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Abstract This study demonstrates the use of New-

ton method to solve topology optimization problems

of density type for linear elastic bodies to mini-

mize the maximum von Mises stress. We use the

Kreisselmeier–Steinhauser (KS) function with respect

to von Mises stress as a cost function to avoid the non-

differentiability of the maximum von Mises stress. For

the design variable, we use a function defined in the do-

main of a linear elastic body with no restriction on the

range and assume that a density is given by a sigmoid

function of the function of design variable. The main

aim of this study involves evaluating the second deriva-

tive of the KS function with respect to variation of

the design variable and to propose an iterative scheme

based on an H1 Newton method as opposed to the H1

gradient method that was presented in previous studies.

The effectiveness of the scheme is demonstrated by nu-

merical results for several linear elastic problems. The

numerical results show that the speed of the proposed

H1 Newton method exceeds that of the H1 gradient

method.
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1 Introduction

Problems related to locating optimum layouts and

shapes of holes in continua are termed as topology opti-

mization problems (Bendsøe, 1995). In particular, when

the density is selected as a design variable, the problems

are termed as topology optimization problems of den-

sity type (Sigmund and Maute, 2013). This formulation

is also referred as SIMP (solid isotropic material with

penalization) model (Rozvany et al., 1992; Bendsøe,

1995). In linear elastic problems, mean compliance and

volume are commonly used as cost functions. However,

minimizing the mean compliance does not always lead

to a fully stressed design. In a few instances, results

from mean compliance minimization may correspond

to low durability, because stress is not considered in

the cost functions.

This study focuses on minimizing problems of a

stress measure. Specifically, we use the maximum von

Mises stress as the stress measure. When we formu-

late a topology optimization problem of density type to

minimize the maximum von Mises stress, we encounter
three difficulties that should be overcome. Two of the

aforementioned difficulties are common in the topology

optimization problems of density type. The first diffi-

culty is related to the regularity of the density obtained

by the finite-element method based on gradient-based

methods. This is known as a checkerboard problem.

The second difficulty is that the range of the density

is restricted within [0, 1]. The set of functions with this

type of a restricted range cannot correspond to a lin-

ear space. This is because when two functions possess a

range of [0, 1], the range of their arbitrary linear combi-

nation does not correspond to [0, 1]. The Fréchet deriva-

tive is defined on a Banach space that is defined as a

complete normed space (the normed space is a linear
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space in which a norm is defined). This restriction leads

to a difficulty in which the derivative of a cost function
with respect to the density is not defined at 0 and 1,

because it is not possible to consider the neighborhood

around 0 and 1 within [0, 1]. The third difficulty cor-

responds to the non-differentiability of the maximum

von Mises stress due to locality including the singular-

ity and jumping property.

Several remedies were proposed for the first diffi-

culty of the irregularity. Schemes using filters or projec-

tion functions were presented since the 1990s (Diaz and

Sigmund, 1995; Sigmund and Petersson, 1998; Bourdin,

2001; Guest et al., 2004). Methods using Helmholtz-

type partial differential equations as a smoother of the

density were presented by Lazarov and Sigmund (2011)

and Kawamoto et al. (2011). A method by Kawamoto

et al. (2011) involved overcoming the second difficulty

of the restriction of density within [0, 1] by using a non-

linear polynomial function. In addition, the authors

proposed a similar method and used an H1 gradient

method for topology optimization problems of density

type, because the method is considered as a gradient

method in a function space ofH1 class that corresponds

to a Sobolev space for the functions that are differen-

tiable and second-order Lebesgue integrable (Azegami

et al., 2011). In this method, the second difficulty was

overcome by using a sigmoid function with a range cor-

responding to [0, 1]. The selection of a design variable

and the definition of density is shown in Section 2.

With respect to the third difficulty related to the

non-differentiability of the maximum von Mises stress,

several ideas were proposed. These ideas are classified

into two categories: (1) methods using local stress in
cost functions and (2) methods using integrations of

global stress in cost functions. A typical example of (1)

involves a study by Duysinx and Bendsøe (1998) that

proposed an ϵ-constraint relaxation approach based on

a concept developed by Cheng and Guo (1997). In their

study, the vanishing of stress constraints at zero den-
sity, which is another difficulty with stress function-

als in density approaches, is overcome by introduc-

ing a stress constraint function multiplied by the den-

sity. Conversely, a widely-known choice in (2) involves

the use of the p-norm of von Mises stress (Le et al.,

2010) and the Kreisselmeier-Steinhauser (KS) function

(Kreisselmeier and Steinhauser, 1979, 1983; Yang and

Chen, 1996). Moreover, mixed approaches of (1) and

(2) were presented by Wang and Li (2013) and Zhang

et al. (2013). They proposed the use of the p-norm of

von Mises stress in the neighborhood of high local stress

in the level-set formulation of shape optimization prob-

lem. In this study, we use the KS function as an ob-

jective cost function given prior experience in shape

optimization problems related to boundary variational

type (Shimoda et al., 1998; Liu et al., 2015; Shintani
and Azegami, 2013).

As previously observed, the basic framework for

minimizing a stress measure in topology optimization

problems is established. However, it was pointed out

that convergence speed is significantly low. Recently,

several attempts were made to examine this prob-

lem. Paŕıs et al. (2010) presented derivations of first-

order and directional second-order sensitivities for lo-

cal, global, and block aggregated stress constraints. Al-

laire et al. (2016) introduced Hessian or second-order

derivatives of cost functions, such as the mean compli-

ance or a least square error with a target displacement,

in the level-set formulation for shape optimization.

In this study, based on the approach of the H1 gra-

dient method to minimize problems of a stress measure

by using the KS function as a cost function, we intro-
duce the H1 Newton method for topology optimization

of density type to improve the convergence speed of the

H1 gradient method. In order to define the method, we

evaluate the second derivative of the KS function with

respect to the variation of the design variable. The ef-

fectiveness of the scheme is demonstrated by numerical

results for several linear elastic problems.

In the following sections, we use the notation

W s,p (D;R) to represent the Sobolev space for the set

of functions defined in D that corresponds to a value of

R and is s ∈ [0,∞] times differentiable and p ∈ [1,∞]-

th-order Lebesgue integrable. Furthermore, Lp
(
Ω0;Rd

)
and Hs

(
Ω0;Rd

)
are denoted by W 0,p

(
Ω0;Rd

)
and

W s,2
(
Ω0;Rd

)
, respectively. With respect to a reflex-

ive Sobolev space X, we denote its dual space by X ′

and the dual product of (x, y) ∈ X × X ′ by ⟨x, y⟩.
Specifically, f ′ (x) [y] represents the Fréchet derivative

⟨f ′ (x) ,y⟩ of f : X → R at x ∈ X with respect to an

arbitrary variation y ∈ X. Additionally, fx (x,y) [z]

represents the Fréchet partial derivative. The notation
∀ is used as corresponding to “for all”, and A ·B rep-

resents the scalar product
∑

(i,j)∈{1,...,m}2 aijbij with

respect to A = (aij)ij , B = (bij)ij ∈ Rm×m.

2 Problem formulation

Following a previous study (Azegami et al., 2011), we

formulate a topology optimization problem of density

type by using the KS function with respect to von Mises

stress and a volume constraint function.
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Fig. 1 Linear Elastic Problem.

2.1 Admissible set of design variable

It is assumed that D denotes a d ∈ {2, 3} dimensional

Lipschitz domain of a linear elastic body as shown in

Fig. 1, θ : D → R is a design variable, and ϕ (θ) is

a density given by a sigmoid function. In the present

study, we use

ϕ (θ) =
1

2
tanh θ +

1

2
. (1)

We assume that the linear space for the design variable

θ is given as

X = H1 (D;R) . (2)

Additionally, in order to determine a Lipschitz domain

with a level-set of ϕ (θ), we define the admissible set of

θ as

D = X ∩W 1,∞ (D;R) . (3)

2.2 State determination problem

With respect to a design variable θ ∈ D, we define a

linear elastic problem based on the SIMP model as a

state determination problem in the topology optimiza-

tion problem.

We use u : D → Rd as the elastic displacement,

E (u) = {∇uT +
(
∇uT

)T}/2 as the linear strain,

S (u) = CE (u) as the stress, and C : D → Rd×d×d×d

as the stiffness. It is assumed that the boundary ∂D of

D consists of the Dirichlet boundary ΓD and the Neu-

mann boundary ΓN, and b (θ) : D → Rd, pN : ΓN → Rd

and uD : D → Rd be a volume force, a traction force

and a given displacement on ΓD, respectively. Further-

more, ν denotes the outer unit normal. We assume the

power index α of ϕ (θ) is a constant that exceeds 2 such

that the second derivative of the cost function with re-

spect to arbitrary variation of θ ∈ X is well-defined.

The fore-mentioned definitions are used to formu-

late the following linear elastic problem as a state de-

termination problem.

Problem 1 (Linear elastic problem of θ type)

With respect to θ ∈ D and given functions b (θ), pN,
uD and C, find u such that

−∇T (ϕα (θ)S (u)) = bT (θ) in D,

ϕα (θ)S (u)ν = pN on ΓN,

u = uD on ΓD.

When the given functions are well-defined, u − uD

is found uniquely in

U =
{
u ∈ H1

(
D;Rd

) ∣∣ u = 0Rd on ΓD

}
. (4)

In order to determine a solution θ in D by the H1 gra-

dient method for topology optimization problems, we

need a condition that u− uD belongs to

S = U ∩W 1,2qR
(
D;Rd

)
(5)

for qR > d.

