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We have developed a new simulation algorithm for free-energy calculations. The method is a
multidimensional extension of the replica-exchange method. While pairs of replicas with different
temperatures are exchanged during the simulation in the original replica-exchange method, pairs of
replicas with different temperatures and/or different parameters of the potential energy are
exchanged in the new algorithm. This greatly enhances the sampling of the conformational space
and allows accurate calculations of free energy in a wide temperature range from a single simulation
run, using the weighted histogram analysis method. ©2000 American Institute of Physics.
@S0021-9606~00!50739-9#

I. INTRODUCTION

In complex systems such as a system of proteins, it is
difficult to obtain accurate canonical distributions at low
temperatures by the conventional molecular dynamics~MD!
or Monte Carlo~MC! simulations. This is because there exist
a huge number of local-minimum states in the potential en-
ergy surface, and the simulations tend to get trapped in one
of the local-minimum states. One popular way to overcome
this difficulty is to perform ageneralized-ensemblesimula-
tion, which is based on non-Boltzmann probability weight
factors so that a random walk in energy space may be real-
ized ~for a review see Ref. 1!. The random walk allows the
simulation to go over any energy barrier and sample much
wider configurational space than by conventional methods.
Monitoring the energy in a single simulation run, one can
obtain not only the global-minimum-energy state but also
any thermodynamic quantities as a function of temperature
for a wide temperature range. The latter is made possible by
the single-histogram2 or multiple-histogram3 reweighting
techniques~an extension of the multiple-histogram method is
also referred to as the weighted histogram analysis method
~WHAM !4!.

Three of the most well-known generalized-ensemble
methods are perhapsmulticanonical algorithm,5 simulated
tempering,6,7 andreplica-exchange method.8–12 ~The replica-
exchange method is also referred to asreplica Monte Carlo
method9, multiple Markov chain method,11 and parallel
tempering.12! These algorithms have already been used in
many applications in protein and related systems~see, for
instance, Refs. 13–36 for multicanonical algorithm, Refs.

37–40 for simulated tempering, and Refs. 41–45 for replica-
exchange method!.

The replica-exchange method~REM! has been drawing
much attention recently because the probability weight fac-
tors are essentially knowna priori, whereas they are not in
most other generalized-ensemble algorithms~and have to be
determined by a tedious procedure!. In REM the generalized
ensemble consists of noninteracting copies~or replicas! of
the original system with different temperatures. During a
parallel MD or MC simulation of each replica, a pair of
replicas are exchanged every few steps. This procedure en-
forces random walks in the replica~temperature! space.

In a previous work44 we worked out the details for the
replica-exchange molecular dynamics algorithm. In this ar-
ticle we present a multidimensional extension of the replica-
exchange method~similar generalizations of REM can also
be found in Refs. 46 and 47!. In the new algorithm, pairs of
replicas with different temperatures and/or different param-
eters of the potential energy are exchanged. As an example
of the applications of the multidimensional replica-exchange
method, we discuss free-energy calculations in detail.

The umbrella sampling method48 and free-energy pertur-
bation method, which is a special case of umbrella sampling,
have been widely used to calculate the free energies in
chemical processes.48–57 In the umbrella sampling method, a
reaction coordinate is chosen and free-energy profiles along
the reaction coordinate are calculated. A series of indepen-
dent simulations are performed to sample the relevant range
of the coordinate. To cover the entire range of the coordinate,
biasing potentials, which are called ‘‘umbrella potentials,’’
are imposed. Thus, the system is restrained to remain near
the prechosen value of the reaction coordinate specified by
each umbrella potential, and a series of simulations with dif-
ferent umbrella potentials are performed. WHAM4 is often

a!Electronic mail: sugita@ims.ac.jp
b!Electronic mail: kitao@qchem.kuchem.kyoto-u.ac.jp
c!Electronic mail: okamotoy@ims.ac.jp

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 15 15 OCTOBER 2000

60420021-9606/2000/113(15)/6042/10/$17.00 © 2000 American Institute of Physics



employed to calculate the free-energy profiles from the his-
tograms obtained by each simulation.

Although the effectiveness of the umbrella sampling
method is well known, its successful implementation re-
quires a careful fine tuning. For instance, the choice of the
umbrella potentials is very important. If the potentials are too
strong, the conformational space sampled by each simulation
becomes quite narrow. If the potentials are too weak, on the
other hand, the system does not remain near the prechosen
value of the reaction coordinate. The values of the coupling
parametersl for the umbrella potentials should also be care-
fully chosen. Various generalizations of the umbrella sam-
pling method have thus been introduced to sample the poten-
tial energy surface more effectively. Thel-dynamics58–60 is
such an example, where the coupling parameterl is treated
as a dynamical variable. Another example is themulticanoni-
cal WHAM,35 which combines the umbrella sampling with
the multicanonical algorithm. In the present article we de-
velop yet another generalization of the umbrella sampling
method ~we refer to this method asreplica-exchange um-
brella sampling!, which is based on the multidimensional
extension of the replica-exchange method.

