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Abstract 8 

This paper discusses the statistical error of the variance-to-mean ratio, or the 𝑌 value in the 9 

Feynman-𝛼 method, from a single measurement of reactor noise. As a theoretical approach, 10 

two practical theoretical formulae are derived to estimate the statistical error of 𝑌: one is 11 

based on the propagation of uncertainty with unbiased estimators for the third- and 12 

fourth-order central moments; the other is a simplified formula that reuses the Y value under 13 

the fundamental mode approximation, where the subcriticality is approximately less than 14 

10,000 pcm. As a numerical approach, the bootstrap method is improved to efficiently 15 

estimate the correlations of 𝑌 between different counting gate widths, or covariance matrix 16 

𝚺𝑌, due to the bunching method. Through an actual reactor noise experiment at the Kyoto 17 

University Criticality Assembly, the statistical errors of 𝑌 using the theoretical formulae and 18 

the bootstrap method are validated by comparing the reference statistical errors that are 19 

estimated from the multiple experiments of reactor noise. Furthermore, the impact of 𝚺𝑌 on 20 

the statistical error of the prompt neutron decay constant 𝛼 is numerically investigated. 21 

Consequently, in the case of this experimental analysis, it was confirmed that the bootstrap 22 

method with the correlations of 𝑌 seems to be slightly better from the viewpoint of the 23 

coverage probability of the estimated confidence intervals of 𝛼, although the fitting error 24 

method without the correlation of 𝑌 could be useful for the order estimation of the statistical 25 

error of 𝛼. 26 
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Highlights 6 

✓ Estimation formulae for statistical error of variance-to-mean ratio 𝑌 are derived. 7 

✓ Statistical error of 𝑌 can be estimated by reusing 𝑌 without higher-order moments. 8 

✓ Bootstrap method enables covariance estimation of 𝑌 between counting gate widths. 9 

✓ Covariance is useful in better error-estimation of prompt neutron decay constant.10 
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1. Introduction 1 

The study of subcriticality monitoring is important to achieve safe and efficient operation 2 

and management in nuclear fuel-related facilities. It is also important for the 3 

Accelerator-Driven System (ADS), where the subcritical state must be maintained during 4 

operation [1,2]. Furthermore, in the retrieval of fuel debris from Fukushima Daiichi units 1–3 5 

with the submersion condition, there is a possibility of a positive reactivity insertion event due 6 

to the change in the moderation ratio; thus, subcriticality monitoring to prevent recriticality is 7 

an important issue [3]. 8 

The Feynman-𝛼 method, also called the variance-to-mean ratio method, is a practical 9 

subcriticality measurement technique based on the zero-power reactor noise analysis [4,5,6,7]. 10 

Using the Feynman-𝛼 method, the prompt neutron decay constant 𝛼 can be measured by 11 

analyzing the time-series data of neutron counts; then the measurement value of 𝛼  is 12 

converted to the subcriticality −𝜌 ≡ (1 − 𝑘eff) 𝑘eff⁄ , which is the absolute value of the 13 

negative reactivity. In the Feynman-𝛼 method, quantification of the statistical error of the 14 

variance-to-mean ratio (or 𝑌 value) is useful information for clarifying the measurement 15 

precision and reconsidering the measurement time if necessary. For example, if the estimated 16 

statistical error is unacceptable and should be reduced by half, the central limit theorem 17 

implies that four times the measurement time is necessary. Here, one of the simple estimation 18 

methods for the statistical error 𝜎𝑌 is multiple measurements of reactor noise; however, an 19 

additional longer measurement time is needed to repeat the multiple times of measurements 20 

for the error estimation.  21 

Thus, in our previous study, the statistical error estimation technique using only a single 22 

measurement of reactor noise, i.e., without multiple measurements, was proposed using the 23 

bootstrap method [8,9]. In the bootstrap method, the statistical error can be simply estimated 24 

by a resampling that is based on an experimentally inferred probability distribution of neutron 25 

count. It is worth noting that the calculation time is long due to the resampling. 26 
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As another approach, we newly propose theoretical formulae to efficiently estimate the 1 

statistical error 𝜎𝑌  for a single measurement. Compared with the previous theoretical 2 

investigations [10,11,12,13], the following points are the remarkable features of our present 3 

work: 4 

1. In the propagation of uncertainty for the statistical error of 𝑌, the covariance between 5 

the sample mean and the unbiased variance is explicitly considered. 6 

2. Unbiased estimators for central moments are utilized. 7 

3. Under the fundamental mode approximation where −𝜌 < 10,000 pcm , a more 8 

simplified formula for 𝜎𝑌 by reusing 𝑌 is also derived. 9 

In the theoretical approach, however, correlations of 𝑌 between different counting gate 10 

widths 𝑇 (or covariance matrix 𝚺𝑌), which originate from the bunching method for the same 11 

time-series data [14], are an unresolved issue. Therefore, to numerically investigate the impact 12 

of 𝚺𝑌 on the statistical error of 𝛼 in the fitting process, we improve procedures in the 13 

bootstrap method to effectively estimate the bootstrap covariance matrix 𝚺𝑌∗.  14 

One of the major aims of this study is to validate the statistical errors of 𝑌 and 𝛼 that 15 

are obtained from a single measurement of reactor noise, by comparing them with the 16 

reference statistical errors or by evaluating the coverage probability of the estimated 17 

confidence interval. Here, the reference statistical errors and the coverage probability can be 18 

evaluated using the multiple experiments of reactor noise. Through this validation, we aim to 19 

confirm whether the estimated statistical errors are reasonable, i.e., neither overestimated nor 20 

underestimated. The reduction of statistical errors of 𝑌 and 𝛼 is out of scope of this study. 21 

The rest of the paper is structured as follows. In Section 2, the theory of statistical error 22 

𝜎𝑌 is described. In Section 3, we explain the improved bootstrap method. In Section 4, the 23 

derived estimation formulae and the improved bootstrap method are demonstrated through an 24 

experimental analysis for actual reactor noise data that were measured at the Kyoto University 25 
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Criticality Assembly (KUCA). In addition, the impact of 𝚺𝑌 on the statistical error of 𝛼 in 1 

the fitting process is discussed. Finally, in Section 5, concluding remarks are presented. 2 

 3 

2. Theory for statistical error of 𝒀 value 4 

2.1. Propagation of uncertainty for 𝒀 value 5 

Let us assume a steady state of a source-driven subcritical system. In this subcritical 6 

system, neutron counts 𝐶𝑖(𝑇) are measured 𝑁 times (1 ≤ 𝑖 ≤ 𝑁), where 𝑇 is the counting 7 

gate width and 𝑁  is the total number of count data. Then, the second-order 8 

neutron-correlation value 𝑌 is evaluated as the variance-to-mean ratio: 9 

𝑌 ≡
𝜎2

〈𝐶〉
− 1 ≈

𝑠2

𝐶̅
− 1, (1) 

𝜎2 ≡ 〈(𝐶 − 〈𝐶〉)2 〉, (2) 

where the bracket 〈 〉 indicates the expected value; 〈𝐶〉 and 𝜎2 are the population mean and 10 

variance of neutron counts; and 𝐶̅ and 𝑠2 represent the sample mean and the unbiased 11 

variance of 𝐶𝑖(𝑇), respectively: 12 

𝐶̅ =
1

𝑁
∑𝐶𝑖

𝑁

𝑖=1

, (3) 

𝑠2 =
1

𝑁 − 1
∑(𝐶𝑖 − 𝐶̅)2
𝑁

𝑖=1

. (4) 

Note that the notation 𝑇 is omitted in Eqs. (1)–(4) for simplicity. 13 

Based on the propagation of uncertainty (or the sandwich rule) for Eq. (1), the statistical 14 

error 𝜎𝑌 can be estimated as follows: 15 

𝜎𝑌 ≈ √(
𝜕𝑌

𝜕𝜎𝐶̅
𝜎�̅�)

2

+ (
𝜕𝑌

𝜕𝑠2
𝜎𝑠2)

2

+ 2
𝜕𝑌

𝜕𝜎�̅�

𝜕𝑌

𝜕𝑠2
cov(𝐶̅, 𝑠2)

= (𝑌 + 1)√(−
𝜎�̅�

𝐶̅
)
2

+ (
𝜎𝑠2

𝑠2
)
2

− 2
cov(𝐶̅, 𝑠2)

