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Abstract 

Momentum exchange impact dampers (MEIDs) were proposed to control shock 

responses of mechanical structures. They were applied to reduce floor shock vibrations 

and control lunar/planetary exploration spacecraft landings. MEIDs are required to 

control an object’s velocity and displacement, especially for applications involving 

spacecraft landing. Previous studies verified numerous MEID performances through 

various types of simulations and experiments. However, previous studies discussing 

optimal design methodology for MEIDs are limited. This study explicitly derived the 

optimal design parameters of MEIDs, which controls the controlled object’s 

displacement and velocity to zero in one-dimensional motion. Additionally, the study 

derived sub-optimal design parameters to control the controlled object’s velocity within 

a reasonable approximation to derive a practical design methodology for MEIDs. The 

derived sub-optimal design methodology could also be applied to MEIDs in two-

dimensional motion. Furthermore, simulations conducted in the study verified the 

performances of MEIDs with optimal/sub-optimal design parameters. 
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1. Introduction 

The control of shock responses in applications involving floor vibrations and landing 

of lunar/planetary exploration spacecraft is a very important engineering problem. 

Floor vibration is a common problem in industrial and environmental areas (Nyawako, 



2015). The large vibration response and transmitted force in forging machines 

decreases machining accuracy and causes vibration pollution to the surroundings. Floor 

vibrations in bank buildings due to shock excitation by human activities can cause floor 

vibrations and noises to the ceiling of lower rooms. Fundamental researches of shock 

response analyses discussed an impact on a bar(Oda and Hukatsu, 1979), for example. 

A vibration reduction methods using additional masses, which are called impact 

dampers were studied by Thomas MD and Sadek MM (1974), which a free mass can 

vibrate within end stops which are fixed to a vibrating system. Typical parameters of 

the impact dampers are mass ratio, coefficient of restitution and gap size of the free 

mass (Bapat CN and Sanker S, 1985a; Duncan MR et al., 2005; Cheng J and Xu H, 

2006). Resilient type free mass case was also studied to concern noise issue (Cheng CC 

and Wang JY, 2003). As further expansion, multiple free masses case (Bapat CN and 

Sanker S, 1985b) and multi-particle type impact damper (Saeki M, 2005) was also 

discussed. Such devices using the similar mechanism as MEID is not only in 

mechanical engineering, but also in civil engineering (Lu Z, 2011a; Lu Z, 2011b; Lu Z, 

2014; Lu Z, 2016a; Lu Z, 2016b; Lu Z, 2017). These studies mainly focuses on 

suppressing periodical motion by dissipation of the shock between the free mass and a 

vibrating system. From the viewpoint of controlling the initial shock response, 

momentum exchange impact dampers (MEIDs) were proposed (Son et al., 2007). The 

billiards principle shown in Fig. 1 can be used to explain the mechanisms of a MEID, 

wherein the MEID reduces the shock response of an object by exchanging the 

momentum of the object with the MEID’s own momentum. This model is also termed 

as the Newton’s cradle (Dondo and Noborio, 2008).  

 

 

Figure 1. Conceptual diagram of a MEID. 

 

 

According to the type of mechanism employed for momentum transfer, MEIDs can be 

classified into three types. The first MEID type is the passive MEID (PMEID), which 

is composed of only passive elements such as linear springs and dashpots (Son et al., 

2007; Son et al., 2008a). The second MEID type is the active MEID (AMEID), which 

includes active actuators. AMEID can greatly reduce the influence of shock responses 

because of its effective momentum exchange through the actuators when compared to 

PMEID. Previous studies proposed AMEID as a solution for the floor shock response 

control problem and discussed its effectiveness through simulations (Son et al., 2008b; 

Son et al., 2010). 

 

The application of MEID involving landing of lunar/planetary exploration spacecraft 

was discussed by extant studies (Hara et al., 2011; Kushida et al, 2013a). Figure 2 

shows a schematic representation of a spacecraft-landing problem. The spacecraft-
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landing mission necessitates the reusability of the landing gear (Hufenbach et al., 2013). 

