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Abstract 

In this study, we study ultimate swelling characterized by limiting chain extensibility of 

swollen elastomers. Limiting chain extensibility is introduced into the Flory–Rehner 

theory using the Arruda–Boyce eight chain model and the Gent phenomenological 

model. The difference between these models is unified by defining a single scalar 

function. The inequality derived from this function allows for analysis to provide an 

ultimate value of swelling ratio. This ultimate value is not exceeded at equilibrium 

swelling regardless of the set of material constants. Under uniaxial loading at 

equilibrium swelling, deswelling can occur even in tension. Further, the very large 

swelling behavior of pH sensitive hydrogels is found to originate from the resistance 

generated by approaching the ultimate value of swelling ratio.  
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1. Introduction 

 

Swelling of elastomers by solvents was first investigated for the combination of 

natural rubbers and organic liquids [1,2]. Recently, a number of polymeric gels 

represented by hydrogels are regarded as swollen elastomers [3,4]. The Flory–Rehner 

theory is used to describe the mechanical and swelling behavior of swollen elastomers 

[1,5]. The free energy function consists of the sum of two terms associated with 

polymer stretching and the mixing of polymer and solvent molecules, which are derived 

from the Gaussian network theory (i.e., a Neo–Hookean (NH) model) and the Flory–

Huggins solution theory, respectively. The Flory–Rehner theory has been systematically 

implemented into the commercially available finite element software [6,7], thereby 

allowing researchers to analyze a variety of swelling-induced mechanical problems 

[4,6,8,9]. However, the NH model may be too simple to describe the nonlinear elasticity 

of elastomers undergoing large deformations. 

 

When the NH model in the Flory–Rehner theory is replaced by a more sophisticated 

strain-energy function for rubber elasticity, it is natural to consider models that include 

the non-Gaussian chain effect, i.e., the effect of limiting chain extensibility. In 

non-Gaussian network theory [2,10], the limited extensibility of the single chain is 

expressed approximately using the inverse Langevin function with an additional 

material constant, n, i.e., the number of rigid links in the single chain. Arruda and Boyce 

[11] developed the 8-chain model (AB model), which is based on a cubic representative 

cell containing 8 chains along diagonal directions (cf. 3- and 4-chain models). In 

contrast, the well-known phenomenological model by Gent [12] (G model) is a simple 

and accurate approximation of the AB model without the inverse Langevin function 

[13,14]. The G model has the additional material constant, Jm, instead of n used in the 

AB model. The AB and G models are appropriate to investigate the effect of limiting 

chain extensibility because the physical significance of the additional material constants, 

n and Jm, is clear.  

 

Chester and Anand [15,16] and Li et al. [17] introduced the AB and G models to the 

Flory–Rehner theory, respectively, to investigate the effect of limiting chain 
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extensibility. Chester and Anand [15,16] compared the transient swelling response of a 

constrained gel predicted by Gaussian and non-Gaussian network theories. Here, the 

constant related with n was fixed and was not parameterized. Li et al. [17] showed that 

by adjusting Jm in the G model, the discrepancy of osmotic pressure functions was 

removed for very large swelling ratios of two different pH sensitive hydrogels. In 

addition, although Boyce and Arruda [18] investigated the use of the AB model, the 

effect of the swelling ratio on the stress–stretch behavior under uniaxial tension and 

compression did not involve the use of the Flory–Rehner theory; i.e., the swelling ratio 

was fixed during uniaxial loading. Thus, the effect of limiting chain extensibility on the 

mechanical responses of swollen elastomers is not sufficiently clear at full length.  

 

In addition to those models described above based on the Flory–Rehner approach, 

other modeling approaches may be found in the literature. One such approach is based 

on the classical work of Terzaghi [19] and Biot [20] which focused on poroelasticity for 

geomechanics. Others following the work of Truesdell [21], Bowen [22] and Shi et al. 

[23] are based on the theory of mixtures. Recent models using these approaches have 

found success in modeling the behavior of swollen elastomers [24,25]. Lastly, Bouklas 

and Huang [26] have demonstrated that a linear poroelasticity theory is consistent with 

the Flory–Rehner theory under the condition of small perturbations from a freely 

swollen state. However, in what follows we take the approach of extending the Flory–

Rehner theory to account for limiting chain extensibility. It is worthwhile to elucidate 

the interaction between limiting chain extensibility and swelling in swollen elastomers 

undergoing finite deformations because a more comprehensive analysis may provide a 

deeper interpretation to the mechanical and swelling behavior of gels, such as pH 

sensitive hydrogels with very large swelling ratios.  

 

In this study, ultimate swelling characterized by limiting chain extensibility of 

swollen elastomers is examined. Section 2 presents the fundamental relations derived 

from the Flory–Rehner theory. Limiting chain extensibility is introduced via the AB and 

G models. The difference between these models is unified by defining a single scalar 

function. Section 3 shows that an inequality is derived from the limit included in this 

scalar function, which is used for ultimate analysis in Sections 4 and 5. The ultimate 
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analysis is performed under free swelling and uniaxial loading, respectively, which 

yields an ultimate value of the volume swelling ratio. This ultimate value is not 

exceeded at equilibrium swelling regardless of the set of material constants. Under 

uniaxial loading at equilibrium swelling, deswelling can occur even in tension. Further, 

in Section 6, the very large swelling behavior of pH sensitive hydrogels is found to 

result from the resistance generated by approaching the ultimate value of swelling. 