𝐶̅𝑠2
, 

(5) 
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where 𝜎�̅� and 𝜎𝑠2 are the statistical errors of 𝐶̅ and 𝑠2, respectively; and cov(𝐶̅, 𝑠2) is 1 

the covariance between 𝐶̅  and 𝑠2 . In Eq. (5), the expected values of 𝜎�̅� , 𝜎𝑠2 , and 2 

cov(𝐶̅, 𝑠2) can be derived as follows [15]: 3 

〈𝜎�̅�〉 = √
𝜎2

𝑁
, (6) 

〈𝜎𝑠2〉 = √
1

𝑁
(𝜇4 −

𝑁 − 3

𝑁 − 1
(𝜎2)2) , (7) 

〈cov(𝐶̅, 𝑠2)〉 =
𝜇3
𝑁
, (8) 

𝜇3 ≡ 〈(𝐶 − 〈𝐶〉)3 〉, (9) 

𝜇4 ≡ 〈(𝐶 − 〈𝐶〉)4 〉, (10) 

where 𝜇3 and 𝜇4 correspond to the third- and fourth-order central moments, respectively. If 4 

the same time-series data are used for the estimation of both 𝐶̅ and 𝑠2, the covariance team 5 

cov(𝐶̅, 𝑠2) should not be neglected in Eq. (5). 6 

 7 

2.2. Estimation formula using unbiased estimators for central moments  8 

As can be seen from Eqs. (5)–(8), it is necessary for the estimation of the statistical error 9 

𝜎𝑌 to appropriately evaluate the third- and fourth-order central moments 𝜇3 and 𝜇4 from 10 

the finite number of neutron count data 𝐶𝑖(𝑇) (1 ≤ 𝑖 ≤ 𝑁). 11 

For this purpose, 𝜇3 and 𝜇4 can be estimated using the unbiased estimators ℎ3 and 12 

ℎ4 in the h-statistics, respectively [16], where ℎ3 and ℎ4 are obtained by 13 

ℎ3 =
𝑁

(𝑁 − 1)(𝑁 − 2)
∑(𝐶𝑖 − 𝐶̅)3
𝑁

𝑖=1

, (11) 
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ℎ4 =
𝑁2 − 2𝑁 + 3

(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
∑(𝐶𝑖 − 𝐶̅)4
𝑁

𝑖=1

−
3(2𝑁 − 3)

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
(∑(𝐶𝑖 − 𝐶̅)2

𝑁

𝑖=1

)

2

. 

(12) 

Using the unbiased estimators 𝑠2, ℎ3, and ℎ4 in Eqs. (5)–(8) instead of 𝜎2, 𝜇3, and 𝜇4, the 1 

statistical error 𝜎𝑌,h can be evaluated by the following formula: 2 

𝜎𝑌,h ≈ (𝑌 + 1)√
𝑌 + 1

𝑁𝐶̅
+
1

𝑁
(

ℎ4
(𝑠2)2

−
𝑁 − 3

𝑁 − 1
) −

2ℎ3

𝑁𝐶̅𝑠2
. (13) 

In the conventional Feynman-𝛼 method, the calculations of 𝐶̅ and 𝑠2 are sufficient for the 3 

evaluation of the 𝑌 value as defined in Eq. (1). For the estimation of 𝜎𝑌,h by Eq. (13), 4 

additional calculations of ℎ3 and ℎ4 are necessary. 5 

 6 

2.3. Simplified formula by reusing the second-order neutron-correlation 7 

In general, the magnitude of the 𝑛th-order neutron-correlation is proportional to the 8 

(𝑛 − 1)th power of the detector importance function, or detection efficiency [17,18,19]. For 9 

example, if 𝑌 < 1, it is expected that the third and fourth-order neutron-correlations are 10 

lower than the second-order neutron-correlation. In particular, in the case of 𝑌 ≪ 1, it was 11 

clarified that the probability density function of the neutron count can be sufficiently 12 

approximated by the negative binomial distribution [7,10,11]. If the negative binominal 13 

distribution approximation is applicable, the statistical error 𝜎𝑌  can be approximately 14 

estimated only using 〈𝐶〉  and 𝑌  [10]. Although the negative binominal distribution 15 

approximation is useful for estimating 𝜎𝑌 , the applicability depends on experimental 16 

conditions, e.g., low detection efficiency and/or deep subcritical system. Thus, in this 17 

subsection, a more simplified formula of the statistical error 𝜎𝑌 is newly derived without 18 

depending on the magnitude of 𝑌, on the basis of the fundamental mode approximation 19 

where  0.9 < 𝑘eff < 1, or −𝜌 < 10,000 pcm. 20 
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 1 

In the steady state of the source-driven subcritical system, a master equation for 2 

probability-generating functions of neutron count is described as follows [7,18]: 3 

ln(𝐺(𝑍, 𝑇|𝑆)) = ∫ 𝑑𝑢
∞

0

∫ 𝑑𝑉
𝑉

𝑆(𝑟)∑𝑝s(𝑞, 𝑟)

∞

𝑞=0

{(�̅�(𝑍, 𝑇|𝑟, 𝑢))
𝑞
− 1}, (14) 

𝐺(𝑍, 𝑇|𝑆) ≡ ∑𝑍𝐶𝑃(𝐶, 𝑇|𝑆)

∞

𝐶=0

, (15) 

�̅�(𝑍, 𝑇|𝑟, 𝑢) ≡ ∫ 𝑑𝐸
∞

0

∫ 𝑑Ω
4𝜋

𝜒s(𝑟, 𝐸)

4𝜋
𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢), (16) 

𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢) ≡ ∑𝑍𝐶𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢)

∞

𝐶=0

, (17) 

where  4 

𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢) : probability that 𝐶 neutrons are detected during the counting gate 5 

width 𝑇 due to a neutron at (𝑟, 𝐸, Ω⃗⃗⃗, 𝑢), where 𝑢 is a backward time-variable, i.e., 6 

𝑢 ≡ −𝑡, 𝑢 = 0 corresponds to the counting gate closing time; 7 

𝑔(𝑍, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢) : probability-generating function for 𝑝(𝐶, 𝑇|𝑟, 𝐸, Ω⃗⃗⃗, 𝑢), where 𝑍 is the 8 

variable of generating function; 9 

�̅�(𝑍, 𝑇|𝑟, 𝑢) : weighted mean of probability generating function, of which weighting 10 

function is 
𝜒s(𝑟,𝐸)

4𝜋
; 11 

𝑃(𝐶, 𝑇|𝑆) : probability that 𝐶 neutrons are detected during the counting gate width 𝑇 12 

owing to a stationary external neutron source 𝑆; 13 

𝐺(𝑍, 𝑇|𝑆) : probability-generating function for 𝑃(𝐶, 𝑇|𝑆). 14 

𝑆(𝑟) : spatial distribution of source strength for the external neutron source; 15 

𝜒s(𝑟, 𝐸) : energy spectrum of the external neutron source; 16 

𝑝s(𝑞, 𝑟) : probability that 𝑞 neutrons are emitted per decay of the external source. 17 

 18 
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Using the mathematical properties of the probability-generating function 𝐺(𝑍, 𝑇|𝑆) 1 

described by Eq. (14), the 𝑛th-order neutron-correlation value 𝒴𝑛 (𝑛 ≥ 2) is defined as 2 

𝒴𝑛 ≡
1

〈𝐶〉

𝜕𝑛

𝜕𝑍𝑛
ln(𝐺(𝑍, 𝑇|𝑆))|

𝑍=1
 , (18) 

where 𝒴2 corresponds to the 𝑌 value in the Feynman-𝛼 method. For example, the first- to 3 

fourth-order partial derivatives of ln(𝐺(𝑍, 𝑇|𝑆)) with respect to 𝑍 are shown below: 4 

𝜕(ln𝐺)

𝜕𝑍
=
1

𝐺

𝜕𝐺

𝜕𝑍
 , (19) 

𝜕2(ln𝐺)

𝜕𝑍2
=
1

𝐺

𝜕2𝐺

𝜕𝑍2
− (

𝜕(ln𝐺)

𝜕𝑍
)

2

 , (20) 

𝜕3(ln𝐺)

𝜕𝑍3
=
1

𝐺

𝜕3𝐺

𝜕𝑍3
− 3

𝜕(ln𝐺)

