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The one-clean-qubit model (or the deterministic quantum computation with one quantum bit model) is a
restricted model of quantum computing where all but a single input qubits are maximally mixed. It is
known that the probability distribution of measurement results on three output qubits of the one-clean-qubit
model cannot be classically efficiently sampled within a constant multiplicative error unless the
polynomial-time hierarchy collapses to the third level [T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys.
Rev. Lett. 112, 130502 (2014)]. It was open whether we can keep the no-go result while reducing the
number of output qubits from three to one. Here, we solve the open problem affirmatively. We also show
that the third-level collapse of the polynomial-time hierarchy can be strengthened to the second-level one.
The strengthening of the collapse level from the third to the second also holds for other subuniversal models
such as the instantaneous quantum polynomial model [M. Bremner, R. Jozsa, and D. J. Shepherd, Proc. R.
Soc. A 467, 459 (2011)] and the boson sampling model [S. Aaronson and A. Arkhipov, STOC 2011,
p. 333]. We additionally study the classical simulatability of the one-clean-qubit model with further
restrictions on the circuit depth or the gate types.
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What makes a quantum computing model stronger than
classical computing? It is one of themost important questions
in physics and computer science. Quantum advantages have
been shown for several cases, such as the communication
complexity [1,2] and the query complexity [3,4]. However,
the ultimate question “is BPP ≠ BQP?” remains open [5],
while there are several witnesses, such as Shor’s algorithm
[6], that suggest the gap.
Some restricted quantum computingmodels are known to

be as weak as classical computing. For example, quantum
computing that uses only certain types of gates, such as
Clifford gates [7] or matchgates [8–12], can be classically
efficiently simulated. On the other hand, quantum computa-
tional supremacy of several subuniversal quantum comput-
ing models have been demonstrated recently [13–19].
Importantly, the hardness proofs of classical simulations
of these models are based on the strong belief in computer
science that the polynomial-time hierarchy would not
collapse [20].
Terhal and DiVincenzo [13] showed that the output

probability distributions of depth-four quantum circuits
cannot be classically efficiently sampled within a constant
multiplicative error unless BQP is contained in AM, which

is unlikely [23]. Here, we say that a probability distribution
fpzgz is classically efficiently sampled within a multipli-
cative error ϵ if there is a classical polynomial-
time algorithm that outputs z with probability qz such that
jpz − qzj ≤ ϵpz for all z. The consequence, BQP ⊆ AM, of
their result can be strengthened to the collapse of the
polynomial-time hierarchy to the third level by noticing the
fact that nonadaptive measurement-based quantum com-
puting is depth four.
Bremner, Jozsa, and Shepherd [14] showed that the

output probability distributions of instantaneous quantum
polynomial (IQP) circuits cannot be classically efficiently
sampled within a constant multiplicative error unless the
polynomial-time hierarchy collapses to the third level.
Here, an IQP circuit is a restricted quantum circuit where
only X-diagonal gates are applied (or, equivalently, a
Z-diagonal circuit is sandwiched between the global
Hadamards). The essential for their proof is the complexity
class, postBQP, which is the class of problems that can be
solved with a polynomial-time quantum computer with
postselection [24]. Here, postselection is a fictious ability
that a certain measurement result is given with probability
one. Bremner, Jozsa, and Shepherd [14] introduced the
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so-called the Hadamard gadget, which is a subquantum
circuit that enables a Hadamard gate at any place with a
postselection. By using the gadget, they showed that any
quantum circuit that uses H, CZ, and eiZθ, which are
universal, can be written as an IQP circuit with postse-
lections. It means that postIQP, which is the IQP version of
postBQP, is equal to postBQP. Therefore, the classical
efficient sampling of IQP circuits, which implies
postIQP ⊆ postBPP, causes the collapse of the polyno-
mial-time hierarchy to the third level:

PH ⊆ PPP ¼ PpostBQP ¼ PpostIQP ⊆ PpostBPP ⊆ Δ3:

Here PH is the polynomial-time hierarchy, Δ3 is in the third
level of the polynomial-time hierarchy, postBPP is the BPP
version of postBQP, which is actually equal to BPPpath ⊆ Δ3