Finally, conclusions are presented in Section 7. 

 

 

2. Fundamental relations 

 

Flory and Rehner [5] assumed that to describe the mechanical and swelling behavior 

of elastomers, the free energy function is expressed as the sum of two terms associated 

with polymer stretching and the mixing of polymer and solvent molecules:  

e m( ) ( )iW W W C  ,  (1) 

where We is the elastic strain energy and Wm is the mixing energy. The use of the 

Gaussian network theory and the Flory–Huggins solution theory gives:  

0
e 1( 3 log )

6

E
W I a J   ,  Neo–Hookean (NH) model, (2) 

m

1
log 1

1

kT
W C

C C




  
         

,  (3) 

where i (i = 1, 2, 3) are the principal stretches so that the invariants are expressed as 

2 2 2

1 1 2 3I      , 2 2 2 2 2 2

2 1 2 2 3 3 1I          and 
1 2 3J    , and C is the nominal 

concentration of solvent molecules.  

 

In Eq. (2), E0 is the reference Young’s modulus. For the NH model, E0 is defined as 

the Young’s modulus of the undeformed, unswollen state (i.e., i = 1). The logarithmic 

term –a log J originates from the entropy of deformation [1]. The value of a depends on 

the theory and can be taken as a = 0, 1 and 2 [1,2,7,27]. It is also possible to take a 
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negative value to describe phenomenologically the experimental data [28]. This 

logarithmic term will be introduced into the AB and G models in the same manner. 

However, for simplicity, a = 0 is used as the representative value (see Appendix A). In 

Eq. (3), kT is the absolute temperature expressed as a thermal energy,  is the volume 

per solvent molecule, and  is the Flory–Huggins interaction parameter that 

characterizes the enthalpy of mixing. 

 

When the NH model is replaced by the AB or G models including the non-Gaussian 

chain effect, We for the AB model [11] is expressed as:  

0
e 2 2 log log

6 sinh

E
W n n a J





  

    
  

,  Arruda–Boyce (AB) model,  (4) 

where n is the number of rigid links in the single chain related to limited extensibility, 

and  

2 2 2

1 2 3 1( ) / 3 / 3I       ,  (5)  

1( / )L n   . (6)  

Here, L
1

(x) is the inverse Langevin function defined as coth 1/ ( )x L     . In 

contrast, We for the G model [12] is expressed as:  

0 1
e m

m

3
log 1 log

6

E I
W J a J

J

   
     

   
,  Gent (G) model,  (7)  

where Jm is a material constant to describe the limiting chain extensibility. When Eqs. 

(4) and (7) take the limit as n  and mJ  , respectively, the AB and G models 

reduce to the NH model [14].  

 

In the AB model, the effect of limiting chain extensibility is described as a process 

where L
1

(x) takes the limit as 1x  , i.e.,  . Note that L
1

(x) cannot be written 

in a closed form and this feature prevents further analytical analysis [29]. To avoid this 

problem simply, the Padé approximant can be used to approximate the inverse Langevin 
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function [30], that is,  

2
1

2

35 12
( ) 3

35 33

x
L x x

x
  
 


,  Padé (P) approx.  (8) 

Eq. (8) is a simple form and is able to take the limit as 
1/2(35 / 33) 1.03x  , leading to 

   (cf. a truncation of the Taylor series of L
1

(x)). Thus, the employment of Eq. 

(8) makes analytical manipulation easy using the AB model. In addition, the G model 

takes the limit as 1 m3I J   (see Eq. (7)). Although there are different approximations 

originating from the Padé approximant [14,29,30], the present study simply focuses on 

Eq. (8) as a standard case. 

 

Assuming that the network of polymer and liquid solvent is incompressible, the 

volume of swollen elastomers is the sum of the volume of the dry network and that of 

the swelling solvent [2,6]. The volume swelling ratio of swollen elastomers is equal to J 

and is expressed as  

1J C  . (9) 

When a Lagrange multiplier is used in Eq. (1) to impose the constraint of Eq. (9),  

e m( ) ( ) (1 )iW W W C C J      ,  (10) 

where  is the Lagrange multiplier, and is referred to as the osmotic pressure due to 

mixing in the present study [7,31,32].  

 

Eq. (10) gives the nominal stress in each direction of the principal stretches (i = 1, 2, 

3),  

0

3 2
i i

i i i

EW a J
s 

  
 

       
,  (11) 

where  is the scalar function that depends on the models (Eqs. (2), (4) and (7)), that is,  
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1

1

1

m

m 1

1 , NH model

, AB model
3

( )
35 4

, AB model+P approx.
35 11

, G model
3

n

I
n I

n I

J

J I










  


 




 

. (12) 

The nominal stress of Eq. (11) is transformed into the true stress,  

20

3 2

i i
i i

s E a

J J


        

 
,  no sum on i. (13) 

Eqs. (11) and (13) imply that the difference between the models is unified via the single 

scalar function . Next, when  presents the chemical potential of the external solvent, 

Eqs. (3), (9) and (10) lead to  

2

1 1
log 0

W J
kT

C J J J


 

              
. (14) 

Eq. (14) indicates that  is balanced with the chemical potential in swollen elastomers, 

and the elastic contribution is introduced via the Lagrange multiplier  (i.e., the osmotic 

pressure). At equilibrium swelling (= 0), the elastic contribution (i.e., ) is balanced 

with the mixing contribution in swollen elastomers.  