Previously, aluminum-foam-based landing gear has been proposed as a representative 

landing gear (Kitazono et al., 2010). This involved plastic deformation of the landing 

gear such that there was no reusability. Also, the landing problem needs to control a 

spacecraft’s attitude before tripping of the spacecraft. Thus, the method which can 

control the first impact is primarily important rather than periodical vibration control 

methods. From this viewpoint, MEID is an important candidate for spacecraft landing 

gear. Spacecraft rebound and tripping are the most important problems in a 

lunar/planetary exploration mission. Thus, when MEIDs are used to solve the landing 

problem, the focus should be on reducing displacement and velocity of a spacecraft and 

not the transferred force. 

 

 

Figure 2. Schematic representation of a spacecraft landing on the moon (Kushida, 

2013; Kushida and Hara, 2015; Kushida et al., 2013a, 2013b). 

 

The third MEID type is an active/passive hybrid MEID (HMEID), which was suggested 

in order to increase the effectiveness of PMEID with small actuators in cases in which 

it is difficult to install a sufficiently strong actuator (Kushida et al, 2013b). HMEID 

uses actuators in combination with the passive elements. Additionally, Hara et al. 

(2012) discussed the mechanism that damper masses were thrown in the impact 

direction and opposite direction to further improve the shock control effectiveness of 

HMEIDs. 

 

 

It is necessary to prevent tripping during the landing of a lunar/planetary exploration 

spacecraft. Thus, MEIDs are required to reduce both translational motion and rotational 

motion. MEID design methodology for two-dimensional motion is also important to 

reduce both translational and rotational motion. Kushida (2013) and Watanabe et al. 

(2014) discussed MEID design examples to prevent spacecraft tripping. Kushida and 

Hara (2015) attempted to generalize and derive MEID parameters that could suppress 

both translational and rotational motions. However, brute-force simulations were used 

to calculate the parameters. Additionally, theoretical analyses were not performed on 

the parameters. 

 

Even in the restricted one-dimensional case without rotational motion, the optimal 

parameter for controlling translational motion was derived by simulation-based 

calculation. Several studies examined MEID responses in one-dimensional motion. 

Fundamental analysis for reducing a controlled object’s rebound in a single-axis falling 

type problem was discussed (Kushida et al., 2013a). This involved the optimization of 

a single parameter, namely spring stiffness that connects the controlled object and 



damper mass. Both simulations and experiments were used to verify the optimization 

(Kushida et al., 2013b). However, the parameter was not optimized explicitly. 

 

Aiming at systematic design of MEIDs, this study theoretically derived MEID design 

methodology for an object that collides with a wall. The design aim included controlling 

the displacement and velocity of the object after collision. This problem is termed as 

the object-wall-collision problem in this study. Although this is a widely known 

phenomenon that is discussed as multiple ball collision on a wall or ball-chain collision 

problem (Herrmann et al., 1981, 1982). Furthermore, this study models not only head-

on collision but also collision that induces rotational motion in lunar/planetary 

exploration spacecraft landing. 

 

This study offers the two advantages. First, the study described dynamics of a MEID 

model with one-dimensional motion and used theoretical analysis to derive the optimal 

parameters of the model, which controlled both displacement and velocity of the object. 

Then, sub-optimal parameters that control the object’s velocity were derived as a 

practical value. The study classified vibration modes induced by a shock and focused 

on a representative mode that corresponded to an actual collision phenomenon. The 

analyses for the sub-optimal parameter were performed with a reasonable 

approximation based on energy and momentum conservation laws. Moreover, the 

robustness of MEIDs designed with the optimal parameters and sub-optimal parameters 

were compared with each other. Second, the study described two-dimensional 

dynamics of MEIDs by using energy, momentum, and angular momentum conservation 

laws and located sub-optimal parameters that controlled the object’s translational and 

rotational velocity. The robustness of MEIDs designed with the sub-optimal parameters 

is confirmed by the assistance of numerical simulations. 

2. MEID design for one-dimensional motion 

The most fundamental problem of MEIDs include one-dimensional motion collision 

problem and MEID design methodology for the colliding body. This section aims to 

derive the design methodology for the one-dimensional problem. Kushida et al. (2013a) 

studied a similar problem with a spacecraft-landing model, which was termed the 

single-axis falling-type problem. However, the problem did not concretely clarify the 

contacting phase in which body mass was subjected to an impact force. The present 

study analytically analyzed the phase to derive obvious optimal design parameters. First, 

optimal design parameters that controlled both the object’s displacement and velocity 

to zero were derived. Second, sub-optimal parameters that controlled the object’s 

velocity to zero were discussed. 

