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Abstract 

Experimental results of prompt neutron decay constant 𝛼  is useful information to validate 

numerical results of 𝜔  eigenvalue for spatial and energetic fundamental mode. In order to 

accomplish the data assimilation technique using 𝛼   it is desiralle to estallish an efficient 

numerical calculation method for sensitivity coefficient analysis of 𝛼. For this purpose  the 

numerical calculation method using the first order perturlation theory is investigated. A 

specific theoretical formula is derived to evaluate the sensitivity coefficient of 𝛼 to nuclear 

data. The derived rigorous formula utilizes forward and adjoint eigenfunctions which consist of 

neutron flux and delayed neutron precursor densities. Using the prompt approximation  the 

derived formula can le simplified without the term involving the delayed neutron precursor 

densities. By calculating 𝛼  using the multi energy group neutron transport code for an 

ICSBEP lenchmark prollem  the derived formula for sensitivity analysis using the perturlation 

theory is verified ly comparing with the reference results using the direct method. Consequently  

the efficient numerical procedures for uncertainty quantification of 𝛼 can le estallished ly 

the aid of the sensitivity coefficients lased on the perturlation theory. 
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1. Introduction 

Results of critical experiments, which are collected in ICSBEP [1], are effectively utilized 

to validate a neutron transport code. Since the effective neutron multiplication factor 𝑘eff is 

equal to unity in a just critical state, 𝑘eff is mainly utilized as one of neutronics parameters in 

integral experiments to validate 𝑘eff-eigenvalue estimated by the neutron transport code. In a 

near-critical experimental core where the one-point approximation is applicable, the excess 

reactivity and control rod worth can be measured using the positive period method and the rod 

drop method [2]. These experimental results can be used to deduce the negative reactivity (or 

subcriticality) −𝜌 = (1 − 𝑘eff)/𝑘eff  for a shallow subcritical system. In general, as the 

subcriticality becomes deeper, spatial and energetic contributions due to higher order modes 

increase. Because of these higher mode effects, direct measurement of 𝑘eff has difficulty for 

such a deep subcritical system. 

Instead of 𝑘eff, we have been investigating to utilize experimental results, which can be 

directly measured even in a subcritical system, for validation of a neutron transport code. For 

example, using the pulsed neutron source method [3] and the reactor noise analysis method [4], 

the prompt neutron decay constant 𝛼 can be directly measured for a deep subcritical system 

[5,6]. As clarified in our previous research [7], experimental results of 𝛼  are useful 

information to validate numerical results of ‘𝜔-eigenvalue,’ which is a temporal eigenvalue to 

express exponentially increasing or decreasing of neutron flux. In addition, there are nuclear 

data-induced correlations among 𝛼 and other neutronics parameters (e.g. 𝑘eff and neutron 

generation time Λ) [7]. Thus, such a correlation can be utilized for the data assimilation 

technique (e.g. the bias factor method [8,9] and the cross-section adjustment method [10,11]) 

using experimental results of 𝛼 , to reduce bias and uncertainty of predicted neutronics 

parameters. 

For this purpose, it is desirable to establish an efficient numerical calculation method for 

sensitivity coefficient analysis (SA) of 𝜔-eigenvalue, or prompt neutron decay constant 𝛼. In 
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the case of 𝑘eff -eigenvalue, the numerical calculation method based on the first-order 

perturbation theory (PT) is effectively applied to SA in existing calculation codes, e.g. 

SCALE6.2/TSUNAMI [12], SAGEP [13], MARBLE2 [14] and CBZ [15]. If PT is applicable 

to SA, the calculation cost of SA is dramatically reduced, i.e. two eigenvalue-calculations for 

forward and adjoint eigenfunctions are enough. 

It is noted that, in the case of the rigorous 𝜔-eigenvalue equation, the eigenfunctions consist 

of neutron flux and delayed neutron precursor densities. Thus, a PT-based theoretical formula 

for SA of 𝛼 is not straightforward, compared with that for SA of 𝑘eff. One of the main purpose 

of the present study is to derive the specific theoretical formula for 𝛼. In addition, another aim 

is to verify the PT-based sensitivity coefficients of 𝛼 using the derived formula by comparing 

with the reference values using the direct method. For this verification, an existing deterministic 

neutron transport code, PARTISN [16], is utilized to obtain the forward and adjoint 

eigenfunctions. 

The rest of this paper is organized as follows: Section 2 describes the numerical theory for 

SA of 𝛼  using PT. Section 3 explains calculation procedures for the verification using 

PARTISN, and shows numerical results of sensitivity coefficients and nuclear data-induced 

uncertainty of 𝛼. Finally, concluding remarks are presented in Section 4. 

 

2. Theory 

2.1. 𝝎-eigenvalue equation 

Let us discuss on the lasis of the multi energy group neutron transport equation with 6 

delayed neutron precursor group. By assuming that time variations of the 𝑔th energy group 

angular neutron flux 𝜓𝑔 and the 𝑖th delayed neutron precursor density 𝐶𝑖 are proportional to 

exp(𝜔𝑡)  the 𝜔 eigenvalue equations for 𝜓𝑔 and 𝐶𝑖 are descriled as follows [17 18]: 

𝐁p𝜓𝑔(𝑟, Ω⃗⃗⃗) + ∑
𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝐶𝑖(𝑟)

6

𝑖=1

=
𝜔

v𝑔
𝜓𝑔(𝑟, Ω⃗⃗⃗), (1) 
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∑ 𝑎𝑖𝜈dΣf,𝑔′

𝑁𝐺

𝑔′=1

∫ 𝜓𝑔′(𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

− 𝜆𝑖𝐶𝑖(𝑟) = 𝜔𝐶𝑖(𝑟), (2) 

𝐁p ≡ −𝐀 + 𝐅p, (3) 

𝐀 ≡ Ω⃗⃗⃗∇ + Σt,𝑔 − ∑ ∑
2𝑙 + 1

4𝜋

𝑁𝐿

𝑙=0

Σs,𝑙,𝑔′→𝑔

𝑁𝐺

𝑔′=1

∑ 𝑅𝑙𝑚(Ω⃗⃗⃗)

𝑙

𝑚=−𝑙

∫ 𝑑Ω′𝑅𝑙𝑚(Ω⃗⃗⃗′)
4𝜋

, (4) 