2.3 Topology optimization problem

Using the design variable θ and the state variable u,

we define the cost functions for a topology optimization

problem for minimizing the maximum von Mises stress.

Specifically, S (u) is denoted as (σij)ij , and we de-

fine

σ (u) =
√
3j2 (u) (6)

where

j2 (u) = − (σ11σ22 + σ11σ33 + σ22σ33)

+ σ2
12 + σ2

13 + σ2
23

in the d = 3 dimensional case. The expression σ (u) is

used to term ϕα (θ)σ (u) as the von Mises stress.

When we employ the von Mises yield criterion for

the strength of linear elastic bodies, it is necessary to

minimize the maximum value of ϕα (θ)σ (u) to increase

the strength. However, as mentioned in the Introduc-

tion, the maximum value of the von Mises stress is non-

differentiable with respect to an arbitrary variation of

θ ∈ X. Therefore, we define the cost function by adding

the KS function to the mean compliance as

f0 (θ,u) = fKS (θ,u) + cMCfMC (θ,u) (7)

where

fKS (θ,u) =
1

p
ln

{∫
D

epϕ
α(θ)σ(u)/σ̄dx

/∫
D

dx

}
, (8)

fMC (θ,u) =

∫
ΓN

pN · udγ, (9)
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σ̄ denotes a positive constant to normalize ϕα (θ)σ (u),

and p denotes a positive constant to control the repre-
senting property of the maximum value of ϕα (θ)σ (u)

and differentiability of f0. Moreover, cMC is a constant

to control the rate of the mean compliance with respect

to the KS function. As a property of the KS function, it

is known that when p→ ∞, f0 (θ,u) approaches to the

maximum value of ϕα (θ)σ (u) /σ̄. In this study, σ̄ is se-

lected with the maximum von Mises stress at the initial

shape. The effect of changing p value is investigated in

numerical examples in Section 5.

Conversely, in order to restrict the volume of the

linear elastic body, we define a cost function as

f1 (θ) =

∫
D

ϕ (θ) dx− c1, (10)

where c1 denotes a positive constant such that there

exists a θ ∈ D satisfying f1 (θ) < 0. In this study, c1 is

selected as the volume of initial model.

Using these cost functions, we construct a topology

optimization of linear elastic body as follows:

Problem 2 (KS function minimization problem)

For f0 and f1, determine θ such that

min
(θ,u−uD)∈D×S

{f0 (θ,u) | f1 (θ) ≤ 0, Problem 1} .

3 Differentiations of cost functions

In this study, a solution of Problem 2 based on a New-

ton method is presented. In this regard, we first es-

tablish the first and the second Fréchet differentiations

of the cost functions with respect to an arbitrary vari-

ation of the design variable θ that are termed as θ-

derivatives and θ-Hessians of cost functions. The basic

theories used in this section are summarized in the Ap-

pendix.

3.1 θ-derivatives of cost functions

Given that f0 is a functional of the solution u of Prob-

lem 2, we obtain the first θ-derivative of f0 in the fol-

lowing way based on Theorem 1 in the Appendix.

We formulate the Lagrange function for f0 as

L0 (θ,u,v0) = f0 (θ,u) + LS (θ,u,v0) . (11)

where, LS is the Lagrange function with respect to

Problem 1 defined as

LS (ϕ,u,v0) = l (ϕ) (v0)− a (ϕ) (ũ,v0)

with ũ = u− uD,v0 ∈ U and

a (ϕ) (ũ,v0) =

∫
Ω(ϕ)

ϕα (θ)S (ũ) ·E (v0) dx,

l (ϕ) (v0) =

∫
Ω(ϕ)

b · v0dx+

∫
Γp(ϕ)

pN · v0 dγ

− a (ϕ) (uD,v0) .

If u is the solution to Problem 1, then the weak form

of Problem 1 is expressed as

LS (θ,u,v0) = 0 ∀v0 ∈ U. (12)

We denote ϑ ∈ X as the variation of θ and take the

derivative of L0 with respect to the arbitrary variation

(ϑ, û, v̂0) ∈ X × U2 of (θ,u,v0) ∈ D × S2. This results

in the following expression:

L ′
0 (θ,u,v0) [ϑ, û, v̂0]

= L0θ (θ,u,v0) [ϑ] + L0u (θ,u,v0) [û]

+ L0v0
(θ,u,v0) [v̂0] . (13)

For the third term of the right-hand side in (13), we

consider the following:

L0v0
(θ,u,v0) [v̂0]

= LSv0
(θ,u,v0) [v̂0] = LS (θ,u, v̂0) . (14)

Subsequently, if u is the solution to Problem 1, then the

third term of the right-hand side in (13) corresponds

to 0. Furthermore, replacing the second term of (13)

with 0 results in a weak form of an adjoint problem to

determine v0. In this case, the following expression is

obtained:

L0u (θ,u,v0) [û]

=
1

r (θ,u)

∫
D

epϕ
α(θ)σ(u)/σ̄ϕα (θ)

∂σ (u)

∂S (u)
· S (û)

σ̄
dx

+

∫
D

(−ϕα (θ)S (û) ·E (v0) + b (θ) · û) dx

+

∫
ΓN

cMCpN · ûdγ

+

∫
ΓD

(
û · (ϕα (θ)S (v0)ν)

+ (v0 − uD) · (ϕα (θ)S (û)ν)
)
dγ, (15)

where

r (θ,u) =

∫
D

epϕ
α(θ)σ(u)/σ̄dx. (16)

If we assume that v0 is the solution of the following

problem, then the second term of the right-hand side

in (13) corresponds to 0.
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Problem 3 (Adjoint problem for f0) For θ ∈ D
and solution u ∈ S of Problem 1, we determine v0
such that

−∇Tϕα (θ)S (v0) = −∇TΣ (u) in D,

ϕα (θ)S (v0)ν = cMCpN on ΓN,

v0 = 0Rd on ΓD,

where

Σ (u) =
1

σ̄r (θ,u)

∫
D

epϕ
α(θ)σ(u)/σ̄ϕα (θ)

∂σ (u)

∂S (u)
dx.

(17)

If u and v0 denote the solutions of Problems 1 and

3 respectively, we obtain the θ-derivative of f0 from

the first term of the right-hand side in (13). Using the

notation f̃0 (θ) to represent f0 (θ,u (θ)), we obtain the

following expression:

f̃ ′0 (θ) [ϑ] = L0θ (θ,u,v0) [ϑ] = ⟨g0, ϑ⟩ =
∫
D

g0ϑdx,

(18)

where g0 denotes the θ-gradient of f0 that given as fol-

lows:

g0 = epϕ
α(θ)σ(u)/σ̄ (ϕα (θ))

′ σ (u)

σ̄

/∫
D

epϕ
α(θ)σ(u)/σ̄ dx

+ 2b′ (θ) · u− (ϕα (θ))
′
S (u) ·E (v0) , (19)

where

(ϕα (θ))
′
= αϕα−1 (θ)ϕ′ (θ) = αϕα−1 (θ)

1

2
sech2θ. (20)

Here, the Dirichlet conditions in Problems 1 and 3 were

used.

Conversely, the θ-derivative of f1 is obtained as

f ′1 (θ) [ϑ] = ⟨g1, ϑ⟩ =
∫
D

g1ϑ dx, (21)

where

g1 = ϕ′ (θ) =
1

2
sech2θ. (22)

3.2 θ-Hessians of cost functions

Based on the θ-derivatives of f0 and f1, their θ-Hessians

are obtained in the following manner.

First, we derive the θ-Hessian of f0 based on Theo-

rem 3 in the Appendix. Here, we assume b is not a func-

tion of θ to obtain the Hessian form. Referring to (65),

we define the admissible set of (θ,u− uD) in Problem

2 as

S = {(θ,u− uD) ∈ D × S |
LS (θ,u,v0) = 0 ∀v0 ∈ U}. (23)

Given a point y (θ) = (θ,u− uD) ∈ S, we denote the

tangential plane at y (θ) referring to (66) as

TS (θ,u) = {(ϑ, û) ∈ X × U |
LSθu (θ,u,v0) [ϑ, û] = 0 ∀v0 ∈ U}. (24)

Using these definitions, with respect to (64), we obtain

the second-order partial Fréchet derivative of L0 rela-

tive to arbitrary variations (ϑ1, û1), (ϑ2, û2) ∈ TS of

(θ,u− uD) ∈ S as

L0(θ,u)(θ,u) (θ,u,v0) [(ϑ1, û1) , (ϑ2, û2)]

= L0θθ (θ,u,v0) [ϑ1, ϑ2] + L0θu (θ,u,v0) [ϑ1, û2]

+ L0θu (θ,u,v0) [ϑ2, û1]

+ L0uu (θ,u,v0) [û1, û2] . (25)

For the first term of right-hand side of (25), we obtain

the following

L0θθ (θ,u,v0) [ϑ1, ϑ2]

=

∫
D

(ϕα (θ))
′′
{
σ (u)

σ̄
− S (u) ·E (v0)

}
ϑ1ϑ2dx,

(26)

where

(ϕα (θ))
′′

= α (α− 1)ϕα−2 (θ)ϕ′2 (θ) + αϕα−1 (θ)ϕ′′ (θ)

= α (α− 1)ϕα−2 (θ)

(
1

2
sech2θ

)2

− αϕα−1 (θ) sech2θ tanh θ. (27)

The second term of right-hand side of (25) is as follows:

L0θu (θ,u,v0) [ϑ1, û2]

=
1

r (θ,u)

∫
D

epϕ
α(θ)σ(u)/σ̄ (ϕα (θ))

′

× ∂σ (u)

∂S (u)
· S (û2)