2.1. Dynamics of MEID model with one-dimensional motion 

Figure 3 shows the MEID model with one-dimensional motion. This model consists of 

two masses, m and M, corresponding to the damper mass and the body mass, 

respectively. Their displacements are described by x(t) and X(t), respectively. 

Additionally, k denotes the contact stiffness between the damper mass and body mass 

and K denotes the body mass and wall. To focus on the first impact control rather than 

periodical motion, the important parameters for this paper are mass and spring constant, 

rather than damping coefficient. Also, to simplify the following analyses and obtain the 

analytical solution of the model, this paper does not consider energy dissipation which 



is described by dashpots. The collision problem of this model was termed as the object-

wall-collision problem in one-dimensional motion. 

 

 

Figure 3. MEID model of a one-dimensional collision. 

 

The representative collision phenomenon of the model is schematically depicted in Fig. 

4. Here, “collision,” t = t0 = 0, is defined as the first moment at which the body mass 

touches the wall. It corresponds to the moment when the absolute displacements of the 

body mass and damper mass become zero [X(t0) = x(t0) = 0]. The velocities of the body 

mass and the damper mass at this moment are v0 [V(t0) = v(t0) = 0]. Thereafter, the body 

mass immediately leaves the wall and the displacement becomes 0 again [X(tb) = 0]. 

This moment is defined as “body-separation,” [t = tb]. After body-separation, the wall 

spring is eliminated and the body is separated from the wall. Subsequently, the 

displacement of the damper mass becomes equal to that of the body mass [x(td) = X(td)]. 

This moment is called “damper-separation,” [t = td]. After damper-separation, the 

spring that connects the damper mass to the body mass is eliminated, and the damper 

mass and the body mass are separated. The intervals t such that t ≤ t0, t0 ≤ t ≤ tb, tb ≤ t ≤ 

td, and td ≤ t are called “Phase 0”, “Phase 1”, “Phase 2”, and “Phase 3”, respectively. 
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Figure 4. Schematic representation of the mechanical transitions of one-dimensional 

motion MEID collisions. 

 

This study aims to derive optimal and sub-optimal MEID design parameters. The 

optimal design parameters control the body mass displacement and velocity after 

damper-separation to 0: X(td) = 0, V(td) = 0. This condition also implies that tb = td and 

x(td) = 0. These conditions are referred to as the “optimal condition” in this section. The 
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sub-optimal design parameter only controls the body mass velocity after damper-

separation to 0: V(td) = 0, where X(td) = x(td). These conditions were referred to as “sub-

optimal condition” in this section. 

2.2. Optimal design parameters 

This section obtains the optimal design parameters by theoretical analyses and shows 

their typical responses by simulations. 

 

2.2.1 Theoretical analyses 
Optimal design parameters can be obtained by theoretical analyses of response of the 

model described in Fig. 3. The following equation describes the equation of motion in 

phase 1 in Fig.4: 
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where Mm=ρ , mk=2ω , MKΩ =2
. The natural frequency of the system is 

summarized by the following expression: 

 

 { } 



 −++±++=±

22222222 4)1()1(
2

1
ΩΩΩ ωωρωρω . (2) 

 

Here, ω- and ω+ denote to first and second mode of the system vibration, respectively. 

By using the above equations and initial condition of phase 1, the solution of the system 

is described by the following expression: 
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When the system satisfies the optimal conditions, equation (3) may be expressed as the 

following equation:  
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Equation (5) is satisfied when sin(ω-t) = sin (ω+t) = 0. Then, the optimal conditions also 

specifies that V(td) = 0. Here, γ± is defined as γ+ = cos(ω+t), γ- = cos(ω-t). In order to 

satisfy Equation (5), the combinations of γ± include (γ+,γ-) = (1, 1), (1, -1), (-1, 1), (-1, 

-1). The possible combinations that meet the optimal conditions include (γ+,γ-) = (-1, 1), 