𝜕𝑍

𝜕2(ln𝐺)

𝜕𝑍2
− (

𝜕(ln𝐺)

𝜕𝑍
)

3

, (21) 

𝜕4(ln𝐺)

𝜕𝑍4
=
1

𝐺

𝜕4𝐺

𝜕𝑍4
− 4

𝜕(ln𝐺)

𝜕𝑍

𝜕3(ln𝐺)

𝜕𝑍3
− 3(

𝜕2(ln𝐺)

𝜕𝑍2
)

2

− 6(
𝜕(ln𝐺)

𝜕𝑍
)

2
𝜕2(ln𝐺)

𝜕𝑍2

− (
𝜕(ln𝐺)

𝜕𝑍
)

4

, 

(22) 

where arguments (𝑍, 𝑇|𝑆) of 𝐺(𝑍, 𝑇|𝑆) are omitted for simplicity. In addition, 𝐺(𝑍, 𝑇|𝑆) 5 

satisfies the following mathematical properties: 6 

𝐺(𝑍, 𝑇|𝑆)|𝑍=1 = ∑𝑃(𝐶, 𝑇|𝑆)

∞

𝐶=0

= 1, (23) 

𝜕𝑛𝐺

𝜕𝑍𝑛
|
𝑍=1

= 〈
𝐶!

(𝐶 − 𝑛)! 
〉 . (24) 

Using Eqs. (18)–(24), the second- to fourth-order neutron-correlation values can be 7 

expressed as 8 

𝑌 ≡ 𝒴2 =
1

〈𝐶〉

𝜕2(ln𝐺)

𝜕𝑍2
|
𝑍=1

=
〈𝐶(𝐶 − 1)〉 − 〈𝐶〉2

〈𝐶〉
 , (25) 
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𝒴3 =
1

〈𝐶〉

𝜕3(ln𝐺)

𝜕𝑍3
|
𝑍=1

=
〈𝐶(𝐶 − 1)(𝐶 − 2)〉 − 3𝑌〈𝐶〉2 − 〈𝐶〉3

〈𝐶〉
, (26) 

𝒴4 =
1

〈𝐶〉

𝜕4(ln𝐺)

𝜕𝑍4
|
𝑍=1

=
〈𝐶(𝐶 − 1)(𝐶 − 2)(𝐶 − 3)〉 − 4𝒴3〈𝐶〉

2 − 3𝑌2〈𝐶〉2 − 6𝑌〈𝐶〉3 − 〈𝐶〉4

〈𝐶〉
,  

(27) 

 1 

As reported in our previous studies [18,19], the saturation values of 𝑌, 𝒴3, and 𝒴4 in 2 

the limit of 𝑇 → ∞ can be derived by differentiating the right-hand side of Eq. (14) and 3 

using the first to fourth-order detector importance functions: 4 

𝑌∞ ≡ lim
𝑇→∞

𝑌 =
∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)

∞
𝑞=0 {𝑞𝐼2̅,s

† (𝑟) + 𝑞(𝑞 − 1)(𝐼1̅,s
† (𝑟))

2
} 𝑑𝑉

𝑉

∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)
∞
𝑞=0 𝑞𝐼1̅,s

† (𝑟)𝑑𝑉
𝑉

, (28) 

𝒴3,∞ ≡ lim
𝑇→∞

𝒴3 =

∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)
∞
𝑞=0 {

𝑞𝐼3̅,s
† (𝑟) + 3𝑞(𝑞 − 1)𝐼1̅,s

† (𝑟)𝐼2̅,s
† (𝑟)

+𝑞(𝑞 − 1)(𝑞 − 2) (𝐼1̅,s
† (𝑟))

3 }𝑑𝑉
𝑉

∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)
∞
𝑞=0 𝑞𝐼1̅,s

† (𝑟)𝑑𝑉
𝑉

, 
(29) 

𝒴4,∞ ≡ lim
𝑇→∞

𝒴4

=

∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)
∞
𝑞=0

{
  
 

  
 𝑞𝐼4̅,s

† (𝑟) + 4𝑞(𝑞 − 1)𝐼1̅,s
† (𝑟)𝐼3̅,s

† (𝑟)

+3𝑞(𝑞 − 1)(𝐼2̅,s
† (𝑟))

2

+6𝑞(𝑞 − 1)(𝑞 − 2) (𝐼1̅,s
† (𝑟))

2

𝐼2̅,s
† (𝑟)

+𝑞(𝑞 − 1)(𝑞 − 2)(𝑞 − 3) (𝐼1̅,s
† (𝑟))

4

}
  
 

  
 

𝑑𝑉
𝑉

∫ 𝑆(𝑟)∑ 𝑝s(𝑞, 𝑟)
∞
𝑞=0 𝑞𝐼1̅,s

† (𝑟)𝑑𝑉
𝑉

, 

(30) 

𝐼�̅�,s
† (𝑟) ≡ ∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜒s(𝑟, 𝐸
′)

4𝜋
𝐼𝑛
†(𝑟, 𝐸′, Ω⃗⃗⃗′), (31) 

where the subscript “∞” indicates the saturation values in the limit of 𝑇 → ∞; 𝐼�̅�,s
† (𝑟) is the 5 

weighted mean of the 𝑛th-order detector importance function 𝐼𝑛
†(𝑟, 𝐸, Ω⃗⃗⃗) that satisfies the 6 

following adjoint neutron transport equations [18,19]: 7 
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𝐁†𝐼1
†(𝑟, 𝐸, Ω⃗⃗⃗) = Σd(𝑟, 𝐸), (32) 

𝐁†𝐼2
†(𝑟, 𝐸, Ω⃗⃗⃗) = Σf(𝑟, 𝐸)∑𝑝f(𝜈, 𝑟)

∞

𝜈=0

𝜈(𝜈 − 1) (𝐼1̅,f
† (𝑟))

2

, (33) 

𝐁†𝐼3
†(𝑟, 𝐸, Ω⃗⃗⃗) = Σf(𝑟, 𝐸)∑𝑝f(𝜈, 𝑟)

∞

𝜈=0

(
3𝜈(𝜈 − 1)𝐼1̅,f

† (𝑟)𝐼2̅,f
† (𝑟)

+𝜈(𝜈 − 1)(𝜈 − 2) (𝐼1̅,f
† (𝑟))

3) , (34) 

𝐁†𝐼4
†(𝑟, 𝐸, Ω⃗⃗⃗)

= Σf(𝑟, 𝐸)∑𝑝f(𝜈, 𝑟)

∞

𝜈=0

(

  
 
4𝜈(𝜈 − 1)𝐼1̅,f

† (𝑟)𝐼3̅,f
† (𝑟) + 3𝜈(𝜈 − 1) (𝐼2̅,f

† (𝑟))
2

+6𝜈(𝜈 − 1)(𝜈 − 2) (𝐼1̅,f
† (𝑟))

2

𝐼2̅,f
† (𝑟)

+𝜈(𝜈 − 1)(𝜈 − 2)(𝜈 − 3) (𝐼1̅,f
† (𝑟))

4

)

  
 
, 

(35) 

𝐼�̅�,f
† (𝑟) ≡ ∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜒f(𝑟, 𝐸
′)

4𝜋
𝐼𝑛
†(𝑟, 𝐸′, Ω⃗⃗⃗′), (36) 

𝐁† ≡ 𝐀† − 𝐅†, (37) 

𝐀† ≡ −Ω⃗⃗⃗∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

Σs(𝑟, 𝐸 → 𝐸′, Ω⃗⃗⃗ → Ω⃗⃗⃗′), (38) 

𝐅† ≡ 𝜈Σf(𝑟, 𝐸)∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

𝜒f(𝑟, 𝐸
′)

4𝜋
, (39) 

where the superscript “†” indicates the adjoint; 𝐁†, 𝐀† and 𝐅† are the adjoint Boltzman, 1 

the net neutron-loss, and the neutron-production operators, respectively; Σd(𝑟, 𝐸) is the 2 

macroscopic neutron-detection cross-section; and 𝜒f(𝑟, 𝐸) is the energy spectrum of fission; 3 

𝑝f(𝜈, 𝑟) is the probability that 𝜈 neutrons are emitted per fission; other notations maintain 4 

their conventional meanings in reactor physics. 5 

Now, let us assume the fundamental mode approximation is applicable to 𝐼𝑛
†(𝑟, 𝐸, Ω⃗⃗⃗). 6 

