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We consider freely decaying homogeneous anisotropic turbulence whose energy spec-
trum E(k) at k → 0 is given by E(k) = Ck2 + o(k2) at an initial instant, where k is the
wave number and C is a k-independent positive number. An argument is given to show
that there are an infinite number of invariants characterizing the large-scale structure of the
turbulence. This is a generalization of Saffman’s argument, which shows the existence of a
finite number of invariants [P. G. Saffman, J. Fluid Mech. 27, 581 (1967)]. By applying
a similar argument to homogeneous anisotropic passive scalar turbulence without any
scalar source, we show that there are an infinite number of invariants characterizing the
large-scale structure of passive scalar fields. Theoretical analysis based on the invariance
and a self-similarity assumption for the large-scale evolution shows that the anisotropy of
the velocity and passive scalar fields is persistent at large scales. The decay laws of the
velocity and passive scalar fields are derived by a simple dimensional analysis.
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I. INTRODUCTION

Large-scale structure is one of the key properties of turbulence and plays a significant role
in the decay of turbulent flows [1–3]. Saffman [4] studied the large-scale structure of freely
decaying incompressible homogeneous anisotropic turbulence whose energy spectrum E(k, t ) at
k → 0 is given by Ck2 + o(k2) at an initial instant, where k is a wave vector, k = |k|, C (>0)
is a k-independent constant, and t is time. He showed that the leading order term, the O(k0)
term, of R̂ij (k) at k → 0 is time independent under appropriate conditions, and that there is a
finite number of invariants. Here R̂ij (k, t ) is the Fourier transform of the second-order two-point
velocity correlation tensor Rij (r, t ) defined by 〈ui (x)uj (x + r )〉, ui is the ith velocity component,
〈·〉 denotes an ensemble average of ·, x denotes the position, and r is the separation vector.
Arguments such as x and t were omitted for brevity. This kind of turbulence is called Saffman
turbulence. The tensor R̂ij (k) is discontinuous at k = 0, and R̂ij (k) for k → 0 depends on the
direction k/k. He also argued that the integral

∫
R3 Rij (r ) d r , called here Saffman’s integral, is

invariant by using the incompressible condition and Gauss’s divergence theorem. The invariance of∫
R3 (R11 + R22 + R33) d r for isotropic turbulence had been noted by Birkhoff [5]. The decay rate

of the total energy and the growth rate of an integral length scale can be derived using the invariants
and a self-similarity assumption [6].
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By the use of dimensional analysis and direct numerical simulation (DNS), flow anisotropy
in the energy-containing range was shown to be persistent for fully developed axisymmetric
Saffman turbulence [7]. This persistence was suggested by large eddy simulations [8]. The
large-scale structure of decaying axisymmetric turbulence subjected to the external force due
to density stratification, the Coriolis force, or a uniform magnetic field was discussed in
Ref. [9].

Prior to Saffman turbulence, freely decaying incompressible homogeneous turbulence, whose
energy spectrum E(k, t ) at k → 0 is given by C4k

4 + o(k4), had been studied, where C4 (>0)
is a k-independent constant proportional to Loitsiansky’s integral [3,10]. This kind of turbulence
is called Batchelor turbulence. DNS of fully developed isotropic turbulence at sufficiently high
Reynolds numbers [11] showed that Loitsiansky’s integral is approximately time independent.
The DNS is in accordance with Kolmogorov’s decay laws [12], which can be derived by a
simple dimensional analysis based on the invariance of Loitsiansky’s integral and a self-similarity
assumption. In Batchelor turbulence, in contrast to Saffman turbulence, the velocity correlation
spectral tensor R̂ij (k, t ) is continuous at k = 0 and R̂ij (k, t ) → 0 at k → 0.

The large-scale structure of a passive scalar field plays a significant role in the free decay of
the passive scalar field in incompressible homogeneous turbulence. The integral

∫
R3 �(r, t ) d r

for isotropic passive scalar turbulence was shown to be invariant under appropriate conditions
[13], where �(r, t ) = 〈θ (x)θ (x + r )〉, and θ (x) denotes a passive scalar field with 〈θ〉 = 0. The
invariance implies that if the scalar spectrum Eθ (k, t ) at k → 0 is given by Cθk2 + o(k2), Cθ is
time independent, where Cθ is a k-independent constant. Chasnov [14] considered an isotropic
passive scalar field whose scalar spectrum Eθ (k, t ) at k → 0 is given by Cθ

4 k4 + o(k4), where
Cθ

4 (>0) is a k-independent constant. For either case of isotropic passive scalar turbulence, the scalar
correlation spectrum �̂(k, t ), which is defined by the Fourier transform of �(r, t ), is continuous at
k = 0.

The decay rate of the scalar variance 〈θ2〉 and the growth rate of scalar integral length scales
for passive scalar turbulence in general depend on velocity statistics. Corrsin [13] derived the rates
of an isotropic passive scalar field with Eθ (k) = Cθk2 + o(k2) at k → 0 in Batchelor turbulence.
Chasnov [14] derived the rates of isotropic passive scalar fields with Eθ (k) = Cθk2 + o(k2) or
Eθ (k) = Cθ

4 k4 + o(k4) at k → 0 in Saffman or Batchelor turbulence. These rates were obtained by
dimensional analysis under a self-similarity assumption for the velocity and scalar fields.

In this paper, we consider the large-scale structure of (i) a freely decaying incompressible
homogeneous anisotropic turbulent velocity field and (ii) a homogeneous anisotropic passive scalar
field without any scalar source in incompressible homogeneous turbulence, where the energy
spectrum E(k) takes the form E(k) = Ck2 + o(k2) at k → 0 for (i), and the scalar spectrum
Eθ (k) takes the form Eθ (k) = Cθk2 + o(k2) at k → 0 for (ii). In Sec. II we give a generalization
of Saffman’s argument and then show the existence of an infinite number of invariants. The
methodology is applied to the passive scalar turbulence in Sec. III. The form of the scalar correlation
spectrum at k → 0 for isotropic passive scalar turbulence is generalized to that for anisotropic
passive scalar turbulence. In Secs. IV and V the implications of self-similarity at large scales and
invariants for (i) and (ii) are discussed, respectively. The persistence of large-scale flow anisotropy
and large-scale scalar anisotropy will be shown. Furthermore, by the use of invariants and a
dimensional analysis, the decay laws of Saffman turbulence [6,7] are generalized to (i) in Sec. IV,
and the decay laws of (ii) are derived for the velocity field obeying the generalized decay laws in
Sec. V. Finally, Sec. VI presents conclusions and discussion.

II. LARGE-SCALE STRUCTURE OF FREELY DECAYING HOMOGENEOUS
ANISOTROPIC TURBULENCE

In Sec. II A, we briefly summarize Saffman’s invariants [4] in k space. In Sec. II B, by
generalizing Saffman’s argument, we show that there are an infinite number of invariants.
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A. Saffman’s invariants

Let u(x, t ) be the velocity of an incompressible fluid that obeys the Navier-Stokes (NS) equation

∂u
∂t

= −(u·∇)u − 1

ρ
∇p + ν∇2u, (1)

and the incompressibility condition

∇·u = 0, (2)

where ρ is the constant fluid density, p(x, t ) is the pressure, ν is the kinematic viscosity, x =
(x1, x2, x3) in the Cartesian coordinate system, and ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).

