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A B S T R A C T

Familial neurohypophysial diabetes insipidus (FNDI), characterized by progressive polyuria and loss of arginine
vasopressin (AVP) neurons, is an autosomal dominant disorder caused by AVP gene mutations. Our previous
studies with FNDI model mice demonstrated that mutant proteins accumulated in the endoplasmic reticulum
(ER) of AVP neurons. Here, we examined therapeutic effects of the chemical chaperone 4-phenylbutylate (4-
PBA) in FNDI mice. Treatment with 4-PBA reduced mutant protein accumulation in the ER of FNDI mice and
increased AVP release, leading to reduced urine volumes. Furthermore, AVP neuron loss under salt loading was
attenuated by 4-PBA treatment. These data suggest that 4-PBA ameliorated mutant protein accumulation in the
ER of AVP neurons and thereby prevented FNDI phenotype progression.

1. Introduction

Arginine vasopressin (AVP), an antidiuretic hormone, is synthesized
in magnocellular neurons of the supraoptic (SON) and paraventricular
nuclei (PVN) in the hypothalamus [4]. The AVP gene encodes a signal
peptide, AVP, the AVP carrier protein neurophysin II (NPII), and a
glycoprotein, also referred to as copeptin [34]. Prepro-AVP is truncated
to pro-AVP upon removal of the signal peptide, and pro-AVP is folded
into its native conformation in the endoplasmic reticulum (ER) [5].
After posttranslational processing in the ER, the pro-AVP is packed into
secretory granules in the Golgi apparatus. AVP, NPII, and glycoprotein
are cleaved from pro-AVP in the vesicle during transport to the pos-
terior pituitary, from which AVP is released into the systemic circula-
tion in response to changes in plasma osmolality and blood pressure
[5,6].

Familial neurohypophysial diabetes insipidus (FNDI) is an auto-
somal dominant disorder caused by mutations in the AVP gene locus,
mostly in the NPII-coding region [1]. FNDI is characterized by

progressive polyuria due to AVP deficiency. We previously generated
FNDI model mice that recapitulated the FNDI phenotype seen in hu-
mans [14]. Analyses of the FNDI mice revealed that ER stress due to
accumulation of mutant AVP precursors in the ER is the main patho-
genesis of FNDI [14,27]. Morphological examinations demonstrated
that protein aggregates were confined to a certain compartment of the
ER, ER-associated compartment (ERAC), in AVP neurons of the SON
[13]. Furthermore, protein aggregates were scattered throughout the
dilated ER lumen when FNDI mice were dehydrated, which worsened
the FNDI phenotype and finally caused autophagy-associated cell death
of AVP neurons [13].

The ER is an organelle that is mainly responsible for synthesis,
folding, assembly, and transport of proteins [16]. Accumulation of
misfolded and unfolded proteins leads to ER stress [35], which causes
unfolded protein response including upregulation of ER chaperones
[32] such as immunoglobulin heavy chain binding protein (BiP) [20] in
order to cope with ER stress, while prolonged ER stress could finally
lead to cell death [37]. ER stress has been implicated in a wide
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spectrum of disorders, including neurodegenerative diseases [24], cer-
ebral ischemia [38], depression [15], diabetes mellitus [28], and cancer
[39]. Several studies have shown that ER stress is reduced in animal
models treated with chemical chaperones such as 4-phenylbutylate (4-
PBA) [3,25,29,31]. Furthermore, 4-PBA was shown to reduce protein
accumulation in the ER in various in vitro models [9,21,33,36].

In the present study, we examined the effects of 4-PBA on pro-
gressive polyuria and loss of AVP neurons, as well as accumulation of
mutant proteins in the ER together with BiP expression, as a marker of
ER stress [22], in AVP neurons of FNDI mice.

2. Materials and methods

2.1. Animals

FNDI mice heterozygous for the mutant Avp gene (Cys98stop) were
generated previously [14]. All FNDI mice in the present study were
backcrossed over 15 generations into the C57BL/6 J background.
C57BL/6 J mice were purchased from Chubu Science Materials (Na-
goya, Japan). Mice were maintained under controlled conditions
(23.0 ± 0.5 °C, lights on 09:00 to 21:00), and male mice were used in
the experiments. All procedures were approved by the Animal Experi-
mentation Committee of the Nagoya University Graduate School of
Medicine and performed in accordance with institutional guidelines for
animal care and use.