σ̄
ϑ1dx

+
1

r (θ,u)

∫
D

epϕ
α(θ)σ(u)/σ̄ (ϕα (θ))

′
pϕα (θ)

× σ (u)

σ̄

∂σ (u)

∂S (u)
· S (û2)

σ̄
ϑ1 dx

− 1

r2 (θ,u)

∫
D

epϕ
α(θ)σ(u)/σ̄ (ϕα (θ))

′ σ (u)

σ̄
ϑ1 dx

×
∫
D

epϕ
α(θ)σ(u)/σ̄pϕα (θ)

∂σ (u)

∂S (u)
· S (û2)

σ̄
dx

−
∫
D

(ϕα (θ))
′
S (û2) ·E (v0)ϑ1 dx. (28)

The third term of right-hand side of (25) is obtained

by replacing ϑ1, û2 in (28) by ϑ2, û1.
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Here, given (ϑj , ûj) ∈ TS for j ∈ {1, 2}, ûj should

satisfy the following

LSθu (θ,u,v0) [ϑ, ûj ]

=

∫
D

{
− (ϕα (θ))

′
ϑS (u)− ϕα (θ)S (ûj)

}
·E (v0) dx

= 0 ∀v0 ∈ U. (29)

From (29), we obtain the following expression:

S (ûj) = − (ϕα (θ))
′

ϕα (θ)
ϑS (u) in D. (30)

Thus, û2 and û1 are substituted following (30) into

(28) and for the third term of the right-hand side of

(25), respectively, and it is assumed that the sum of the

second and the third terms of right-hand side of (28)

are negligible. This is because the stress values in the

optimized density distribution converge in ϕ (θ) → 0 or

1.

L0θu (θ,u,v0) [ϑ1, û2]

= L0θu (θ,u,v0) [ϑ2, û1]

=

∫
D

(ϕα (θ))
′2

ϕα (θ)

(
S (u) ·E (v0)

− 1

r (θ,u)
epϕ

α(θ)σ(u)/σ̄ ∂σ (u)

∂S (u)
· S (u)

σ̄

)
ϑ1ϑ2 dx.

(31)

Furthermore, the fourth term of right-hand side of (25)

corresponds to 0 because L0 is a linear form with re-

spect to u.

Using the fore-mentioned results and referring to

(70), we obtain the θ-Hessian of f0 as

h0 (θ,u,v0) [ϑ1, ϑ2]

= L0θθ (θ,u,v0) [ϑ1, ϑ2] + L0θu (θ,u,v0) [ϑ1, û2]

+ L0θu (θ,u,v0) [ϑ2, û1]

=

∫
D

hD0ϑ1ϑ2 dx, (32)

where

hD0 = (ϕα (θ))
′′
{
σ (u)

σ̄
− S (u) ·E (v0)

}
+ 2

(ϕα (θ))
′2

ϕα (θ)

(
S (u) ·E (v0)

− 1

r (θ,u)
epϕ

α(θ)σ(u)/σ̄ ∂σ (u)

∂S (u)
· S (u)

σ̄

)
(33)

In contrast, the θ-Hessian of f1 is obtained as

h1 (θ) [ϑ1, ϑ2] =

∫
D

hD1ϑ1ϑ2 dx, (34)

where

hD1
= ϕ′′ (θ) . (35)

The following statements can be inferred from the

results of the θ-Hessians h0 and h1. In general, it is

widely-known that when a Hessian in a finite dimen-

sional vector space is a full matrix, its computational

cost increases with the square of the number of design

variables. However, if a Hessian is a diagonal matrix, its

computational cost increases in proportion to the num-

ber of design variables. In the problem considered in

this study, the θ-Hessians consist of the density, stress,

and strain. Hence, they can be computed without new

elements filling in the stiffness matrix of the finite el-

ement equation. Therefore, the computational cost of

the θ-Hessians corresponds to the same order as that of

the stiffness matrix.

4 Solutions

Using the θ-derivatives and θ-Hessians of the cost func-

tions, we consider a scheme to solve Problem 2 based

on a Newton method. This is demonstrated after dis-

cussing the H1 gradient method alluded in the Intro-

duction.

4.1 H1 gradient method

Using the θ-gradients g0 and g1, we apply an itera-

tive algorithm based on the H1 gradient method to

solve Problem 2. In this section, we denote f̃0 (θ) =

f0 (θ,u (θ)) as f0 (θ) and consider a problem that min-

imizes f0 (θ) under the constraints f1 (θ) ≤ 0, . . .,

fm (θ) ≤ 0.

For each i ∈ {0, 1, . . . ,m}, using gi, the H1 gradient

method involves determining the θ variation ϑgi ∈ X

as the solution of the following problem.

Problem 4 (H1 gradient method of θ type) It is

assumed that

aX : X × X → R is a bounded coercive bilinear form

such that there exists αX > 0 and βX > 0 that satisfies

aX (ϑ, ϑ) ≥ αX ∥ϑ∥2X , ∀ϑ ∈ X,

|aX (ϑ, ψ)| ≤ βX ∥ϑ∥X ∥ψ∥X , ∀ϑ, ψ ∈ X.

For gi ∈ X ′, determine ϑgi ∈ X such that

aX (ϑgi, ψ) = −⟨gi (θk) , ψ⟩ ∀ψ ∈ X. (36)
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We confirm the unique existence of the solution ϑgi
in Problem 4 and the regularity such that ϑgi is W

1,∞

class from the assumption of u ∈ S (Theorem 4 in

Appendix). In this study, we use

aX (ϑgi, ψ) =

∫
D

(∇ϑ ·∇ψ + cDϑψ) dx (37)

for aX in (36), where cD denotes a positive constant to

ensure that aX ( · , · ) corresponds to coercive bilinear

form and to simultaneously control the smoothness of

the solution ϑgi. A lower cD results in a smoother ϑgi.

Here, the strong form of Problem 4 is as follows:

−∆ϑgi + cDϑgi = −gi in D,

∂νϑgi = 0 on ∂D.

In order to solve the problem minimizing f0 (θ) un-

der constraints fi (θ) ≤ 0 for i ∈ {0, 1, . . . ,m}, the

solutions ϑgi of the H1 gradient method are used,

and we consider an iterative algorithm based on the
following sequential quadratic approximation problem.

k ∈ {0, 1, . . .} denotes an iteration number.

Problem 5 (SQ approximation) For θk ∈
D, let gi be given for i ∈ IA (θk) =

{i ∈ {1, . . . ,m} | fi (θk) ≥ 0}. Additionally, ca de-

notes a positive constant to control the magnitude of

ϑgi. We determine ϑg such that

q (ϑg) = min
ϑ∈X

{
q (ϑ) =

ca
2
aX (ϑ, ϑ) + ⟨g0, ϑ⟩

∣∣∣∣
fi (θk) + ⟨gi, ϑ⟩ ≤ 0, i ∈ IA (θk)

}
.

We determine the solution ϑg as follows. We define

a Lagrange function for Problem 5 as follows:

LS (ϑ,λk+1) = q (ϑ) +
∑

i∈IA(θk)

λi k+1 (fi (θk) + ⟨gi, ϑ⟩) ,

(38)

where λi k+1 denotes the Lagrange multipliers. The

Karush–Kuhn–Tucker conditions at the minimum point

ϑg are given as

caaX (ϑg, ϑ) + ⟨g0, ϑ⟩+
∑

i∈IA(θk)

λi k+1 ⟨gi, ϑ⟩ = 0,

(39)

fi (θk) + ⟨gi, ϑg⟩ ≤ 0 for i ∈ IA (xk) , (40)

λi k+1 (fi (θk) + ⟨gi, ϑg⟩) = 0 for i ∈ IA (θk) , (41)

λi k+1 ≥ 0 for i ∈ IA (θk) (42)

for all ϑ ∈ X. Here, we assume

ϑg = ϑg (λk+1) = ϑg0 +
∑

i∈IA(θk)

λi k+1 ϑgi, (43)

where ϑg0, ϑgi1 , . . ., ϑgi|IA| denote the solutions of the

H1 gradient method for each g0, gi1 , . . ., gi|IA| as

caaX (ϑgi,ψ) = −⟨gi,ψ⟩ , ∀ψ ∈ X, (44)

and λk+1 ∈ R|IA| denote unknown parameters. Subse-

quently, we determine that (39) holds for ϑg in (43) and

that (40) corresponds to a linear system to determine

λk+1 when “≤” is replaced by “=” as follows:

(⟨gi, ϑgj⟩)(i,j)∈I2
A(θk)

(λj k+1)j∈IA(θk)

= − (fi (θk) + ⟨gi, ϑg0⟩)i∈IA(θk)
. (45)

Here, we use the active set method for the solu-

tion λk+1 of (45). Thus, λi k+1 = 0 is set for i ∈
II (θk) = {i ∈ IA (θk) | λi k+1 < 0}, IA (θk) is replaced

with IA (θk) \ II (θk), and the linear system of (40) is

resolved. When II (θk) becomes ∅, the Karush–Kuhn–

Tucker conditions are satisfied for low ϑg. It should be
noted that when fi (θk) = 0 for all i ∈ IA (θk), then

λk+1 are determined independently of the magnitude

of ϑg.

A simple algorithm for solving a topology optimiza-

tion problem is given below.

Algorithm 1 (H1 gradient method)

1. Set θ0 as f1 (θ0) ≤ 0, . . ., fm (θ0) ≤ 0. Set cD, ca,

ϵ1, . . ., and ϵm appropriately. Set k = 0.
2. Solve the state determination problem at θk and

compute f0 (θk), f1 (θk), . . ., fm (θk). Set IA (θk) =

{ i ∈ {1, . . . ,m} | fi (θk) ≥ −ϵi}.
3. Solve adjoint problems at θk and compute g0, gi1 ,

. . ., gi|IA| .