(1, -1). This results in the equation, 
22)1( Ω=+ ωρ ; therefore, 
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by introducing Ωωλ = . Additionally, (γ+,γ-) = (-1, 1), (1, -1), ω-t and ω+t can be 

described as ω-t = nπ, ω+t = (n + [2p - 1]) π, where n, p are natural numbers. From 

equations (2) and (6), the mass ratio ρ can be specified by the following equation: 

 

 
( )( )

( )

2

122

12122








−+

−−+
=

pnn

ppn
ρ . (7) 

 

Here, natural numbers n and p denote the first and second mode wave numbers, 

respectively. In the object-wall-collision problem, with optimal conditions, the possible 

first mode wave number in phase 1 is π, i.e., n = 1. Other cases indicated that damper-

separation occurred before or after body-separation [td < tb or tb < td].  

 

2.2.2 Simulations 
This subsection shows typical responses of the MEID model of a one-dimensional 

collision, tuned with the optimal parameters. The responses are shown in figure 5. This 

study assumed the case with n = 1 and p = 1 as the representative optimal parameters. 

Hence, this resulted in the simplest response with the lightest damper mass. 

 

 
(a) n = 1, p = 1, 

m = 0.56 kg, k = 360 N/m 

 
(b) n = 1, p = 2, 

m = 3.5 kg, k = 779 N/m 

 
(c) n = 1, p = 3, 

m = 8.5 kg, k = 895 N/m 

 

Figure 5. Typical responses of an optimal MEID in one-dimensional motion. 

 (v0 = -1 m/s, M = 1 kg, K = 1 kN/m, bold: displacement of the body mass; thin-

dashed: displacement of the damper mass)  

 

2.3. Sub-optimal design parameters 

This section obtains the sub-optimal design parameters by theoretical analyses and 

shows its typical response by simulations. 

 

2.3.1 Theoretical analyses 
Sub-optimal design parameters can be obtained by theoretical analyses based on 

appropriate assumption. The optimal condition consisted of the following three 

restrictions: X(t1) = 0, x(t1) = 0, and V(t1) = 0. As a result, there was one point for optimal 
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parameters in a ρ-λ space, if the natural number was set as n = 1 and p = 1. By relaxing 

a restriction, the sub-optimal condition consisted of the following two restrictions: X(t2) 

= x(t2), V(t2) = 0. Thus, the sub-optimal parameters could be represented as a curve in 

the ρ-λ space. The parameters are obtained by simulations so that they are termed 

simulation-based sub-optimal parameters. Moreover, this study approximates the sub-

optimal condition by assuming that the damper mass natural frequency is sufficiently 

small in order to simplify the parameter relation of the sub-optimal condition. This 

subsection derived the approximated sub-optimal parameter curve, which is termed 

analytically-obtained sub-optimal parameters curve.  

 

Furthermore, the relationship between tb and td varies based on the dynamics of the 

system. For example, collision and body-separation possibly occurred N times before 

damper-separation for a non-negative integer N. This study classifies collision vibration 

into the modes denoting “mode N” with respect to every N. 

 

Figure 6 shows exemplary representations of collision vibration modes. Fig. 6 (A) 

shows “Mode 0” in which damper-separation occurred before body-separation. Fig. 6 

(B) shows “Mode 1a,” in which damper-separation occurs after body separation, and 

body velocity after the damper-separation is positive. Fig. 6 (C) shows “Mode 1b” in 

which damper-separation occurs after body separation, and body velocity after damper-

separation is negative. Thus, boundary line between mode 1a and 1b corresponds to the 

optimal parameters at which the body velocity was zero. Fig. 6 (D) shows “Mode 2” in 

which the second collision occurs before damper separation. Fig. 6 (E) shows “Mode 

3” in which second collision and second body-separation occurs before damper-

separation. The higher modes in which the number of collisions and/or body-

separations occurs three times or more are also observed in the parameter space. 

 

 

(A) Mode 0 

(ρ = 0.5, λ = 1.5) 

 

(B) Mode 1a 

(ρ = 0.2, λ = 0.3) 

 

(C) Mode 1b 

(ρ = 0.5, λ = 0.3) 

 

(D) Mode 2 

(ρ = 0.9, λ = 0.3) 

 

(E) Mode 3 

(ρ = 1.5, λ = 0.3) 
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Figure 6. Schematic representations of one-dimensional collision vibration modes. 