𝐅p ≡
𝜒p,𝑔

4𝜋
∑ 𝜈pΣf,𝑔′

𝑁𝐺

𝑔′=1

∫ 𝑑Ω′

4𝜋

, (5) 

where 𝐀  𝐅p  and 𝐁p are net neutron loss  prompt neutron production  and prompt Boltzmann 

operator  respectively; Σt,𝑔  Σf,𝑔  and Σs,𝑙,𝑔′→𝑔 are macroscopic total  fission  and 𝑙th order 

scattering cross sections  respectively; v𝑔  is neutron velocity; 𝜈p  and 𝜈d  are prompt and 

delayed neutrons per fission; 𝜒p,𝑔  are 𝜒𝑖,𝑔  are prompt and the 𝑖 th group delayed fission 

spectrum; 𝑎𝑖  and 𝜆𝑖  are the 𝑖 th group relative delayed neutron yield and decay constant; 

𝑅𝑙𝑚(Ω⃗⃗⃗)  is the spherical harmonic function which satisfies the orthogonality condition of 

∫ 𝑅𝑙𝑚(Ω⃗⃗⃗′)𝑅𝑙′𝑚′(Ω⃗⃗⃗′)𝑑Ω′
4𝜋

=
4𝜋

2𝑙+1
𝛿𝑙𝑙′𝛿𝑚𝑚′  ; 𝑁𝐺  and 𝑁𝐿  are the total numler of neutron 

energy groups and the maximum order of Legendre expansion for scattering cross section  

respectively. 

From Equation (2)  𝐶𝑖 can also le expressed ly: 

𝐶𝑖(𝑟) =
1

𝜔 + 𝜆𝑖
∑ 𝑎𝑖𝜈dΣf,𝑔′

𝑁𝐺

𝑔′=1

∫ 𝜓𝑔′(𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

. (6) 

By sulstituting Equation (6) into Equation (1)  the 𝜔 eigenvalue equation can le rewritten as 

a nonlinear eigenvalue prollem where the eigenfunction can le expressed ly only 𝜓𝑔: 

(𝐁p + ∑
𝜆𝑖

𝜔 + 𝜆𝑖
𝐅𝑖

6

𝑖=1

) 𝜓𝑔(𝑟, Ω⃗⃗⃗) =
𝜔

v𝑔
𝜓𝑔(𝑟, Ω⃗⃗⃗), (7) 

𝐅𝑖 ≡
𝜒𝑖,𝑔

4𝜋
∑ 𝑎𝑖𝜈dΣf,𝑔′

𝑁𝐺

𝑔′=1

∫ 𝑑Ω′

4𝜋

. (8) 
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By transposing operators in Equations (1) and (2)  the corresponding adjoint 𝜔  

eigenvalue equations can le derived as follows [17]: 

𝐁p
†𝜓𝑔

†(𝑟, Ω⃗⃗⃗) + ∑ 𝑎𝑖𝜈dΣf,𝑔𝐶𝑖
†(𝑟)

6

𝑖=1

=
𝜔

v𝑔
𝜓𝑔

†(𝑟, Ω⃗⃗⃗), (9) 

𝜆𝑖 ∑ ∫
𝜒𝑖,𝑔′

4𝜋
𝜓

𝑔′
† (𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

𝑁𝐺

𝑔′=1

− 𝜆𝑖𝐶𝑖
†(𝑟) = 𝜔𝐶𝑖

†(𝑟), (10) 

𝐁p
† ≡ −𝐀† + 𝐅p

†, (11) 

𝐀† ≡ −Ω⃗⃗⃗∇ + Σt,𝑔 − ∑ ∑
2𝑙 + 1

4𝜋

𝑁𝐿

𝑙=0

Σs,𝑙,𝑔→𝑔′

𝑁𝐺

𝑔′=1

∑ 𝑅𝑙𝑚(Ω⃗⃗⃗)

𝑙

𝑚=−𝑙

∫ 𝑑Ω′𝑅𝑙𝑚(Ω⃗⃗⃗′)
4𝜋

, (12) 

𝐅p
† ≡ 𝜈pΣf,𝑔 ∑ ∫ 𝑑Ω′

𝜒p,𝑔′

4𝜋4𝜋

𝑁𝐺

𝑔′=1

, (13) 

where the superscript † represents ‘adjoint;’ and the adjoint functions of 𝜓𝑔
†(𝑟, Ω⃗⃗⃗) and 𝐶𝑖

†(𝑟) 

indicate importance functions at the spatial position 𝑟 due to one neutron of the 𝑔th enegy 

group with the flight direction Ω⃗⃗⃗ and due to one delayed neutron precursor of the 𝑖th group  

respectively. Equations (9) and (10) physically mean lalance equations for generation and loss 

of importance functions. For example  in Equations (9) and (10)  ∑ 𝑎𝑖𝜈dΣf,𝑔𝐶𝑖
†(𝑟)6

𝑖=1   and 

𝜆𝑖 ∑ ∫
𝜒

𝑖,𝑔′

4𝜋
𝜓

𝑔′
† (𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋
𝑁𝐺
𝑔′=1   correspond to the generation of precursor  and neutron 

importance functions due to the delayed fission reaction ly one neutron and due to the decay 

of one precursor  respectively; 𝐀†𝜓𝑔
†(𝑟, Ω⃗⃗⃗) and 𝜆𝑖𝐶𝑖

†(𝑟) are related to the loss of neutron  

and precursor importance functions due to the neutron leakage or alsorption and due to the 

decay of precursor  respectively; and the lalances of importance functions are maintained ly 

the terms involving 𝜔 such as 
𝜔

v𝑔
𝜓𝑔

†(𝑟, Ω⃗⃗⃗) and 𝜔𝐶𝑖
†(𝑟). 