2.2. 4-PBA administration

Two-month-old mice were divided into control and 4-PBA groups.
Mice in the 4-PBA group were treated with oral administration of 4-PBA
(1 g/kg/day, Wako Pure Chemical Industries, Osaka, Japan) for 28
days. In experiments involving 4-PBA administration under salt loading
conditions, 3-month-old mice were given 2% saline orally ad libitum
with or without oral administration of 4-PBA (1 g/kg/day) for 7 days.
The dosage of 4-PBA employed in this study was determined based on
previous studies [17,29].

2.3. Measurements of urine volume and AVP

Mice were housed in metabolic cages, and 24-hour pooled urine was
collected and assessed throughout the experimental period. Urine AVP
levels were measured with a radioimmunoassay kit (AVP kit YAMASA;
Yamasa Corporation, Chiba, Japan).

2.4. Brain collection for immunohistochemistry and in situ hybridization

Mice were deeply anesthetized and transcardially perfused with a
cold fixative containing 4% paraformaldehyde (PFA) in PBS, pH 7.4.
After fixation, brains were removed and immersed in the same fixative
for 3 h at 4 °C. Brains were kept in PBS containing 10–20% sucrose at
4 °C for cryoprotection. They were then embedded in Tissue-Tek O.C.T.
compound (Sakura Finetechnical, Tokyo, Japan) and stored at −80 °C
until sectioning. Brains were cut into 16-μm sections on a cryostat at
−20 °C, thaw-mounted on Superfrost Plus microscope slides
(Matsunami Glass Ind., Osaka, Japan), and stored at−80 °C until either
immunohistochemical analysis or in situ hybridization.

2.5. Immunohistochemistry

The frozen sections were washed with PBS for 15min and then in-
cubated with rabbit anti-mutant NPII antibody (1:1000) [14], in PBS
with 0.3% Triton X-100 and 1% normal goat serum overnight at 4 °C.
After rinsing with PBS, the primary antibody was probed using bioti-
nylated goat anti-rabbit IgG (H+ L) (1:200, BA-1000; Vector Labora-
tories, Burlingame, CA, USA) for 3 h at room temperature. The sections
were washed in PBS and then incubated with avidin-biotin complex

solution (1:100, Vectastatin ABC kit, PK-4000; Vector Laboratories) for
90min at room temperature before immersion in PBS containing 0.1%
3,3′-diaminobenzidine dihydrochloride (Sigma-Aldrich, St. Louis, MO,
USA). Antibody-binding sites were visualized upon addition of 0.004%
hydrogen peroxide. NPII-expressing cells were counted and the number
and diameter of inclusion bodies were measured using an Olympus
DP73 digital camera system and an Olympus BX51 microscope
equipped with cellSens Software (Olympus, Tokyo, Japan). The best-
matched slices at 0.70mm (SON), 0.82mm (PVN), and 0.58mm [su-
prachiasmatic nucleus (SCN)] caudal from the bregma, according to the
brain atlas [30], were chosen from each mouse for analysis. The
numbers of AVP neurons and inclusion bodies in each nucleus were
counted, and the mean values in each mouse were subjected to statis-
tical analyses.

2.6. Electron microscopy

Mice were deeply anesthetized and transcardially perfused with 4%
PFA in PBS. Brains were dissected and cut into 100-μm sections on a
vibratome (VT1200 S; Leica Biosystems, Wetzlar, Germany). The sec-
tions were fixed in a mixture of 2% PFA and 2.5% glutaraldehyde in
PBS overnight at 4 °C, followed by postfixation with 2% osmium tetr-
oxide for 20min at 4 °C. Each section was dehydrated in a graded
ethanol series, treated with propylene oxide, and embedded in epoxy
resin (TAAB 812 resin; TAAB Laboratories Equipment, Aldermaston,
UK). The resin was polymerized for 48 h at 60 °C. Ultrathin sections (70-
nm thickness) including the SON were prepared using an ultra-
microtome with a diamond knife (Reichert Ultracut S; Leica
Biosystems) and counterstained with uranyl acetate and lead citrate
before analysis with an electron microscope (JEM-1400EX; JEOL,
Tokyo, Japan).