(bold: displacement of the body mass; thin-dashed: displacement of the damper mass) 

 

Figure 7 summarizes actual collision vibration modes variation according to the system 

parameters. In conditions involving smaller ρ and λ values, the collision phenomenon 

results in modes 1a and 1b. The boundary line between mode 1a and 1b corresponds to 

the optimal parameters of the object-wall-collision problem, which controls body mass 

velocity after damper-separation to 0. In heavier ρ and smaller λ condition, collision 

and body-separation easily occurred several times, i.e., at higher modes. In the higher 

λ condition, damper-separation possibly occurred before body-separation. 
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Figure 7. MEID one-dimensional collision vibration modes. (M = 1 kg, K = 1 kN/m, 

v0 = 1 m/s) 

 

This study focused on Mode 1 for purposes of simplicity. The collision vibration mode 

of the system can be tuned to Mode 1 without difficulty by choosing the system 

parameters. The design target of the analysis involved suppressing body mass velocity 

to approximately zero after damper-separation [V(t2) = 0]. This section derives the sub-

optimal parameters indicated by a boundary line between modes 1a and 1b by 

reasonable approximation. 

 

In this section, Mode 1a and 1b were assumed, i.e., in smaller ρ and λ. This condition 

indicated that a damper mass and spring effect were sufficiently small. Given this 

assumption, the single mass collision problem and MEID collision problem were 

compared. Figure 8 shows the comparison. In the single mass collision problem, the 

following conservation laws are applied: 
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where P  denotes the collision momentum from the wall. From equation (8), the 

collision momentum P  can be calculated according to the following expression: 

 

 02MvP = . (9) 



 

 

 
(a) A mass collision 

 
(b) A MEID collision 

 

Figure 8. Momentum transfer of a mass and MEID collision. 

 

The assumption that “ρ and λ are sufficiently small” was then considered. The collision 

impact to the body mass of the MEID collision P was similar to that of a mass collision 

P  [ PP ≈ ]. This assumption simplified analysis. Initial momentum of a damper mass 

and a body mass are denoted by –mv0 and –Mv0, respectively. The body mass takes the 

collision impact P = 2Mv0, and hence the body mass momentum becomes Mv0. 

However, the damper mass momentum (denoted by–mv0) did not change because the 

spring effect was sufficiently small. The total momentum of the system is denoted by 

(M – m)v0. In the sub-optimal condition, the total momentum of the system was 

transferred to the damper mass such that the damper mass velocity after the damper 

separation is (M – m)/m⋅v0. The following expression was derived by using the energy 

conservation law: 
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The mass ratio may be obtained by the following expression after solving equation (10): 
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This is the sub-optimal parameter of MEID in one-dimensional motion.  

 

2.3.2 Simulations 
This subsection shows a typical response of the MEID model of a one-dimensional 

collision, tuned with the sub-optimal parameters. Here, initial velocities of both the 

body mass and the damper mass are – 1 m/s. Initial displacements of them are 0 m. The 

response is shown in figure 9. The body mass velocity becomes zero but displacement 

does not keep zero. 

 

Figure 10 summarized optimal, analytically-obtained sub-optimal and simulation-based 

sub-optimal parameters. The optimal parameters solved in Eqs. (6) and (7)  are 

definitely located at a point in the parameter space and coincides with a terminated 

point of the simulation-based sub-optimal parameter curve as a boundary between 

Mode 1a and 1b in Figure 7. It is noted that the termination is caused by the appearance 

of Mode 0. The result further shows that the analytically-obtained sub-optimal 

parameter set derived in Eq. (11) does not include the optimal parameter point, meaning 

−Mv0 Mv0

P
_

K

M −Mv0

−mv0

Mv0

P

−mv0

m

k

K

M
0

(M − m)v0



that both the displacement and the velocity do not vanish completely in the analytically-

obtained sub-optimal condition.  It is however worthy of note that the analytically-

obtained sub-optimal line converges to the simulation-based sub-optimal curve as 

0→λ , which is consistent with the assumption of the approximation. 
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Figure 9. An example of the time response of analytically-obtained sub-optimal 

parameters  

(bold: displacement of the body mass; thin-dashed: displacement of the damper mass) 

(M = 1 kg, K = 1 kN/m, ρ = 1/3, λ = 0.3). 