4. Solve ϑg0, ϑgi1 , . . ., ϑgi|IA| by using (44).

5. Solve λk+1 by using (45). When II (θk) ̸= ∅, replace
IA (θk) \ II (θk) with IA (θk), and resolve (45) until

II (θk) = ∅.
6. Compute ϑg using (43), set θk+1 = θk + ϑg, and

compute f0 (θk+1), f1 (θk+1), . . ., fm (θk+1). Set

IA (θk+1) = { i ∈ {1, . . . ,m} | fi (θk+1) ≥ −ϵi} .
(46)

7. Assess a prescribed terminal condition.

– If “Yes,” proceed to (8).

– If “No,” replace k + 1 with k and return to (3).

8. Stop the algorithm.

As a prescribed terminal condition in Step 7, it is

considered that |f0 (θk+1)− f0 (θk)| ≤ ϵ0 with a given

ϵ0 > 0, ∥θk+1 − θk∥W 1,∞(D;R) ≤ ϵ0 or k reaches a given

number. In this study, the terminal condition using it-

eration number is used.
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Regarding how to choose the constants ca and cD,

the following strategy can be considered. As the first
trial, ca = 1 and cD = 1 are recommended. As a re-

sult, when extremely fast decrease or oscillation of the

objective function occurs, ca should be replaced with

a larger one in order to decrease the step size for the

variation of θ. Notwithstanding this replacement, when

the oscillation is not eliminated, cD should be changed.

In this case, remind that a smaller cD increases the

smoothness of variation of θ.

4.2 H1 Newton method

When the θ-Hessians hi of fi for i ∈ {0, 1, . . . ,m}
are obtained in addition to the θ-gradients gi, an it-

erative algorithm based on a Newton method in X is

considered. In this algorithm, the following H1 Newton

method is used as opposed to the H1 gradient method.

Problem 6 (H1 Newton method of θ type) For

θk ∈ D, let the θ-gradient gi (θk) ∈ X ′ and the θ-

Hessian hi (θk) ∈ L2 (X ×X;R) of fi be given and

aX : X × X → R correspond to a bounded coercive

bilinear form to compensate for the coerciveness and

the regularity of hi (θk). Find ϑgi ∈ X such that

hi (θk) [ϑgi, ψ] + aX (ϑgi, ψ) = −⟨gi (θk) , ψ⟩ ∀ψ ∈ X.

(47)

For the problem minimizing f0 (θ) under constraints

fi (θ) ≤ 0 for i ∈ {0, 1, . . . ,m}, we replace (47) by

hL (θk) [ϑgi, ψ] + caaX (ϑgi, ψ) = −⟨gi (θk) , ψ⟩
∀ψ ∈ X, (48)

where

hL (θk) [ϑgi, ψ]

= h0 (θk) [ϑgi, ψ] +
∑

i∈IA(θk)

λikhi (θk) [ϑgi, ψ] . (49)

A simple algorithm using the H1 Newton method is

given below.

Algorithm 2 (H1 Newton method)

1. Set θ0 as f1 (θ0) ≤ 0, . . ., fm (θ0) ≤ 0. Set cD, ca,

ϵ1, . . . , ϵm, and kN appropriately. Set k = 0.

2. Solve the state determination problem at θk, and

compute f0 (θk), f1 (θk), . . ., fm (θk). Set IA (θk) as

in (46).

3. If some hi1 , . . ., hi|IA| is computable,

– Solve adjoint problems at θk and compute g0,

gi1 , . . ., and gi|IA| .

– Solve ϑg0, ϑgi1 , . . ., ϑgi|IA| by using (44).

– Solve λk+1 by using (45). When II (θk) ̸= ∅, re-
place IA (θk) \ II (θk) with IA (θk) and resolve

(45) until II (θk) = ∅.
– Compute ϑg by using (43), set θk+1 = θk + ϑg,

and compute f0 (θk+1), f1 (θk+1), . . ., fm (θk+1).

Set IA (θk) as in (46).

– Assess a prescribed terminal condition.

– If “Yes,” proceed to (9).

– If “No,” replace k + 1 with k. If k < kN,

return to the beginning of this step.

4. Solve adjoint problems at θk and compute g0, gi1 ,

. . ., gi|IA| , and h0, hi1 , . . ., hi|IA| .

5. Solve ϑg0, ϑgi1 , . . ., ϑgi|IA| using (48).

6. Solve λk+1 by using (45). When II (θk) ̸= ∅, replace
IA (θk) \ II (θk) with IA (θk), and resolve (45) until

II (θk) = ∅.
7. Compute ϑg by using (43), set θk+1 = θk + ϑg,

and compute f0 (θk+1), f1 (θk+1), . . ., fm (θk+1). Set

IA (θk) as in (46).

8. Assess a prescribed terminal condition.

– If “Yes,” proceed to (9).

– If “No,” replace k + 1 with k and return to (4).

9. Stop the algorithm.

In this study, we developed a computer program to

solve Problem 2 by means of a programing language by

the finite element method, FreeFEM++ (Hecht, 2012).

The corresponding FreeFEM++ script for the L-shaped

cantilever example presented in Section 5.1 is given in

detail in Appendix C.

5 Numerical examples

In order to confirm the validity of Algorithm 2 us-

ing the H1 Newton method, we analyzed typical two-

dimensional problems investigated in several studies us-

ing the developed computer programs. In these studies,

we set cMC = 1 in (7) and kN = 7 in Algorithm 2.

Second order triangular elements were used in the fol-

lowing finite element analyses. Furthermore, the func-

tion of adaptive mesh in FreeFEM++ was used with

an error level for the mesh adaptation: errelas = 0.05.

5.1 L-shaped cantilever

Figure 2 shows the geometry of a two-dimensional L-

shaped cantilever assumed as the linear elastic prob-

lem in Problem 1. The height of D is 20 m. We used

pN = (0, 1)
T

N on the non-homogeneous Neumann

boundary Γp with a length of 0.02 m and Young’s mod-

ulus and Poisson’s ratio corresponding to 210 MPa and
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D

ΓD

Γp

pN

Fig. 2 L-shaped cantilever problem.

(a) Density ϕ (θ) (b) von Mises stress
ϕα (θ)σ (u)

Fig. 3 Result of the mean compliance fMC minimization
(color bar: [0, 11] MPa).

(a) Density ϕ (θ) (b) von Mises stress
ϕα (θ)σ (u)

Fig. 4 Result of the KS function fKS minimization (color
bar: [0, 9] MPa).

0.3, respectively. Additionally, we assumed θ = 0 in

D at the initial model. Hence, when c1 is selected as

the volume of initial model in (10), the volume ratio

c1/
∫
D
dx was assumed as 0.5. Figure 3 shows the result

of the mean compliance fMC minimization as a refer-

ence. The result shows that the stress concentration on

the re-entrant corner does not exist. Meanwhile, the re-

sult of only the KS function fKS minimization (cMC = 0

in (7)) is shown in Fig. 4. From the result, it is consid-

ered that the mean compliance is needed in order to

maintain a frame of mechanical structure.

Figure 5 shows the iteration histories of f0/f0ini
(f0ini denotes the initial value of f0) with varying values

of p using the H1 gradient method. In these analyses,

ca = 0.5 and cD = 0.7 were used. These respective value

of ca and cD were selected in the following way. We

p=10
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Fig. 5 L-shaped cantilever: Iteration history of cost function
f0 in cases changing p by the H1 gradient method.
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ca=0.25

Fig. 6 L-shaped cantilever: Iteration history of changing ca
with fixed cD = 0.7 by the H1 gradient method.

cD=1.0
cD=0.9
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cD=0.5
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Fig. 7 L-shaped cantilever: Iteration history of changing cD
with fixed ca = 0.5 by the H1 gradient method.

made trial analyses with ca=1.0, 0.5 and 0.25 and cD=

1.0, 0.9, 0.7 and 0.5 until k = 50 iterations. The results

of the trial analyses are shown in Figs. 6 and 7. In view

of these results, we chose ca = 0.5 and cD = 0.7 because

they constitute to a faster and more stable convergence.

The iteration histories of the maximum nodal value of

von Mises stress ϕα (θ)σ (u) and σ̄fKS (θ,u) are shown

in Fig. 8 with respect to the three cases of p. The max-

imum nodal value of von Mises stress is not reliable at

a singular point in the finite element analysis because

we can demonstrate that the stress at a concave corner

point is theoretically infinite and that the nodal value
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p=10

20 40 60 80 100
0

20

40

60

Iteration numberM
a
x
. 
v
on

 M
is

es
 s

tr
es

s 
[M

P
a
]

0

maxφα(θ)σ(u)

p=30
p=50

σfKS(θ,u)¯

Fig. 8 L-shaped cantilever: Iteration history of the max-
imum nodal value of von Mises stress ϕα (θ)σ (u) and
σ̄fKS (θ,u) in cases involving changes in p by the H1 gra-
dient method.
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Fig. 9 L-shaped cantilever: Iteration history of the cost func-
tion f0 for a comparison between H1 gradient method and
the H1 Newton method when p = 50.

of the stress by the finite element method is affected

by the mesh. Although its values are not reliable, we

confirm the tendency of decreasing them at the initial

stage. In contrast, σ̄fKS (θ,u) exhibits similar values to

the maximum nodal values of von Mises stress and de-

creases monotonically. Based on the observation, in this

study, p=50 was used for the L-shaped cantilever prob-

lem as the maximum value with which the feasibility

was checked.