2.7. In situ hybridization and quantification

The Avp exonic probe was kindly provided by Dr. Harold Gainer
[National Institutes of Health (NIH)] and the exonic probe of im-
munoglobulin heavy chain binding protein (BiP) was created from a
922-bp fragment containing bases 852 to 1773 of the mouse Bip cDNA
as reported previously [12]. Radiolabeled antisense probes for Avp and
Bip mRNA were synthesized using 55 μCi [35S]UTP and 171 μCi
[35S]CTP (PerkinElmer Life Sciences, Waltham, MA, USA), the Ribop-
robe Combination System (Promega, Madison, WI, USA), 15 U of
RNasin, 1 μg linearized template, and 15 U SP6 RNA polymerase. After
incubation at 42 °C for 60min, the cDNA templates were digested with
DNase for 10min at 37 °C. Radiolabeled RNA products were purified
using Quick Spin Columns for radiolabeled RNA purification (Roche
Diagnostics, Basel, Switzerland), precipitated with ethanol, and re-
suspended in 100 μl 10mM Tris-HCl, pH 7.5 containing 20mM di-
thiothreitol. Prehybridization, hybridization, and posthybridization
procedures were performed as described previously [2]. The sections
were exposed to BioMax MR film (Carestream Health, Rochester, NY,
USA) for 4 h (Avp mRNA) or 48 h (Bip mRNA). The expression levels of
Avp and Bip mRNA in the SON and PVN were quantified measuring of
the integrated optimal densities (optical densities× area) of the film
images using ImageJ software (NIH) and expressed in arbitrary units
(AU).

2.8. Statistical analysis

The statistical significance of differences among groups was ana-
lyzed by an unpaired t test, log-rank test, one-way ANOVA, or two-way
ANOVA, with repeated measures followed by the Bonferroni test as
appropriate. Results are expressed as means ± SE, and differences
were considered statistically significant at P < 0.05.
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3. Results

3.1. The chemical chaperone 4-PBA decreased urine volume in FNDI mice

In FNDI mice, urine volumes and water intake significantly de-
creased in the 4-PBA group compared to the control group throughout
the treatment (Fig. 1A and B). There were no significant differences in
body weight between the control and 4-PBA groups (Fig. 1C). However,
urine AVP levels significantly increased in the 4-PBA group relative to
the control group (Fig. 1D). On the other hand, there were no sig-
nificant differences in urine volumes, water intake, or urine AVP be-
tween control and 4-PBA groups in wild-type mice (Fig. S1).

3.2. 4-PBA reduced inclusion bodies and Bip mRNA levels in AVP neurons
of FNDI mice

The number of inclusion bodies having diameters> 4.5 μm (the
mean size in the 3-month-old FNDI mice [13]) was decreased in the 4-
PBA group compared to the control group (SON, Fig. 1E and F; PVN,
control 8.33 ± 0.51, 4-PBA 6.67 ± 0.33, P=0.011). These data
suggest that aggregates were reduced in size following 4-PBA treat-
ment. Representative photographs of electron microscopic analyses are
shown in Fig. 1G and H. However, at 3 months of age the control and 4-
PBA FNDI mice showed no significant differences in Avp mRNA ex-
pression levels (SON, Fig. 1I; PVN, control 100.00 ± 24.36 AU, 4-PBA
101.55 ± 23.73 AU, P=0.96), whereas the expression levels of Bip
mRNA significantly decreased in the 4-PBA group relative to the control
group (SON, Fig. 1J; PVN, control 100.00 ± 18.96 AU, 4-PBA
57.48 ± 8.99 AU, P=0.023).

3.3. 4-PBA attenuated increases in urine volume under salt loading in FNDI
mice

Whereas urine volumes and water intake increased and body weight
decreased in 3-month-old FNDI mice given 2% saline in both control
and 4-PBA groups, these changes were significantly attenuated by 4-
PBA treatment (Fig. 2A–C). Urine AVP levels markedly increased on day
1 and then subsequently decreased in both groups, however the AVP
levels were significantly higher in the 4-PBA group compared to the
control group on days 2 and 3 (Fig. 2D).