 

 

Figure 10. Optimal parameters, analytically-obtained sub-optimal parameters and 

simulation-based sub-optimal parameters. 

 

2.4. Robustness evaluation 

This section verifies the robustness of MEIDs that were tuned in optimal and sub-

optimal parameters. This was performed by varying the stiffness of a wall and 

evaluating the body mass velocity. Since this paper focuses on momentum exchange 

using MEIDs for controlling shock response of the first landing impact, the important 

parameters are mass and spring constant. In a practical situation, effective stiffness of 

a wall is not correctly known before landing because of incomplete ground-condition 

estimation. Thus, this paper set mass as a known value and focuses on robustness 
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against variation of stiffness of a wall rather than a viscosity. Figure 11 shows the 

simulation results. The results indicated that the optimal-tuned MEID performance was 

dramatically reduced by the wall stiffness K variation. Conversely, the sub-optimal-

tuned MEID performance was especially stable in the area where the wall stiffness 

(denoted by K) was hard. However, the performance was degraded in the lower K area 

because the approximation that “λ is sufficiently small” did not fit in this area. Based 

on this discussion, the MEID should be designed with the optimal parameter in the case 

where the wall stiffness was precisely obtained. In contrast, the MEID should be 

designed with the sub-optimal parameter in the case in which the wall stiffness is 

unclear. 
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Figure 11. Robustness evaluation of the optimal MEIDs and sub-optimal tuned 

MEIDs 

(M = 1 kg, bold: MEID tuned in the optimal parameter for K = 1 kN/m; thin-dashed: 

MEID tuned in the sub-optimal parameter). 

3. MEID design for two-dimensional motion 

3.1. Design parameters of a MEID in two-dimensional motion 

The aim of this section included deriving theoretical MEID design methodology, which 

suppressed both translational and rotational motions after collision. This parameter 

design was similar to analytically-obtained sub-optimal parameters in one-dimensional 

motion since the design focused on translational and rotational velocities. From this 

viewpoint, the momentum transfer discussion in the previous section was expanded to 

include two-dimensional motion in this section. 
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Figure 12. Object-wall-collision of a mass. 

 

 

This section first introduced a two-dimensional collision model of a mass as shown in 

Fig. 12 to discuss the design methodology. In the collision model, a body mass (denoted 

by M) with an inertia of moment (denoted by I) collided with a wall. The body mass 

was assumed as a bar with a length (denoted by 2Li). Thus, its moment of inertia is 

given by 32

iMLI = . A spring element described the contact force, which was normal 

to the wall and was between the body mass and the wall during the period from the 

collision to the body separation. The force parallel to the wall was described by a 

constraint. Thus, the contact point did not slide in a direction parallel to the wall. This 

collision phenomenon was referred to as the object-wall-collision in this study. 

 

The momentum conservation law, angular momentum conservation law, and energy 

conservation law are derived through the collision by the following equations: 
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where v0 and ω0 (= 0) denote the initial velocity and angular velocity, respectively; 
1v  

and 
1ω  denote velocity and angular velocity after collision, respectively; and P  denotes 

the collision momentum from the wall to the body of the object-wall-collision model 

without MEID. This discussion ignored the force parallel to the wall for the sake of 

simplicity. Furthermore, P  was calculated based on equations (12)–(14) and was given 

by the following equation: 
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Figure 13. Two-dimensional collision model of MEID. 

 

Following this, the object-wall-collision model with MEID as shown in Fig. 13 was 

discussed. The model consists of two masses. Dynamics of a model that is composed 

of multiple masses was discussed in multibody dynamics fields (Kane, 1961). This 

study simply discusses the dynamics on the bases of conservation laws to derive the 

analytically-obtained sub-optimal design parameters. The following equations 

summarize the conservation laws:  
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where V1 and v1 denote the body and the damper mass velocity after collision, 

respectively. Furthermore, ω1 denotes the body mass angular velocity after collision 

and P denotes the collision momentum from the wall to the body of the object-wall-

collision model with MEID. This section derived the optimal MEID design parameters 

(denoted by m, k and l), which suppressed the body velocity and angular velocity after 

collision (V1 = 0, ω1 = 0) based on equations (15)–(18).  