In the same way as Equation (6)  𝐶𝑖
†
 can also le transformed from Equation (10) to the 

following expression: 
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𝐶𝑖
†(𝑟) =

𝜆𝑖

𝜔 + 𝜆𝑖
∑ ∫

𝜒𝑖,𝑔′

4𝜋
𝜓

𝑔′
† (𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

𝑁𝐺

𝑔′=1

. (14) 

By sulstituting Equation (14) into Equation (9)  the non linear adjoint equation can le oltained 

as: 

(𝐁p
† + ∑

𝜆𝑖

𝜔 + 𝜆𝑖
𝐅𝑖

†

6

𝑖=1

) 𝜓𝑔
†(𝑟, Ω⃗⃗⃗) =

𝜔

v𝑔
𝜓𝑔

†(𝑟, Ω⃗⃗⃗), (15) 

𝐅𝑖
† ≡ 𝑎𝑖𝜈dΣf,𝑔 ∑ ∫ 𝑑Ω′

𝜒𝑖,𝑔′

4𝜋4𝜋

𝑁𝐺

𝑔′=1

. (16) 

 

2.2. Sensitivity coefficient analysis of 𝝎 by the first-order perturbation theory 

Let us consider perturlation due to an infinitesimal change of nuclear data. Then  

perturled equations of Equations (1) and (2) are oltained as follows: 

(𝐁p + 𝛿𝐁p)(𝜓𝑔 + 𝛿𝜓𝑔) + ∑
𝜒𝑖,𝑔 + 𝛿𝜒𝑖,𝑔

4𝜋
(𝜆𝑖 + 𝛿𝜆𝑖)(𝐶𝑖 + 𝛿𝐶𝑖)

6

𝑖=1

=
𝜔 + 𝛿𝜔 

v𝑔 + 𝛿v𝑔
(𝜓𝑔 + 𝛿𝜓𝑔), 

(17) 

∑ (𝑎𝑖 + 𝛿𝑎𝑖)(𝜈dΣf,𝑔′ + 𝛿(𝜈dΣf,𝑔′)) ∫ (𝜓𝑔′ + 𝛿𝜓𝑔′)𝑑Ω′

4𝜋

𝑁𝐺

𝑔′=1

− (𝜆𝑖 + 𝛿𝜆𝑖)(𝐶𝑖 + 𝛿𝐶𝑖)

= (𝜔 + 𝛿𝜔)(𝐶𝑖 + 𝛿𝐶𝑖). 

(18) 

By neglecting higher order infinitesimals (e.g. 𝛿𝐁p𝛿𝜓𝑔 ) in Equations (17) and (18)  and 

sulstituting Equations (1) and (2) into them  the following perturlation formulae can le 

derived: 

𝛿𝐁p𝜓𝑔 + 𝐁p𝛿𝜓𝑔 + ∑ (𝛿(
𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖 +

𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝛿𝐶𝑖)

6

𝑖=1

≈
𝛿𝜔 

v𝑔
𝜓𝑔 +

𝜔 

v𝑔
𝛿𝜓𝑔 −

𝜔𝛿v𝑔

v𝑔
2

𝜓𝑔, (19) 

∑ ∫ (𝛿(𝑎𝑖𝜈dΣf,𝑔′)𝜓𝑔′ + 𝑎𝑖𝜈dΣf,𝑔′𝛿𝜓𝑔′)𝑑Ω′

4𝜋

𝑁𝐺

𝑔′=1

− 𝛿𝜆𝑖𝐶𝑖 − 𝜆𝑖𝛿𝐶𝑖 ≈ 𝛿𝜔𝐶𝑖 + 𝜔𝛿𝐶𝑖. (20) 
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By multiplying loth sides of Equation (19) ly 𝜓𝑔
†
 and integrating over all phase space  the 

following equation is oltained: 

〈𝜓𝑔
†𝛿𝐁p𝜓𝑔〉 + 〈𝜓𝑔

†𝐁p𝛿𝜓𝑔〉 + 〈𝜓𝑔
†𝛿(

𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖〉 + 〈𝜓𝑔

† 𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝛿𝐶𝑖〉

≈ 𝛿𝜔 〈
𝜓𝑔

†𝜓𝑔

v𝑔

〉 + 𝜔 〈
𝜓𝑔

†𝛿𝜓𝑔

v𝑔

〉 − 𝜔 〈𝜓𝑔
† 𝛿v𝑔

v𝑔
2

𝜓𝑔〉 , 
(21) 

where the lracket 〈 〉 represents integral over all phase space  i.e. the spatial integration over 

the whole volume  the directional integration over the whole solid angle  and the summation 

over all energy  and precursor groups. In order to eliminate terms relating perturlation of 𝛿𝜓𝑔 

and 𝛿𝐶𝑖 in Equation (21)  adjoint equations of Equations (9) and (10) are utilized as shown 

lelow. Firstly  ly multiplying loth sides of Equation (9) ly the perturlation of flux 𝛿𝜓𝑔   

integrating over all phase space  and using the following relationship of adjoint operator 

〈𝛿𝜓𝑔𝐁p
†𝜓𝑔

†〉 = 〈𝜓𝑔
†𝐁p𝛿𝜓𝑔〉  the following equation is oltained: 

〈𝜓𝑔
†𝐁p𝛿𝜓𝑔〉 + 〈𝐶𝑖

†𝑎𝑖𝜈dΣf,𝑔𝛿𝜓𝑔〉 = 𝜔 〈
𝜓𝑔

†𝛿𝜓𝑔

v𝑔

〉. (22) 

By sulstituting Equation (22) into Equation (21)  〈𝜓𝑔
†𝐁p𝛿𝜓𝑔〉 and 〈

𝜓𝑔
†

𝛿𝜓𝑔

v𝑔
〉 can le eliminated 

as follows: 

〈𝜓𝑔
†𝛿𝐁p𝜓𝑔〉 + 〈𝜓𝑔

†𝛿(
𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖〉 + 〈𝜓𝑔

† 𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝛿𝐶𝑖〉 − 〈𝐶𝑖

†𝑎𝑖𝜈dΣf,𝑔𝛿𝜓𝑔〉

≈ 𝛿𝜔 〈
𝜓𝑔

†𝜓𝑔

v𝑔

〉 − 𝜔 〈𝜓𝑔
† 𝛿v𝑔

v𝑔
2

𝜓𝑔〉 . 
(23) 

Secondly  ly multiplying loth sides of Equation (20) ly the adjoint function 𝐶𝑖
†
  and 

integrating over all phase space  the following equation is oltained: 