[25], and it is known that postBQP is equal to PP [24,26].
Aaronson and Arkhipov [17] showed that the output

probability distributions of the boson sampling model,
which is a quantum computer that uses noninteracting
bosons, cannot be classically efficiently sampled within a
constant multiplicative error unless the polynomial-time
hierarchy collapses to the third level. Their proof is similar to
that for the IQP model [14]: noninteracting bosons with
postselections can simulate the Knill-Laflamme-Milburn
(KLM) scheme [27], which is universal, and therefore
postBosonSampling ¼ postBQP.
The multiplicative error approximation is, however,

somehow a strict requirement. In fact, assuming some
unproven mathematical conjectures that are different from
the infiniteness of the polynomial-time hierarchy, the output
probability distributions of the IQP model and the boson
sampling model were shown to be hard to classically
efficiently sample within a constant additive error. Here,
we say that a probability distribution fpzgz is classically
efficiently sampled within an additive error ϵ if there is a
classical polynomial-time algorithm that outputs z with
probability qz such that

P
zjpz − qzj ≤ ϵ. The additive error

approximation is a more relaxed notion of approximation,
and it is also called the L1-norm error approximation or the
total-variation-distance error approximation.
For the IQP model, the no-go result with the additive error

approximation was proved by Bremner, Montanaro, and
Shepherd [15,16]. The no-go result for the boson sampling
case was given by Aaronson and Arkhipov [17]. As men-
tioned before, these no-go results need some unproven
mathematical conjectures different from the infiniteness of
the polynomial-time hierarchy. The result for the boson
sampling model [17] needs two conjectures, the “average
case vs worst case conjecture” and the “anti-concentration
conjecture.” The result for the IQP model [15] assumes a
similar average case vs worst case conjecture, but the anti-
concentration one is no longer a conjecture but a mathemati-
cally proved lemma. (Recently, it was shown that two-design
systems also satisfy the anticoncentration lemma [28].)

The one-clean qubit model [or the deterministic quantum
computation with one quantum bit (DQC1) model] is
another important example of the subuniversal quantum
computing models. It was originally introduced by Knill
and Laflamme [29] in 1998 to model the NMR quantum
computing. The one-clean qubit model starts with the
highly mixed initial state j0ih0j ⊗ ðI⊗n=2nÞ, where I ≡
j0ih0j þ j1ih1j is the two-dimensional identity operator.
Any unitary operator U is applied on it to generate

U

�

j0ih0j ⊗ I⊗n

2n

�

U†; ð1Þ

and finally some qubits are measured in the computational
basis [30]. When k output qubits are measured, the
probability pz of obtaining z ∈ f0; 1gk is

pz ≡ Tr

�

ðjzihzj ⊗ I⊗ðnþ1−kÞÞU
�

j0ih0j ⊗ I⊗n

2n

�

U†
�

:

We call such a model the DQC1k model.
The one-clean qubit model seems to be classically

efficiently simulatable. In fact, if the pure state j0i of
the initial state is replaced with the maximally mixed
state I=2, the quantum computing is trivially simulatable
with a polynomial-time classical computer, since
UðI⊗ðnþ1Þ=2nþ1ÞU† ¼ ½I⊗ðnþ1Þ=2nþ1� for any unitary oper-
ator U. However, surprisingly, the one-clean qubit model
can efficiently solve several problems whose classical
efficient solutions are not known, such as the spectral
density estimation [29], testing integrability [31], calcu-
lations of the fidelity decay [32], and approximations of the
Jones polynomial, HOMFLY polynomial, and Turaev-Viro
invariant [33–36].
Furthermore, it was shown that if the output probability

distribution of the DQC13 model is classically efficiently
sampled within a multiplicative error ϵ < 1, then the poly-
nomial-time hierarchy collapses to the third level [18]. The
proof uses the similar idea as those for the IQP model [14]
and the boson sampling model [17]: Ref. [18] showed
postDQC13 ¼ postBQP, where postDQC13 is the DQC13
version of postBQP. (The proof idea is as follows. For a given
postBQP circuitV, we construct the DQC13 circuit in Fig. 1.
The postselection on the qubit p1 prepares the pure initial
state j0ni, where n is thewidth ofV. The postselection on the

