutive feed pulses. Since change in the feed 

direction is also initiated earlier, larger interpolation contour error occurs as shown in Figure 9d. 

The contour error around the segment junction due to non-stop change in the feed direction can be 

controlled analytically. Consider the generic path shown in Figure 9, the deceleration motion towards 

midpoint, P1 starts at t=Tv. When a non-zero overlapping time is set Tk>0, feed direction towards the 

endpoint P2 is initiated with the start of convolution of the consecutive segment at t=Tv+Td -Tk. Note that 

convolution of the 1st segment finishes at t=Tv+Td, which marks the completion of feed direction change. If 

the feedrate F at consecutive segments is identical, total axis (x and y) velocity traverse, i.e. change in feed 

direction, is controlled directly by the angle between linear segments as: 

 

 

  (22) 

where  represent axis velocities along the 1st linear segment and represent velocities on the 2nd 

(consecutive) segment, and  is the angle between the linear segments. Thus, when feed pulses with 

identical amplitude F are commanded, deceleration/acceleration kinematics around the bisector from the 

segment junction P1 becomes mirror-imaged (See Figure 9a). As a result, tangential feedrate exhibits its 

minimum in the middle of the segment transition at t=Tv+Td-Tk/2. Similarly, the interpolated trajectory also 

becomes symmetric where the maximum deviation from the junction point occurs along the bisector at 

t=Tv+Td-Tk/2. 

 

Figure 10: Axis kinematic profiles during segment transition  

Kinematic profiles during segment transition depend on the overlapping time, Tk, and the filter delay, Td. 

They can be computed by superimposing filtered velocity profiles of consecutive segments as shown in 

Figure 10. For a 7-segmented trapezoidal acceleration profile the x and y-axis velocities during segment 

transition can be calculated from Eq.(6) as: 
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 (23) 

for Tk<2T2. Similarly, maximum contouring error along the bisector can be calculated by superimposing the 

remaining distance towards the midpoint P1 during interpolation of the 1st segment, and the distance traveled 

due to the convolution of the 2nd segment. Based on Figure 10 Cartesian components of the maximum contour 

error can be written as:  

   (24) 

and integrating axis velocity profiles and from Eq.(6) yields the maximum contour error during 

uninterrupted interpolation of consecutive linear segments from Eq.(24) as: 

   (25) 

Finally, for a predetermined contour error tolerance the overlapping time can be solved from Eq.(25) as:  
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  (26) 

As presented above, the dwell time between consecutive interpolation of feed pulses is controlled by the 

amount of Tk from Eq.(26), and interpolation contour error is confined by a predetermined value efficiently. 

 

 

 



3.2. Control of contour errors during non-stop linear and circular interpolation 

As shown in Figure 11, contour errors occur during non-stop interpolation through circular (G2/G3) and 

linear (G1) segments as well. The dwell time control method presented in the previous section can be 

adapted to confine these contour errors by approximating the change in the feed direction. 

During circular interpolation, interpolated tool motion settles down on a circular path that has a smaller 

radius than the reference one due to the FIR filter dynamics (See Figure 7). As shown in Figure 11, the feed 

direction at the start of the circular interpolation is bounded between the tangent vector  of the reference 

path and the tangent vector  of the interpolated path shown. is known from the reference path 

geometry, and can be computed by the geometry through the following relationship:  

 

 
Figure 11: Linear to circular interpolation transition 
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Note that norm of  is known from Eq.(16),  
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and substituting Eqs.(29) and (28) in (27) yields:  

 

         

         

2 22

2

2 22

2

y yx x

filt x x

y y x x

y y

P OP O RR R R
O P

R

P O R P OR R R
O P

R

  

  

     
    
 
 

     
  
 
 

t i

j

  (30) 

where   and  are the unit directional vectors in x and y directions, respectively. Feed direction during 

linear to circular segment G01→G02/03 transition is then bounded between the reft  and filtt , and hence the 

largest change can be approximated as shown in Figure 11 as: 
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where  is the feed vector along the linear path. Eq.(31) is used to calculate the overlapping time Tk and 

control the maximum value of the contour error. In a similar fashion, transition from circular to linear 

segment G02/03→G01 is depicted in Figure 12a, and Eq. (31) can be adapted for this case as: 
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 Finally, the transition between two consecutive circular segments G02/G03→G02/G03 is illustrated in 

Figure 12b. In this particular case, Eqs.(31)-(32) needs to be expanded to contain all possible combinations to 

bound the feed direction, and the largest angular change, i.e. worst case, is determined as:  

 , , ,arccos min
ref ref ref filt filt ref filt filt

ref ref ref filt filt ref filt filt



       