Figure 9 shows the comparison between the itera-

tion histories of f0/f0ini by theH1 gradient method and

the H1 Newton method while using p=50. The value of

f0/f0ini by the H1 gradient method at 600th iteration

corresponds to 0.376 and 0.385 at 200th iteration by

the H1 Newton method. The number of nodes corre-

spond to 1550 at 600th in the H1 gradient method and

1030 at 200th in theH1 Newton method. The computa-

tional times correspond to 173 h to the 600th iteration

(0.29 h/iteration) and 46 h to the 200th iteration (0.23

h/iteration). The results indicate that the H1 Newton

method significantly converges faster than the H1 gra-

dient method. The density and the von Mises stress dis-

tributions obtained by the H1 gradient method and the

H1 Newton method are illustrated in Figs. 10 and 11,

respectively. Figure 12 shows the mesh of final model

by the H1 Newton method. From the results, it is ob-
served that the H1 Newton method converges signif-

icantly faster when compared. From the results, it is

observed that the stress concentrations around the re-

entrant corner were relieved in both cases as opposed to

the result of mean compliance minimization and that

the optimized topology was approximately determined

by the H1 Newton method at 200th loop of iterations

while that by the H1 gradient method was approxi-

mately determined at the 600th iteration. The compu-

tational cost per an iteration decreased to 20%. As the-

oretically expected, the Newton method displays the

property of quadratic convergence, and the superior-

ity of the H1 Newton method in terms of convergence

speed was confirmed from these results.

5.2 Portal frame

Moreover, we applied the proposed method to a por-

tal frame problem as shown in Fig. 13. The material

constants and the initial value of θ = 0 were the same

as those of the L-shaped cantilever problem. We used

pN = (0, 1)
T

N on the non-homogeneous Neumann

boundary Γp with a length of 0.1 m. The height and

length correspond to 60 m and 120 m, respectively. We

performed a few preliminary analyses by changing the

p value and selected p = 10 by the same manner in

the L-shaped cantilever problem. From the analyses,

ca = 1 and cD = 0.7 were selected to decrease speed of

calculation and refrain the oscillation of convergence.

Figure 14 shows a comparison between the iteration

histories of f0/f0ini by the H1 gradient method and
the H1 Newton method. Beyond the limit of horizon-

tal axis of Fig. 14, the values of f0/f0ini were 0.541

by the H1 gradient method at the 600th iteration and

0.505 by the H1 Newton method at the 400th itera-

tion. The number of nodes corresponded to 1189 at

the 600th iteration in the H1 gradient method and 760
at the 400th iteration in the H1 Newton method. The

computational times corresponded to 32 h to the 600th

iteration (0.0533 h/iteration) and 9 h to the 400th iter-

ation (0.0225 h/iteration). Figures 15 and 16 illustrate

the density and the von Mises stress distributions ob-

tained by the H1 gradient method and the H1 Newton

method, respectively. Figure 17 shows the mesh of final

model by the H1 Newton method. From the results,

it is observed that the H1 Newton method converges

significantly faster when compared to the H1 gradient

method. The computational cost per an iteration de-

creased to 57%. Moreover, with respect to Fig. 16, it is

observed that the use of the H1 Newton method sig-

nificantly removes the stress concentration at the re-
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k = 100 k = 200

k = 400 k = 600
(a) Density ϕ (θ)

k = 100 k = 200

k = 400 k = 600
(b) von Mises stress ϕα (θ)σ (u)
(color bar in Fig. 3: [0, 12] MPa)

Fig. 10 L-shaped cantilever: Results of the H1 gradient
method.

entrant corners by focusing attention on the difference

of the color bar scales. The results of the L-shaped can-

tilever and the portal frame are compared, and it ap-

pears that the improvement of convergence property by

the H1 Newton method from the H1 gradient method

depends on the boundary conditions of linear elastic

problems.

k = 50 k = 100

k = 150 k = 200
(a) Density ϕ (θ)

k = 50 k = 100

k = 150 k = 200
(b) von Mises stress ϕα (θ)σ (u)
(color bar in Fig. 3: [0, 12] MPa)

Fig. 11 L-shaped cantilever: Results of the H1 Newton
method.

5.3 Comparison with literature

The problems of L-shaped cantilever and portal frame

are used as benchmarks to check the validity of the

newly proposed methods. Here, we compare the results

of the study to those obtained by extant studies.

The L-shaped cantilever problem was used in the

numerical analyses by Le et al. (2010), Bruggi and

Duysinx (2012), and Holmberg et al. (2013) to check

the performances of their methods although the lo-

cations of the external force pN are slightly different.
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Fig. 12 Mesh of L-shaped cantilever: k = 200 by the H1

Newton method.
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Fig. 13 Portal frame problem.
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Fig. 14 Portal frame: Iteration history of the cost function
f0 for a comparison between the H1 gradient method and the
H1 Newton method when p = 10.

The results illustrated in Bruggi and Duysinx (2012)

use the same position that corresponds to the center

of right hand edge with the current analysis. In the

analyses, they select the weight as the objective cost

function and constraints by using the mean compliance

and/or the product of penalized density and the equiv-

alent Drucker-Prager local stress measure. A compar-

ison of the results in Figs. 10 and 11 with the results

by Bruggi and Duysinx (2012) confirms that the topol-

k = 100 k = 200

k = 400 k = 600
(a) Density ϕ (θ)

k = 100 k = 200

k = 400 k = 600
(b) von Mises stress ϕα (θ)σ (u)
(color bar in Fig. 3: [0, 8] MPa)

Fig. 15 Portal frame: Results of the H1 gradient method.

k = 100 k = 200

k = 300 k = 400
(a) Density ϕ (θ)

k = 100 k = 200

k = 300 k = 400
(b) von Mises stress ϕα (θ)σ (u)
(color bar in Fig. 3: [0, 4] MPa)

Fig. 16 Portal frame: Results of the H1 Newton method.
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Fig. 17 Mesh of portal frame: k = 400 by the H1 Newton
method.

ogy and shape of their result when the two constraints

were used is similar to those of the current result. How-

ever, the volume rates are 0.409 and 0.5 in the results

of the extant study and the current result respectively,

and thus a thin beam in a direction perpendicular to

the beams similar to the spokes of a wheel appears in

the results of the present study. Regarding the compu-

tational cost, our proposed methods are found to be

significantly slower than other compared literature.

With respect to the portal frame problem, we refer

to a numerical result in Le et al. (2010). They analyzed

the optimum density by using the p-norm of von Mises

stress as the objective function with the volume con-

straint. Although the volume rates are 0.3 and 0.5 in the

previous study and the current analyses, respectively,

we observe the same tendencies wherein the layout of

major holes and the state of concentration around the

center corner and extension to the horizontal direction

of density are similar.

6 Conclusions

In this study, a numerical solution of a topology opti-

mization of linear elastic body for minimizing the max-

imum von Mises stress was investigated. The topology

optimization problem was formulated by using the den-

sity that was defined by a sigmoid function of the de-

sign variable θ. With respect to the objective cost func-

tion, the KS function of von Mises stress was used to

overcome the non-differentiability of the maximum von

Mises stress in addition to the mean compliance. The

volume was used as a constraint function. The θ deriva-

tive of the objective cost function was derived by using

the solution of the adjoint problem with respect to the

KS function. As a result of this study, the second θ

derivative that is termed as the θ-Hessian of the KS

function was derived by using the second θ derivative

of the Lagrange function for the KS function together

with the θ derivative of the Lagrange function for the

linear elastic problem. The θ-Hessians of the cost func-

tions were used to present a solution based on a H1

Newton method. The validity of the solution was ver-

ified through numerical examples by using a program

developed in FreeFEM++. From the results, in keeping
with theoretical expectations, the Newton method dis-

plays the property of quadratic convergence and the H1

Newton method is superior to the H1 gradient method

with respect to the convergence speed. In addition, the

improvement rate of convergence speed by the H1 New-

ton method when compared to that of the H1 gradient

method was observed to rely on the problem setting of

the linear elastic problem.
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Appendix

A Abstract optimum design problem

In this appendix, we summarized the basic theories used in
this paper (Azegami, 2017). Here, we define an abstract op-
timum design problem and show the several results with re-
spect this problem. It is assumed that ϕ ∈ D ⊂ X is a design
variable from an admissible set D in a Hilbert space X. For
ϕ ∈ D, a state variable u in a Hilbert space U is assumed as
uniquely determined as a solution of the following problem.

Problem 7 (Abstract variational problem) For ϕ ∈ D,
it is assumed that a (ϕ) : U × U → R is a bounded and
coercive bilinear form in U , and l (ϕ) = l (ϕ) ( · ) = ⟨l (ϕ) , · ⟩ ∈
U ′ (dual space of U). Find u ∈ U such that

a (ϕ) (u, v) = l (ϕ) (v) ∀v ∈ U.

Problem 7 is equivalently stated as follows. “Let τ (ϕ) :
U → U ′ correspond to an isomorphism by Lax-Milgram theo-
rem when a (ϕ) ( · , · ) is a bounded and coercive bilinear form
in U . Find u ∈ U that satisfies

s (ϕ, u) = l (ϕ)− τ (ϕ)u = 0U ′ .” (50)

We assume that a solution u of Problem 7 is an element of
admissible set S ⊂ U to assure that ϕ + φ ∈ D where φ is
a variation of the design variable ϕ obtained by the gradient
or the Newton method that is subsequently demonstrated.
Given the pair (ϕ, u) ∈ D × S, we consider the following
design problem.