 

In Eq. (14),  = 0 expresses the state in which the network of polymers is in contact 

with the liquid solvent [6,7,9,33,34]. When p and p0 are the pressure of the external 

solvent and the vapor pressure of the solvent, respectively, = (p p0) under p ≥ p0 

and = kT log (p / p0) under p < p0. In a vacuum (p = 0),  = ∞ is consistent with J = 1 

in Eq. (14) and C = 0 from Eq. (9), i.e., the network of polymers is in the dry state. 

Further, since the contribution of the differential pressure between the vapor pressure 

and the atmospheric pressure is relatively small [9,35],  = 0 can be regarded as the 

equilibrium swelling state in practice [6,7,9,33,34]. As the value of  increases from ∞ 

to 0, the value of J increases from 1 to a value that obeys Eq. (14). Here,  depends on 
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the type of external forces, i.e., Eq. (13). 

 

 

3. Ultimate condition 

 

Ultimate analysis is performed by considering the limit included in the scalar 

function  for the AB, AB+P and G models; i.e., Eq. (12) yields an inequality as 

follows  

1

1

m 1

3 , AB model

0 35 11 , AB model+P approx.

3 , G model

n I

n I

J I




 
  

,  (15) 

which is not novel for providing the limiting stretches of elastomers that depend on the 

type of external forces, such as uniaxial and biaxial extensions. However, in the present 

study, Eq. (15) is analyzed to describe the ultimate swelling of swollen elastomers 

undergoing finite deformations. As expected, the first invariant, 2 2 2

1 1 2 3I      , 

must obey this inequality. The ultimate value of I1, which is also related to the ultimate 

value of J because 
1 2 3J    , is found to be restricted only to the material constant 

that describes limited extensibility, that is, n and Jm for the AB and G models, 

respectively. Since a change of J is caused by swelling (Eq. (9)), Eq. (15) is expected to 

impose a considerable restriction on the swelling behavior of elastomers. 

 

Eqs. (12) and (15) show that → ∞ when I1 → 3n for the AB model, I1 → (35/11)n 

for the AB+P model and I1 → Jm + 3 for the Gent model. Thus, when the limits of  

(i.e., → ∞) for the individual models occur at the same value of I1, the AB, AB+P and 

G models have an equivalent expression between n and Jm [14]:  

m 35
11

3 3 , AB model,

3 , AB model+P approx.

n
J

n


 

 (16) 

Fig. 1 shows that if Eq. (16) is applied, the limit of I1 predicted by the G model is equal 

to that predicted by the AB and AB+P models, respectively. A slight difference in the 
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overall profiles remains between the AB and G models even when the Padé 

approximant is used [13,14]. The G model has a tendency to predict a slightly larger 

value compared to the AB model for the scalar function  at intermediate values of I1. 

If a different approximation originating from the Padé approximant are used [14,29,30], 

this tendency can change depending on the approximation. However, the ultimate 

analysis in Sections 4 and 5 is based on Eq. (15) and is not affected by this slight 

difference. Thus, as will be shown in Section 4, if Eq. (16) is used, the AB and G 

models provide identical predictions for ultimate analysis (Fig. 3).  

 

 

Fig. 1. Overall profile of the scalar function  as a function of the invariant I1 for n = 10 and the 

limit value of I1. The G model can be adjusted to take the same limit value as the AB and AB+P 

models by using Eq. (16).  

 

 

The present study focuses on two typical states, free swelling (Section 4) and 

uniaxial tension and compression (Section 5), to perform ultimate analysis using Eq. 

(15). Eq. (15) shows that the ultimate value of I1 depends only on n or Jm. The type of 

external forces needed to determine the set of principal stretches results in the 

characterization of the ultimate value of J. Thus, the ultimate values of J under free 

swelling and uniaxial loading are independent of the combination of other material 

constants, such as E0, a, ,  and kT. In contrast, when equilibrium swelling is analyzed 

using Eq. (14), the value of J is dependent on all material constants and the type of 

external forces. Thus, the volume swelling ratio at equilibrium swelling is expected not 



11 

 

to exceed the ultimate value obtained by ultimate analysis using Eq. (15). In Sections 4 

and 5, the responses at ultimate swelling are compared with those at equilibrium 

swelling. Fig. 2 shows schematic illustrations of the states of equilibrium free swelling 

(Fig. 2b) and uniaxial extension at equilibrium swelling (Fig. 2c). In these states, the 

relations of stresses and stretches are also written in Fig. 2. 

 

 

Fig. 2. Schematic illustrations of (a) the initial, undeformed dry state, (b) equilibrium free 

swelling and (c) uniaxial extension at equilibrium swelling. At equilibrium swelling (= 0), Eq. 

(14) determines J and is dependent on all material constants and the type of external forces via 

.  

 

 

4. Analysis under free swelling 

 

Regardless of attaining equilibrium swelling (= 0), the free swelling state is 

characterized by isotropic stretches and the absence of stresses (Fig. 2b), that is,  

1 2 3

1/3

1 2 3

0s s s

J  
  


  

, under free swelling.  (17) 

Since this state takes I1 = 3J
2/3

, the inequality of Eq. (15) reduces to  

3/2

3/235
ult 33

3/21
m3

, AB model

( ) , AB model+P approx.