In homogeneous turbulence, two-point statistics such as Rij (r, t ) = 〈ui (x)uj (x + r )〉 depend
on x and x + r through the separation vector r . The velocity correlation spectral tensor R̂ij (k, t ),
i.e., the Fourier transform (in the sense of a generalized function, distribution, or hyperfunction) of
Rij (r, t ), is given by

R̂ij (k, t ) = 1

(2π )3

∫
R3

Rij (r, t ) exp(−ik·r ) d r. (3)

Here ·̂ denotes the Fourier transform of ·. The NS equation (1) and Eq. (2) then give

∂

∂t
R̂ij (k, t ) = Tij (k, t ) − 2νk2R̂ij (k, t ), (4)

where

Tij (k, t ) = ikαPiβ (k̃)�̂αβj (k) − ikαPjβ (k̃)�̂αβi (−k), (5)

in which �̂αβj (k) is the Fourier transform of �αβj (x) = 〈Nαβ (x)uj (x + r )〉,

�̂αβj (k) = 1

(2π )3

∫
R3

〈Nαβ (x)uj (x + r )〉 exp(−ik·r ) d r, (6)

Nαβ (x, t ) = uα (x, t )uβ (x, t ), Pij (k̃) = δij − k̃i k̃j , and k̃ = k/k. The summation convention is
applied to repeated Greek indices but not to Roman indices, unless otherwise stated. Because of
the incompressibility condition (2), the Fourier transform R̂ij (k, t ) can be written as

R̂ij (k, t ) = Piα (k̃)Pjβ (k̃)Mαβ (k, t ), (7)

without loss of generality, where Mαβ (k, t ) is an appropriate function of k and t . Note that
Mαβ (k, t ) does not need to be generally symmetric in α and β. Saffman [4] considered turbulence
where Mαβ (k, t ) at an initial instant, for example, t = t0, has the expansion

Mαβ (k, t0) = Mαβ + o(1) as k → 0, (8)

where Mαβ is k-independent and a nonzero constant that is symmetric in α and β. The six constants
Mαβ (α, β = 1, 2, 3) are Saffman’s invariants. It was argued in Ref. [4] that the leading order term
of Mαβ (k, t ) at k → 0 in Eq. (7) is O(k0) and is a dynamical invariant, such that R̂ij (k, t ) can be
written as

R̂ij (k, t ) = Piα (k̃)Pjβ (k̃)Mαβ + o(1) as k → 0, (9)

for any t � t0, where Mαβ is invariant and is given by the initial condition (8). The first term of
the right-hand side in Eq. (9) has reflectional symmetry. The energy spectrum E(k, t ) defined by
(1/2)

∫
R̂αα (q, t ) dSk has the form E(k, t ) = Ck2 + o(k2), where C is a positive constant, and∫ · dSk denotes the integration of · over the spherical surface with the radius |q| = k and center

at q = 0.
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B. Generalization of Saffman’s invariants

Now, we consider a generalization of Eq. (8). Similar to Eq. (8), Mαβ (k, t0) for k → 0 is O(k0);
however, in contrast to Eq. (8), Mαβ may depend on the direction of k̃,

Mαβ (k, t0) = Mαβ (k̃) + o(1), (10)

where Mαβ (k̃) can be regarded as a function of only the angles ϑ and ϕ of the spherical polar
coordinates such that k = (k sin ϑ cos ϕ, k sin ϑ sin ϕ, k cos ϑ ),

Mαβ (k̃) = Mαβ (ϑ, ϕ), (11)

in which Mαβ (ϑ, ϕ) is an appropriate function of ϑ and ϕ, but independent of k. Generally,
Mαβ (ϑ, ϕ) does not need to be symmetric in α and β. Also, Mαβ (ϑ, ϕ) does not need to have
reflectional symmetry in general.

In the following, we assume Mαβ (ϑ, ϕ) ∈ L2(S2), that is,
∫
S2 |Mαβ (ϑ, ϕ)|2 dϑ dϕ < ∞. Here

L2(S2) is the space of square integrable functions on the unit spherical surface. As is well known,
any Mαβ (ϑ, ϕ) ∈ L2(S2) can be expanded by Laplace’s spherical harmonics Ym

n (ϑ, ϕ) as

Mαβ (ϑ, ϕ) =
∞∑

n=0

n∑
m=−n

Aαβ
mnY

m
n (ϑ, ϕ), (12)

where Ym
n (ϑ, ϕ) ∝ P m

n (cos ϑ ) exp(imϕ) and P m
n (cos ϑ ) is the Legendre polynomials. The expan-

sion (12) is equivalent to the following expansion in the powers of k̃1, k̃2, and k̃3 (see e.g., Ref. [15]):

Mαβ (k̃) =
∞∑

a,b,c=0

B
αβ

abck̃
a
1 k̃b

2 k̃
c
3. (13)

If Mαβ (k̃) is k̃ independent, then A
αβ
mn = B

αβ

abc = 0 for (m, n) 	= (0, 0) and (a, b, c) 	= (0, 0, 0),
and A

αβ

00 (=B
αβ

000) is Saffman’s invariant. We now show the invariance of Mαβ (k̃), A
αβ
mn and B

αβ

abc.
Hereafter, the turbulence with the invariants, A

αβ
mn and B

αβ

abc, is called “generalized Saffman
turbulence.” Suppose that an infinitesimally small localized disturbance centered at x is added to the
turbulence field. Then it immediately affects the convective term in the disturbed region, and this
results in the change of the pressure gradient as well as the velocity field at x + r , and the changes
are O(r−3) at r → ∞, where r = |r|. This suggests that the interaction between two points are
nonlocal, so that the correlation 〈Nαβ (x)uj (x + r )〉 in Eq. (6) decays algebraically in r at r → ∞.
We assume here that this correlation decays algebraically as O(r−s ) with s = 3 at r → ∞. Then
the integral (6) is finite in the limit of k → 0, so that

�̂αβj (k) = O(k0) as k → 0. (14)

Since kαPiβ = O(k), Eqs. (5) and (14) imply

Tij (k) = O(k) as k → 0. (15)

The estimate (14) need not be limited to s = 3, and we have Tij (k) = O(ks−2) for s > 2 instead
of the estimate (14). We then obtain

Tij (k) = o(k0) as k → 0. (16)

For incompressible homogeneous axisymmetric turbulence subjected to external force with
E(k) ∝ k2 at k → 0 [9] as well as Saffman turbulence [2,9], Davidson presented an argument in
accordance with the assumption 〈Nαβ (x)uj (x + r )〉 = O(r−3) at r → ∞ and the estimate (15).
It is seen that the estimates (15) and (16) are in accordance with a class of spectral closure
theories including eddy-damped quasinormal Markovian (EDQNM) closures (see e.g., Ref. [1]),
abridged Lagrangian history direct interaction approximation (see, e.g., Ref. [16]) and Lagrangian
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renormalized approximation (see, e.g., Ref. [17]). Another argument for the estimate (15) is given
in Appendix A.