       

     
  

  
  

t t t t t t t t

t t t t t t t t
  (33) 

 
Figure 12: Feed direction during circular and linear transitions 

 

4. Illustrative example 

This section demonstrates application of the proposed FIR based block timing control technique to 

accurately interpolate machining tool-paths. The reference tool-path shown in Figure 13 is given in the 

Gcode/CL program defined by two G01 linear segments followed by circular move (G02). In order to 

interpolate it with a jerk limited trapezoidal acceleration profile, 2 FIR filters are used with time constants set 

to T1=50 [msec] and T2 =30 [msec]. The command feedrate is set to F=200 [mm/sec], and the maximum 

interpolation error tolerance is ε=100 [μm].  

The path is interpolated based on the P2P and the proposed non-stop contouring type interpolation 

techniques (See Figure 8). Interpolation results are summarized in Figure 13. Figure 13a and b compare P2P 

and the contouring type interpolated tool trajectories, and resultant feedrate profiles. As shown, in case of 

P2P interpolation, the motion undergoes a full stop at each segment junction. A dwell time identical to the 



total FIR filter delay Td=30+50=80 [msec] is inserted between the blocks. The total cycle time for P2P 

motion results to Ttotal=1.137 [sec]. Proposed FIR filtering based contouring type interpolation technique can 

generate accurate non-stop feed motion. Contouring errors around transition of linear and circular segment 

junctions as well as the circular contour are precisely kept at and below the ε=100 [μm] tolerance value. 

The circular interpolation error is bounded by lowering the feedrate to 84.2 [mm/sec] from Eqs.(19) and (20). 

The contour error around segment transitions are controlled by calculating the overlapping time Tk based on 

the change in the feed direction from Eq.(26). The overall cycle time is reduced to Ttotal=1.074 [sec]. Next 

section presents interpolation of a more complex tool-path on an actual motion stage.  

 

 
Figure 13: FIR based interpolation of multi-segmented path. 



5. Experimental validation 

5.1. Setup and implementation 

Experimental validation and benchmark comparisons of the proposed technique are performed on the 

Cartesian X-Y motion system shown in Figure 14. The planar X-Y motion table is driven by 3 linear motors. 

The heavier X-axis is designed as gantry and carries the lighter Y-axis. In order to implement proposed 

algorithms, servo amplifiers are set to operate in torque (current) control mode. Closed loop control is 

implemented in the Dspace DS1103® real time control system by reading linear encoder feedback at a 

resolution of 0.1 [µm] and commanding torque signal to the servos at a closed loop sampling interval of 

Ts=0.1 [msec]. Both X and Y drives are controlled by P-PI cascade motion controllers with velocity feed-

forward action. The position feedback control bandwidths of the axes are roughly matched at 
  
w

n
= 50 [Hz] to 

ensure good motion synchronization and contouring [29]. 

 

 
Figure 14: Experimental XY motion platform 

Next, to generate motion commands at discrete time instants kTs, FIR filter’s transfer function from 

Eq.(1) needs to be discretized. A simple Euler’s backward differentiation technique [26] is applied to derive 

the z-domain transfer function as: 

   (34) 

where  is the number of (delay) samples of the filter. The filtered velocity commands 
  
v '

x ,y
 are 

generated by implementing Eq.(34) through the following simple difference equation: 

   (35) 

where k is the sample counter. Note that generation of the filtered velocity commands from above difference 

equation requires only 2 additions and 1 multiplication for a single FIR filter.  

 

5.2. Experimental Results 

In the 1st experiment, the clover shaped tool-path shown in Figure 15 is interpolated with the P2P and 

contouring interpolation techniques. As shown, this tool-path consists of 5 linear and 5 circular segments. 

The feedrate along the tool-path is set to F = 200 [mm/sec], and the maximum interpolation contour 

tolerance isε=100 [μm]. 2 FIR filters are used to interpolate the tool-path with time constants set to T1=30 

and T2=25 [msec]. As shown in Figure 15, the tool-path is interpolated non-stop within desired contouring 



tolerance. Maximum contouring errors both around linear and circular segment transitions as well as along 

the circular sections are respected. Kinematic profiles are shown in Figure 16. As shown, feedrate is lowered 

along circular sections and also at segment junctions to generate accurate transition. Figure 16b depicts the 

feed pulse timing and the resultant feedrate profiles. The cycle time during contouring interpolation is clearly 

shorter and axis motion profiles are acceleration and jerk limited (See Figure 16c and d). Contouring errors 

are measured experimentally [29] and presented in Figure 17 as well. As shown, the tool-path is interpolated 

within the given contour error tolerance. Experimentally measured contour errors show small discrepancy 

from the interpolated ones due to feedback tracking dynamics of the servo system. These errors are not 

accounted for in the proposed technique, and although small in this experiment (<15 [μm]), they can be 

further improved by well-known feed-forward control techniques [26]. 