( 1) , G model

n

J J n

J




  
 

, (18) 
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where Jult is the ultimate value of the volume swelling ratio under free swelling, which 

has a very simple form depending on n or Jm. Eq. (18) results from the limit due to 

limiting chain extensibility. The volume swelling ratio at equilibrium free swelling 

cannot exceeds this ultimate value that is independent of the set of material constants 

except for n or Jm. 

 

Fig. 3 shows the comparison of the different models according to Eq. (18). The G 

model gives the same value with the AB and AB+P models using the equivalent relation 

of Eq. (16). The difference between the AB and AB+P models is also found to be very 

small (Figs. 1 and 3). The AB+P model overestimates Jult predicted by the AB model by 

~9%. The factor generating this deviation is clear (i.e., 1 ≈ 35/33 in Eq. (18)). Thus, in 

the following sections, we mainly analyze the AB+P model to investigate the effects of 

limiting chain extensibility because this model is written in the closed form with the 

Padé approximant (see Eq. (12) for the AB model), and the physical meaning of n is 

clear.  

 

 

Fig. 3. Ultimate value, Jult, of the volume swelling ratio under free swelling. The value only 

depends on n or Jm with the very simple form. The volume swelling ratio at equilibrium free 

swelling cannot exceed this ultimate value that is independent of a set of material constants, 

except for n or Jm.  

 

 

When equilibrium swelling is considered under free swelling (Fig. 2b), Eq. (17) is 
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first used to obtain the osmotic pressure  from Eq. (13):  

1/30

3 2

E a
J

J

     
 

,  (19) 

which is the elastic contribution in Eq. (14). Substituting this expression into Eq. (14) 

yields  

1/30

2

1 1
log 0

3 2

EJ a
J

J J J kT J

               
    

. (20) 

By solving this equation, the volume swelling ratio J at equilibrium swelling is obtained, 

which is a function of the material constants, , E0/(3kT), a and , including n or Jm. 

Here, E0/(3kT) is regarded as the non-dimensional material constant related to the 

Young’s modulus. According to Eq. (18), J cannot exceed the ultimate value Jult.  

 

When a parameter of  < 1 is introduced to define the ratio of J to Jult, i.e., = J/Jult, 

the volume swelling ratio at equilibrium swelling for the AB+P model is expressed as  

3/2
35

33

n
J     

 
.  (21) 

Using Eq. (21), the scalar function  (Eq. (12)) is reduced to  

2/34
11

2/3

1

1






 


,   (22) 

and Eqs. (21) and (22) give a transformed expression of Eq. (20):  

2/34
1/30 11

2 2/3

1 11
log 0

3 1 2

J E a
J

J J J kT J




   





      

                
.  (23) 

 

Fig. 4 is obtained by plotting Eq. (23), which shows the combination of E0/(3kT) 

and n that is required to increasing  to 1, i.e., increasing J to Jult, at equilibrium free 
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swelling. Fig. 5, which is obtained by solving Eq. (20), shows the dependence on the 

interaction parameter . It is clearly demonstrated that in a good solvent (< 0.5), as 

E0/(3kT) decreases, the volume swelling ratio at equilibrium free swelling approaches 

the ultimate value Jult. Although for the NH model, J increases monotonically as  

decreases, the approach to Jult prevents a further increase of J for a smaller value of 

E0/(3kT) = 10
5

 (Fig. 5). 

 

 

Fig. 4. Combination of E0/(3kT) and n needed to attain J at equilibrium free swelling for = 0 

and a = 0. To approach the ultimate value as = 1, E0/(3kT) is required to be smaller as n 

increases.  

 

 

Fig. 5. Volume swelling ratio J at equilibrium free swelling as a function of the interaction 

parameterfor n = 10 and a = 0. As E0/(3kT) decreases, J approaches the ultimate value of Jult 

in a good solvent (< 0.5). 
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Moreover, for example, to attain = 0.9 in Fig. 4, E0/(3kT) = 10
3

 is roughly 

needed for n = 5, E0/(3kT) = 10
5

 for n = 30 and E0/(3kT) = 10
6

 for n = 100. Since 

hydrogels are at room temperature, the solvent is just water, i.e., 
29 33 10 (m )    and 

214 10 (J)kT   , the reference Young’s modulus needed is E0 = 400–0.4 (kPa) for n = 

5–100. These values are normal for realistic hydrogels [15,17,36,37]. This fact indicates 

the necessity to introduce the effect of limiting chain extensibility in the Flory–Rehner 

theory to describe the mechanical and swelling behavior of hydrogels. Further 

discussion will be given in Section 6 using experimental data of pH sensitive hydrogels, 

whereas in Section 5 responses under uniaxial loading are investigated. 

 

 

5. Analysis under uniaxial loading  

 

Despite attaining equilibrium swelling (= 0), the uniaxial loading state in the x1 

direction is characterized by  

2 3

1/2 1/2

2 3 1

0s s

J  

 


 
, under uniaxial loading in x1 direction,  (24) 

which leads to 2 1

1 1 12I J    , and thus the inequality of Eq. (15) is rewritten as  

21
1 12

2351
1 12 11

21
1 m 12

(3 ) , AB model

( ) , AB model+P approx.