Equations (4) and (15) give

∂

∂t
R̂ij (k, t ) = O(k) as k → 0. (17)

Equation (17) implies that the O(k0) term in R̂ij (k, t ) for k → 0 is time independent. The same is
true for Mαβ (k, t ), that is, if Mαβ (k, t ) at t = t0 is given by Eq. (10), then Mαβ (k, t ) at any time
t (�t0) is given by

Mαβ (k, t ) = Mαβ (k̃) + o(1) as k → 0, (18)

where Mαβ (k̃) is a time-independent constant determined by the initial condition (10). This means
that A

αβ
mn and B

αβ

abc in Eqs. (12) and (13) are dynamical invariants. Based on Eqs. (7), (10), and (18),
we obtain

R̂ij (k, t ) = Piα (k̃)Pjβ (k̃)Mαβ (k̃) + o(1) as k → 0, (19)

for any t (�t0), and the energy spectrum E(k, t ) = Ck2 + o(k2) with C being an invariant. Saffman
[4] reported the invariance of Mαβ in Eq. (9) under the assumption of the analyticity of û(k, t ) in
time. A discussion about the time analyticity is given in Appendix B.

There are representations of R̂ij (k) different from Eq. (7), for example, the so-called E-Z-H
decomposition used in Ref. [18]. Here we use Eq. (7), because its relation to Eq. (9) is clear.
The relation between the decomposition and Eq. (7) is discussed in Appendix C. A computational
tool using the spherical harmonics expansion of R̂ij (k) was proposed for the linear inviscid flow
dynamics [21]. The application of vectorial spherical harmonics (see e.g., Ref. [1]) to R̂ij (k, t ),
which is a function of k as well as k̃, is given in Refs. [19,20].

The large-scale structure of the velocity field is characterized by Piα (k̃)Pjβ (k̃)Mαβ (k̃), the O(k0)
term, in Eq. (19). Taking the limit of Eq. (3) at k → 0 for any fixed k̃, and noting that the leading
term of Eq. (19) is O(k0), we see that the far-field term of Rij (r ) which is denoted by R∞

ij (r ),
the leading order term of Rij (r ) at sufficiently large r of Rij (r ), decays as O(r−3), and R∞

ij (r ) is

completely determined by Mαβ (k̃), the coefficients A
αβ
mn and B

αβ

abc. For isotropic Saffman turbulence,
Rαα (r ) = R11(r ) + R22(r ) + R33(r ) = o(r−3), but R11(r ) = R22(r ) = R33(r ) = O(r−3) at r →
∞ [4]. Let us consider the integral

∫
R3 Rij (r ) exp(−ik·r ) d r at k → 0. One might think that

the contribution of R∞
ij (r ) at r 
 1 to

∫
R3 Rij (r ) exp(−ik·r ) d r may vanish owing to the long-

wavelength oscillations at k → 0. However, the oscillations eliminate the contribution from the
far-field satisfying the condition r 
 1/k (
1), but they do not eliminate the far-field contribution
from r ∼ 1/k (
1). Therefore, the contribution of R∞

ij (r ) at k → 0 does not vanish. It is to be
noted that statistics of turbulence at k → 0 are in general not necessarily uniquely determined by
statistics of turbulence in the far field, because they may be generally affected by not only far-field
statistics but also non-far-field statistics.

Llor and Soulard [22] gave a discussion on the relation between the two-point second-order
longitudinal correlation function of velocity at r → ∞ and the energy spectrum E(k) at k → 0,
which is given by E(k) = Csk

s + o(ks ) (1 � s � 4), for incompressible homogeneous isotropic
turbulence. Here Cs is a k-independent constant.

III. LARGE-SCALE STRUCTURE OF A FREELY DECAYING PASSIVE SCALAR FIELD

A freely decaying passive scalar field in incompressible homogeneous turbulence is now
considered. The passive scalar field θ (x, t ) obeys the scalar advection diffusion equation,

∂θ

∂t
= −(u·∇)θ + κ∇2θ, (20)
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where κ is the molecular or thermal diffusivity, and 〈θ〉 = 0. The spectral correlation �̂(k, t ) is
defined by the Fourier transform of the two-point scalar correlation; �(r, t ) = 〈θ (x, t )θ (x + r, t )〉.

Corrsin [13] considered freely decaying isotropic passive scalar fluctuations where �(r, t ) =
o(r−3) and third-order scalar-velocity correlations 〈Nθ

α (x, t )θ (x + r, t )〉 = o(r−3) at r → ∞, in
which Nθ

α (x) = uα (x)θ (x). In the turbulence, the O(k0) term of �̂(k, t ) is independent of the
direction of k̃ and time. Corrsin’s argument is here generalized to anisotropic scalar fluctuations
in incompressible homogeneous anisotropic turbulence. We assume that

�̂(k, t0) = χ (k̃) + o(1) as k → 0, (21)

at an initial time instant t0. Below, it is shown that for any t (�t0)

�̂(k, t ) = χ (k̃) + o(1) as k → 0 (22)

under certain assumptions. The large-scale structure of the passive scalar field is characterized by
χ (k̃). In Eq. (20), the velocity field is assumed to obey Eqs. (1) and (2), but a term representing
external forces can be added to the right-hand side of Eq. (1).

Equation (20) gives

∂

∂t
�̂(k, t ) = T θ (k, t ) − 2κk2�̂(k, t ), (23)

where

T θ (k, t ) = ikα�θ
α (k, t ) − ikα�θ

α (−k, t ), (24)

in which �θ
α (k, t ) is defined by

�θ
α (k, t ) = 1

(2π )3

∫
R3

〈
Nθ

α (x)θ (x + r )
〉
exp(−ik·r ) d r. (25)

We assume here that 〈Nθ
α (x)θ (x + r )〉 decays as O(r−s ) for s = 3 at r → ∞ so that �θ

α (k, t ) is
finite in the limit of k → 0. We have

�θ
α (k, t ) = O(k0) as k → 0, (26)

which implies

T θ (k, t ) = O(k) as k → 0. (27)

We have T θ (k) = o(k0) for s > 2 instead of the estimate (27), as discussed in the derivation of
Eq. (16). The estimate (27) can be also obtained by an argument similar to that in Appendix A.
These estimates of T θ (k) are in accordance with spectral closure theories.

Equations (23) and (27) give

∂

∂t
�̂(k, t ) = O(k) as k → 0. (28)

Equation (28) implies that the O(k0) term in �̂(k, t ) for k → 0 is time independent, i.e., Eq. (22)
holds for any time t (�t0) and χ (k̃) is a time-independent constant determined by the initial
condition (21). By the use of the expansion by Laplace’s spherical harmonics or in the powers
of k̃1, k̃2, and k̃3, such as Eqs. (12) or (13), we obtain

χ (ϑ, ϕ) =
∞∑

n=0
(n=even)

n∑
m=−n

Aθ
mnY

m
n (ϑ, ϕ) (29)
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or

χ (k̃) =
∞∑

a, b, c=0
(a+b+c=even)

Bθ
abck̃

a
1 k̃b

2 k̃
c
3, (30)

noting that �̂(k, t ) is reflectionally symmetric, �̂(−k, t ) = �̂(k, t ), by definition. The time
independence of χ (k̃) for any k̃ implies that Aθ

mn and Bθ
abc are dynamical invariants. These invariants

are called here generalized Corrsin’s invariants. Note that χ (k̃) is generally discontinuous at k = 0.
Moreover, it is shown that the scalar spectrum Eθ (k), defined by (1/2)