FIG. 1. The DQC13 circuit used to show postBQP ⊆
postDQC13 in Ref. [18]. The slash (=) means multiple qubits
(in this case, n − 2 qubits), and X is applied on each qubit.
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qubit p2 simulates the postselection of the original postBQP
circuit V. The qubit o simulates the decision qubit of V.)
The no-go result with the additive error approximation

has been recently obtained for the DQC1 model in
Ref. [19]. Like the results of the IQP model [15] and
the boson sampling model [17], the result of Ref. [19]
assumes a certain unproven mathematical conjecture,
which is a slightly different form of the average case vs
worst case conjecture. Interestingly, by using a special
property of the DQC1 model, the anticoncentration lemma
is easily shown.
One disadvantage of these results is, however, that at

least three qubits must be measured: the result of Ref. [18]
is the hardness result for DQC13, and the result of Ref. [19]
is that for DQC1nþ1. Is it possible to show any hardness
result for DQC11?
The other open problem that these previous results leave

is whether we can strengthen the third-level collapse of the
polynomial-time hierarchy to a more unlikely consequence.
The third-level collapse is not believed to happen in
computer science, but it would be better if we could show
a no-go result based on a more stable belief.
In this Letter, we solve these two open problems [37].

Our main result is the following theorem:
Theorem 1: If the output probability distribution of the

DQC11 model is classically efficiently sampled within a
multiplicative error ϵ < 1, then the polynomial-time hier-
archy collapses to the second level.
Remember that the classical efficient sampling of fpzgz

within a multiplicative error ϵ means the existence of a
classically efficiently samplable distribution fqzgz such
that jpz − qzj ≤ ϵpz. The intuition behind this theorem is as
follows. We construct the DQC11 circuit of Fig. 2 from a
quantum circuit Vw related to a certain quantum complexity
class. If the output probability distribution of the DQC11
circuit is classically efficiently sampled within a multipli-
cative error ϵ < 1, it means that the quantum complexity
class is contained in another classical complexity class.
Such a containment leads to the unlikely consequence,
namely, the collapse of the polynomial-time hierarchy, in
computer science. For details, see the proof given below.
In this theorem, the number of the measured qubit is

reduced to one from three. Furthermore, the collapse of the
polynomial-time hierarchy is now to the second level rather
than the third level, which is more unlikely. It is interesting
to note that in the boson sampling and IQP cases, a
polynomial number of qubits are measured, and therefore
the sample space is exponentially large, while in the

DQC11 case Theorem 1 suggests that the hardness state-
ment for the small sample space is possible.
Proof of Theorem 1.—Using the postselection technique

would not work to show the theorem because of the
following two reasons: First, postDQC11 is not well
defined since DQC11 circuit has only a single output qubit.
Second, showing postBQP ¼ postBPP is not enough to
show the collapse of the polynomial-time hierarchy to the
second level. Our new idea is to use another class, NQP
[39], which is one possible quantum analogue of NP. NQP
is defined as follows: a language L is in NQP if and only if
there exists a polynomial-time uniformly generated family
of quantum circuits fVwgw such that if w ∈ L then
pacc > 0, and if w ∉ L then pacc ¼ 0, where pacc is the
acceptance probability [40]. We show that if the output
probability distribution of the DQC11 model is classically
efficiently sampled within a multiplicative error ϵ < 1, then
NQP ⊆ NP. If such a containment occurs, the polynomial-
time hierarchy collapses to the second level, since

PH ⊆ BP · co-C¼P ¼ BP · NQP ¼ BP · NP ¼ AM;

where the first containment is from Refs. [41,42] and the
second equality is from Ref. [43]. The class C¼P is defined
in Ref. [44], and the BP operator is defined in Ref. [45]. To
derive NQP ⊆ NP, we consider the DQC11 circuit of Fig. 2.
It is easy to verify that the probability p̃ of obtaining 1
when the qubit o is measured is p̃ ¼ ½4pð1 − pÞ=2n�,
where p≡ h0njV†

wðj1ih1j ⊗ I⊗ðn−1ÞÞVwj0ni. Therefore, if
0 < p < 1 then p̃ > 0, and if p ¼ 0 then p̃ ¼ 0. (Without
loss of generality, we can assume that 0 ≤ p < 1, since we
can intentionally reduce the output probability by multi-
plying the output probability of Vw by a constant.) If p̃ is
classically efficiently sampled within a multiplicative error
ϵ < 1, it implies NQP ⊆ NP.
The new idea of using NQP can be applied to other

subuniversal models such as the IQP model [14] and the
boson sampling model [17]:
Theorem 2: If the output probability distribution of the