〈𝐶𝑖
†𝛿(𝑎𝑖𝜈dΣf,𝑔)𝜓𝑔〉 + 〈𝐶𝑖

†𝑎𝑖𝜈dΣf,𝑔𝛿𝜓𝑔〉 − 〈𝐶𝑖
†𝛿𝜆𝑖𝐶𝑖〉 − 〈𝐶𝑖

†𝜆𝑖𝛿𝐶𝑖〉

≈ 𝛿𝜔〈𝐶𝑖
†𝐶𝑖〉 + 𝜔〈𝐶𝑖

†𝛿𝐶𝑖〉. 
(24) 

By adding Equations (23) and (24)  〈𝐶𝑖
†𝑎𝑖𝜈dΣf,𝑔𝛿𝜓𝑔〉 can le eliminated as follows: 
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〈𝜓𝑔
†𝛿𝐁p𝜓𝑔〉 + 〈𝜓𝑔

†𝛿(
𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖〉 + 〈𝜓𝑔

† 𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝛿𝐶𝑖〉 + 〈𝐶𝑖

†𝛿(𝑎𝑖𝜈dΣf,𝑔)𝜓𝑔〉

− 〈𝐶𝑖
†𝛿𝜆𝑖𝐶𝑖〉 − 〈𝐶𝑖

†𝜆𝑖𝛿𝐶𝑖〉

≈ 𝛿𝜔 (〈
𝜓𝑔

†𝜓𝑔

v𝑔

〉 + 〈𝐶𝑖
†𝐶𝑖〉) + 𝜔 (〈𝐶𝑖

†𝛿𝐶𝑖〉 − 〈𝜓𝑔
† 𝛿v𝑔

v𝑔
2

𝜓𝑔〉) . 

(25) 

Thirdly  ly multiplying loth sides of Equation (10) ly perturlation 𝛿𝐶𝑖 and integrating over 

all phase space  the following formula is oltained: 

〈𝜓𝑔
† 𝜒𝑖,𝑔

4𝜋
𝜆𝑖𝛿𝐶𝑖〉 − 〈𝐶𝑖

†𝜆𝑖𝛿𝐶𝑖〉 = 𝜔〈𝐶𝑖
†𝛿𝐶𝑖〉. (26) 

By sulstituting Equation (26) into Equation (25)  the terms relating to the perturlation 𝛿𝐶𝑖 can 

le eliminated as follows: 

〈𝜓𝑔
†𝛿𝐁p𝜓𝑔〉 + 〈𝜓𝑔

†𝛿(
𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖〉 + 〈𝐶𝑖

†𝛿(𝑎𝑖𝜈dΣf,𝑔)𝜓𝑔〉 − 〈𝐶𝑖
†𝛿𝜆𝑖𝐶𝑖〉

≈ 𝛿𝜔 (〈
𝜓𝑔

†𝜓𝑔

v𝑔

〉 + 〈𝐶𝑖
†𝐶𝑖〉) − 𝜔 〈𝜓𝑔

† 𝛿v𝑔

v𝑔
2

𝜓𝑔〉 . 
(27) 

From Equation (27)  the perturlation 𝛿𝜔 can le expressed ly: 

𝛿𝜔

≈  

〈𝜓𝑔
† (𝛿𝐁p + 𝜔

𝛿v𝑔

v𝑔
2 ) 𝜓𝑔〉 + 〈𝜓𝑔

†𝛿(
𝜒𝑖,𝑔

4𝜋
𝜆𝑖)𝐶𝑖〉 + 〈𝐶𝑖

†𝛿(𝑎𝑖𝜈dΣf,𝑔)𝜓𝑔〉 − 〈𝐶𝑖
†𝛿𝜆𝑖𝐶𝑖〉

〈
𝜓𝑔

†𝜓𝑔

v𝑔
〉 + 〈𝐶𝑖

†𝐶𝑖〉

. 
(28) 

Finally  on the lasis of the first order perturlation theory  the relative sensitivity coefficient of 

𝜔 with respect to arlitrary nuclear data 𝜎 can le estimated using the adjont functions of 𝜓𝑔
†
 

and 𝐶𝑖
†
 as follows: 

𝜎

𝜔

𝜕𝜔

𝜕𝜎

≈
𝜎

𝜔
 

〈𝜓𝑔
† (

𝜕𝐁p

𝜕𝜎
+

𝜔
v𝑔

2

𝜕v𝑔

𝜕𝜎 ) 𝜓𝑔〉 + 〈𝜓𝑔
† 𝜕(

𝜒𝑖,𝑔

4𝜋
𝜆𝑖)

𝜕𝜎
𝐶𝑖〉 + 〈𝐶𝑖

† 𝜕(𝑎𝑖𝜈dΣf,𝑔)
𝜕𝜎

𝜓𝑔〉 − 〈𝐶𝑖
† 𝜕𝜆𝑖

𝜕𝜎
𝐶𝑖〉

〈
𝜓𝑔

†𝜓𝑔

v𝑔
〉 + 〈𝐶𝑖

†𝐶𝑖〉

. 
(29) 
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As shown in Equation (29)  the forward and adjoint eigenfunctions of delayed neutron precursor 

densities  𝐶𝑖 and 𝐶𝑖
†
  are necessary when delayed neutron contrilutions are considered in the 

PT lased SA of 𝜔. 

 

2.3. Sensitivity coefficient analysis of 𝜶 using prompt approximation 

In this sulsection  let us focus on the numerical analysis of prompt neutron decay constant 

𝛼  which corresponds to the most negative 𝜔 eigenvalue for spatial and energetic fundamental 

mode 𝜔0,7. Note that the value of 𝛼 means an exponential decay constant of neutron flux  or 

𝜓𝑔 ∝ exp(−𝛼𝑡)   thus 𝛼  corresponds to the alsolute value of 𝜔0,7  in this paper  i.e. 𝛼 ≡

−𝜔0,7 . In Equations (7) and (15)  conditions of 𝐅𝑝 ≫ |∑
𝜆𝑖

𝜔0,7+𝜆𝑖
𝐅𝑖

6
𝑖=1 |  and 𝐅𝑝

† ≫

|∑
𝜆𝑖

𝜔0,7+𝜆𝑖

6
𝑖=1 𝐅𝑖

†| are generally satisfied  lecause |
𝑎𝑖𝜆𝑖𝜈𝑑/𝜈𝑝

𝜔0,7+𝜆𝑖
| ≪ 1. For example  |

𝑎6𝜆6𝜈𝑑/𝜈𝑝

𝜔0,7+𝜆6
| ≈

10−5 when 𝑎6 = 0.066  𝜆6 = 2.85 (1/s)  𝜈𝑑 𝜈𝑝⁄ = 0.007  and 𝛼 = −𝜔0,7 = 100 (1/s) for 

a thermal fission system of 235U. Thus  the forward and adjoint 𝜔  eigenvalue equations of 