∫
�̂(q, t )dSk , takes the

time-independent form of Eθ (k) = Cθk2 + o(k2) at k → 0 with Cθ being a positive constant.
As is the case of Rij (r, t ), taking the limit of k → 0 for

∫
R3 �(r, t ) exp(−ik·r ) d r , and using

Eq. (22), we generally obtain 〈θ (x)θ (x′)〉 = O(r−3) at r → ∞, where x′ = x + r . The O(r−3)
term of 〈θ (x)θ (x′)〉 corresponds to the anisotropic part of χ (k̃), χ (k̃) − Bθ

000. The integral of
〈θ (x)θ (x′)〉 without the O(r−3) term over the whole r domain is absolutely convergent, because
〈θ (x)θ (x′)〉 without the O(r−3) term is o(r−3) at r → ∞. Hence, the Fourier transform of the
o(r−3) term becomes a constant that is independent of k̃ for k 
 1. This shows that the o(r−3) term
corresponds to the isotropic part of χ (k̃), Bθ

000.
We also introduce D(k, t ), the Fourier transform of 〈(∂/∂xα )θ (x)(∂/∂x ′

α )θ (x′)〉, which will be
used in Sec. V. Since D(k, t ) = k2�̂(k, t ),

D(k, t ) = k2χ (k̃) + o(k2) as k → 0. (31)

Therefore, because of Eq. (22), we find that Eq. (31) holds for any time t (�t0).

IV. SELF-SIMILARITY OF GENERALIZED SAFFMAN TURBULENCE

We first discuss the self-similarity of the generalized Saffman turbulence for sufficiently small
k. By the use of the self-similarity and invariance of Mαβ (k̃), the persistence of flow anisotropy
at large scales is shown. Subsequently, the decay laws of the fully developed generalized Saffman
turbulence are obtained by using dimensional analysis.

A. Self-similarity and invariance of Mαβ (k̃)

We assume that large eddies evolve in accordance with the self-similar form,

R̂ij (k, t ) = cij (t )fij (k1�1, k2�2, k3�3) = cij (t )fij (ζ ), (32)

in a certain time range and domain of the wave vector space k including small enough k range,
where ζ is a self-similar variable defined by

ζ = (k1�1, k2�2, k3�3), (33)

cij (t ) is an appropriate function of time t , and �m(t ) is an appropriate length scale in the mth
Cartesian direction. The length scale �m may depend on i and j . Therefore, it can be written as �

ij
m.

However, for the convenience of writing and reading, we simply write it as �m. Note that R̂ij (k, t )
depends on time t only through cij (t ), �(t ) = (�1(t ), �2(t ), �3(t )), and fij (k1�1, k2�2, k3�3) =
fij (ζ ) is time independent at any fixed ζ . The function fij (ζ ) is dimensionless. Below we show
that cij (t ) is constant and cij � constant × 〈uiuj 〉�1�2�3 [see Eq. (51)].

Based on Eqs. (19) and (32), we obtain

cij (t )fij (ζ ) = �ij (k̃) + o(1) as k → 0 (34)

for t � t0, where

�ij (k̃) = Piα (k̃)Pjβ (k̃)Mαβ (k̃). (35)
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Because

k =
(

ζ1

�1
,
ζ2

�2
,
ζ3

�3

)
, (36)

Eq. (34) means

cij (t )fij (ζ ) = �ij (k̃) + o(1) as ζ → 0. (37)

Equation (37) implies that

cij (t )f 0
ij (ζ̃ ) = �ij (k̃), (38)

where ζ̃ = ζ/|ζ |, f 0
ij (ζ̃ ) is the leading order term of fij (ζ ) in the limit of ζ → 0, and f 0

ij (ζ̃ ) is

independent of time at any fixed ζ̃ . As shown in Sec. II B, �ij (k̃) must be time independent at
any fixed k̃. This time independence at fixed k̃ should not be confused with the time independence
at fixed ζ . In fact, �ij (k̃) may be time independent in general at fixed ζ , because k̃ may be time
dependent at fixed ζ , as seen in Eq. (36).

To get an idea about the possible time dependence of �ij (k̃) at fixed ζ or ζ̃ , it may be of help to
note that

k̃i = ki

k
= ζi/�i

{(ζ1/�1)2 + (ζ2/�2)2 + (ζ3/�3)2}1/2
= ζ̃i/�̃i

{(ζ̃1/�̃1)2 + (ζ̃2/�̃2)2 + (ζ̃3/�̃3)2}1/2
, (39)

where �̃ = �/�, and � = |�|. Although, as is clear from Eq. (39), k̃ may be time dependent in general
at fixed ζ or ζ̃ , it must be time independent at some particular points of ζ or ζ̃ . For example,
k̃ = (1, 0, 0) for ζ̃ = (1, 0, 0), so that k̃ is time independent for ζ̃ = (1, 0, 0). This and the time
independence of �ij (k̃) at fixed k̃ imply that �ij (k̃) at ζ̃ = (1, 0, 0) is time independent. Therefore,
Eq. (38) for k̃ = (1, 0, 0) results in

cij (t ) = const, (40)

provided that f 0
ij (1, 0, 0) 	= 0.

Note that �ij (k̃) on the right-hand side in Eq. (38) is time independent at any fixed k̃ as a
consequence of the dynamics under consideration, whereas f 0

ij (ζ̃ ) is time independent at any fixed
ζ̃ as a consequence of the self-similarity assumption (32). Since cij is time independent, as shown
above, �ij (k̃) must be time independent not only at any fixed k̃ but also at any fixed ζ̃ .

Because of Eq. (39), k̃ is time independent at any fixed ζ̃ , if

�̃j = �j

�
= const for j = 1, 2, 3. (41)

Therefore, if Eq. (41) holds, �ij (k̃) can be time independent not only at any fixed k̃ but also at any
fixed ζ̃ . Thus, Eq. (41) is a sufficient condition for the compatibility of (i) the time independence of
�ij (k̃) at any fixed k̃ and (ii) the time independence at any fixed ζ̃ , i.e., the time independence of
�̃j (j = 1, 2, 3) as shown in Eq. (41) is a sufficient condition for the compatibility of the dynamics
and the self-similarity assumption (32).

Equation (39) suggests that Eq. (41) is not only a sufficient condition but also a necessary condi-
tion for the compatibility, although it is not trivial. As a matter of fact, under weak assumptions,
this can be confirmed to be true. In other words, Eq. (41) is an inevitable consequence of the
compatibility of the invariance of �ij (k̃) at any fixed k̃ and the self-similarity assumption (32),
as shown below. This implies that we do not need to introduce any other extra assumption to verify
the time independence (41).

Since |k̃| = 1, at least one of the components k̃1, k̃2, or k̃3 is nonzero. Let us assume that k̃1 > 0
and consider the expansion of �ij (k̃) in the powers of k̃2/k̃1 for small k̃2/k̃1 at k̃3 = 0. For k̃1 	= 1
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and k̃3 = 0, we obtain

k̃1 = 1√
1 + (k2/k1)2

, k̃2 = k2/k1√
1 + (k2/k1)2

, (42)

where k2/k1 = k̃2/k̃1. Equation (13) implies that �ij (k̃) can be expanded as

�ij (k̃) =
∞∑

a,b,c=0

C
ij

abck̃
a
1 k̃b

2 k̃
c
3, (43)

where C
ij

abc is an appropriate constant independent of time and k̃, and C
ij

abc is expressed by the linear
combination of B

αβ

abc in Eq. (13). By substituting k̃3 = 0 and Eq. (42) into Eq. (43), and expanding
�ij (k̃1, k̃2, 0) in the powers of σ = k̃2/k̃1 = k2/k1 for small σ , we obtain

�ij (k̃1, k̃2, 0) =
∞∑

m=0

�mσm, (44)

where �m is an appropriate constant independent of time and k̃. This implies that �ij (k̃1, k̃2, 0)
depends on k̃1 and k̃2 only through σ = k̃2/k̃1 = k2/k1 = (ζ2/�2)/(ζ1/�1) = γ λ, where γ =
�1/�2 = �̃1/�̃2 and λ = ζ2/ζ1 = ζ̃2/ζ̃1.