Problem 8 (Abstract optimum design problem)
For f0, . . . , fm : D × S → R, find (ϕ⋆, u⋆) ∈ D × S such that

f0 (ϕ
⋆, u⋆) = min

(ϕ,u)∈D×S
{f0 (ϕ, u) | f1 (ϕ, u) ≤ 0,

. . . , fm (ϕ, u) ≤ 0, Problem 7} .

A.1 Gradient of cost function fi with respect to ϕ

In Problem 8, Problem 7 is assumed as an equality constraint.
In this section, using the following problem, we show the com-
putations of the Fréchet derivative and Hessian of the cost
function fi with respect to an arbitrary variation φ ∈ X (or
φ ∈ Y ⊂ X with a linear space Y ⊃ D) of the design variable
ϕ ∈ D subject to the given equality constraint.
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Problem 9 (Abstract problem with constraint)
For fi : D × S → R and s (ϕ, u) in (50) , find (ϕ⋆, u⋆) such
that

fi (ϕ
⋆, u⋆) = min

(ϕ,u)∈D×S
{fi (ϕ, u) | s (ϕ, u) = 0U ′} .

In order to show necessary and sufficient conditions for a
local minimizer of Problem 9, we define the Lagrange function
with respect to Problem 9 as

Li (ϕ, u, vi)

= fi (ϕ, u) + ⟨s (ϕ, u) , vi⟩ = fi (ϕ, u) + LS (ϕ, u, vi) , (51)

where LS (ϕ, u, vi) denotes the Lagrange function with re-
spect to Problem 7, and u and vi denote the variables in
S ⊂ U corresponding to the solution of Problem 7 and the
Lagrange multiplier with respect to the equality constraint
of Problem 7 for fi respectively. In the definition of La-
grange function of (51), it should be noted that u is not
necessary as the solution of Problem 7. Thus, S and U are
used as the admissible set and the set for test function of
u and vi in Problem 7 and the adjoint problem shown later
in (62), respectively. With respect to an arbitrary variation
(φ, û, v̂i) ∈ X×U2 of (ϕ, u, vi) ∈ D×S2, the Fréchet deriva-
tive of Li is expressed as

L ′
i (ϕ, u, vi) [φ, û, v̂i]

= Liϕ (ϕ, u, vi) [φ] + Liu (ϕ, u, vi) [û] + Livi
(ϕ, u, vi) [v̂i]

= f ′
i (ϕ, u) [φ, û] + ⟨s′ (ϕ, u) [φ, û] , vi⟩+ ⟨s (ϕ, u) , v̂i⟩

= fiϕ (ϕ, u) [φ] + fiu (ϕ, u) [û]

+ ⟨sϕ (ϕ, u) [φ] + su (ϕ, u) [û] , vi⟩+ ⟨s (ϕ, u) , v̂i⟩
= (⟨fiϕ (ϕ, u) , φ⟩+ ⟨sϕ (ϕ, u) [φ] , vi⟩)

+ ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, û⟩+ ⟨s (ϕ, u) , v̂i⟩
= ⟨gi (ϕ, u, vi) , φ⟩+ Liu (ϕ, u, vi) [û] + LS (ϕ, u, v̂i) .

(52)

Here, τ∗ (ϕ) : U → U ′ denotes the adjoint operator of τ (ϕ).
Using the notations in (52), we obtain the following result
(Theorem 2.1 in Azegami (2017)).

Theorem 1 (The first-order necessary condition)
Let fi ∈ C1 (D × S;R) and s ∈ C1 (D × S;U ′). If (ϕ, u) is
a local minimizer of Problem 9, there exists a vi ∈ U that
satisfies

⟨gi (ϕ, u, vi) , φ⟩+ Liu (ϕ, u, vi) [û] = 0 ∀ (φ, û) ∈ X × U,
(53)

LS (ϕ, u, v̂i) = 0 ∀v̂i ∈ U. (54)

Proof From the fact that s ∈ C1 (D × S;U ′) and that there
exists a unique solution u that satisfies s (ϕ, u) = 0U ′ , s sat-
isfies the following assumptions for the implicit function the-
orem in a neighborhood BX ×BU ⊂ X×U of (ϕ, u) ∈ D×S:
1. s (ϕ, u) = 0U ′ ,
2. s ∈ C0 (BX ×BU ;U ′),
3. s (ϕ, · ) ∈ C1 (BU ;U ′) with respect to an arbitrary y =

(ϕ,w) ∈ BX × BU and su (ϕ, u) = −τ : U → U ′ is
continuous at (ϕ, u),

4. (su (ϕ, u))−1 = −τ−1 : U ′ → U is bounded and linear.

From the implicit function theorem, there exists a neigh-
borhood B̂X × B̂U ⊂ BX × BU and continuous mapping
υ : B̂X → B̂U , and s (ϕ, u) = 0U ′ that is expressed as

u = υ (ϕ) . (55)

Hence, we define y (ϕ) = (ϕ, υ (ϕ)) ∈ C1 (D;X × U) and

write fi (ϕ, υ (ϕ)) = fi (y (ϕ)) by f̃i (ϕ). Given that fi ∈
C1 (D × S;R), thus the fact that ϕ corresponds to a local
minimizer implies that

f̃ ′
i (ϕ) [φ] = y′∗ (ϕ) ◦ gi (ϕ, υ (ϕ)) [φ] = 0 ∀φ ∈ X. (56)

Here,

gi (ϕ, υ (ϕ)) = f ′
i (ϕ, υ (ϕ)) ∈ L (X;X′ × U ′)

= L (X;L (X × U ;R)) ,
y′ (ϕ) ∈ L (X;X × U) , y′∗ (ϕ) ∈ L (X′ × U ′;X′) .

In this study, L (X;U) denotes the set of all bounded linear
operators from X to U and ◦ denotes the composition op-
erator. We rewrite (56) as given below. First, we express the
admissible set of (ϕ, u) with respect to the equality constraint
as

S = {(ϕ, u) ∈ D × S | s (ϕ, u) = 0U ′ } . (57)

For y (ϕ) = (ϕ, u) ∈ S, we denote the kernel of s′ (ϕ, u) ∈
L (X × U ;U ′) by

TS (ϕ, u) = {(φ, υ̂) ∈ X × U | s′ (ϕ, u) [φ, υ̂] = 0U ′ } (58)

and the space orthogonal to TS (ϕ, u) as

T ′
S (ϕ, u) =

{
(ψ,w) ∈ X′ × U ′ ∣∣ ⟨(φ, υ̂) , (ψ,w)⟩ = 0

∀ (φ, υ̂) ∈ TS (ϕ, u)
}
.

Moreover, the relationship between TS (ϕ, u) and the Fréchet
derivative y′ (ϕ) [φ] of y (ϕ) ∈ S with respect to an arbitrary
variation φ ∈ X is obtained in the following way. If we take
the Fréchet derivative on both sides of s (ϕ, u) = 0U ′ with
respect to φ ∈ X, then we obtain the following expression

s′ (ϕ, u) ◦ y′ (ϕ) [φ] = 0U ′ ∀φ ∈ X. (59)

This relationship shows that the image space Im y′ (ϕ) of
y′ (ϕ) actually corresponds to the kernel space Ker s′ (ϕ, u) of
s′ (ϕ, u). Therefore, the following relationship is established:

TS (ϕ, u) = Im y′ (ϕ) . (60)

We use the fore-mentioned relationship to rewrite (56). When
ϕ is a local minimizer, it is necessary for g (ϕ, υ (ϕ)) to be
orthogonal to an arbitrary (φ, vi) ∈ TS (ϕ, u). Hence,

gi (ϕ, υ (ϕ)) ∈ T ′
S (ϕ, u) . (61)

Now, the relationship between the orthogonal complement
space of the image space and the kernel space is used to obtain
T ′
S (ϕ, u) = Im s′∗ (ϕ, u) where s′∗ (ϕ, u) ∈ L (U ;X′ × U ′)

denotes the adjoint of s′ (ϕ, u). Therefore, (61) indicates that
we can determine an element vi of U such that

f ′
i (ϕ, u) [φ, û] + ⟨s′ (ϕ, u) [φ, û] , vi⟩ = 0 ∀ (φ, û) ∈ X × U.

This established equation (53). Moreover, (54) holds if u is
the solution of (50). (QED)

From Theorem 1, gi is evaluated as follows. It is assumed
that u is determined as satisfying (54). This means u is the
solution of Problem 7. Furthermore, let vi be determined
through the following equation

Liu (ϕ, u, vi) [û] = ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, û⟩ = 0 ∀û ∈ U.
(62)
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The problem involving the determination of vi by (62) is
termed as the adjoint problem of Problem 7 with respect to
fi. When we use the solutions u and vi, gi ∈ X′ is obtained
as follows:

⟨gi (ϕ, u, vi) , φ⟩ = ⟨fiϕ (ϕ, u) , φ⟩+ ⟨sϕ (ϕ, u) [φ] , vi⟩
∀φ ∈ X. (63)

A.2 Hessian of cost function fi with respect to

variation of ϕ

Furthermore, when fi and s denote the second-order Fréchet
differentiable, then we calculate the second-order partial
Fréchet derivative of Li with respect to arbitrary variations
(φ1, υ̂1) , (φ2, υ̂2) ∈ TS (ϕ, u) of (ϕ, u) ∈ S as

Li(ϕ,u)(ϕ,u) (ϕ, u, vi) [(φ1, υ̂1) , (φ2, υ̂2)]

= f ′′
i (ϕ, u) [(φ1, υ̂1) , (φ2, υ̂2)]

+ ⟨s′′ (ϕ, u) [(φ1, υ̂1) , (φ2, υ̂2)] , vi⟩ , (64)

where

S = {(ϕ, u) ∈ D × S | s (ϕ, u) = 0U ′ } , (65)

TS (ϕ, u) = {(φ, û) ∈ X × U | s′ (ϕ, u) [φ, û] = 0U ′ } . (66)

This is used to obtain the following result (Theorem 2.2 in
Azegami (2017)).