This approximation is more reasonable under a subcritical condition where the effective 7 

neutron multiplication factor 𝑘eff is closer to unity. Then, using the fundamental modes of 8 
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forward and adjoint 𝑘eff-eigenfunctions, i.e., 𝜓0(𝑟, 𝐸, Ω⃗⃗⃗) and 𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗), 𝐼𝑛

†(𝑟, 𝐸, Ω⃗⃗⃗) can 1 

be approximated as follows: 2 

𝐼1
†(𝑟, 𝐸, Ω⃗⃗⃗) ≈

𝒟0

−𝜌ℱ1
𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗), (40) 

𝐼2
†(𝑟, 𝐸, Ω⃗⃗⃗) ≈ (

𝒟0

−𝜌ℱ1
)
2 ℱ2

−𝜌ℱ1
𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗), (41) 

𝐼3
†(𝑟, 𝐸, Ω⃗⃗⃗) ≈ (

𝒟0

−𝜌ℱ1
)
3

(3 (
ℱ2

−𝜌ℱ1
)
2

+
ℱ3

−𝜌ℱ1
)𝜓0

†(𝑟, 𝐸, Ω⃗⃗⃗), (42) 

𝐼4
†(𝑟, 𝐸, Ω⃗⃗⃗) ≈ (

𝒟0

−𝜌ℱ1
)
4

(15 (
ℱ2

−𝜌ℱ1
)
3

+ 10
ℱ2ℱ3

(−𝜌ℱ1)2
+

ℱ4
−𝜌ℱ1

)𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗), (43) 

where parameters 𝒟0 and ℱ𝑛 are introduced for convenience as follows: 3 

𝒟0 ≡ ∫ 𝑑𝑉
𝑉

∫ 𝑑𝐸
∞

0

Σd(𝑟, 𝐸)𝜙0(𝑟, 𝐸), (44) 

ℱ𝑛 ≡ ∫ 𝑑𝑉
𝑉

∫ 𝑑𝐸
∞

0

Σf(𝑟, 𝐸)𝜙0(𝑟, 𝐸)∑
𝜈!

(𝜈 − 𝑛)! 
𝑝f(𝜈, 𝑟, 𝐸) (�̅�0,f

† (𝑟))
𝑛

∞ 

𝜈=0

, (45) 

𝜙0(𝑟, 𝐸) ≡ ∫ 𝜓0(𝑟, 𝐸, Ω⃗⃗⃗
′)𝑑Ω′

4𝜋

, (46) 

�̅�0,f
† (𝑟) ≡ ∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜒f(𝑟, 𝐸
′)

4𝜋
𝜓0
†(𝑟, 𝐸′, Ω⃗⃗⃗′). (47) 

Note that 𝜓0(𝑟, 𝐸, Ω⃗⃗⃗)  and 𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗)  satisfy the following forward and adjoint 4 

𝑘eff-eigenvalue equations, respectively: 5 

𝐀𝜓0(𝑟, 𝐸, Ω⃗⃗⃗) =
1

𝑘eff
𝐅𝜓0(𝑟, 𝐸, Ω⃗⃗⃗), (48) 

𝐀†𝜓0
†(𝑟, 𝐸, Ω⃗⃗⃗) =

1

𝑘eff
𝐅†𝜓0

†(𝑟, 𝐸, Ω⃗⃗⃗), (49) 
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𝐀 ≡ Ω⃗⃗⃗∇ + Σt(𝑟, 𝐸) − ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω′

4𝜋

Σs(𝑟, 𝐸
′ → 𝐸, Ω⃗⃗⃗′ → Ω⃗⃗⃗), (50) 

𝐅 ≡
𝜒f(𝑟, 𝐸)

4𝜋
∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜈Σf(𝑟, 𝐸
′). (51) 

By substituting Eqs. (40)–(43) into Eqs. (28)–(30), the saturation values based on the 1 

fundamental mode approximation can be rewritten as follows: 2 

𝑌∞ ≈ (
𝒟0

−𝜌ℱ1
) (

ℱ2

−𝜌ℱ1
+
𝒮2
𝒮1
) , (52) 

𝒴3,∞ ≈ (
𝒟0

−𝜌ℱ1
)
2

(
ℱ3

−𝜌ℱ1
+
𝒮3
𝒮1

+ 3
ℱ2

−𝜌ℱ1
(

ℱ2

−𝜌ℱ1
+
𝒮2
𝒮1
)) , (53) 

𝒴4,∞ ≈ (
𝒟0

−𝜌ℱ1
)
3

(

 
 

ℱ4
−𝜌ℱ1

+
𝒮4
𝒮1

+ 6
ℱ2

−𝜌ℱ1
(

ℱ3

−𝜌ℱ1
+
𝒮3
𝒮1
)

+(4
ℱ3

−𝜌ℱ1
+ 15 (

ℱ2

−𝜌ℱ1
)
2

) (
ℱ2

−𝜌ℱ1
+
𝒮2
𝒮1
)
)

 
 
, (54) 

𝒮𝑛 ≡ ∫ 𝑑𝑉
𝑉

𝑆(𝑟)∑
𝑞!

(𝑞 − 𝑛)! 
𝑝s(𝑞, 𝑟) (�̅�0,s

† (𝑟))
𝑛

∞ 

𝑞=0

, (55) 

�̅�0,s
† (𝑟) ≡ ∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω′

4𝜋

𝜒s(𝑟, 𝐸
′)

4𝜋
𝜓0
†(𝑟, 𝐸′, Ω⃗⃗⃗′). (56) 

From Eqs. (52)–(54), if −𝜌 < 0.1 or 0.9 < 𝑘eff < 1, ratios of 𝒴3,∞ 𝑌∞
2⁄  and 𝒴4,∞ 𝑌∞

3⁄  can 3 

be further approximated:  4 

𝒴3,∞

𝑌∞2
≈ 3 +

ℱ1

ℱ2
(
ℱ3

ℱ2
− 3

𝒮2
𝒮1
) (−𝜌), (57) 

𝒴4,∞

𝑌∞
3

≈ 15 + 10
ℱ1

ℱ2
(
ℱ3

ℱ2
− 3

𝒮2
𝒮1
) (−𝜌), (58) 

where the magnitude of 
ℱ1

ℱ2
(
ℱ3

ℱ2
− 3

𝒮2

𝒮1
)  is approximately less than 1  [17,20]. It is 5 

interestingly noted that these ratios converge to constant values without depending on ℱ𝑛 and 6 

𝒮𝑛, as 𝑘eff approaches to unity: 7 
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lim
−𝜌→+0

𝒴3,∞

𝑌∞2
≈ 3, (59) 

lim
−𝜌→+0

𝒴4,∞

𝑌∞
3

≈ 15. (60) 

 1 

Finally, on the basis of the above-mentioned discussion, it is assumed that the 2 

magnitudes of 𝒴3 and 𝒴4 can be roughly approximated by the second and the third power 3 

of 𝑌, if −𝜌 < 0.1 = 10,000 pcm: 4 

𝒴3 ≈ 3𝑌2, (61) 

𝒴4 ≈ 15𝑌3, (62) 

Although errors exist between the true values of 𝒴3 and 𝒴4 and their approximations, using 5 

the approximations seems to be better than completely neglecting 𝒴3 and 𝒴4, or 𝒴3 ≈6 

𝒴4 ≈ 0. Thus, Eqs. (61) and (62) are utilized to discuss the importance of the second-order 7 

neutron-correlation for estimating 𝜎𝑌. By substituting Eqs. (61) and (62) into Eqs. (26) and 8 

(27), the third- and fourth-order factorial moments can be approximated using 〈𝐶〉 and the 9 

second-order neutron-correlation value 𝑌: 10 

〈𝐶(𝐶 − 1)(𝐶 − 2)〉 ≈ 〈𝐶〉3 + 3𝑌〈𝐶〉2 + 3𝑌2〈𝐶〉, (63) 

〈𝐶(𝐶 − 1)(𝐶 − 2)(𝐶 − 3)〉 ≈ 〈𝐶〉4 + 6𝑌〈𝐶〉3 + 15𝑌2〈𝐶〉2 + 15𝑌3〈𝐶〉. (64) 