( 3 ) ,  G model

n

J n

J

 
 
 

 


 
  

. (25) 

The ultimate value of the volume swelling ratio under uniaxial loading is a function of 

not only n or Jm, but also 1. It is trivial that if 1 = J
1/3

, Eq. (25) is reduced to Eq. (18) 

under free swelling (i.e., Eq. (25) includes Eq. (18)). In addition, 1J   is needed 

because J = 1 expresses the dry state in the absence of solvent molecules. Thus, the 

combination of J and 1 exists only in the domain surrounded by Eq. (25) and 1J  

(Fig. 6). 
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Fig. 6. Interaction between the two different limit values of J and 1 under uniaxial loading. The 

combination of J and 1 exists only in the domain surrounded by Eq. (25) and J = 1. The 

maximum value of J is equal to Jult under free swelling. If n is sufficiently large, 
1/2

lim (35 /11)n  and int exists over the range of 
1/2 1/2

int(35 / 33) 3(35 / 33)n n   for the 

AB+P model. 

 

 

Fig. 6 illustrates that Eq. (25) gives a very distinct interpretation to the effect of 

limiting chain extensibility on the interaction between the two different limits of J and 

1 of swollen elastomers. The surrounded domain is divided into tensile and 

compressive domains, of which the boundary expresses the free swelling state (1 = J
1/3

). 

Thus, the maximum value of J is found to be the ultimate value of Jult under free 

swelling (Eq. (18)). When J = 1 is fixed during uniaxial loading, the limits of 1 in the 

tensile and compressive directions are expressed as the two points at which Eq. (25) and 

J = 1 intersect. Next, when an intermediate volume swelling ratio Jint between 

int ult1 J J   is selected, the two limit points in the two directions are also obtained 

using Eq. (25). Here, the limit points of 1 in the tensile direction are referred to as lim 

and int for J = 1 and Jint, respectively (Fig. 6). It is clear that the limit point of int is in 

the range between 1/3

ult int limJ    . As Jint increases from 1 to Jult, int decreases from 

lim to 1/3

ultJ . The point of Jint = Jult is singular because int = 1/3

ultJ  means that when Jint = 

Jult is fixed, there cannot be any stretch except 1 = 1/3

ultJ .  
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Fig. 7. Stress–stretch response under uniaxial tension for n = 10 when the volume swelling ratio 

is fixed as J = 1, Jint = 22.4, and Jult = (35n/33)3/2 = 34.54. The effect of limiting chain 

extensibility on swollen elastomers appears as a process where J approaches Jult. 

 

 

To understand the above-mentioned singular point, the stress–stretch responses 

under uniaxial tension with a constant value of J = 1, Jint and Jult are plotted using the 

following relation  

1 2 20 0
1 1 1 3 1 1( ) ( )

3 3

E E
s J           ,  (26) 

which is derived from Eqs. (11), (13) and (24). Fig. 7 shows that at J=Jult, I1 and J have 

no combination except for that of J=Jult and 1 = 2 = 3 = 1/3

ultJ , resulting in a steep 

increase in the stress with an infinitely large gradient. As J decreases from Jult to 1, the 

limit value of the stretch can be taken as a value larger than 1 = 1/3

ultJ , whereas the 

stretch at s1 = 0 can be taken as a value smaller than 1 = 1/3

ultJ . As a result, a familiar 

profile of elastomers appears in the response. In particular, the profile of J = 1 shows the 

response of the elastomer in the absence of solvent molecules [2,11]. In conclusion, 

swelling (i.e., increasing J from 1) increases the apparent stiffness and decreases the 

apparent limit stretch as the effect of limiting chain extensibility. This mechanism 

appears as a process where J approaches Jult.  

 

Although Figs. 6 and 7 clearly show the interaction between swelling and stretches 
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that occurs under uniaxial loading, the volume swelling ratio J can change to maintain 

equilibrium swelling (= 0). Thus, the interaction at equilibrium swelling under 

uniaxial loading is analyzed here. To consider equilibrium swelling, Eq. (26) must be 

solved with Eq. (14). Under uniaxial loading, Eqs. (13) and (24) give the osmotic 

pressure , which is substituted into Eq. (14):  

10
12

1 1
log 0

3 2

EJ a

J J J kT J


              

    
.   (27) 

Eq. (27) is solved to obtain J when 1 is given. The stress–stretch response at 

equilibrium swelling is estimated via Eq. (26). In Eq. (27), if = 1 (i.e., the NH model), 

an increase of 1 causes a decrease of the elastic contribution, which causes an 

additional amount of swelling. As stated in Treloar [2], J increases under uniaxial 

tension. However, when  takes the limit, i.e., , for the AB, AB+P and G models, 

this change can cause an opposite reaction to the increase of 1. In other words, the 

elastic contribution of the second term in Eq. (27) is expected to increase dramatically 

as  .  