Theorem 2 (The second-order necessary condition)
Let fi and s be the elements of C2 (D × S;R) and
C2 (D × S;U ′), respectively. If (ϕ, u) is a local minimizer of
Problem 9, the following expression holds:

Li(ϕ,u)(ϕ,u) (ϕ, u, vi) [(φ, υ̂) , (φ, υ̂)] ≥ 0

∀ (φ, υ̂) ∈ TS (ϕ, u) . (67)

Proof In the proof of Theorem 1, the assumption for the im-
plicit function theorem is replaced by s (ϕ, · ) ∈ C2 (BU ;U ′),
and then υ (ϕ) is used in (55), y (ϕ) = (ϕ, υ (ϕ)) ∈
C2 (D;X × U) is determined. From (59), we obtain the fol-
lowing expression:

s′′ (ϕ, u) [y′ (ϕ) [φ] , y′ (ϕ) [φ]] = 0U ′ (68)

with respect to y′ (ϕ) [φ] ∈ TS (ϕ, u). Hence, if (ϕ, u) is a local
minimizer of Problem 9,

Li(ϕ,u),(ϕ,u) (ϕ, u, vi) [y
′ (ϕ) [φ] , y′ (ϕ) [φ]]

= f̃ ′′
i (ϕ) [φ,φ] ≥ 0 (69)

holds with respect to y′ (ϕ) [φ] ∈ TS (ϕ, u). (QED)

The left-hand side of (67) is the Hessian of fi with respect
to an arbitrary variation φ ∈ X of ϕ, and thus we express it as
hi (ϕ, u, vi) [φ,φ], and obtain the following result (Theorem
2.3 in Azegami (2017)).

Theorem 3 (The second-order sufficient condition)
Under the assumptions of Theorem 2, if (53) and (54) are
satisfied at (ϕ, u, vi) ∈ D × S2 and (67) holds, then (ϕ, u) ∈
X × U is a local minimizer of Problem 9.

Proof When (ϕ, u, vi) ∈ D×S2 is a stationary point of Li in
S, with respect to an arbitrary point y (ϕ+ φ) = y (ϕ)+z (φ)
in a neighborhood B ⊂ S of y (ϕ) = (ϕ, u), there exists a
θ ∈ (0, 1) that satisfies

f̃i (ϕ+ φ)− f̃i (ϕ) =
1

2
L ′′

i (ϕ+ θφ, u, vi) [z (φ) , z (φ)]

∀y (ϕ) + z (φ) ∈ B.

From the assumption, the right-hand side is greater than or
equal to 0, and thus f̃i (ϕ) ≤ f̃i (ϕ+ φ) holds. (QED)

In view of Theorem 3, hi is calculated as

hi (ϕ, u, vi) [φ1, φ2]

= (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1])ϕ [φ2]

+ (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1])u [υ̂2]

= Liϕϕ (ϕ, u, vi) [φ1, φ2] + Liuϕ (ϕ, u, vi) [υ̂1, φ2]

+ Liϕu (ϕ, u, vi) [φ1, υ̂2] + Liuu (ϕ, u, vi) [υ̂1, υ̂2] , (70)

where in order to obtain (φj , υ̂j) ∈ TS (ϕ, u) for j ∈ {1, 2},
υ̂j is determined by using the following equation

LSϕ (ϕ, u, v) [φj ] + LSu (ϕ, u, v) [υ̂j ] = 0 ∀φj ∈ X. (71)

B Regularity of H1 Gradient Method

With respect to the weak solutions of the H1 gradient
method (Problem 4) of θ type, the following result is obtained
(Azegami, 2016, Theorem 8.5.5). Here, we assume that gi are
contained in LqR (D;R) (qR > d). In reality, when u ∈ S, g0
in (19) is contained in LqR (D;R). Furthermore, the neigh-
borhoods of the singular points are denoted as B as follows:
when D is a two-dimensional domain, concave corner points
on ∂D and corner points on ∂ΓD in mixed boundary condi-
tions in which the opening angle exceeds π/2, and when D is
a three-dimensional domain, concave edges on ∂D and edges
on ∂ΓD in mixed boundary conditions in which the opening
angle exceeds π/2. Additionally, fi (θ,u) when u ∈ S is the

solution to Problem 1 and is expressed as f̃i (θ).

Theorem 4 (H1 gradient method of θ type) With re-
spect to gi ∈ LqR (D;R), the weak solutions ϑg0 of Problem
4 exist uniquely. ϑgi is W 1,∞ class on D \ B̄. Moreover, ϑgi

faces the descent direction of f̃i (θ).

Proof From the fact that gi is in LqR (D;R) ⊂ X′, the Lax-
Milgram theorem states that the weak solutions ϑgi of Prob-
lem 4 uniquely exist. Moreover, the following results are ob-
tained with respect to the regularity of the solution ϑgi. Given
that ϑgi satisfies the elliptic partial differential equation, the
differentiability increases by two-orders when compared to gi,
and it corresponds to the W 2,qR class on D \ B̄. If Sobolev’s
embedding theorem is applied to this, when qR > d,

2−
d

qR
= 1 + σ > 1

holds, where σ ∈ (0, 1). Therefore, in Sobolev’s embedding
theorem, when p = qR, q = ∞, k = 1 and j = 1,

W 2,qR
(
D \ B̄,R

)
⊂W 1,∞ (

D \ B̄,R
)
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holds onD\B̄. Here, ϑgi corresponds toW 1,∞ class onD\B̄.
Furthermore,

f̃i (θ + ϵ̄ϑgi)− f̃i (θ) = ϵ̄ ⟨gi, ϑgi⟩+ o (|ϵ̄|)
= −ϵ̄aX (ϑgi, ϑgi) + o (|ϵ̄|) ≤ −ϵ̄αX ∥ϑgi∥2X + o (|ϵ̄|)

holds with respect to a positive constant ϵ̄. Here, if ϵ̄ is con-
sidered as sufficiently small, f̃i (θ) decreases. (QED)

C FreeFEM++ code

string caption;//Variable for caption

int k;//Iteration number

int kN=7;//Iteration no. starting H1 Newton method

int kmax=400;//Upper limit of iteration number

real errelas=0.05;//Error level for mesh adaptation

real f0;//f_0

real f0init;//Initial f_0

real f1init;//Initial f_1+c_1

real f1;//f_1+c_1

real product0;//<g_1, vartheta_g0>

real product1;//<g_1, varthetai_g0>

real lambda;//Lagrange multiplier

real f0err=0.0001;//Terminal condition

real ca=0.5;//c_a in Eq. (43)

real cd=0.7;//c_D in Eq. (35)

real vonmaximum;//Maximum sigma

real p=50.;//p in Eq. (7)

real sigmabar=140.;//bar_sigma in Eq. (7)

real alpha=3.;//alpha in Problem 1

real ey=210.;//Young’s modulus

real nu= 0.3;//Poisson’s ratio

real l=ey*nu/((1+nu)*(1-2*nu));//Lame constant

real mu= ey/(2*(1+nu));//Lame constant

real area=1;

macro tau(u) ((dx(u#2)+dy(u#1))/2)//

macro E(u) [dx(u#1),tau(u),tau(u),dy(u#2)]//

macro div(u) (dx(u#1)+dy(u#2))//

macro S11(u) (l*div(u)+2*mu*dx(u#1))//

macro S22(u) (l*div(u)+2*mu*dy(u#2))//

macro S12(u) (2*mu*tau(u))//

macro S21(u) (2*mu*tau(u))//

macro S(u) [S11(u),S12(u),S21(u),S22(u)]//

macro von(u) sqrt((3*(mu^2)*((dy(u#1)+dx(u#2))^2))

+((dy(u#2)*l+dx(u#1)*(l+2*mu))^2)-((dy(u#2)*l

+dx(u#1)*(l+2*mu))*(dx(u#1)*l+dy(u#2)*(l+2*mu)))

+((dx(u#1)*l+dy(u#2)*(l+2*mu))^2))//Eq. (6)

macro ax(V,f) (ca*(dx(V)*dx(f)+dy(V)*dy(f)+cd*V*f))

//Eq. (35)

int Dirichlet=1;

int Free=2;

int Neumann= 3;

border a1(t=-4,-0.99){x=20;y=t;label=Free;};

border a2(t=-0.99,1.01){x=20;y=t;label=Neumann;};

border a3(t=1.01,4){x=20;y=t;label=Free;};

border c(t=16,-4){x=0;y=t;label=Free;};

border b(t=1,0){x=-20*t+20;y=-4;label=Free;};

border d(t=0,0.6){x=-20*t+20;y=4;label=Free;};

border e(t=0,12){x=8;y= 4+t;label=Free;};

border f(t=0,0.4){x=8-20*t;y=16;label=Dirichlet;};

mesh Th= buildmesh(b(100)+a1(15)+a2(2)+a3(15)