Since k̃3 = 0 for ζ̃3 = 0, Eq. (38) gives

cijf
0
ij (ζ̃1, ζ̃2, 0) = �ij (k̃1, k̃2, 0), (45)

where cij is time independent as shown in Eq. (40). Since Eq. (44) means that �ij (k̃1, k̃2, 0) is a
function of only σ (=γ λ), and since Eqs. (44) and (45) show that f 0

ij (ζ̃1, ζ̃2, 0) is a function of only
λ for small σ , hereafter we simply write �ij (k̃1, k̃2, 0) and f 0

ij (ζ̃1, ζ̃2, 0) as �ij (γ λ) and f 0
ij (λ),

respectively. Because of the time independence of f 0
ij (ζ̃ ) at any ζ̃ , (d/dλ)Nf 0

ij (λ) must be also time
independent for any positive integer N at any λ = ζ̃2/ζ̃1, in particular at λ = 0. Therefore, Eqs. (44)
and (45) give[

dN

dλN
cijf

0
ij (λ)

]
λ=0

=
[

∂N

∂λN
�ij (γ λ)

]
λ=0

= N ! �Nγ N = time independent. (46)

Since �N is constant, Eq. (46) implies

�1

�2
= const, (47)

provided that there is any positive integer N such that �N 	= 0.
By considering the expansion for small τ = k̃3/k̃1 at k̃2 = 0, in the same way as the derivation

of Eqs. (44) and (47), we can show

�ij (k̃1, 0, k̃3) =
∞∑

m=0

�′
mτm (48)

and

�1

�3
= const, (49)

if there is any positive integer N such that �′
N 	= 0. Here �′

m is an appropriate constant independent
of time and k̃. Equations (47) and (49) imply that

�j

�
= const for j = 1, 2, 3. (50)

Equation (50) holds, even if Mαβ (ϑ, ϕ) is independent of ϑ and ϕ.
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B. Persistence of flow anisotropy in the energy-containing range

We assume that Eq. (32) is a good approximation for R̂ij (k, t ) in the (k, t ) domain including a
small enough k range. In a strict sense, we do not impose self-similarity on the k range including the
viscosity-dominant wave vector range. The contribution of R̂ij (k, t ) in the (k, t ) domain including
a small enough k range is dominant in certain integrals such as

∫
R3 R̂ij (k, t ) dk. On the basis of

Eq. (32), we obtain

〈uiuj 〉(t ) =
∫
R3

R̂ij (k, t )k
�

�
∫
R3

cijfij (k1�1, k2�2, k3�3) dk

= cij

�1�2�3

∫
R3

fij (ζ ) dζ . (51)

Then, we have cij � const × 〈uiuj 〉�1�2�3 and thus

〈uiuj 〉�1�2�3 � const, (52)

where this constant value may depend on i and j .
In this paper, we consider only freely decaying homogeneous turbulence, and assume that the

time dependence of the length scales �1, �2, and �3 is independent from the “component” (i, j )
under the self-similarity. Using Eq. (52), we then obtain〈

u2
i

〉
〈
u2

j

〉 � const for i, j = 1, 2, 3 (i 	= j ). (53)

The independence is called “componential independence.” This componential independence was
also assumed in Ref. [7]. However, this assumption is not trivial, and it is not surprising if it does
not hold for other types of turbulence under external forces, such as rotating turbulence, stably
stratified turbulence, and magnetohydrodynamic turbulence subjected to a uniform magnetic field.
Hence, this assumption needs to be examined. The DNS results in Ref. [7] are consistent with this
assumption.

Now, we consider the relation between the length scales �i (i = 1, 2, 3) and the length scales
measured in DNS such as

L
(n)
j (t ) =

∫ ∞
0 〈un(x + r i j )un(x)〉 dr〈

u2
n

〉 , (54)

where i j is the unit vector in the j th Cartesian direction. The length scale L
(n)
1 is given by

L
(n)
1 = π

∫
R2 R̂nn(0, k2, k3, t ) dk2 dk3∫

R3 R̂nn(k, t ) dk
� γ

(n)
1 �1, (55)

where γ
(n)

1 is constant. Substitution of Eq. (32) into Eq. (55) gives

γ
(n)

1 = π

∫
R2 fnn(0, ζ2, ζ3) dζ2 dζ3∫

R3 fnn(ζ ) dζ
. (56)

Similarly, we obtain

L
(n)
2 � const × �2, L

(n)
3 � const × �3. (57)

Therefore, Eq. (50) yields

L
(n)
i

L
(n)
j

� const for i, j = 1, 2, 3 (i 	= j ). (58)
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Note that 〈u2
j 〉 and L

(n)
j are representative quantities in the energy-containing range, whereas the

invariants are representative quantities in the far field. Therefore, the self-similarity we assumed
here is the self-similarity of flow ranging from the far field to the energy-containing range.

Based on the invariance of Mαβ (k̃) and the flow self-similarity in freely decaying turbulence
without any external force, we showed the persistence of the flow anisotropy measured by 〈u2

i 〉/〈u2
j 〉

in Eq. (53) and L
(n)
i /L

(n)
j in Eq. (58). Therefore, one might think that L

(n)
i /L

(n)
j for i 	= j is also

constant for turbulence under external forces. The analysis in Sec. II is only valid for turbulence
without any external force. It does not exclude the possibility that the length-scale ratios are not
constant for turbulence under external forces (see Appendix D).

C. Decay laws for generalized Saffman turbulence

We consider the decay of generalized anisotropic Saffman turbulence. Because of Eqs. (53) and
(58), we need to use only one length scale and the intensity of one velocity component. Thus, we
choose L

(3)
3 and 〈u2

3〉. Under the assumption that the flux of energy to small scales is controlled by
the energy-containing range, dimensional analysis leads to

d
〈
u2

3

〉
dt

= −�

〈
u2

3

〉3/2

L
(3)
3

, (59)

where � is constant for fully developed turbulence at sufficiently high Reynolds number. The
integration of Eq. (59) with Eqs. (52), (55), and (57) yields the isotropic-like decay laws:〈

u2
j

〉 ∝ t−6/5, L
(n)
j ∝ t2/5 for j = 1, 2, 3. (60)

These decay laws include the decay laws in Ref. [6] showing the decay rate of total energy and
the growth rate of an integral length scale that are in good agreement with observations made in
laboratory experiments at sufficiently high Reynolds numbers [23]. Equation (60) includes also the
decay laws for fully developed homogeneous axisymmetric Saffman turbulence [7].