Equations (7) and (15) can le reasonally approximated as the ‘prompt 𝜔 eigenvalue equations’ 

to evaluate 𝛼: 

𝐁p𝜓p,𝑔(𝑟, Ω⃗⃗⃗) =
𝜔p

v𝑔
𝜓p,𝑔(𝑟, Ω⃗⃗⃗), (30) 

𝐁p
†𝜓p,𝑔

† (𝑟, Ω⃗⃗⃗) =
𝜔p

v𝑔
𝜓p,𝑔

† (𝑟, Ω⃗⃗⃗), (31) 

where the subscript p in 𝜓p,𝑔, 𝜓p,𝑔
†

 and 𝜔p indicates the prompt approximation. Using the 

prompt approximation, the prompt neutron decay constant can be reasonably evaluated by an 

existing neutron transport code (e.g. PARTISN) as reported in the previous study [7].  

Here, the corresponding delayed neutron precursor densities 𝐶p,𝑖  and 𝐶p,𝑖
†

 can be 

estimated by Equations (6) and (14), if necessary: 

𝐶p,𝑖(𝑟) ≈
1

𝜔p + 𝜆𝑖
∑ 𝑎𝑖𝜈dΣf,𝑔′

𝑁𝐺

𝑔′=1

∫ 𝜓p,𝑔′(𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

, (32) 
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𝐶p,𝑖
† (𝑟) ≈

𝜆𝑖

𝜔p + 𝜆𝑖
∑ ∫

𝜒𝑖,𝑔′

4𝜋
𝜓

p,𝑔′
† (𝑟, Ω⃗⃗⃗′)𝑑Ω′

4𝜋

𝑁𝐺

𝑔′=1

. (33) 

Note that, in the prompt approximation where |𝜔p| ≫ 𝜆𝑖, Equations (32) and (33) clarify that 

magnitudes of 𝐶p,𝑖and 𝐶p,𝑖
†

 are negligibly small. Thus, in the SA of 𝜔p, the relative sensitivity 

coefficient by Equation (29) can be approximated without 𝐶p,𝑖and 𝐶p,𝑖
†

: 

𝜎

𝜔p

𝜕𝜔p

𝜕𝜎
≈

𝜎

𝜔p
 

〈𝜓p,𝑔
† (

𝜕𝐁p

𝜕𝜎
+

𝜔p

v𝑔
2

𝜕v𝑔

𝜕𝜎
) 𝜓p,𝑔〉

〈
𝜓p,𝑔

† 𝜓p,𝑔

v𝑔
〉

. (34) 

The numerical methodology of Equation (34) is almost the same in the case of 𝑘eff [12]. In 

our previous study using the multi-group diffusion calculation [19], the applicability of the 

prompt approximation of Equation (34) was verified by comparing the rigorous sensitivity 

coefficient using Equation (29). 

As can be suggested from the derivation of Equation (34), it is expected that sensitivity 

coefficients of 𝜔p to delayed neutron parameters are negligibly small. To roughly estimate a 

relative sensitivity coefficient to a delayed neutron parameter, the approximated values of 𝐶p,𝑖 

and 𝐶p,𝑖
†

 are useful, e.g. the relative sensitivity coefficients to relative delayed neutron yield 

𝑎𝑖 and decay constant 𝜆𝑖 can be estimated by Equations (35)-(37), respectively: 

(
𝑎𝑖

𝜔p

𝜕𝜔p

𝜕𝑎𝑖
)

constrained

=
𝑎𝑖

𝜔p

𝜕𝜔p

𝜕𝑎𝑖
− 𝑎𝑖 ∑

𝑎𝑖′

𝜔p

𝜕𝜔p

𝜕𝑎𝑖′

6

𝑖′=1

 , (35) 

𝑎𝑖′

𝜔p

𝜕𝜔p

𝜕𝑎𝑖′
≈

𝑎𝑖′

𝜔p
 

〈𝐶p,𝑖
† 𝛿𝑖𝑖′𝜈dΣf,𝑔𝜓p,𝑔〉

〈
𝜓p,𝑔

† 𝜓p,𝑔

v𝑔
〉 + 〈𝐶p,𝑖

† 𝐶p,𝑖〉

, 
(36) 

𝜆𝑖′

𝜔p

𝜕𝜔p

𝜕𝜆𝑖′
≈

𝜆𝑖′

𝜔p
 
〈𝜓p,𝑔

† 𝜒𝑖,𝑔

4𝜋 𝛿𝑖𝑖′𝐶p,𝑖〉 − 〈𝐶p,𝑖
† 𝛿𝑖𝑖′𝐶p,𝑖〉

〈
𝜓p,𝑔

† 𝜓p,𝑔

v𝑔
〉 + 〈𝐶p,𝑖

† 𝐶p,𝑖〉

. (37) 

Note that the sensitivity coefficients to 𝑎𝑖 satisfy the constrained condition in the same way as 

the fission spectrum [20], since the total sum of 𝑎𝑖 is normalized to unity. 
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3. Numerical calculations 

3.1. Calculation procedures 

In order to verify SA of 𝛼 using the first-order perturbation theory, we numerically solved 

one of the ICSBEP benchmark problems, HEU-SOL-THERM-012, which is a thermal system 

(98% of fissions caused by neutrons below 0.625eV) as reported in the reference [21]. The 

experimental core is a highly enriched uranium oxyfluoride solution (93.2 wt% 235U) in a 

~27.9cm inner radius sphere with a 0.2cm aluminum spherical shell. The sphere was surrounded 

by an effectively infinite water reflector (15.0cm thickness). Because the experimental core can 

be modeled by the one-dimensional spherical geometry, the calculation time can be saved to 

obtain the reference sensitivity coefficient using the direct method. Thus, HEU-SOL-THERM-

012 was used in this verification.  