 

 

Fig. 8. Effect of equilibrium swelling (= 0) on the stress–stretch response under uniaxial 

tension for E0/(3kT) = 10
3, n = 10, = 0 and a = 0. To compare the responses of J = Jint and 

= 0, Jint = 22.4 was selected to take the same value of 1 at s1 = 0. At equilibrium swelling, 

limiting chain extensibility causes deswelling even under tension. The response of = 0 

exceeds the limit line of int and approaches the limit line of lim.  
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To investigate this limiting chain effect, Fig. 8 shows the comparison of the 

responses for J = Jint and = 0, where Jint = 22.4 was selected to take the same value of 

1 at s1 = 0. The response of = 0 starts to deviate from that of J = Jint around 1 = 4. 

This deviation originates from the change of J. If an additional amount of swelling 

occurs, the response of = 0 cannot exceed the limit line of int because the increase of 

J decreases the value of int (Fig. 6). However, interestingly, the response not only 

exceeds the limit of int but also approaches the limit of lim. This is only interpreted by 

the occurrence of deswelling to J = 1. Uniaxial tension is generally expected to increase 

J at equilibrium swelling [2]. In fact, the effect of limiting chain extensibility induces 

deswelling when approaching the limit of lim.  

 

 

Fig. 9. Effect of equilibrium swelling (= 0) on the change of J under uniaxial tension and 

compression for E0/(3kT) = 10
2, 10

3 and 10
4, n = 10, = 0 and a = 0. The profiles are in the 

domain surrounded by Eq. (25) and J = 1. Under tension, although J first increases slightly, after 

that, J decreases to 1 because of the effect of limiting chain extensibility (i.e., deswelling 

occurs).  

 

 

Fig. 9 shows the change of J under uniaxial loading at equilibrium swelling for 

different values of E0/(3kT), which is plotted in Fig. 6. The change of J at equilibrium 

free swelling corresponds with that described in Fig. 5; i.e., a smaller value of the 

Young’s modulus increases J at equilibrium free swelling. The response approaches the 
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point of Jult. Fig. 9 also shows that the profiles are in the domain surrounded by the two 

limits described by Eq. (25) and J = 1 and the deswelling to J = 1 on both sides of 

tension and compression. As E0/(3kT) increases, J at equilibrium swelling first 

increases slightly under tension. This is a well-known effect stated in Treloar [2]. 

However, subsequently, J starts to decrease to 1 when approaching 1→lim. This 

deswelling behavior is found to occur as an effect of limiting chain extensibility at 

equilibrium swelling, regardless of the value of E0/(3kT).  

 

 

6. Interpretation of the response of pH sensitive hydrogels 

 

Here, the mechanism originating from ultimate swelling is demonstrated to play an 

essential role in causing the very large swelling behavior of pH sensitive hydrogels. To 

this end, the experiments performed by Li et al. [17] and Ricka and Tanaka [38] are 

focused on. In their experiments, a polyacrylamide-co-acrylic acid hydrogel was used as 

a polyelectrolyte gel, which has the ability to attain very large swelling ratios depending 

on changes in pH and salinity of the external solvent; i.e., J can exceed 1000. Their two 

different pH sensitive hydrogels are simply distinguished as Li’s and Tanaka’s gels, 

respectively. 

 

Li et al. [17] reported that at very large swelling ratios, the osmotic pressure due to 

mobile ions, ion, is dominant when compared with that due to mixing, mix, and the 

introduction of the non-Gaussian chain effect becomes important to estimate a unified 

master curve of mix instead of using the Flory–Huggins solution theory. The 

discrepancy generated by the Gaussian network theory (i.e., the NH model) at very large 

swelling ratios can be removed using the Gent model with an appropriate value of Jm. In 

this section, a more comprehensive interpretation is provided by paying attention to the 

mechanism of ultimate swelling (Section 4) and the interaction of ion with limiting 

chain extensibility. 

 

According to Marcombe et al. [39] and Li et al. [17], the contribution of ion can be 

added in the true stress expression (Eq. (13)),  
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mix ion

3 2
i i

E a

J
         

 
,  (28) 

where mix is equal to  in Eq. (13), which is derived from Eq. (14). Under equilibrium 

free swelling i = 0 and i = J
1/3

 in Eq. (28). Thus,  

1/30
mix ion

3 2

E a
J

J

       
 

.  (29) 

Here, mix decreases monotonically from ∞ to 0 as J increases from 1 (Eq. (14)). Li et 

al. (2014) also confirmed in their experimental approach that mix shows a monotonic 

decrease with increasing J. When mix is balanced with two terms owing the elastic and 

ionic contributions (Eq. (29)), J is estimated as a value at equilibrium swelling. The 

elastic term in Eq. (29) consists of  including the effect of limiting chain extensibility 

(Eq. (12)), while ion is a positive value calculated from the individual concentrations of 

mobile ions in the external solvent [17,39]. The increase in ion increases J of pH 

sensitive hydrogels. In the present study, instead of calculating the value of ion from 

each concentration, the value of ion is changed directly as a parameter; i.e., ion is 

increased from 0. This simple approach allows us to investigate the transient response 

that approaches to the ultimate value of swelling, Jult, under free swelling (see Section 

4).  

 

First of all, ion = 0 is considered to show the elastic contribution in Eq. (29), which 

includes the effect of limiting chain extensibility on mix. Fig. 10 shows the comparison 

of the NH and G models. The value of Jm = 260 for the G model was estimated as the 

value fitted by experiments of the gel tagged with AA04-433 [17]. The introduction of 

limiting chain extensibility gives the ultimate value of swelling, Jult = 820 (Eq. (18)). As 

J increases to Jult, a larger value of mix is needed to attain equilibrium swelling. 