EDQNM closures have been used in the study of the decay of incompressible homogeneous
turbulence whose energy spectrum E(k) is given by Csk

s + o(ks ) (1 � s � 4) at k → 0 (see,
e.g., Ref. [1]). The persistence of large-scale anisotropy and the return to isotropy at small scales
have been observed in homogeneous axisymmetric Saffman turbulence [24] and in homogeneous
anisotropic Saffman turbulence [25]. It was shown that non-self-similar decay of isotropic turbu-
lence does not directly related to the asymptotic behavior of E(k) at k → 0 [26,27]. Complete
self-similarity including the dissipative range in the decay of isotropic turbulence was found only
for s = 1 [28].

V. SELF-SIMILARITY OF A PASSIVE SCALAR FIELD IN HOMOGENEOUS TURBULENCE

We now apply the methodology of Sec. IV to a passive scalar field with the invariance of χ (k̃)
in incompressible homogeneous turbulence.

A. Self-similarity and invariance of χ (k̃)

Here we employ D(k, t ) = k2�̂(k, t ), instead of �̂(k, t ). The reason for the use of D(k, t ) will
be discussed at the end of this subsection. We assume that D(k, t ) evolves in accordance with the
self-similar form,

D(k, t ) = d(t )f θ
(
k1�

θ
1, k2�

θ
2, k3�

θ
3

) = d(t )f θ (ζ θ ), (61)

in a certain time range and domain of the k space including small enough k range, where

ζ θ = (
k1�

θ
1, k2�

θ
2, k3�

θ
3

)
, (62)
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d(t ) is an appropriate function of time t , and �θ
j (t ) is an appropriate length scale of a passive scalar

in the j th Cartesian direction. Similar to the case of Eq. (32), f θ (k1�
θ
1, k2�

θ
2, k3�

θ
3 ) = f θ (ζ θ ) is

time independent at any fixed ζ θ , and D(k, t ) depends on time t only through d(t ) and �θ (t ) =
(�θ

1 (t ), �θ
2 (t ), �θ

3 (t )), according to Eq. (61). The function f θ (ζ θ ) is dimensionless. Next we show
that d(t )[�θ (t )]2 is constant and d(t )[�θ (t )]2 � constant × 〈θ2〉[�θ (t )]3. We assume that Eq. (61)
is a good approximation for �̂(k, t ) in the (k, t ) domain including a small enough k range. Note
that the self-similarity is not imposed on the k range including the scalar-diffusion dominant wave
vector range.

The comparison of Eq. (61) with Eq. (31) yields

D(k, t ) = d(t )f θ (ζ θ ) = k2χ (k̃) + o(k2), (63)

as k → 0. Equations (61) and (63) imply that

d(t )f θ (ζ θ ) =
(

ζ θ

�θ

)2
{(

ζ̃ θ
1

�̃θ
1

)2

+
(

ζ̃ θ
2

�̃θ
2

)2

+
(

ζ̃ θ
3

�̃θ
3

)2
}

χ (k̃) + o([ζ θ ]2), (64)

as ζ θ → 0, where we used ζ θ = |ζ θ |, �θ = |�θ |, ζ̃
θ = ζ θ /ζ θ , �̃

θ = �θ /�θ , and

k2 =
(

ζ θ
1

�θ
1

)2

+
(

ζ θ
2

�θ
2

)2

+
(

ζ θ
3

�θ
3

)2

=
(

ζ θ

�θ

)2
{(

ζ̃ θ
1

�̃θ
1

)2

+
(

ζ̃ θ
2

�̃θ
2

)2

+
(

ζ̃ θ
3

�̃θ
3

)2
}

. (65)

Since f θ (ζ θ ) in Eq. (64) is time independent at any fixed ζ θ ,{(
ζ̃ θ

1

�̃θ
1

)2

+
(

ζ̃ θ
2

�̃θ
2

)2

+
(

ζ̃ θ
3

�̃θ
3

)2
}

χ (k̃)

d(t )[�θ (t )]2
too must be time independent (66)

at any fixed ζ θ . Based on Eq. (62), we obtain

k̃i = ki

k
= ζ̃ θ

i /�̃θ
i{(

ζ̃ θ
1 /�̃θ

1

)2 + (
ζ̃ θ

2 /�̃θ
2

)2 + (
ζ̃ θ

3 /�̃θ
3

)2}1/2 . (67)

Then, for ζ̃
θ = (1, 0, 0), Eq. (67) gives k̃ = (1, 0, 0), so that Eq. (66) yields(

1

�̃θ
1

)2
χ (1, 0, 0)

d(t )[�θ (t )]2
= const. (68)

Because of the time independence of χ (1, 0, 0), Eq. (68) implies that(
1

�̃θ
1

)2 1

d(t )[�θ (t )]2
= const, (69)

where we assumed χ (1, 0, 0) 	= 0. Similarly, we obtain

(
1

�̃θ
2

)2 1

d(t )[�θ (t )]2
= const, (70)

(
1

�̃θ
3

)2 1

d(t )[�θ (t )]2
= const. (71)

Equations (69)–(71) imply that

�̃θ
j = �θ

j

�θ
= const for j = 1, 2, 3, (72)
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and then

d(t )[�θ (t )]2 = const, (73)

where the constant value in Eq. (72) may also depend on j .
Since �̂(k) = D(k)/k2, Eq. (61) gives

〈θ2(t )〉 =
∫
R3

�̂(k, t ) dk =
∫
R3

D(k, t )

k2
dk �

∫
R3

d(t )f θ
(
k1�

θ
1, k2�

θ
2, k3�

θ
3

)
k2

dk

= d(t )

�θ
1�

θ
2�

θ
3

∫
R3

f θ (ζ θ )

k2
dζ θ = d(t )

�θ
1�

θ
2�

θ
3

∫
R3

f θ (ζ θ )(
ζ θ

1 /�θ
1

)2 + (
ζ θ

2 /�θ
2

)2 + (
ζ θ

3 /�θ
3

)2 dζ θ

� const × d(t )

�θ (t )
, (74)

where we used Eqs. (62) and (72). Equations (73) and (74) lead to

〈θ2(t )〉[�θ (t )]3 � const. (75)

The length scale �θ
j (j = 1, 2, 3) can be regarded as the integral length scale Lθ

j (t ) defined by

Lθ
j (t ) =

∫ ∞
0 〈θ (x)θ (x + r i j )〉 dr

〈θ2(t )〉 . (76)

Similar to the derivation of Eq. (55) in Sec. IV B, we find that

Lθ
j (t ) � γ θ

j �θ
j (t ) for j = 1, 2, 3, (77)

where γ θ
j is constant. Thus, based on Eq. (72), we obtain

Lθ
i

Lθ
j

� const for i, j = 1, 2, 3 (i 	= j ). (78)

We applied the self-similar assumption (61) to D(k, t ) but not �̂(k, t ) in order to derive Eq. (72)
in the case that χ (k̃) is isotropic, where χ (k̃) is k̃ independent. If we use �̂(k, t ) in the case, we
obtain no information about the ratio �θ

i /�
θ
j (i 	= j ). Passive scalar fields can be anisotropic due to

flow anisotropy, even if χ (k̃) is isotropic. Let the scalar field be isotropic at an initial time t = t0,
then Lθ

1 (t0) = Lθ
2 (t0) = Lθ

3 (t0). The self-similarity assumption may not hold for an initial transient
or premature stage. Thus, Lθ

i (t )/Lθ
j (t ) (i 	= j ) can evolve with time t during the transient time

period. Therefore, Lθ
i (t )/Lθ

j (t ) (i 	= j ) does not need to be 1, after the passive scalar turbulence
becomes fully developed. For the fully developed state, the self-similarity shown in Eq. (61) may
be expected.