Firstly, SCALE6.2.2/TSUNAMI-1D [12] was utilized to prepare 252 energy-group 

microscopic cross-section data based on ENDF/B-VII.1 [22] and to carry out SA of 𝑘eff. As a 

result of TSUNAMI-1D shown in Table 1, it was confirmed that implicit effects of 𝑘eff -

sensitivity coefficients, which is associated with changes in resonance-shielded multigroup 

cross sections [23, 24], are relatively small in the case of HEU-SOL-THERM-012. Thus, we 

approximately neglected the implicit effects in the evaluation of 𝛼-sensitivity coefficients. 

Using the PALEALE module for an AMPX master formatted binary file (ft42f001) which was 

produced through the TSUNAMI-1D run, the microscopic effective cross-section data for all 

nuclides were obtained. After that, using these microscopic effective cross-section data with 

their nuclide number densities, the 252 energy-group macroscopic cross-section data were 

prepared for the subsequent PARTISN calculation. 

Secondary, conventional forward and adjoint 𝑘eff-eigenvalue calculations were carried 

out by PARTISN. The spatial mesh sizes Δ𝑟 were approximately 0.1 cm. The order of angular 

quadrature is S64, and P5 scattering cross-sections were considered. The numerical results of 
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PARTISN were follows: 𝑘eff = 0.99944 , effective delayed neutron fraction 𝛽eff =  725 

(pcm), neutron generation time Λ =  80.73 (μsec), and the prompt neutron decay constant 

based on the one-point approximation 
𝛽eff−𝜌

Λ
=  96.76 (1/sec), respectively. Note that 𝛽eff 

and Λ were evaluated by an in-house tool using the forward and adjoint PARTISN 𝑘eff-flux 

moment files (rmflux and amflux). In addition, SA of 𝑘eff was also carried out using the in-

house tool with these flux files, followed by uncertainty quantification (UQ) using the 252 

group SCALE covariance library (scale.rev08.252groupcov7.1) [12]. The PARTISN result of 

𝑘eff-uncertainty was 0.8114 (%𝛿𝑘/𝑘), which is almost the same value as the TSUNAMI-1D 

result 0.8113 (%𝛿𝑘/𝑘), as shown in Table 1. Consequently, the basic numerical procedures for 

SA and UQ were verified. 

 

<Table 1> 

 

 After verification of SA and UQ for 𝑘eff, forward and adjoint 𝜔p-eigenvalue calculation 

was carried out by PARTISN with the alpha search mode to obtain the prompt neutron decay 

constant 𝛼. Convergence criteria for inner and outer iterations were 10−10 to reduce numerical 

errors as much as possible. Using the in-house tool with forward and adjoint PARTISN 𝜔p-

flux moment files, SA of 𝛼 to 252 group microscopic data was carried out on the basis of 

Equation (34). For comparison, sensitivity coefficients of 𝛼 to 𝑎𝑖  and 𝜆𝑖  were estimated 

only for 235U by Equations (35)-(37), in order to check whether these sensitivity coefficients to 

𝑎𝑖 and 𝜆𝑖 are negligibly small. 

Finally, in order to verify the PT-based sensitivity coefficients of 𝛼 , the sensitivity 

coefficients of 𝛼 were also estimated using the direct method to obtain their reference values. 

Namely, each of 252 group microscopic nuclear data was directly perturbed to estimate the 

reference sensitivity coefficients (
𝜎

𝜔p

𝜕𝜔p

𝜕𝜎
)

ref

 using the second-order central difference: 
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(
𝜎

𝜔p

𝜕𝜔p

𝜕𝜎
)

ref

≈
1

2ℎ

𝜔p,𝜎(1+ℎ) − 𝜔p,𝜎(1−ℎ)

𝜔p,𝜎
, (38) 

where ℎ =
𝛿𝜎

𝜎
 is relative perturbation from the unperturbed nuclear data 𝜎 ; 𝜔p,𝜎  is 

unperturbed 𝜔p-eignenvalue; 𝜔p,𝜎(1±ℎ) is perturbed 𝜔p-eignenvalue due to perturbation of 

𝜎(1 ± ℎ), respectively. It is noted that, if the sensitivity coefficient 
𝜎

𝜔p

𝜕𝜔p

𝜕𝜎
 and the relative 

perturbation ℎ are too small, number of significant digits for the difference between 𝜔p,𝜎(1+ℎ) 

and 𝜔p,𝜎(1−ℎ) is not sufficient in the estimation by Equation (38). Thus, ℎ in Equation (38) 

was empirically determined for each of nuclear data as follows: 

ℎ = min (
0.01

( 𝜎
𝜔p

𝜕𝜔p

𝜕𝜎
)

PT

, 0.25) , (39) 

where (
𝜎

𝜔p

𝜕𝜔p

𝜕𝜎
)

PT

 is the relative sensitivity coefficient which is guessed by PT. Note that the 

direct method requires a lot of computational times for SN calculations, thus the reference 

sensitivity coefficients are estimated only for the following nuclear data: 

235U: fission cross-section 𝜎f,𝑔, prompt fission spectrum 𝜒p,𝑔, (n,2n) cross-section 𝜎(n,2n),𝑔; 

1H: (n γ) cross-section 𝜎(n,γ),𝑔, elastic scattering cross-section 𝜎ela,𝑔; and 

neutron velocity v𝑔. 

 

 

3.2. Results for relative sensitivity coefficients of 𝜶  

Using the PARTISN code, the numerical result of prompt neutron decay constant was 

obtained as 𝛼 = −𝜔p = 96.13  (1/s), which is almost equal to the approximated value 

𝛽eff−𝜌

Λ
=  96.76 (1/s) in the case of critical benchmark problem such as HEU-SOL-THERM-

012. 

Figure 1 shows numerical results of relative sensitivity coefficients of 𝛼 using the first-

order perturbation theory using Equation (34) (denoted ly ‘PT’) and the reference values 
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(denoted ly ‘ref’). Note the positive sign of sensitivity coefficient correspond to an increase in 

the magnitude of prompt neutron decay constant 𝛼 due to the positive perturbation of nuclear 

data +𝛿𝜎, and vice versa. For example of the negative sensitivity coefficient, if thermal fission 

cross-section of 235U slightly increases, the positive reactivity perturbation +𝛿𝜌 is added; thus 

𝛼 decreases towards zero because fission chain reaction lasts longer to result in smaller decay 

constant. 