From Eqs. (63) and (64), the following approximation formulae for the third- and fourth-order 11 

central moments 𝜇3 and 𝜇4 can be obtained: 12 

𝜇3 ≈ (3𝑌2 + 3𝑌 + 1)〈𝐶〉, (65) 

𝜇4 ≈ 3(𝑌 + 1)2〈𝐶〉2 + (15𝑌3 + 18𝑌2 + 7𝑌 + 1)〈𝐶〉. (66) 

By substituting Eqs. (65) and (66) into Eqs. (5)–(8) and approximating as 〈𝐶〉 ≈ 𝐶̅, the 13 

simplified formula for the statistical error 𝜎𝑌,2nd can be finally derived as follows: 14 
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𝜎𝑌,2nd ≈ (𝑌 + 1)√
𝑌(2𝑌 + 1)(5𝑌 + 2)

𝑁(𝑌 + 1)2𝐶̅
+

2

𝑁 − 1
. (67) 

 1 

If 𝑌 ≈ 0 in Eq. (67), i.e., the probability distribution of neutron counts is sufficiently 2 

approximated by the Poisson distribution, the statistical error 𝜎𝑌,P  is guessed by the 3 

following simple formula: 4 

𝜎𝑌,P ≈ √
2

𝑁 − 1
. (68) 

By comparing Eq. (67) with Eq. (68), the statistical error 𝜎𝑌  is corrected due to the 5 

second-order neutron-correlation value 𝑌. 6 

Using Eq. (67), the statistical error 𝜎𝑌,2nd can be approximately estimated by reusing 7 

the 𝑌  value without calculation of ℎ3  and ℎ4 , i.e., the calculations of 𝐶̅  and 𝑠2  are 8 

sufficient for the error estimation. In addition, Eq. (67) provides useful knowledge about the 9 

statistical error of 𝑌. For example, if the Feynman-𝛼 experiment is conducted under a 10 

situation where the sample mean 𝐶̅ is large enough to satisfy 𝐶̅ ≫
(𝑁−1)𝑌(2𝑌+1)(5𝑌+2)

2𝑁(𝑌+1)2
, 𝜎𝑌,2nd 11 

can be mainly reduced by increasing 𝑁 or total measurement time 𝑁𝑇. Under such a 12 

condition, a high strength external neutron source, or large 𝐶̅, contributes little to improving 13 

the statistical error of 𝑌, although the relative statistical error of mean 〈
𝜎�̅�
�̅�
〉 can be reduced. 14 

Note that the relative statistical error 〈
𝜎𝑌2nd

𝑌
〉 can be reduced by increasing 𝑌 using a detector 15 

with higher efficiency, as the absolute value of 𝑌 is proportional to the detection efficiency. 16 

Hence, improvement of the detection efficiency is important for reducing the relative error of 17 

𝑌 value. 18 

 19 
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3. Bootstrap method 1 

3.1. Bootstrap statistical error of 𝒀 value 2 

In our previous study, the statistical error estimation for the Feynman-𝛼 method using 3 

the bootstrap method was proposed [9]. The bootstrap method enables us to easily estimate 4 

statistical errors of both 𝑌 and the prompt neutron decay constant 𝛼, by resampling using an 5 

experimentally inferred probability distribution of neutron count. In this study, the procedures 6 

are improved to effectively calculate the covariance of 𝑌(𝑇) between different gate widths 7 

𝑇, or the “bootstrap covariance matrix 𝚺𝑌∗ .” The improved procedures of the bootstrap 8 

method are explained below: 9 

1. Original time-series data of neutron counts 𝐶(𝑇0) = {𝐶1, 𝐶2, ⋯ , 𝐶𝑁0
} are provided by a 10 

single measurement of reactor noise, where the basic counting gate width is 𝑇0; the total 11 

number of count data is 𝑁0.  12 

2. An upper limit value of bunching is set to 𝐾, where 1 < 𝐾 < 𝑁0. 13 

3. An empty vector 𝐶∗(𝑇0) = {} is prepared (𝑖 = 1). 14 

4. The “resampling position 𝜉𝑖” is determined using a uniform random integer number, 1 ≤15 

𝜉𝑖 ≤ (𝑁0 − 𝐾 + 1). Then, successive time-series data 𝒞𝜉𝑖 = {𝐶𝜉𝑖 , 𝐶𝜉𝑖+1,⋯ , 𝐶𝜉𝑖+𝐾−1} are 16 

extracted from the original time series data, and added at the end of the vector 𝐶∗(𝑇0). 17 

This extraction of successive data is important to estimate the covariance of 𝑌(𝑇). 18 

5. As shown in Fig. 1, a “bootstrap sample of time-series data 𝐶∗(𝑇0)” is newly generated by 19 

repeating 𝐿 = ⌈𝑁0/𝐾⌉ times of random-resampling described in step 4: 20 

𝐶∗(𝑇0) = {𝒞𝜉1 , 𝒞𝜉2 ,⋯ , 𝒞𝜉𝐿}. (69) 

Note that extra data in 𝒞𝜉𝐿 is removed so that the total number of count data in 𝐶∗(𝑇0) is 21 

equal to 𝑁0, if necessary. 22 

 23 
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 1 

Figure 1. Example of bootstrap method for 𝚺𝑌∗ (𝑁0 = 24,𝐾 = 5) 2 

 3 

6. By using Eq. (1) and applying an efficient bunching method to the bootstrap sample 4 

𝐶∗(𝑇0) in step 5, the variation in “bootstrap replicate 𝑌∗(𝑘𝑇0)” is evaluated for the 5 

bunching gate width 𝑘𝑇0, where 𝑘 is the bunching number. To recursively apply the 6 

bunching method to an already-bunched data, the bunching number 𝑘 is given by 𝑘 =7 

𝑝 × 2𝑗  (𝑗 = 0,1,⋯ ), where 𝑝  is an initial bunching number (e.g., 𝑝 =8 

2,3,5,7,9,11,13,15,17,19). As shown in Fig. 2, 𝐶∗(2𝑘𝑇0) is effectively produced by 9 

combining a pair of successive elements in 𝐶∗(𝑘𝑇0). Consequently, a row vector �⃗⃗�∗ =10 

{𝑌∗(𝑇0), 𝑌
∗(2𝑇0),⋯ , 𝑌∗(𝐾𝑇0)} is obtained by this recursive bunching method. 11 

 12 

 13 

Figure 2. Example of recursive bunching method (𝑝 = 2) 14 

𝐶1 𝐶1 𝐶1 𝐶20 𝐶21 𝐶 𝐶 𝐶 𝐶 𝐶10 𝐶1 𝐶2 𝐶3 𝐶4 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶1 𝐶1 𝐶1 𝐶1 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶4 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶10 𝐶11 𝐶12 𝐶13 𝐶11 𝐶12 𝐶13 𝐶14

𝐶 𝐶 𝐶 𝐶 𝐶10 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14 𝐶11 𝐶12 𝐶13 𝐶14 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶20 𝐶21 𝐶22 𝐶23

𝐶10 𝐶11 𝐶12 𝐶13 𝐶14 𝐶1 𝐶20 𝐶21 𝐶22 𝐶23 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶10 𝐶11 𝐶12 𝐶1 𝐶1 𝐶1 𝐶1 

𝐶4 𝐶 𝐶 𝐶 𝐶 𝐶2 𝐶3 𝐶4 𝐶 𝐶 𝐶14 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶20 𝐶21 𝐶22 𝐶3 𝐶4 𝐶 𝐶 

𝐶∗1 𝑇0 → 𝑌∗1

𝐶∗2 𝑇0 → 𝑌∗2

𝐶∗3 𝑇0 → 𝑌∗3

𝐶∗4 𝑇0 → 𝑌∗4

𝐶∗ 𝑇0 → 𝑌∗ 

⋯

 
𝚺𝑌∗

⋯

(b) bootstrap method

(a) original time-series data 𝐶(𝑇0)