3.4. 4-PBA maintained ERAC and attenuated Bip mRNA expression in AVP
neurons under salt loading in FNDI mice

The numbers of AVP neurons in both control and 4-PBA FNDI mice
were similar under salt-loading conditions for 3 days (SON, Fig. 2E;
PVN, day 0 70.17 ± 3.87, control day 3 75.57 ± 5.43, 4-PBA day 3
81.57 ± 4.81, P=0.29). However, there were fewer inclusion bodies
in the control group relative to the 4-PBA in FNDI mice salt-loaded for 3
days (SON, Fig. 2F; PVN, day 0 8.33 ± 0.51, control day 3
5.00 ± 0.53, 4-PBA day 3 6.14 ± 0.26, P=0.034). Electron micro-
scopic examination revealed that protein aggregates were completely
scattered throughout the dilated ER lumen in some AVP neurons of

Fig. 1. Effects of 4-PBA on phenotype, inclusion bodies, and Avp and Bip mRNA
expression in the SON of FNDI mice. Urine volumes (A), water intake (B), rate
of body weight (BW) change (C), and urine AVP (D) of FNDI mice in control
(open circles) and 4-PBA groups (closed circles). Representative photographs of
immunohistochemical staining for mutant NPII of the SON (E) and the number
of inclusion bodies with a diameter> 4.5 μm in the SON (F) of 3-month-old
FNDI mice in the control and 4-PBA groups. Representative electron micro-
scopic images of AVP neurons in the SON of 3-month-old FNDI mice in the
control (G) and 4-PBA groups (H). mRNA expression levels of Avp (I) and Bip (J)
in the SON of 3-month-old FNDI mice in the control and 4-PBA groups. Results
are expressed as means ± SE (n=12). Arrowheads, inclusion bodies. Scale
bars, 50 μm (E) and 2 μm (G, H). N.S., not significant.
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FNDI mice salt-loaded for 3 days in the control group (Fig. 2G), whereas
AVP neurons with partially maintained ERAC were observed in the 4-
PBA group (Fig. 2H). The Avp and Bip mRNA expression levels in FNDI
mice salt-loaded for 3 days significantly increased in the control group,
whereas this increase was significantly attenuated in the 4-PBA group
(SON, Fig. 2I and J; PVN, Avp mRNA, day 0 100.00 ± 24.36 AU,
control day 3 1005.21 ± 149.32 AU, 4-PBA day 3
700.39 ± 58.94 AU, P=0.033, BipmRNA, day 0 100.00 ± 18.96 AU,
control day 3 302.87 ± 19.62 AU, 4-PBA day 3 220.56 ± 20.40 AU,
P=0.0056).

3.5. 4-PBA prevented AVP neuron loss under salt loading in FNDI mice

Under 2% saline administration, 6/15 (40%) FNDI mice in the
control group died 4–7 days after beginning the treatment, whereas all
FNDI mice in the 4-PBA group survived throughout the treatment
period (Fig. 3A). The death was probably caused by severe dehydration,
as suggested by more body weight loss in the control compared to the 4-
PBA group (Fig. 2C). On day 7, the number of AVP neurons in the
surviving control group mice was significantly lower than that of the 4-
PBA group (SON, Fig. 3B and C; PVN, control 64.25 ± 3.17, 4-PBA
75.50 ± 5.02, P=0.044). On the other hand, there were no sig-
nificant differences in the number of AVP neurons in the SCN (day 0
135.75 ± 6.84, control day 7 139.70 ± 8.65, 4-PBA day 7
133.00 ± 6.76, P=0.83).

4. Discussion

In the present study, we showed that the chemical chaperone 4-PBA
increased AVP secretion, reduced urine volumes, and prevented AVP
neuronal loss in FNDI mice. Our data also demonstrated that mutant

Fig. 2. Effects of 4-PBA on phenotype, number of AVP neurons, inclusion
bodies, and Avp and Bip mRNA expression in the SON of FNDI mice under salt
loading. Urine volumes (A), water intake (B), rate of BW change (C), urine AVP
(D), and number of AVP neurons (E) and inclusion bodies (F) in the SON of 3-
month-old FNDI mice subjected to 2% saline (control) and 2% saline with 4-
PBA (4-PBA). Representative electron microscopic images of AVP neurons in
the SON of FNDI mice treated with salt loading for 3 days in the control (G) and
4-PBA (H) groups. mRNA expression levels of Avp (I) and Bip (J) in the SON of
FNDI mice in the control and 4-PBA groups. Control group, open circles and
dashed line; 4-PBA group, closed circles and solid line. Results are expressed as
means ± SE (n=6 – 12). Scale bars, 2 μm. *P < 0.05 compared with the
control group.