IQP model or the boson sampling model is classically
efficiently sampled within a multiplicative error ϵ < 1, then
the polynomial-time hierarchy collapses to the second level.
Note that the required approximation error, ϵ < 1, is the

same as that of the previous results [14,17] that use the
postBQP technique.
Proof of Theorem 2.—We consider the boson sampling

model, but it is exactly the same for the IQP model. It is
known that the boson sampling model is universal under a
postselection. It means that for any universal quantum
circuit U, there exists a boson sampling circuit V such that
PrUðacceptÞ ¼ PrVðacceptjpostselectÞ. Let us consider the
following quantum computing: (1) Run V. (2) Accept if the
postselection is successful and V accepts. The acceptance
probability of this quantum computing isFIG. 2. The DQC11 circuit used to show NQP ⊆ NP.
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PrVðaccept; postselectÞ
¼ PrVðacceptjpostselectÞPrVðpostselectÞ
¼ PrUðacceptÞPrVðpostselectÞ:

If the classical efficient sampling of PrVðaccept; postselectÞ
is possible, then we have NQP ⊆ NP.
Although postDQC11 is not well defined, we can still

show that the classical efficient simulation of the DQC11
model leads to postBQP ¼ postBPP:
Theorem 3: If the output probability distribution of the

DQC11 model is classically efficiently sampled within a
multiplicative error ϵ < 1, then postBQP ¼ postBPP.
Its proof is given in the Supplemental Material [46]. Note

that a similar proof also gives the result that calculating the
output probability distribution of the DQC1 model within a
multiplicative error ϵ < 1 is #P-hard. (For a proof, see the
Supplemental Material) [46,51,52].
The final contribution of our Letter is studying classical

simulatability of the DQC1 model with additional restric-
tions. We first consider the logarithmic-depth DQC1m
model with polynomially large m. We show that such a
model would not be classically efficiently simulatable:
Theorem 4: If the output probability distribution of the

logarithmic-depth DQC1m model with polynomially large
m is classically efficiently sampled within a multiplicative
error ϵ < 1, then the polynomial-time hierarchy collapses
to the second level.
We next consider the DQC1m model with constant (or

doubly logarithmic) depth, and show that such a model is
classically simulatable:
Theorem 5: Any marginal distribution of the output

probability distribution of the constant (or doubly loga-
rithmic) depth DQC1m model for any m can be exactly
calculated in classical polynomial time.
Finally, we study the DQC1m model whose circuit is

restricted to the IQP type. In other words, we consider the
following DQC1m model, which we call the IQP-DQC1m
model: (1) The input state is j0ih0j ⊗ ðI⊗n=2nÞ. (2) Apply
H⊗ðnþ1Þ. Apply a polynomially many CZ gates and eiθZ

gates. Apply H⊗ðnþ1Þ. (3) Measure m output qubits in the
computational basis. We show that such a model is also
classically efficiently simulatable:
Theorem 6: Any marginal distribution of the output

probability distribution of the IQP-DQC1m model for any
m can be exactly calculated in classical polynomial time.
Proofs for these theorems are given in the Supplemental

Material [46].
Discussion.—In this Letter, we have shown the hardness

of classically simulating the DQC11 model. It would be
important to consider an experimental implementation of
our results. Although multiplicative-error sampling is
difficult to realize, it might be still possible to do some
proof-of-principle demonstrations with few qubits. Finally,
let us conclude this Letter by pointing out that our result

reveals a nontrivial relation between the matchgate model
[8–12] and the DQC11 model: the computational power of
the log-space DQC11 model and that of the matchgate
model are equivalent. (Here, the log-space DQC11 model is
the DQC11 model with a log width; i.e., n of Eq. (1) is
logarithmic with respect to the input size.) This is because,
by using Fig. 2, we can show that the log-space DQC11
model can simulate the log-space (pure) quantum circuits,
which are known to be equivalent to the matchgate model
[12]. (Details are given in the Supplemental Material [46].)
Simulating Ising models with log-qubit quantum comput-
ing, which is an example of so called the “compressed
quantum simulation,” has recently been studied theoreti-
cally [53] and experimentally [54]. The relation between
the matchgate model and the log-space DQC11 model
therefore suggests another example of the compressed
quantum simulation: fermionic systems and spin systems
can be simulated with log-qubit NMR quantum computing.
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