𝐶1 𝐶2 𝐶3 𝐶4 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14 𝐶1 𝐶1 𝐶1 𝐶1 𝐶1 𝐶20 𝐶21 𝐶22 𝐶23 𝐶24

bunching

bunching
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 1 

7. To estimate the covariance matrix of the bootstrap replicate �⃗⃗�∗, steps 3–6 are repeated 2 

𝐵 times. Consequently, a set of bootstrap replicates �⃗⃗�∗𝑏 are obtained for 𝑏 = 1,2,⋯ , 𝐵, 3 

where 𝐵 is the total number of bootstrap replicates. 4 

8. Using the row vectors �⃗⃗�∗𝑏 , the bootstrap covariance matrix 𝚺𝑌∗  is calculated as 5 

follows: 6 

𝚺𝑌∗ =
1

𝐵 − 1
∑(�⃗⃗�∗𝑏 − �⃗⃗�ave

∗ )
𝑇
(�⃗⃗�∗𝑏 − �⃗⃗�ave

∗ )

𝐵

𝑏=1

, (70) 

�⃗⃗�ave
∗ =

1

𝐵
∑ �⃗⃗�∗𝑏

𝐵

𝑏=1

, (71) 

where the bootstrap standard deviation 𝜎𝑌∗(𝑘𝑇0) corresponds to the square root of the 7 

diagonal element in 𝚺𝑌∗. 8 

 9 

3.2. Bootstrap statistical error of prompt neutron decay constant 10 

After step 8, the following additional procedures are necessary to estimate the statistical 11 

error of the prompt neutron decay constant 𝛼: 12 

9. Using the bootstrap covariance matrix 𝚺𝑌∗  in the least squares fitting process, the 13 

prompt neutron decay constant 𝛼∗𝑏 is evaluated by fitting a model function of 𝑌(𝑇) to 14 

each value of �⃗⃗�∗𝑏 . Consequently, bootstrap replicates 𝛼∗𝑏  are obtained for 𝑏 =15 

1,2,⋯ , 𝐵. 16 

10. As the result of step 9, a frequency distribution of 𝛼∗ is obtained. On the basis of this 17 

“bootstrap frequency distribution,” the percentile confidence interval (or 2.5 and 97.5 18 

percentile points) can be simply estimated to evaluate the range of the statistical error of 19 

𝛼. Namely, the B bootstrap replicates 𝛼∗𝑏 are sorted in ascending order. From the 20 

(0.025 ×  𝐵)th and (0.975 ×  𝐵)th smallest values of sorted 𝛼∗𝑏, the lower and upper 21 

limits of 95% bootstrap confidence interval are simply estimated, respectively. If 22 
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necessary, the bootstrap standard deviation 𝜎𝛼∗ can also be estimated as an indicator of 1 

the statistical error of 𝛼:  2 

𝜎𝛼∗ =
1

𝐵 − 1
√∑(𝛼∗𝑏 − �̅�∗)2

𝐵

𝑏=1

. (72) 

�̅�∗ =
1

𝐵
∑𝛼∗𝑏

𝐵

𝑏=1

. (73) 

Note that the 95% bootstrap confidence interval differs from the intervals of [�̅�∗ −3 

1.96𝜎𝛼∗ , �̅�
∗ + 1.96𝜎𝛼∗], if the bootstrap frequency distribution is not well approximated 4 

by a normal distribution. 5 

 6 

4. Experimental analysis 7 

4.1. Experimental conditions 8 

In our previous study, reactor noise experiments were conducted in the A-core 9 

(A3/8”p36EU-NU) at the KUCA [9]. The experimental conditions are briefly explained 10 

below. 11 

The experimental core and the loaded fuel assembly are shown in Figs. 3 and 4, 12 

respectively. The core-average 235U enrichment was 5.4 wt%. Using MCNP6.2 [21] with 13 

ENDF-B/VII.1 [22], core characteristics parameters were numerically estimated as follows: 14 

Effective neutron multiplication factor 𝑘eff = 0.93716 ± 0.00003; effective delayed neutron 15 

fraction 𝛽eff = 775 ± 6  [pcm]; and neutron generation time Λ = 42.04 ± 0.04  [μs]. 16 

Consequently, subcriticality −𝜌 = 6705 ± 3 [pcm] and 
𝛽eff−𝜌

Λ
= 1779 ± 2 [1/s].  17 

In this experiment, 3He detectors (#1–4) were placed at axially center positions of excore 18 

reflector assemblies. Using these detectors, the time-series data of neutron counts were 19 

successively measured. At the shutdown state, the reactor noise was measured without any 20 

external neutron source such as Am-Be or Cf source, i.e., using only the inherent neutron 21 



 

 

20 

source, which mainly consists of spontaneous fission of 238U and (α,n) reactions of 27Al due to 1 

α-decay of uranium isotopes [23]. Detector#2 was used for the present reactor noise analysis, 2 

where the neutron count rate 𝑅 = 𝐶̅/𝑇 was 4.444 ± 0.011 [count/s]. 3 

 4 

Figure 3. Top view of experimental core (A3/8”p36EU-NU). 5 

 6 

 7 

Figure 4. Fuel assembly loaded in experimental core. 8 

 9 

To measure the reference value of the statistical error 𝜎𝑌,ref, reactor noise measurements 10 

were repeated 93 times. Measurement time was 10 min for each measurement. Using the 11 

recursive bunching method, the variation in 𝑌(𝑘𝑇0) was independently evaluated for each 10 12 

min-measurement, where 𝑇0 = 10−4  [s], 𝑁0 = 6,000,000, and 𝐾 = 1024 . Thus, if the 13 

bunching counting gate width is 𝑘𝑇0, the number of counting gate 𝑁𝑘 corresponds to 𝑁𝑘 =14 

⌊6,000,000/𝑘⌋ . Using 93 sets of �⃗⃗�𝑚 = {𝑌𝑚(𝑇0), 𝑌𝑚(2𝑇0),⋯𝑌𝑚(𝐾𝑇0)} , the reference 15 

covariance matrix 𝚺𝑌,ref was estimated as 16 

𝚺𝑌,ref =
1

93 − 1
∑(�⃗⃗�𝑚 − �⃗⃗�ave)

𝑇
(�⃗⃗�𝑚 − �⃗⃗�ave)

 3

𝑚=1

, (74) 
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�⃗⃗�ave =
1

93
∑ �⃗⃗�𝑚

 3

𝑚=1

, (75) 

where the statistical error 𝜎𝑌,ref corresponds to the square root of the diagonal element in 1 

𝚺𝑌,ref  Figures 5 and 6 shows �⃗⃗�ave  with the reference statistical error 𝜎𝑌,ref  and the 2 

correlations of 𝚺𝑌,ref  (i.e.,(diag(𝚺𝑌,ref))
−1 2⁄

𝚺𝑌,ref (diag(𝚺𝑌,ref))
−1 2⁄

), respectively. The 3 

measured 𝑌 values are less than approximately 0.1. In addition, 𝑌(𝑘𝑇0) are positively 4 

correlated between different gate widths 𝑘𝑇0 due to the bunching method. The overall trend 5 

of Fig. 6 indicates that the correlations of 𝑌(𝑘𝑇0) become smaller as the difference between 6 

𝑘𝑇0 and 𝑘′𝑇0 increases. Because of the recursive bunching method, as shown in Fig. 2, the 7 

correlations between 𝑘𝑇0 and 2𝑘𝑇0 tend to become stronger.  8 

 9 

  10 

Figure 5. �⃗⃗�ave with reference statistical error 𝜎𝑌,ref. 11 
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  1 

Figure 6. Correlations of the reference covariance matrix 𝚺𝑌,ref. 2 

 3 

To confirm the validity of the error estimation formulae, one of the 10 min- 4 

measurements was selected. Then, the statistical errors 𝜎𝑌,h and 𝜎𝑌,2nd were estimated by 5 

Eqs. (13) and (67), respectively. To better understand the second-order neutron-correlation 6 

effect, the approximated statistical error 𝜎𝑌,P based on the Poisson distribution was evaluated 7 

using Eq. (68). Furthermore, as an alternative error estimation technique, the bootstrap 8 

standard deviation 𝜎𝑌∗ was also evaluated by the bootstrap method with 𝐵 = 1000. 9 

 10 

4.2. Results of statistical error of 𝒀 11 

Figure 7 shows the reference 𝜎𝑌,ref and the following statistical errors for the 50th trial 12 

(𝑚 = 50) of 10 min-measurement: (1) 𝜎𝑌,P based on the Poisson distribution, (2) 𝜎𝑌,2nd 13 

using the simplified formula by reusing the 𝑌 vaule, (3) 𝜎𝑌,h using the unbiased estimators 14 

for the third- and fourth-order central moments, and (4) 𝜎𝑌∗ by the bootstrap method. The 15 

summary of statistical errors for 1 ≤ 𝑚 ≤ 93  is shown in the attached mp4 file 16 