B. Decay laws for passive scalar fluctuations

Next we discuss the decay of passive scalar fluctuations with the invariance of χ (k̃) in fully
developed generalized anisotropic Saffman turbulence, called here fully developed Saffman-Corrsin
passive scalar turbulence. Dimensional analysis suggests that

〈(u·∇)θ2〉 ∼
(〈

u2
1

〉1/2

Lθ
1

+
〈
u2

2

〉1/2

Lθ
2

+
〈
u2

3

〉1/2

Lθ
3

)
〈θ2〉. (79)

Equation (78) holds for fully developed passive scalar turbulence with generalized Corrsin’s
invariants. Moreover, we here consider the self-similar decay of generalized Saffman turbulence,
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which shows the persistence of flow anisotropy, Eqs. (53) and (58). Then Eq. (79) results in

〈(u·∇)θ2〉 ∼
〈
u2

3

〉1/2〈θ2〉
Lθ

3

. (80)

Therefore, dimensional analysis yields

d

dt
〈θ2〉 = −�θ

〈
u2

3

〉1/2〈θ2〉
Lθ

3

, (81)

where �θ is constant. The integration of Eq. (81) with Eqs. (60), (75), and (77) gives

〈θ2〉 ∝ t−6/5, Lθ
j ∝ t2/5 for j = 1, 2, 3, (82)

irrespective of the Prandtl number or Schmidt number ν/κ . These laws are in accordance with the
prediction for fully developed isotropic Saffman-Corrsin passive scalar turbulence [14]. Numerical
simulations based on EDQNM models have been performed for the decay of homogeneous passive
scalar turbulence [29,30]. It was shown that neither the Prandtl number nor initial scalar integral
length scale affects the passive scalar decay for sufficiently high Reynolds and Péclet numbers
[29]. The persistence of scalar anisotropy was predicted for passive scalar decay without any scalar
gradient under shear-released homogeneous turbulence [30].

VI. CONCLUSIONS AND DISCUSSION

We considered the large-scale structure of incompressible homogeneous anisotropic turbulence
without any external force and homogeneous anisotropic passive scalar turbulence without any
scalar source. A generalization of Saffman’s argument suggests that the large-scale structure of
the velocity field whose energy spectrum E(k) is given by Ck2 + o(k2) at k → 0, is characterized
by an infinite number of invariants that include Saffman’s invariants. Applying a similar argument
to a passive scalar field, we showed that an infinite number of invariants characterize the large-scale
structure of the scalar field with Eθ (k) = Cθk2 + o(k2) at k → 0. The contributions of the nonlinear
terms become negligible in the time derivative of R̂ij (k, t ) and the time derivative of �̂(k, t ) at any
t (�t0) at k → 0, when R̂ij (k, t0) = Mαβ (k/k) + o(1) and �̂(k, t0) = χ (k/k) + o(1) at k → 0,
respectively, where t0 is an appropriate initial time. This implies the invariance of Mαβ (k/k) and
χ (k/k).

Implications of the invariance and self-similarity were examined. By the use of the invariants and
a self-similarity assumption for R̂ij (k) in appropriate k and time ranges, it was analytically derived
that flow anisotropy is persistent at large scales. The anisotropy is measured using the ratio of the
intensity of each velocity component 〈u2

i 〉/〈u2
j 〉 for i 	= j , and the ratio of the integral length scales

of an nth velocity component L
(n)
i /L

(n)
j for i 	= j . The persistent anisotropy 〈u2

i 〉/〈u2
j 〉 for i 	= j was

obtained under the assumption that the length scales are independent of velocity components. Note
that under the assumption, the persistence holds in the self-similar states of any freely decaying
incompressible homogeneous turbulence with E(k) = Ck2 + o(k2) at k → 0. Moreover, the scalar
anisotropy is preserved, which is measured by the ratio of the scalar integral length scales Lθ

i /L
θ
j for

i 	= j , when self-similarity of �̂(k) holds in appropriate k and time ranges. The self-similarity is not
imposed on the range in which viscous dissipation or scalar diffusion dominates. The self-similarity
assumed here may be expected, if homogeneous turbulence becomes fully developed or mature.
However, the assumption may not hold for premature states of turbulence.

In deriving the time independence of Lθ
i /L

θ
j (i 	= j ), it is not necessary to assume any particular

dynamics for the velocity field, as long as the self-similarity, Eq. (61), and a certain decay rate in r

of 〈uj (x)θ (x)θ (x + r )〉 are satisfied. This implies that the time independence is not a consequence
of the time independence of L

(n)
i /L

(n)
j (i 	= j ), i.e., the former holds independently from the latter.
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Using these analytical results and dimensional analysis, we found the decay laws of the fully
developed generalized Saffman turbulence, and the decay laws of the fully developed passive scalar
turbulence with generalized Corrsin’s invariants in fully developed generalized Saffman turbulence.
The DNS examination of theoretical predictions will be reported elsewhere.

ACKNOWLEDGMENTS

The authors are grateful to Professor P. A. Davidson for the stimulating discussions and letting
us know about Ref. [32]. This work was supported by Grant-in-Aids for Scientific Research
(S)16H06339 and (C)17K05573 from the Japan Society for the Promotion of Science.

APPENDIX A: THE ESTIMATE (16)

Let g and h be any two observables in statistically homogeneous turbulence. In order to avoid
complexity associated with dealing with the Fourier transforms of functions that are not integrable
in general, it is convenient to introduce a damping factor, say, dε(x), and define gε(x) and hε(x) as
gε(x) = g(x)dε(x) and hε(x) = h(x)dε(x). We put dε(x) = exp(−ε2x2) in this Appendix, where
x = |x| and ε > 0.

In statistically homogeneous turbulence, the correlation 〈g(x)h(x + r )〉 is independent of x, so
that we have

〈ĝε(−k)ĥε(k)〉 = 1

(2π )6

〈{∫
R3

gε(x) exp(ik·x) dx
}{∫

R3
hε( y) exp(−ik· y) d y

}〉

= 1

(2π )6

∫
R3

∫
R3

〈g(x)f ( y)〉 exp[−ε2(x2 + y2)] exp[−ik·( y − x)] dx d y

= 1

8(2π )6

∫
R3

exp(−ε2q2/2) dq
∫
R3

Rgh
ε (r ) exp(−ik·r ) d r

= 1

(2
√

2πε)3
R̂gh

ε (k), (A1)

where r = y − x, q = y + x, y = | y|, q = |q|, R
gh
ε (r ) = 〈g(x)h(x + r )〉 exp(−ε2r2/2), R̂

gh
ε (k)

is the Fourier transform of R
gh
ε (r ) with respect to r , and we used x2 + y2 = (r2 + q2)/2.