 

In this section, it was assumed that the MEID spring stiffness (denoted by k) was much 

smaller than that of wall stiffness (denoted by K). Additionally, the damper mass 

(denoted by m) was assumed to be much smaller than the body mass (denoted by M). 

These assumptions were the same as those in the one-dimensional motion study; that 

is, “ρ and λ are sufficiently small.” Thus, the collision momentum of a mass (denoted 

by P ) was assumed as similar to the collision momentum with MEID P [ PP ≈ ]. Under 

the assumptions (V1 = 0, ω1 = 0, PP ≈ ), the analytically-obtained sub-optimal MEID 

parameters were derived as the following equations. 
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The motion of the body of the object-wall-collision model could be suppressed with the 

MEID by using the above analytically-obtained sub-optimal parameters. However, the 

body inertia of moment (denoted by I) must exceed ML2. This optimization cannot be 

applied when I is smaller than ML2.  

 

3.2. Simulation studies 

This section discussed the effectiveness and the robustness of the optimal design 

parameters obtained in the previous section. 

 

3.2.1 Effectiveness of the theoretical results 

First, the motions of the object-wall-collision models without MEID and with the 

optimal MEID were compared. Table 1 and 2 summarize the model parameters of the 

model without MEID and the model with the optimal MEID, respectively. In this 

section, initial displacement and angular displacement of the body are 0 m. MEID 

spring initial extension amount is also 0 m. Initial rotational velocity is 0 rad/s. Initial 

horizontal velocity is 0 m/s, vertical velocity is – 1 m/s. 

The corresponding time responses are shown in Figures 14 and 15, respectively. By 

applying the analytically-obtained sub-optimal parameters, translational and rotational 

velocities after collision were approximately suppressed in a practical manner. 

 

Table 1. Parameter of the object-wall-collision model without MEID. 

 

Parameter Symbol Value Unit 

Body mass M 1 kg 

Inertia of the body I 5 kg m2 

Stiffness of the wall K 1 N/m 

Displacement of the collision point L 1 m 

 

Table 2. Parameter of the object-wall-collision model with sub-optimal MEID. 

 

Parameter Symbol Value Unit 

Body mass M 1 kg 



Parameter Symbol Value Unit 

Inertia of the body I 5 kg m2 

Stiffness of the wall K 1 N/m 

Displacement of the collision point L 1 m 

Damper mass (sub-optimal designed) m 0.19 kg 

Damper mass attachment position (sub-

optimal designed) 

l 2.5 m 

 

 

(a) Trajectory 

(bold: body mass attitude 

at the moment of the end 

of the collision; thin: 

trajectory of the gravity 

center; dashed: trajectory 

of the right-end of the 

body; dot-dashed: 

trajectory of the left-end of 

the body) 

 

(b) Displacement of the 

body contact point 

 

(c) Angular displacement 

of the body 

 

(d) Force of collision 

 

(e) Translational velocity 

of the body 

 

(f) Rotational velocity of 

the body 

 

Figure 14. Time responses of the object-wall-collision model without MEID. 
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(a) Trajectory 

(bold: body mass attitude 

at the moment of the end 

of the collision; thin: 

trajectory of the gravity 

center; dashed: trajectory 

of the right-end of the 

body; dot-dashed: 

trajectory of the left-end of 

the body) 

 

(b) Displacement of the 

body contact point 

 

(c) Angular displacement 

of the body 

 

(d) Force of collision 

 

(e) Translational velocity 

of the body 

 

(f) Rotational velocity of 

the body 

 

Figure 15. Time responses of the object-wall-collision model with analytically-

obtained sub-optimal MEID. 

 

3.2.2 Simulation-based optimal parameters 

This section compared the optimal parameters obtained by simulations (Kushida and 

Hara, 2015) and the analytically-obtained sub-optimal parameters in section 3.1. Initial 

conditions of this simulations are same as those of Subsection 3.2.1. The body mass 

translational and rotational velocity after the damper mass separation are evaluated.  