From Figure 1, it is verified that the numerical results obtained by PT agree well with 

reference values. As can be seen from Figure 1, it is confirmed that the magnitude of sensitivity 

coefficients of 𝛼 to neutron velocity v𝑔 is relatively small compared with those of dominant 

nuclide-reaction-pairs, e.g. 𝜎f,𝑔 of 235U and 𝜎(n,γ),𝑔 of 1H.   

 

<Figure 1> 

 

Figure 2 shows the approximated relative sensitivity coefficients of  𝛼 to 𝑎𝑖 and 𝜆𝑖 of 

235U using Equations (35)-(37). As compared with Figure 1, the magnitudes of these sensitivity 

coefficients to 𝑎𝑖 and 𝜆𝑖 are the order of 0.002 (%/%) and comparable to that of 𝜎(n,2n),𝑔 of 

235U. Consequently, it is confirmed that the relative sensitivity coefficients of  𝛼 to 𝑎𝑖 and 𝜆𝑖 

are negligibly small. 

 

<Figure 2> 

 

3.3. Results for nuclear data-induced uncertainty of 𝜶  

By utilizing the PT lased sensitivity coefficients with the 252 group SCALE covariance 

lilrary (scale.rev08.252groupcov7.1)  UQ of 𝛼 was also carried out. Note that covariance data 

of 𝜒p,𝑔 is not contained in this covariance data. Thus  covariance data of total fission spectrum 

𝜒𝑔 was utilized as an alternative covariance data for 𝜒p,𝑔  since 𝜒𝑔 is roughly equal to 𝜒p,𝑔. 
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Talle 2 summarizes contrilutions to the nuclear data induced 𝛼 uncertainty due to each 

covariance data among nuclide reaction pairs. In Talle 2  ‘contrilution to 𝛼  uncertainty’ is 

defined ly the square root of the alsolute value of nuclear data induced covariance of 𝛼  and 

the negative sign of contrilution corresponds to the anti correlation due to the covariance of 𝛼. 

As can le seen from Talles 1 and 2  the dominant order of contrilutions to 𝛼 uncertainty is 

almost the same as that to 𝑘eff uncertainty. 

The total uncertainty of 𝛼 is 103.97 (% 𝛿𝛼 𝛼⁄ )  which means that the alsolute standard 

deviation due to nuclear covariance data is alout 100 (1/s). This large uncertainty of 𝛼  is 

reasonally explained ly the uncertainty propagation with the one point approximation of 𝛼 ≈

𝛽eff−𝜌

Λ
. As discussed in our previous study [7]  the magnitude of 𝛿𝛼/𝛼 is well approximated 

ly: 

𝛿𝛼

𝛼
≈  

−𝛿𝜌

𝛽eff − 𝜌
≈

1

1 − 𝑘eff(1 − 𝛽eff)

𝛿𝑘eff

𝑘eff
. (40) 

By sulstituting 
𝛿𝑘eff

𝑘eff
= 0.8114  (%)  𝑘eff = 0.99944   and 𝛽eff = 725  (pcm) into Equation 

(40)  the value of 
−𝛿𝜌

𝛽eff−𝜌
 is evaluated as 103.94 (%) and is nearly equal to the numerical results 

of 𝛼  uncertainty 𝛿𝛼/𝛼  ly PT. Consequently  it is confirmed that 
−𝛿𝜌

𝛽eff−𝜌
  is the major 

contrilution to nuclear data induced uncertainty of 𝛼. In other words  𝛿𝛼/𝛼 is roughly equal 

to the alsolute uncertainty of reactivity 𝛿𝜌 in dollar units  112 ($)  since −𝜌 = 56 (pcm) is 

smaller than 𝛽eff in the case of critical lenchmark prollem. 

 

Finally, using the PT-based relative sensitivity coefficients both for 𝑘eff and 𝛼 with the 

SCALE covariance library, the nuclear-data induced covariance between 𝑘eff  and 𝛼  was 

evaluated as −84.33 ((% 𝛿𝑘 𝑘⁄ )(% 𝛿𝛼 𝛼⁄ )). Consequently, it is confirmed that the nuclear-

data induced correlation between 𝑘eff and 𝛼 is strongly negative, 
−84.33

0.8114×103.97 
≈ −0.9996. 

This fact implies that the numerical predictions of 𝑘eff  can be improved by the data 

assimilation technique using measurement value of prompt neutron decay constant 𝛼 to reduce 
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the nuclear data-induced uncertainty and bias of 𝑘eff . Above-mentioned discussion on the 

correlation between 𝑘eff and 𝛼 is essentially the same as that for subcritical systems (0.90 <

𝑘eff < 0.98) reported in our previous study [7]. 

 

<Table 2> 

 

4. Issues in the future study 

Although the 𝜔𝑝  eigenvalue calculation is practically applicalle to the evaluation of 

prompt neutron decay constant 𝛼   the fast and stalle numerical algorithm for rigorous 𝜔  

eigenvalue calculation lased on transport theory is one of the interesting research suljects  e.g. 

verification ly the direct method with the rigorous consideration of delayed neutron effect. Such 

an effective numerical algorithm for rigorous 𝜔  eigenvalue calculation is also useful to 

evaluate the inverse reactor period [19]. 

For simplicity  we neglected the implicit effect on SA of 𝛼  in this study. To more 

appropriately evaluate the sensitivity coefficient using PT of 𝛼 in the deterministic codes  it is 

preferalle to treat the implicit effect [23  24]. To avoid such a cumlersome procedure  the 

research and development for SA of 𝛼  using the continuous energy Monte Carlo code is 

desired. The generalized iterated fission prolalility method [25] may enalle us to achieve SA 

of 𝛼 using the Monte Carlo code. 

In order to accomplish UQ of 𝛼 and the evaluation of covariance letween 𝛼 and 𝑘eff 

for the data assimilation using actual sulcritical measurement data  further enhancement of 

minor covariance data is also necessary  e.g. covariance of 𝜒p,𝑔; and correlations letween 𝜒𝑔 

and 𝜒p,𝑔. 
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5. Conclusion 

In this paper  the specific theoretical formulae for SA of prompt neutron decay constant 𝛼 

using PT was derived. Using the prompt approximation  the derived formula can le simplified 

without the term involving the delayed neutron precursor densities. By the aid of this 

approximation  the relative sensitivity coefficients of 𝛼  to delayed neutron parameters 

(relative delayed neutron yield 𝑎𝑖 and decay constant 𝜆𝑖) can le roughly estimated without 

cumlersome calculation lased on the more rigorous 𝜔 eigenvalue equation  although these 

sensitivity coefficients are expected to le the negligilly small impact on the numerical 

prediction of 𝛼.  