Since

〈ĝε(−k)ĥε(k)〉 � 〈|ĝε(−k)|2〉1/2〈|ĥε(k)|2〉1/2, (A2)

because of the Cauchy-Schwarz inequality, Eq. (A1) gives

R̂gh
ε (k) �

{
R̂gg

ε (k)
}1/2{

R̂hh
ε (k)

}1/2
. (A3)

Let g(x) and h(x) be given by g(x) = Nαβ (x) − 〈Nαβ (x)〉 and h(x) = uj (x). Then 〈g(x)〉 =
〈h(x)〉 = 0. If the correlations Rgg (r ) = 〈g(x)g(x + r )〉 and Rhh(r ) = 〈h(x)h(x + r )〉 decays as
O(r−3) at r → ∞, then in the same way as in the derivation of Eq. (14), we obtain

R̂gg (k) = O(k0), (A4)

R̂hh(k) = O(k0), (A5)

as k → 0. Equation (A3) in the limit of k → 0 and ε → 0 then implies the estimate (15).
The estimates (A4) and (A5) are closely related to the squares (

∫
V

g dx)2 and (
∫
V

h dx)2, where
the symbol

∫
V

dx denotes the integral over a certain large domain with the volume V . The average
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of the former is given by

〈(ḡ)2〉 = 1

V

∫
V

〈g(x)g(x + r )〉d r = 1

V

∫
V

Rgg (r ) d r, (A6)

where 〈g〉 = 0 and ḡ is defined by ḡ = (
∫
V

g dx)/V . If one can assume that the random field g(x)
at any position is statistically independent from g(x + r ) at any different position with sufficiently
large r in an appropriate sense so that 〈(ḡ)2〉 = O(1/V ) in the limit of V → ∞, as is assumed
for the angular momentum in Ref. [31], then Eq. (A6) implies that the integral

∫
V

Rgg (r ) d r must
be finite. (But, it is not trivial whether the statistical independence assumption is well satisfied in
turbulence.) We then have the estimate (A4) for k → 0. The estimate (A5) can be obtained similarly.

APPENDIX B: ANALYTICITY IN TIME

Saffman [4] presented an argument to show that the invariance of Mαβ in Eq. (8), based on
the assumption that the solution û(k, t ) of the NS equation (1) together with the incompressibility
condition (2) is analytic in time at t = t0. Moreover, he presented an example of the breakdown
of the analyticity in time. He presented another example in Ref. [32]. One might think that
these examples provide counter-examples invalidating the analyticity used in the derivation of the
invariance of Mαβ in Eq. (8). However, recall that a certain initial spectrum at k 
 1 was assumed
to decrease sufficiently fast in the derivation, and the velocity in the examples does not satisfy these
conditions. In general, examples violating certain conditions do not invalidate a statement assuming
the conditions. To see this point, consider the vorticity ω(x, t ) obeying the Stokes dynamics:

∂

∂t
ω(x, t ) = ν∇2ω(x, t ), (B1)

for which one can easily construct an example that is in conflict with analyticity in time. For
example, suppose that ω(x, t0) = 0 in a certain compact domain, say D, but nonzero outside D.
Then, at t = t0, (∂/∂t )nω(x, t ) = 0 for any positive integer n in D, while ω(x, t ) may be nonzero
at t (>t0). Therefore, this example conflicts with the assumption of the analyticity of ω(x, t )
in t . However, in k space, this does not invalidate the assumption of the analyticity in time of
ω̂(k, t ) = ω̂(k, t0) exp{−νk2(t − t0)}.

APPENDIX C: DECOMPOSITION OF Mαβ (k)

Let v(x) be given by v = u + η, where η is any statistically homogeneous vector satisfying
Piαη̂α (k) = 0. Then we have Piαv̂α (k) = ûi (k), and R̂ij (k) = PiαPjβMαβ (k), i.e., Eq. (7), where
〈v̂α ( p)v̂β (k)〉 = Mαβ (k)δ(k + p). Substitution of v̂ = û + η̂ into 〈v̂α ( p)v̂β (k)〉 gives

Mαβ (k) = MI
αβ (k) + MC

αβ (k), (C1)

where MI
αβ (k) = R̂αβ (k) and PiαPjβMC

αβ (k) = 0. Here MI
αβ (k)δ(k + p) = 〈ûα ( p)ûβ (k)〉, and

MC
αβ (k)δ(k + p) = 〈η̂α ( p)η̂β (k)〉 + 〈η̂α ( p)ûβ (k)〉 + 〈ûα ( p)η̂β (k)〉. It is seen that Eq. (7) is redun-

dant in the sense that it holds for any MC
αβ (k) satisfying PiαPjβMC

αβ (k) = 0.

The E-Z-H decomposition of R̂αβ (k) implies that

MI
αβ (k) = R̂αβ (k) = E (k)Pαβ (k̃) + �[Z (k)Nα (k̃)Nβ (k̃)] + iH(k)εαβμk̃μ, (C2)

where εαβμ is the alternating third-order tensor, E (k) and H(k) are real, and Z (k) is complex [1,18].
Here N (k̃) = e(2)(k̃) − ie(1)(k̃), in which e(1) and e(2) are unit vectors defined by

e(1)(k̃) = k̃ × i3

|k̃ × i3|
, e(2)(k̃) = k̃ × e(1)

|k̃ × e(1)| , (C3)

and i3 is taken as here i3 = (0, 0, 1).
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When Eq. (19) holds, E (k), Z (k) and H(k) can be written as E (k) = E0(k̃) + o(1), Z (k) =
Z0(k̃) + o(1), and H(k) = H0(k̃) + o(1), as k → 0, where E0(k̃), Z0(k̃) and H0(k̃) are O(k0).
Equations (7) and (10) give

Mαβ (k̃) = E0(k̃)Pαβ (k̃) + �[Z0(k̃)Nα (k̃)Nβ (k̃)] + iH0(k̃)εαβμk̃μ. (C4)

The right-hand side of Eq. (C4) is expanded as Eqs. (12) and (13).

APPENDIX D: TURBULENCE DECAY UNDER EXTERNAL FORCES

Let us consider homogeneous incompressible turbulence under the Coriolis force as a represen-
tative example of turbulence under external forces. Its fluid motion obeys Eqs. (1) and (2), but a term
representing the force −2	 × u is added to the right-hand side of Eq. (1). Here we set 	 = (0, 0,�)
and use the so-called helical decomposition [1,18]:

û(k, t ) = ξ1(k, t )N (k̃) + ξ−1(k, t )N (−k̃). (D1)

Based on the field defined by

as (k, t ) = exp(−2i�sk̃3t )ξs (k, t ) (s = ±1), (D2)

and in almost the same way as in the derivation of Eq. (19), it is shown that

∂

∂t
Ass ′ (k, t ) = o(1) as k → 0, (D3)

under certain assumptions, where Ass ′ (k, t )δ(k + p) = 〈as ( p, t )as ′ (k, t )〉 and

Ass ′ (k, t ) = χa
ss ′ (k̃) + o(1) for t � t0, (D4)

in which t0 is the initial time. Here χa
ss ′ (k̃) is a time-independent constant and may depend on the

direction k̃. Note that the leading order term of Ass ′ (k, t ) at k → 0 is time independent, but that of
R̂ij (k, t ) at k → 0 can be in general time dependent. Because of the prefactor exp(−2i�st k̃3) in
Eq. (D2), it is unlikely that the self-similarity assumption can hold as in Eq. (32). Therefore, the
analysis presented in this paper is in general not applicable to R̂ij (k, t ) for homogeneous turbulence
under external forces.
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