Fig. 3. Effects of 4-PBA on the survival rate and number of AVP neurons in the
SON of FNDI mice under salt loading. (A) Kaplan-Meier survival curves for 3-
month-old FNDI mice subjected to 2% saline (control, n=15) and 2% saline
with 4-PBA (4-PBA, n=8). Representative photographs of im-
munohistochemical staining for mutant NPII of the SON (B) and the number of
AVP neurons in the SON (C) of FNDI mice salt-loaded for 7 days in the control
and 4-PBA groups. Results are expressed as means ± SE (n=7 – 9). Scale bars,
50 μm.
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protein accumulation in the ER of AVP neurons was reduced by 4-PBA
treatment in vivo.

Although ER stress has been implicated in the pathogenesis of many
diseases [18,41], only limited numbers of animal models exist that
show accumulation of misfolded proteins in the ER. The diseases for
these models include α1-antitrypsin deficiency [7], familial en-
cephalopathy with neuroserpin inclusion body [11], and seipinopathy
[40]. Several studies have examined the effects of chemical chaperones
in animal models displaying ER stress [8,19]. 4-PBA has been used in
animal models of neurodegenerative diseases [10,42] as this compound
reportedly permeates the blood brain barrier [23,26]. However, no
studies have shown that chemical chaperones such as 4-PBA can reduce
the amount of misfolded protein accumulation in the ER in vivo.

Our previous studies demonstrated that intracellular inclusion
bodies formed in the AVP neurons of FNDI mice, and that the size and
number increased in parallel with urine volumes until the mice were at
least 6 months old [14]. Electron microscopic observations revealed
that massive protein aggregates were confined to a certain ER com-
partment (i.e. ERAC) in AVP neurons [13]. In the current study, 4-PBA
reduced the number of inclusion bodies with a diameter> 4.5 μm,
suggesting that accumulation of mutant proteins in the ER was reduced
by 4-PBA treatment. Furthermore, AVP secretion was increased and
urine volumes were decreased by the treatment. Thus, to our knowl-
edge, this is the first demonstration that 4-PBA treatment could de-
crease accumulation of misfolded proteins in the ER of neurons, and
this decrease is accompanied by ameliorated polyuria, a representative
phenotype of FNDI.

We previously showed that age and intermittent water deprivation
were associated with impeded confinement of mutant proteins in the
ERAC, characterized by aggregates scattered throughout the ER lumen,
and subsequent loss of AVP neurons through autophagy-associated cell
death [13]. In the present study, we gave 2% saline to FNDI mice orally
to accelerate development of the FNDI phenotype, and found that ERAC
formation was impeded within 3 days of initiating the treatment. With
this protocol, we showed that 4-PBA could maintain ERAC formation
and AVP secretion. Furthermore, the number of AVP neurons was sig-
nificantly higher in the 4-PBA group compared to the control group on
day 7, suggesting that 4-PBA prevented cell death of AVP neurons under
dehydration.

Our previous study showed that Avp and Bip mRNA are colocalized
in the SON, and that both mRNAs increase under dehydration [12]. As
BiP expression has been used as a marker of ER stress [22], we ex-
amined the effect of 4-PBA on Bip mRNA in the current study and de-
monstrated that its expression was significantly reduced with 4-PBA
treatment. Our data also showed that 4-PBA increased AVP secretion in
FNDI mice, suggesting that it enhanced the efficiency of posttransla-
tional AVP processing by reducing mutant protein accumulation. Such
improvement in ER stress could decrease the load for AVP neurons and
could explain why Avp mRNA expression was decreased by 4-PBA
treatment.

In conclusion, our data demonstrated that 4-PBA treatment in FNDI
mice reduced mutant protein accumulation in the ER and increased
AVP secretion, leading to ameliorated polyuria. Our data also showed
that 4-PBA could reduce accumulation of misfolded proteins in the ER
of neurons in vivo, suggesting that chemical chaperones that permeate
the blood brain barrier could be a therapeutic application for neuro-
degenerative diseases.
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Fig. S1. Effects of 4-PBA on urine volumes (A), water intake (B), and urine 

AVP (C) of wild-type mice in control (open circles) and 4-PBA groups (closed 

circles). Results are expressed as means ± SE (n = 3-6). 

Figure S1 
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