(sigmaY.mp4). 17 
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   1 

Figure 7. Estimation results of the statistical error of 𝑌 value (𝑚 = 50). 2 

 3 

As shown in Fig. 7, 𝜎𝑌,2nd, 𝜎𝑌,h, and 𝜎𝑌∗ agree well with reference 𝜎𝑌,ref. Compared 4 

with these results, 𝜎𝑌,P is significantly underestimated, although 𝜎𝑌,P is the simplest way to 5 

roughly guess the statistical error using only 𝑁 without the measured neutron count data. By 6 

comparing 𝜎𝑌,P and 𝜎𝑌,2nd, it is confirmed that the second-order neutron-correlation effect is 7 

important for improving the estimation of the statistical error 𝜎𝑌. As 𝜎𝑌,2nd is nearly equal 8 

to 𝜎𝑌,h, it is demonstrated that the simplified formula of Eq. (67) is applicable to the 9 

experimental results in this study. Therefore, it seems to be reasonable that the third- and 10 

fourth-order neutron-correlation values can be approximated estimated by Eqs. (61) and (62). 11 

The advantage of 𝜎𝑌,2nd is convenience, i.e., the statistical error can be obtained from the 12 

measurement values 𝐶̅ and 𝑌 only. Although 𝜎𝑌,h requires the additional calculation for 13 

ℎ3  and ℎ4 , the calculation cost is insignificant; thus 𝜎𝑌,h  is also one of the practical 14 

estimation methods. Note that the statistical fluctuation of 𝜎𝑌,h seems to be larger owing to 15 

the use of higher-order central moments ℎ3 and ℎ4. 16 
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As previously reported in reference [9], the bootstrap method enables reasonable 1 

estimation of statistical errors, such as the bootstrap standard deviation 𝜎𝑌∗. As shown in Fig. 2 

7, 𝜎𝑌∗ and 𝜎𝑌,h are almost the same. The statistical fluctuation in 𝜎𝑌∗ is relatively small 3 

because the total number of bootstrap replicates 𝐵 is sufficiently large. The disadvantage of 4 

the bootstrap method is that calculation cost is relatively high owing to the resampling 5 

procedures. In the present analysis, the bootstrap replicates 𝑌∗ were randomly resampled 6 

1000 times to obtain 𝜎𝑌∗ with high precision, thus the total calculation time of the bootstrap 7 

method is approximately at least 1000 times higher than that of 𝜎𝑌,2nd and 𝜎𝑌,h. Because of 8 

this calculation time, the bootstrap method may be unsuitable for real-time statistical error 9 

estimation in the on-line monitoring system. 10 

 11 

4.3. Discussion on the statistical error of the prompt neutron decay constant 12 

In the present study, theoretical formulae only for 𝜎𝑌 were derived. The theoretical 13 

derivation for the statistical error of the prompt neutron decay constant 𝛼 (which is denoted 14 

by 𝜎𝛼) is a challenging issue, because the derivation of 𝜎𝛼 is more complicated owing to the 15 

fitting procedure for 𝛼. In addition, as shown in Fig. 6, the 𝑌 values have correlations 16 

between different gate widths because of the bunching method. The derivation of a theoretical 17 

formula for the estimation of the covariance matrix 𝚺𝑌 is not straightforward. 18 

Using the improved bootstrap method, however, the bootstrap covariance matrix 𝚺𝑌∗ 19 

can be numerically evaluated as shown in Fig. 8. The summary of correlations of 𝚺𝑌∗ for 20 

1 ≤ 𝑚 ≤ 93 is shown in the attached mp4 file (correlationY.mp4). By comparing 𝚺𝑌∗ with 21 

the reference correlations of 𝚺𝑌,ref in Fig. 6, we can see that 𝚺𝑌∗ seems to be useful as an 22 

alternative to 𝚺𝑌,ref. 23 

 24 
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  1 

Figure 8. Correlations of bootstrap covariance matrix 𝚺𝑌∗ (𝑚 = 50). 2 

 3 

As a numerical study, the following two fitting procedures for 𝛼 were compared for 4 

each of the 10 min-measurements: 5 

(a) Fitting error method without correlation: Using the inverse of the statistical error 𝜎𝑌,h 6 

described by Eq. (13), i.e., 
1

𝜎𝑌,h
, as the weight, the least squares fitting was performed 7 

to estimate the 𝛼 value. As will be discussed later, the absolute value of 𝜎𝑌,h was 8 

just used as is, i.e., 𝜎𝑌,h was not scaled according to the 𝜒2 value after the fitting. 9 

Then, the estimated fitting error of 𝛼 (which is denoted as 𝜎𝛼,fit) was used as an 10 

alternative to 𝜎𝛼. If the probability distribution of 𝑌 is approximated by a normal 11 

distribution and the correlations (off-diagonal elements) of 𝚺𝑌 do not have a large 12 

impact on the estimation of the fitting error, it is expected that the magnitude of the 13 

fitting error 𝜎𝛼,fit is reasonable as a candidate of the statistical error 𝜎𝛼 because 14 

𝜎𝛼,fit is evaluated by the propagation of uncertainty using the Jacobian matrix with 15 

the statistical error 𝜎𝑌,h [24]. By assuming a normal distribution for the probability 16 

distribution of 𝛼, the 95% confidence intervals were approximated as the range of 17 

[𝛼 − 1.96𝜎𝛼,fit, 𝛼 + 1.96𝜎𝛼,fit].  18 

(b) Bootstrap method with correlation: Using the bootstrap covariance matrix 𝚺𝑌∗, the 19 

95% bootstrap confidence intervals were estimated to express the range of statistical 20 
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error of 𝛼 without the assumption of normality for 𝑌, as described in Section 3.2. 1 

The bootstrap standard deviation 𝜎𝛼∗ was also estimated and compared with 𝜎𝛼,fit. 2 

 3 

To mainly evaluate 𝛼, the following model function was used in the least squares fitting 4 

[9]: 5 

𝑌(𝑇) ≈ 𝑌∞ (1 −
1 − exp(−𝛼𝑇)

𝛼𝑇
) + 𝐴 𝑇 + 𝐵, (76) 

where 𝑌∞ is the saturation value, and 𝐴 and 𝐵  are supplemental fitting parameters to 6 

correct the spatial and neutron-energetic higher-order modes, the delayed neutron and the 7 

dead-time effects, respectively. Owing to their effects, a more rigorous theoretical expression 8 

of 𝑌(𝑇) can be expressed as 9 

𝑌(𝑇) ≈ ∑𝑌p,𝑛,∞ (1 −
1 − exp(−𝛼𝑛𝑇)

𝛼𝑛𝑇
)

∞

𝑛=0

+∑𝑌d,𝑖,∞ (1 −
1 − exp(−𝜔𝑖𝑇)

𝜔𝑖𝑇
)

 

𝑖=1

− 2𝑅𝜏, (77) 

where the first, second, and third terms on the right-hand side correspond to terms due to 10 

spatial and neutron-energetic modes [17], delayed neutrons [25], and dead-time 𝜏 [26], 11 

respectively; 𝛼𝑛 is the 𝑛th mode of the prompt neutron decay constant (the fundamental 12 

mode corresponds to 𝑛 = 0); 𝜔𝑖 indicates the decay constant due to a delayed neutron; 13 

𝑌p,𝑛,∞ and 𝑌d,𝑖,∞ are saturation values for each component with respect to 𝛼𝑛 and 𝜔𝑖. Note 14 

that the decay constants satisfy the following conditions: 𝜔𝑖 ≪ 𝛼0 and 𝛼0 < 𝛼1 < 𝛼2 < ⋯. 15 

In the fitting process, a complicated formula does not necessarily yield a good fitting result 16 

owing to the overfitting issue. In this study, thus, we utilized the simplified fitting formula of 17 

Eq. (76) instead of Eq. (77). To simplify the fitting formula, let us assume 𝜔𝑖𝑇 ≪ 1 and 18 

 𝛼𝑛𝑇 ≫ 1. Then Eq. (77) can be approximated as 19 

𝑌(𝑇) ≈ 𝑌p,0,∞ (1 −
1 − exp(−𝛼0𝑇)

𝛼0𝑇
) +∑(

1

2
𝑌d,𝑖,∞𝜔𝑖)