+d(60)+e(60)+f(40)+c(100));

fespace Xh(Th,P2);//Function space for theta type

fespace Vh2(Th,[P2,P2]);//Function space for u type

Vh2 [u1,u2],[v1,v2];//Function space for Problem 1

Vh2 [w1,w2],[q1,q2];//Function space for Problem 3

Vh2 [p1,p2]=[0.,-1.];//Function space for p_N

Xh V,V0,V1,Vf;//Function space for Problems 4 and 6

Xh theta=0.0;//Initial theta

Xh phiplot;//phi for plot

Xh vonMisesplot;//sigma for plot

Xh vonMises=sqrt((3*(mu^2)*((dy(u1)+dx(u2))^2))

+((dy(u2)*l+dx(u1)*(l+2*mu))^2)-((dy(u2)*l

+dx(u1)*(l+2*mu))*(dx(u1)*l+dy(u2)*(l+2*mu)))

+((dx(u1)*l+dy(u2)*(l+2*mu))^2));//Eq. (6)

func phi=0.5*tanh(theta)+0.5;//Eq. (1)

func dphi= 0.5/(cosh(theta))^2.;//Eq. (20)

func ddphi=-sinh(theta)/(cosh(theta))^3.;//Eq. (33)

problem elasticity([u1,u2],[v1,v2],solver=UMFPACK)

=int2d(Th)(-phi^alpha*(S(u)’*E(v)))

+int1d(Th,Neumann)(p1*v1+p2*v2)

+on(Dirichlet,u1=0,u2=0);//Problem 1

problem adjointf0([w1,w2],[q1,q2],solver=UMFPACK)

=int2d(Th)(((exp(p*phi^alpha*(von(u)/sigmabar))

*phi^alpha)*(((((l^2)+(2*mu*l)+(4*(mu^2)))

*(dx(u1)*dx(q1)+dy(u2)*dy(q2)))+(((l^2)+(2*mu*l)

-(2*(mu^2)))*(dx(u1)*dy(q2)+dy(u2)*dx(q1)))

+(3*(mu^2)*(dy(u1)+dx(u2))*(dy(q1)+dx(q2))))

*(1/(von(u)*sigmabar))))/(1*int2d(Th)

(exp(p*phi^alpha*(von(u)/sigmabar)))))

+int2d(Th)(-phi^alpha*(S(w)’*E(q)))

+int1d(Th,Neumann)(p1*q1+p2*q2)

+on(Dirichlet,w1=0,w2=0);//Problem 3

macro integrandf0(u) (exp(p*phi^alpha*(sqrt(

(3*(mu^2)*((dy(u#1)+dx(u#2))^2))

+((dy(u#2)*l+dx(u#1)*(l+2*mu))^2)

-((dy(u#2)*l+dx(u#1)*(l+2*mu))

*(dx(u#1)*l+dy(u#2)*(l+2*mu)))

+((dx(u#1)*l+dy(u#2)*(l+2*mu))^2))/sigmabar)))//f_0

macro compliancef0(u) (p#1*u#1+p#2*u#2)//f_0

macro g0(u,w,V) (exp(p*phi^alpha*(von(u)/sigmabar))

*alpha*phi^(alpha-1)*dphi*(von(u)/sigmabar)*V)

/int2d(Th)(exp(p*phi^alpha*(von(u)/sigmabar)))

+((-alpha*phi^(alpha-1)*dphi*(S(u)’*E(w)))*V)

//g_0 in Eq. (17)

macro g1(V) (dphi*V)//g_1 in Eq. (19)

macro H(u,w,V,f) (((alpha*(alpha-1)*phi^(alpha-2)

*dphi^2+alpha*phi^(alpha-1)*ddphi)*((von(u)/sigmabar)

-(S(u)’*E(w))))+(((2*(alpha*phi^(alpha-1)

*dphi)^2)/(phi^alpha))*((S(u)’*E(w))

-((1/(int2d(Th)(exp(p*phi^alpha*(von(u)/sigmabar)))))

*(exp(p*phi^alpha*(von(u)/sigmabar)))*(((((l^2)

+(2*mu*l)+(4*(mu^2)))*(dx(u1)*dx(u1)+dy(u2)*dy(u2)))

+(((l^2)+(2*mu*l)-(2*(mu^2)))*(dx(u1)*dy(u2)

+dy(u2)*dx(u1)))+(3*(mu^2)*(dy(u1)

+dx(u2))*(dy(u1)+dx(u2))))

*(1/(von(u)*sigmabar))))))

+lambda*ddphi)*V*f//h_0 in Eq. (30)

problem H1gradientf0(V0,Vf)=int2d(Th)(ax(V0,Vf))

+int2d(Th)(g0(u,w,Vf));//Eq. (34) for f_0

problem H1gradientf1(V1,Vf)=int2d(Th)(ax(V1,Vf))

+int2d(Th)(g1(Vf));//Eq. (34) for f_1

problem H1Newtonf0(V0,Vf)=int2d(Th)(H(u,w,V0,Vf))

+int2d(Th)(ax(V0,Vf))+int2d(Th)(g0(u,w,Vf));//Eq.(45)

problem H1Newtonf1(V1,Vf)=int2d(Th)(H(u,w,V1,Vf))

+int2d(Th)(ax(V1,Vf))+int2d(Th)(g1(Vf));//Eq.(45)

/***Algorithm 2***/

Th=adaptmesh(Th,theta,err=errelas);//
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[theta]=[theta];

f1init=int2d(Th)(phi);//Eq. (8)

f1=f1init;//

elasticity;//Problem 1

adjointf0;//Problem 3

f0init=(1/p)*log(int2d(Th)(integrandf0(u))

/int2d(Th)(area))

+(int1d(Th,Neumann)(compliancef0(u)));//f_0

f0=f0init;

vonMisesplot=phi^alpha*vonMises;

vonmaximum=vonMisesplot[].max;

mesh Thprec=Th;

cout<<"Initial f_1="<<f1init<<endl;

cout<<"Initial sigma_max = "<<vonmaximum<<endl;

caption="Initial f_0: "+f0+", f_1+c_1: "+f1init;

phiplot=phi;

plot(phiplot,ps="density0.eps",cmm=caption,

fill=1,value=1,grey=1);

/* plot(vonMisesplot,ps="vonMises0.eps"

,cmm=caption,fill=1); for phi^alpha*sigma */

for(k=1;k<kN;k=k+1){

cout<<"Iteration "<<k<<" -----------"<<endl;

f0init=f0;

H1gradientf0;//Problem 4 for f_0

H1gradientf1;//Problem 4 for f_1

product0=int2d(Th)(g1(V0));//<g_1, vartheta_g0>

product1=int2d(Th)(g1(V1));//<g_1, vartheta_g1>

lambda=-(f1-f1init+product0)/product1;

V=V0+lambda*V1;//vartheta_g in Eq.(42)

theta=theta+V;//

Th=adaptmesh(Th,theta,err=errelas);

[theta]=[theta];

f1=int2d(Th)(phi);//f_1+c_1

elasticity;//Problem 1

adjointf0;//Problem 3

f0=(1/p)*log(int2d(Th)(integrandf0(u))

/int2d(Th)(area))

+(int1d(Th,Neumann)(compliancef0(u)));//f_0

vonMisesplot=phi^alpha*vonMises;

vonmaximum=vonMisesplot[].max;

cout<<"f_0="<<f0<<endl;

cout<<"simga_max = "<<vonmaximum<<endl;

cout<<"error="<<(f0init-f0)/f0init

<<"(error < "<<f0err<<")"<<endl;

if(abs(f0init-f0)/f0init<f0err){break;}

caption="Iteration "+k+", f_0: "+f0

+", f_1+c_1: "+f1;

phiplot=phi;

plot(phiplot,ps="density"+k+".eps",

cmm=caption,fill=1,value=1,grey=1);

/* plot(vonMisesplot,ps="vonMises"+k+".eps"

,cmm=caption,fill=1); for phi^alpha*sigma */

};

for (k=kN;k<kmax;k=k+1){

cout<<"Iteration "<<k<<" -----------"<<endl;

f0init=f0;

H1Newtonf0;//Problem 6 for f_0

H1Newtonf1;//Problem 6 for f_1

product0=int2d(Th)(g1(V0));//<g_1, vartheta_g0>

product1=int2d(Th)(g1(V1));//<g_1, vartheta_g1>

lambda=-(f1-f1init+product0)/product1;

V=V0+lambda*V1;//vartheta_g in Eq.(42)

theta=theta+V;

Th=adaptmesh(Th,theta,err=errelas);

[theta]=[theta];

f1=int2d(Th)(phi);

elasticity;//Problem 1

adjointf0;//Problem 3

f0=(1/p)*log(int2d(Th)(integrandf0(u))

/int2d(Th)(area))+(int1d(Th,Neumann)

(compliancef0(u)));//f_0

vonMisesplot=phi^alpha*vonMises;

vonmaximum=vonMisesplot[].max;

cout<<"von_maximum="<<vonmaximum<<endl;

cout<<"f_0="<<f0<<endl;

cout<<"error="<< (f0init-f0)/f0init

<<"(error < " <<f0err<<")"<<endl;

if(abs(f0init-f0)/f0init<f0err){break;}

caption="Iteration "+k+", f_0: "+f0

+", f_1+c_1: "+f1;

phiplot=phi;

plot(phiplot,ps="/density"+k+".eps",

cmm=caption,fill=1,value=1,grey=1);

/* plot(vonMisesplot,ps="vonMises"+k+".eps"

,cmm=caption,fill=1); for phi^alpha*sigma */

};

caption="Final,Iteration "+k+", f_0: "+f0

+", f_1+c_1: "+f1;

plot(phiplot,ps="/density"+k+".eps",

cmm=caption,fill=1,value=1,grey=1);

/* plot(vonMisesplot,ps="vonMises"+k+".eps"

,cmm=caption,fill=1); for phi^alpha*sigma */
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