Consequently, Li’s gel had a volume swelling ratio between 30 < J < 350. The effect of 

limited extensibility is quantified as the additional increase of mix between the NH and 

G models. If this additional increase of mix is absent (i.e., if the NH model is used), the 

experimentally measured osmotic pressure of mix becomes negative at J = 200–350 so 

that Li et al. [17] concluded that the additional increase of mix because of the 

non-Gaussian chain effect is important to obtain a unified master curve of mix applied 

for a series of the gels having different values of the Young’s modulus. Incidentally, a = 
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0 is simply selected in the present study to discuss the effect of Jm = 260, whereas Li et 

al. (2014) used a = 2, but the influence is negligible at J > 20 (see Appendix A). 

 

 
Fig. 10. Elastic contribution to the osmotic pressure due to mixing predicted by the NH and G 

models with ion = 0 and a = 0. Li et al. [17] determined Jm = 260 to obtain a unified master 

curve of mix. The value of mix increases steeply as J approaches the ultimate value of Jult = 

820, whereas the NH model predicts a monotonic decrease in mix.  

 

 

Although Li’s gel needed the Gent model to obtain the experimentally measured 

master curve of mix, the present study uses mix derived from the Flory–Huggins 

solution theory (i.e., Eqs. (3) and (14)) to elucidate the effect of limiting chain 

extensibility on pH sensitive hydrogels with very large swelling ratios. Thus, when  in 

Eq. (14) is substituted into mix in Eq. (29),  

1/30 ion

2

0

31 1
log 0

3 2

EJ a
J

J J J kT J E

               
    

,  (30) 

which is the balance equation extended by ion (cf. Eq. (20)) and is solved to estimate J 

under equilibrium free swelling as a function of ion. For Li’s gel (AA04-433), the 

material constants were measured as E0 = 52.17 (kPa) and Jm = 260 as well as J = 61 at 

ion = 1550 (Pa) in distilled water at pH = 6.5. The use of 
214 10 (J)kT    and 

29 33 10 (m )    gives E0/(3kT) = 
41.30 10 . Thus, when a = 0 (see Appendix A),  is 

determined to fit Eq. (30) to the condition of J = 61 at ion = 1550 (Pa). Consequently, 
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the G model with Jm = 260 needs = 0.40, whereas if the NH model is assumed, = 

0.426. Here,  was only used as a fitted parameter [2,32]. 

 

Fig. 11 shows the changes of J and ion predicted from Eq. (30). If the Gent model 

is used, the increase of ion causes the monotonic increase of J and finally approaches 

Jult. An inverted S shape appears in the profile of Fig. 11. In their experiments, when the 

gel was immersed in alkaline solutions (pH > 7), J increased up to approximately 350, 

whereas under acidic conditions (pH < 7), J decreased down to approximately 30. The 

predicted response between J and ion in this range shows a similar tendency to that 

observed in experiments [17]. It is very important to note that the NH model predicts 

the gel to be dissolved when ion/E0 is larger than approximately 0.05. This means that 

the NH model cannot explain even the qualitative response of pH sensitive hydrogels. 

Thus, the effect of limiting chain extensibility plays an essential role in causing the very 

large increase of J as ion increases for pH sensitive hydrogels. The very large swelling 

behavior of pH sensitive hydrogels appears as a consequence of the competition 

between the increase in J due to ion and the resistance to preventing J from attaining 

Jult.  

 

 

Fig. 11. Relation of J and ion for = 0.40 with the G model and = 0.426 with the NH model. 

The value of  was fitted based on the set of J = 61 and ion = 1550 (Pa) at pH = 6.5. The NH 

model predicts that the gel is dissolved when ion/E0 > 0.05 and cannot reproduce the large 

increase of J with increasing ion. In contrast, the G model successfully reproduces the large 

increase of J as a process where J approaches Jult.  
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Fig. 12. Comparison of the two different pH sensitive gels by Li et al. [17] and Ricka and 

Tanaka [38], and the effects of E0 and Jm. When E0 is smaller and Jm is larger, the steep increase 

of J is clearly observed. The different tendency of the two gels in the experiments is 

comprehensively interpreted via considering the ultimate swelling because of limiting chain 

extensibility. 

 

 

Fig. 12 shows a comparison of two different pH sensitive gels. According to Li et al. 

[17], Tanaka’s gel [38] was presumed to have E0 = 27 (kPa) and Jm = 580. Both of Li’s 

and Tanaka’s gels are assumed to have a common  value of 0.40 for the G model. 

Although Fig. 12 shows the considerable difference of the two gels, these predictions 

are in very good agreement with the experiments (see the figure 5a in Li et al. [17]). In 

other words, the experiments showed that for Li’s gel, the increase of ion from 0 to 

4000 (Pa) caused the monotonic increase of J from 30 to 350, whereas for Tanaka’s gel, 

the steep increase of J from 90 to 1000 occurred around ion = 1300 (Pa), and 

subsequently the increase of J needed again the increase of ion.  