A 2nd experiment is performed to showcase vibration suppression capabilities of the proposed 

interpolation scheme. The starfish shaped tool-path shown in Figure 18 is interpolated using the proposed FIR 

filtering based technique and compared against another technique that fits small Bezier segments at segment 

junctions to realize a continuous motion transition and thereby non-stop contouring motion [28]. The tool-

path consists of 125 short linear segments. The programmed feedrate is set to F=50[mm/sec], and the 

contouring tolerance is ε=30[μm]. 2 FIR filters are used to interpolate the path with trapezoidal acceleration 

profiles. The filter time constants are tuned to avoid unwanted vibrations. As shown in Figure 14, 2 flexible 

beams are placed on the X-Y table. The beams are flexible in orthogonal directions, e.g. X and Y, where their 

1st bending modes are identified with accelerometers (PCB-3711E1110G) mounted on the top of the beams 

as: ωx ≈ 7.4[Hz] and ωy ≈ 9.2 [Hz]. In order to avoid exciting the lightly damped beam resonances, FIR 

filter delays are set to T1=136.1[msec] and T2=110.9[msec], accordingly. Figure 19 shows feedrate profiles of 

the interpolation techniques. Note that, due to short linear segments, the programmed feedrate is never 

reached. As a result, interpolated feed profiles and the corresponding accelerations fluctuate aggressively. 

Nevertheless, the proposed FIR based filtering technique delivers the fastest cycle time while respecting 

desired contouring tolerance along the entire tool-path. Figure 20 compares frequency spectrum of the 

interpolated acceleration profiles. As shown, FIR based interpolation technique exhibits attenuated frequency 

spectrum especially around the resonances of flexible beam structures. Most of the excitation is kept in the 

lower frequencies. However, the Bezier based technique simply spreads the excitation at a much wider 

bandwidth. Figure 21 presents beam accelerations measured through the attached accelerometers. As shown, 

the level of acceleration of the beams are significantly less as the motion stage tracks the FIR based 

interpolated trajectory. The maximum acceleration is same as the interpolated one from the reference 

trajectory. As compared, the acceleration level is significantly higher on the Bezier based trajectory 

generation technique. Finally, Figure 22 shows the frequency spectrum of the measured beam accelerations. 

As shown, the Bezier based technique clearly excites the resonances and causes beams to vibration heavily. 

On the other hand, FIR based technique does not induce any unwanted vibrations and the beams move as a 

rigid body with the motion table. This experiment clearly demonstrates that the proposed technique can 

interpolate complex tool-paths accurately, deliver rapid non-stop contouring motion and at the same time 

mitigate unwanted residual vibrations.  

 

 



 
Figure 15: Clover shaped tool-path 



 

Figure 16: Interpolated kinematic profiles along clover 

shaped tool-path 

  

 

Figure 17: Contour errors during clover tool-path 

 

 

 

 

 



 
Figure 18: Starfish shaped tool-path 

 



 
Figure 19: Interpolated kinematic profiles along starfish shaped tool-path 

 

 
Figure 20: DFT of interpolated axis acceleration profiles 



 
Figure 21: Experimentally measured beam accelerations 

 
Figure 22: DFT of beam accelerations 

 

6. Conclusions  

A novel online trajectory generation scheme has been proposed for Cartesian machines and motion 

systems to generate high-speed and accurate feed motion. Owing to its simple filtering structure, proposed 

scheme can interpolate linear and circular paths with high kinematic continuity and minimum computational 

load making it suitable for real-time processors. The proposed block timing technique considers the change 

in the feed direction and the total delay in the filter chain to generate accurate non-stop rapid feed motion. 

For the first time, interpolation errors that occur during both linear and circular segment transitions as well as 

circular arcs are considered making the proposed scheme comprehensive for multi-segmented paths. 

Furthermore, by tuning the filter delays with respect to the dynamics of the motion system, frequency 

spectrum of the acceleration profile is shaped and unwanted residual vibrations are avoided. Experimental 

results validated that the proposed technique can interpolate multi-segmented tool-paths accurately. As 

compared to the state of the art technique, the proposed interpolation method can eliminate unwanted 

vibrations and reduce the cycle time up to ~20% while utilizing same level of acceleration proving it to be a 

practical and effective online interpolation technique form modern NC systems. 
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