 

𝑖=1

𝑇 +∑𝑌p,𝑛,∞

∞

𝑛=1

− 2𝑅𝜏. (78) 
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Thus, the fitting parameters 𝐴  and 𝐵  in Eq. (76) correspond to ∑ (
1

2
𝑌d,𝑖,∞𝜔𝑖)

 
𝑖=1  and 1 

∑ 𝑌p,𝑛,∞
∞
𝑛=1 − 2𝑅𝜏, respectively. 2 

In this study, “scipy.optimize.curve_fit” was utilized for the non-linear least squares 3 

fitting [27]. In the module of “scipy.optimize.curve_fit,” the option of “absolute_sigma” was 4 

explicitly set to “True” in order to simply use the absolute value of 𝜎𝑌,h as in the estimation 5 

of 𝜎𝛼,fit. In the default setting of “absolute_sigma=False,” the 𝜒2 value after the fitting was 6 

normalized to be equal to the number of freedoms, which corresponds to 7 

(total number of 𝑌(𝑘𝑇0)) − (total number of fitting parameters) . The option of 8 

“absolute_sigma” influences the fitting error and has no impact on procedure (b) because the 9 

95% bootstrap confidence interval and 𝜎𝛼∗ are calculated from 1000 fitting values of 𝛼∗ in 10 

the bootstrap method. 11 

Figure 9 shows the estimated 95% confidence intervals obtained by using the two fitting 12 

procedures (a) and (b). In Fig. 9, the black dashed horizontal line represents the sample mean 13 

of 93 trial values of 𝛼; and a dark-colored plot indicates that the sample mean exists out of 14 

the estimated 95% confidence interval. As results of procedures (a) and (b) for 93 trials (1 ≤15 

𝑚 ≤ 93), the sample means of the 93 fitting values 𝛼𝑚 (which is denoted as �̅�) were 1764 16 

and 1772 [1/s], respectively, while the standard deviations of the 93 fitting values 𝛼𝑚 (which 17 

is denoted as 𝜎𝛼,ref) were 324 and 252 [1/s] (which are regarded as the reference values of 18 

𝜎𝛼 for each procedure), respectively. Owing to the difference in the fitting procedure, there 19 

are differences in the fitting results between procedures (a) and (b). The sample means �̅� are 20 

nearly equal to the numerical results of 
𝛽eff−𝜌

Λ
= 1779 ± 2  [1/s] using MCNP6.2 with 21 

ENDF-B/VII.1; thus, it was confirmed that the simplified fitting formula of Eq. (76) was 22 

reasonably applicable to the estimation of 𝛼 in this experimental analysis.  23 

As can be seen from Fig. 9, the widths of 95% confidence intervals statistically fluctuate. 24 

For procedures (a) and (b), the sample means of 93 fitting errors 𝜎𝛼,fit,𝑚 and 93 bootstrap 25 

standard deviations 𝜎𝛼∗,𝑚 were 238 and 272 [1/s], respectively. By comparing it with 𝜎𝛼,ref, 26 
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the statistical error of 𝛼 estimated by procedure (a) seems to be slightly underestimated. 1 

Note that, if “absolute_sigma” is set to “False” in procedure (a), the estimated statistical error 2 

𝜎𝛼,fit is significantly underestimated (sample mean of 𝜎𝛼,fit,𝑚 ≈ 102 [1/s]), as shown in the 3 

Fig. 9-(i). Consequently, it was confirmed that 𝜎𝑌,h should not be scaled according to the 𝜒2 4 

value after the fitting in procedure (a) to avoid the underestimation of the statistical error 5 

𝜎𝛼,fit. This fact implies that the 𝜒2 test without correlation is useless to judge the goodness of 6 

fit. 7 

To discuss the validity of the estimated 95% confidence intervals, we considered the 8 

coverage probability that the sample mean �̅� exists within the range of the estimated 95% 9 

confidence interval. The coverage probability of procedures (a) and (b) were 83 93⁄ ≈ 89% 10 

and 87 93⁄ ≈ 94%, respectively. The coverage probability of procedure (b) was slightly 11 

closer to 95% than that of procedure (a). Thus, to accurately evaluate the confidence interval 12 

for the statistical error of 𝛼, it seemed that procedure (b) was slightly better than procedure 13 

(a), although procedure (a) could approximately guess the order of magnitude of statistical 14 

error 𝜎𝛼 in this experimental analysis.  15 

Consequently, a comparison of the fitting procedures (a) and (b) implied that the 16 

correlations of 𝚺𝑌 could be negligible for the order estimation of the statistical error 𝜎𝛼. To 17 

improve the coverage probability of the estimated confidence intervals, a more rigorous 18 

treatment of the correlations of 𝚺𝑌 might be important. However, the theoretical approach 19 

for the estimation of 𝚺𝑌 is still an open problem. On the other hand, although the bootstrap 20 

method is based on the numerical approach, 𝚺𝑌 can be numerically estimated from a single 21 

measurement of reactor noise; furthermore, the 95% confidence interval can be reasonably 22 

estimated without the assumption of normality.  23 

24 
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  1 

(i) Fitting error method without correlation (absolute_sigma=False) 2 

  3 

(ii) Fitting error method without correlation (absolute_sigma=True) 4 

  5 

(iii) Bootstrap method with correlation 6 

Figure 9 Estimated 95% confidence interval of 𝛼. 7 
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5. Conclusion 1 

For the statistical error estimation of the 𝑌 value from a single measurement of reactor 2 

noise, the practical estimation formulae of 𝜎𝑌,h and 𝜎𝑌,2nd were derived by the propagation 3 

of uncertainty where the covariance between the sample mean and the unbiased variance is 4 

explicitly considered. The estimation of 𝜎𝑌,h requires additional calculations for the unbiased 5 

estimations of the third- and the fourth-order central moments, ℎ3 and ℎ4. On the other hand, 6 

𝜎𝑌,2nd can be estimated by reusing the 𝑌 value without calculation of ℎ3 and ℎ4. Note that 7 

the simplified formula of 𝜎𝑌,2nd is applicable under the fundamental mode approximation 8 

where the subcriticality is approximately less than 10,000 pcm. 9 

In addition, the bootstrap method was improved to efficiently estimate the bootstrap 10 

covariance matrix 𝚺𝑌∗. Using the improved bootstrap method, both the statistical error of 𝑌 11 

and the correlation of 𝑌 between different counting gate widths 𝑇 due to the bunching 12 

method could be numerically obtained by the resampling based on a probability distribution 13 

that is experimentally inferred from a single measurement of reactor noise. 14 

Through the reactor noise analysis for the actual KUCA experiment, it was validated that 15 

the statistical errors 𝜎𝑌,h and 𝜎𝑌,2nd, and the bootstrap standard deviation 𝜎𝑌∗ agree well 16 

with the reference value of 𝜎𝑌,ref, which was obtained from multiple measurements of reactor 17 

noise. Furthermore, it was confirmed that the second-order neutron-correlation effect is 18 

important in the estimation of the statistical error of the 𝑌 value by comparison between 19 

𝜎𝑌,2nd and the approximated statistical error 𝜎𝑌,P using the Poisson distribution. Compared 20 

with the bootstrap method, the practical estimation formulae of 𝜎𝑌,h and 𝜎𝑌,2nd are more 21 

advantageous owing to their lower calculation cost. 22 

To investigate the impact of correlations of 𝚺𝑌 on the statistical error of the prompt 23 

neutron decay constant 𝛼, the following two fitting procedures were compared: the fitting 24 

error method using 𝜎𝑌,h without correlation and the bootstrap method with correlation using 25 

𝚺𝑌∗. As a result, in the case of this experimental analysis, it was confirmed that the fitting 26 
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error method without correlation could be useful for the order estimation of the statistical 1 

error of 𝛼. To avoid significant underestimation of statistical error, 𝜎𝑌,h should not be scaled 2 

according to the 𝜒2 value after the fitting. Compared with the fitting error method without 3 

correlation, the bootstrap method with correlation seems to be slightly better from the 4 

viewpoint of the coverage probability of the estimated confidence intervals. Thus, 5 

consideration of the correlations of 𝚺𝑌  might be important to improve the coverage 6 

probability; however, the theoretical approach for the estimation of 𝚺𝑌  is still an open 7 

problem.  8 
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