 

Fig. 12 shows a comprehensive understanding of the different responses of Li’s and 

Tanaka’s gels. First, both of the responses display the inverted S shape regardless of the 

combination of E0 and Jm. This characteristic shape is formed as a result of the 

competition between the increase in swelling because of the increase of ion and the 

resistance generated when approaching the ultimate value Jult. In Eq. (30), ion is 
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normalized by E0, i.e., ion/E0; thus, when E0 becomes smaller, the effect of ion/E0 

becomes relatively larger. Tanaka’s gel takes the larger value of J at the same value of 

ion. Further, since Tanaka’s gel has the larger value of Jm, Jult = 2709 is significantly 

larger than Jult = 820 for Li’s gel. The combination of a smaller value of E0 and a larger 

value of Jm forms a clear plateau region of ion in the inverted S shape. This plateau 

region is terminated upon approaching Jult. In contrast, the response of Li’s gel does not 

have the plateau region, which is understood by the combination of a relatively large 

value of E0 and a relatively small value of Jm.  

 

The comparison of the two different gels shows two fundamental aspects for pH 

sensitive hydrogels: the dependence of J on ion appears through E0 and Jm, whereas the 

change of ion is caused by the individual concentrations of mobile ions in the external 

solvent, which is currently quantified using the Donnan theory [17,39]. However, a 

more quantitative prediction will need further modification of the Flory–Huggins 

solution theory (e.g., [2,17]) and/or the model of the elastic strain energy (e.g., 

[18,28,40–44]). The interaction parameter  may not be a constant but depend on J 

[2,4,32]. Li et al. [17] experimentally estimated the unified master curve of the osmotic 

pressure due to mixing for pH sensitive hydrogels, instead of using the Flory–Huggins 

solution theory. In contrast, Okumura et al. [28] introduced two scaling exponents in the 

NH model to fit the Flory–Rehner theory to the experimental data of natural rubbers in 

organic solvents. The Donnan theory may also need further modification for the 

quantitative comparison between experiments and theoretical predictions [17,38,39].  

 

 

7. Conclusions 

 

In the present study, ultimate swelling characterized by limiting chain extensibility 

of swollen elastomers was studied. Limiting chain extensibility was introduced into the 

Flory–Rehner theory using the AB and G models. The difference between these models 

was unified by defining the single scalar function (Eq. (12)). The inequality derived 

from the limit included in  allowed ultimate analysis to provide the ultimate value of 

the volume swelling ratio. The ultimate values depend on the type of external forces and 

are not exceeded at equilibrium swelling. Under uniaxial loading at equilibrium 



26 

 

swelling, deswelling can occur even in tension. Furthermore, the very large swelling 

behavior of pH sensitive hydrogels were successfully interpreted as a consequence of 

the competition between the increase in the osmotic pressure due to mobile ions and the 

resistance to prevent the volume swelling ratio approaching the ultimate value. The NH 

model failed to describe even the qualitative response of pH sensitive hydrogels. The 

effect of limiting chain extensibility plays an essential role in causing the very large 

swelling behavior of pH sensitive hydrogels. The developed ultimate analysis should 

provide a more comprehensive understanding of swollen elastomers undergoing finite 

deformations.  

 

Finally, although the NH model in the Flory–Rehner theory was simply replaced by 

the AB or G models in the present study, it must be interesting to consider more 

advanced elastic strain energies (e.g., [18,28,40–44]). According to [43,44], the elastic 

strain energy We needs to include not only the first invariant I1 but also the second 

invariant I2 (see Section 2) to fit well the experimental data in the small-to-moderate 

strain range. This I2 energy term is expected to be linearly added in original elastic 

strain energies [43,44]. In this specific case, the I2 energy term gives no effect on the 

ultimate value of swelling investigated in the present study. That is because the scalar 

function  depends on I1 and is independent of I2 (Eq. (12)). When  is expressed as a 

combination of I1 and I2, the ultimate value of swelling can depend on I2. The 

above-mentioned discussions are worthy and needed when more accurate deformation 

analysis of swollen elastomers is explored in the future. The findings obtained from 

these researches including the present study will be useful to design the unique 

mechanical and swelling properties of gels and biomaterials.  
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Appendix A.  

 

Fig. A shows the influence of the logarithmic term of a log J included in the elastic 

strain energies on the osmotic pressure under free swelling (Eq. (19)). The AB+P model 

was used as the representative model with n=10, 100 and ∞. The response for n = ∞ is 

identical to that in the NH model. At a larger swelling ratio J > 20, the effect can be 

negligible regardless of the value of n. The value of a does not affect the ultimate value 

of Jult. In contrast, at a smaller swelling ratio J < 20, the positive and negative values of 

a = 2 and 2 decreases and increases , respectively, which results in providing the 

additional increase and decrease of J under free swelling, respectively. For the NH 

model, a = 0, 1 and 2 were conventionally used [1,2,19]. For the G model, a = 2 was 

just used [17]. In contrast, Bischoff et al. [45] proposed a ≠ 2 to introduce a logarithmic 

term in the AB model [4,16] while a = 2 was simply used in Chester and Anand [15]. If 

the value of a is assumed as the parameter fitted to experiments [28,46], the swelling 

behavior under J < 20 can be adjusted and predicted well.  

 

 

Fig. A. Effect of the logarithmic term a log J included in the elastic strain energies on the 

osmotic pressure under free swelling. The AB+P model was used as the representative model 

with n = 10, 100 and ∞. The response for n = ∞ is identical to that in the NH model. 
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