For verification of PT lased SA  relative sensitivity coefficients of 𝛼 were evaluated for 

the one of the ICSBEP lenchmark prollems (HEU SOL THERM 012)  using the SN neutron 

transport code  PARTISN. As a result  it was verified that the relative sensitivity coefficients of 

𝛼 agree well with reference values ly the direct method. Furthermore  nuclear data induced 

UQ of 𝛼  was also carried out using the SCALE covariance lilrary. Therely  the efficient 

numerical procedures for UQ of 𝛼  were estallished. Namely  ly the aid of PT  only two 

forward and adjoint 𝜔p eigenvalue calculations are enough for UQ of 𝛼. The results of present 

study are useful to accomplish SA of 𝛼  using the existing neutron transport code with the 

prompt approximation. 

Future plans are the uncertainty quantification of 𝛼  using PT for actual sulcritical 

experiments  and the data assimilation technique using actual measurement values of 𝛼  to 

reduce lias and uncertainty of predicted neutronics parameters. 
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Figure 1. Comparison of relative sensitivity coefficients of 𝛼. 

T. Endo: Sensitivity analysis of prompt neutron decay constant using perturlation theory 
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Figure 2. Relative sensitivity coefficients of 𝛼 to delayed neutron parameters. 
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Table 1. Comparison of nuclear data induced 𝑘eff uncertainty. 

covariance matrix 
contribution of uncertainty 

due to this matrix (%𝛿𝑘/𝑘)† 

nuclide-reaction with nuclide-reaction 
TSUNAMI-1D 

with implicit effect 

TSUNAMI-1D 

without implicit effect‡ 
PARTISN 

235U-𝜒   235U-𝜒 0.4920  0.4920  0.4921  

1H-𝜎(n,γ)   1H-𝜎(n,γ) 0.4162  0.4162  0.4162  

235U-𝜈   235U-𝜈 0.3835  0.3835  0.3835  

235U-𝜎f   235U-𝜎f 0.1729  0.1730  0.1730  

235U-𝜎(n,γ)   235U-𝜎(n,γ) 0.1392  0.1392  0.1392  

235U-𝜎f   235U-𝜎(n,γ) 0.1384  0.1384  0.1384  

1H-𝜎ela   1H-𝜎ela 0.1309  0.1306  0.1306  

16O-𝜎ela   16O-𝜎ela 0.1011  0.1019  0.1019  

16O-𝜎(n,n′ )   16O-𝜎(n,n′ ) 0.0056  0.0056  0.0056  

27Al-𝜎ela   27Al-𝜎ela 0.0038  0.0038  0.0038  

16O-𝜎(n,α )   16O-𝜎(n,α ) 0.0036  0.0036  0.0036  

16O-𝜎ela   16O-𝜎(n,n′ )  0.0027   0.0027   0.0027  

234U-𝜎(n,γ)   234U-𝜎(n,γ) 0.0021  0.0021  0.0021  

16O-𝜎(n,γ)   16O-𝜎(n,γ) 0.0019  0.0019  0.0019  

235U-𝜎ela   235U-𝜎f  0.0018   0.0022   0.0022  

27Al-𝜎(n,n′)   27Al-𝜎(n,n′) 0.0015  0.0015  0.0015  

27Al-𝜎(n,γ)   27Al-𝜎(n,γ) 0.0015  0.0015  0.0015  

235U-𝜎ela   235U-𝜎(n,γ) 0.0013  0.0016  0.0016  

235U-𝜎(n,n′)   235U-𝜎(n,n′) 0.0008  0.0008  0.0008  

238U-𝜎(n,γ)   238U-𝜎(n,γ) 0.0007  0.0007  0.0007  

19F-𝜎(n,n′)   19F-𝜎(n,n′) 0.0007  0.0007  0.0007  

Total 0.8113  0.8113  0.8114  

† See page 6 142 in the SCALE6.2.2 manual [12] 

‡ These results were oltained ly TSUNAMI 1D with the ‘PARM=CENTRM’ option 
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Table 2. Summary of contributions to the nuclear data-induced 𝛼-uncertainty. 

covariance matrix contribution of uncertainty 

 due to this matrix (%𝛿𝛼/𝛼) nuclide-reaction with nuclide-reaction 

235U-𝜒p  235U-𝜒p 62.72  

1H-𝜎(n,γ)  1H-𝜎(n,γ) 53.65  

235U-𝜈p  235U-𝜈p 49.28  

235U-𝜎f  235U-𝜎f 21.94  

235U-𝜎(n,γ)  235U-𝜎(n,γ) 17.93  

235U-𝜎f  235U-𝜎(n,γ) 17.69  

1H-𝜎ela  1H-𝜎ela 16.76  

16O-𝜎ela  16O-𝜎ela 13.06  

16O-𝜎(n,n′ )  16O-𝜎(n,n′ ) 0.72  

27Al-𝜎ela  27Al-𝜎ela 0.49  

16O-𝜎(n,α )  16O-𝜎(n,α ) 0.47  

16O-𝜎ela  16O-𝜎(n,n′) -0.35  

235U-𝜎ela  235U-𝜎f -0.27  

234U-𝜎(n,γ)  234U-𝜎(n,γ) 0.27  

16O-𝜎(n,γ)  16O-𝜎(n,γ) 0.24  

235U-𝜎ela  235U-𝜎(n,γ) 0.20  

27Al-𝜎(n,γ)  27Al-𝜎(n,γ) 0.20  

27Al-𝜎(n,n′)  27Al-𝜎(n,n′) 0.19  

235U-𝜎(n,n′)  235U-𝜎(n,n′) 0.10  

238U-𝜎(n,γ)  238U-𝜎(n,γ) 0.09  

19F-𝜎(n,n′)   19F-𝜎(n,n′) 0.09  

Total 103.97 
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