Figure 16 summarizes the comparison. The bold line indicates the relationship that 

suppressed the rotational velocity (denoted by M) at the moment of additional mass 

(denoted by m) separation to zero. The thin line indicates the relationship that 

suppressed the translational velocity (denoted by M) at the moment of additional mass 

separation to zero. The parameters that suppressed both the rotational and translational 

velocities of mass M were l = 2.4 m and m = 0.21 kg. These values were similar to the 
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theoretical values (l = 2.5 m and m = 0.19 kg). The difference was considered as the 

result from the assumption PP ≈ . 
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Figure 16. Comparison of simulation-based optimal parameters and the analytically-

obtained sub-optimal parameters. 

(bold: parameters that suppress rotational velocity of M at the moment of additional 

mass m separation to zero; 

thin: parameters that suppress translational velocity of M at the moment of additional 

mass m separation to zero;  

dot: theoretically obtained sub-optimal parameters). 

 

3.2.3 Robustness of the sub-optimal parameters 

Figure 17 shows the robustness of the sub-optimal parameters calculated by the 

theoretical analyses and simulation-based parameters with respect to the wall stiffness 

variation. Initial conditions of this simulations are same as those of Subsection 3.2.1. 

The body mass translational and rotational velocity after the damper mass separation 

are evaluated. The simulation-based parameters were tuned for K = 1 kN/m such that 

both translational and rotational velocities were controlled at the tuned point. 

Conversely, the sub-optimal parameters experienced some degradation at K = 1 kN/m. 

However, the sub-optimal parameter performances improved at higher values of K. If 

K becomes high, the assumption that “λ was sufficiently small” corresponded well and 

hence the results improved. These results indicated that MEID should be designed with 

the sub-optimal parameters with sufficiently small λ for the two-dimensional motion 

 



 

(a) Translational velocity of the body 

after separation 

 

(b) Rotational velocity of the body after 

separation 

 

Figure 17. Robustness of the sub-optimal parameters and simulation-based parameters 

with respect to the wall stiffness variation 

(bold: sub-optimal parameters; thin-dashed: simulation-based parameters that are 

tuned for K = 1 kN/m) 

 

4. Conclusion 

This study has been systemized MEID design methodology for an object that collides 

with a wall. Damping the translational motion was theoretically analyzed by one-

dimensional model. The optimal MEID parameters that controlled a body mass 

displacement and velocity to zero were solved explicitly. Additionally, analytically-

obtained sub-optimal parameters that controlled only body mass velocity were derived 

using a practical approximation. The approximation assumed that the damper mass 

natural frequency was sufficiently small when compared to that of the body and the 

wall. 

Even in the two-dimensional case allowing rotational motion, the analytically-

obtained sub-optimal parameters to suppress both the translational and rotational 

velocities of the body mass were derived with a suitable approximation. The 

analytically-obtained sub-optimal parameters are obtained from the conservation laws 

of energy and momentum in the one-dimensional model and additionally the angular 

momentum in the two-dimensional model. 

The velocity damping for inaccurate stiffness of the wall is an issue of the design in 

the landing problem for space mission. The robust settings of parameters which are 

adaptable to a wide range of stiffness are required, provided that the constitution of a 

wall material and the resulting stiffness are not estimated a priori. In this study, the 

robustness of MEIDs tuned in the optimal and sub-optimal parameters are compared to 

each other. The complete landing of the body mass with zero velocity is realized by the 

choice of the optimal parameter if the stiffness of the wall is known precisely, whereas 

the MEID with the sub-optimal parameters showed a better robustness compared to the 

MEID with the optimal parameters. Furthermore, the sub-optimal parameter 

performances improved if a good fit was obtained for the approximation for both the 

one-dimensional model and the two-dimensional model. Hence, a MEID with a strong 
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robustness is feasible by the design with the analytically-obtained sub-optimal 

parameters. 

This systematic study will be a basis for future studies, involving an experimental 

study, actual implementation of MEIDs to the lunar/planetary exploration spacecraft, 

and derivation of the optimal parameters of MEIDs in two-dimensional motion. The 

results in this study theoretically summarized previous MEID studies, and the results 

obtained in this study significantly contribute to the actual implementation of MEIDs.  
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