In Sec. II the multidimensional extension of the replica-
exchange method is described in detail. In particular, the
replica-exchange umbrella sampling method is introduced. In
Sec. III the results of the application of replica-exchange
umbrella sampling to a blocked alanine trimer are given.
Section IV is devoted to conclusions.

II. METHODS

Before we describe themultidimensional replica-
exchange method~MREM!, let us briefly review the original
replica-exchange method~REM!8–12 ~see Ref. 44 for de-
tails!.

We consider a system ofN atoms with their coordinate
vectors and momentum vectors denoted byq[$q1 ,...,qN%
and p[$p1 ,...,pN%, respectively. The HamiltonianH(q,p)
of the system is the sum of the kinetic energyK(p) and the
potential energyE(q),

H~q,p!5K~p!1E~q!. ~1!

In the canonical ensemble at temperatureT, each statex
[(q,p) with the HamiltonianH(q,p) is weighted by the
Boltzmann factor,

WB~x!5e2bH(q,p), ~2!

where the inverse temperatureb is defined byb51/kBT (kB

is Boltzmann’s constant!.
The generalized ensemble for REM consists ofM non-

interactingcopies~or, replicas! of the original system in the
canonical ensemble atM different temperaturesTm (m
51,...,M ). We arrange the replicas so that there is always
exactly one replica at each temperature. Then there is a one-
to-one correspondence between replicas and temperatures;
the labeli ( i 51,...,M ) for replicas is a permutation of the
label m (m51,...,M ) for temperatures, and vice versa,

H i 5 i ~m![ f ~m!,

m5m~ i ![ f 21~ i !,
~3!

where f (m) is a permutation function ofm and f 21( i ) is its
inverse.

Let X5$x1
[ i (1)] , ...,xM

[ i (M )]%5$xm(1)
[1] ,...,xm(M )

[ M ] % stand for
a ‘‘state’’ in this generalized ensemble. Here, the superscript
and the subscript inxm

[ i ] label the replica and the temperature,
respectively. The stateX is specified by theM sets of coor-
dinatesq[ i ] and momentap[ i ] of N atoms in replicai at
temperatureTm ,

xm
[ i ][~q[ i ] ,p[ i ] !m . ~4!

Because the replicas are noninteracting, the weight factor for
the stateX in this generalized ensemble is given by the prod-
uct of Boltzmann factors for each replica~or at each tem-
perature!,

WREM~X!5expH 2(
i 51

M

bm( i )H~q[ i ] ,p[ i ] !J
5expH 2 (

m51

M

bmH~q[ i (m)] ,p[ i (m)] !J , ~5!

where i (m) and m( i ) are the permutation functions in Eq.
~3!.

We now consider exchanging a pair of replicas in the
generalized ensemble. Suppose we exchange replicasi and j
which are at temperaturesTm andTn , respectively,

X5$...,xm
[ i ] , ...,xn

[ j ] , ...%→X85$...,xm
[ j ] 8 ,...,xn

[ i ] 8 ,...%.
~6!

The exchange of replicas can be written in more detail as

H xm
[ i ][~q[ i ] ,p[ i ] !m →xm

[ j ] 8[~q[ j ] ,p[ j ] 8!m ,

xn
[ j ][~q[ j ] ,p[ j ] !n →xn

[ i ] 8[~q[ i ] ,p[ i ] 8!n ,
~7!

where the momenta are uniformly rescaled according to44

5 p[ i ] 8 [ATn

Tm
p[ i ] ,

p[ j ] 8 [ATm

Tn
p[ j ] .

~8!

In order for this exchange process to converge toward
the equilibrium distribution based on Eq.~5!, it is sufficient
to impose the detailed balance condition on the transition
probability w(X→X8),

WREM~X!w~X→X8!5WREM~X8!w~X8→X!. ~9!

From Eqs.~1!, ~5!, ~8!, and~9!, we have

w~X→X8!

w~X8→X!
5exp~2D!, ~10!

where

D5bm~E~q[ j ] !2E~q[ i ] !!2bn~E~q[ j ] !2E~q[ i ] !!, ~11!

5~bm2bn!~E~q[ j ] !2E~q[ i ] !!. ~12!

This can be satisfied, for instance, by the usual Metropolis
criterion,61
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w~X→X8![w~xm
[ i ] uxn

[ j ] !5H 1, for D<0,

exp~2D!, for D.0.
~13!

Note that because of the velocity rescaling of Eq.~8! the
kinetic energy terms are cancelled out in Eqs.~11! @and~12!#
and that the same criterion, Eqs.~12! and ~13!, which was
originally derived for the Monte Carlo algorithm,8–12 is
recovered.44

A simulation of thereplica-exchange method~REM!8–12

is then realized by alternately performing the following two
steps:

~1! Each replica in canonical ensemble of the fixed tempera-
ture is simulatedsimultaneouslyand independently
for a certain MC or MD steps.

~2! A pair of replicas, sayxm
[ i ] andxn

[ j ] , are exchanged with
the probabilityw(xm

[ i ] uxn
[ j ] ) in Eq. ~13!.

In the present work, we employ the molecular dynamics al-
gorithm for step 1. Note that in step 2 we exchange only
pairs of replicas corresponding to neighboring temperatures,
because the acceptance ratio of the exchange decreases ex-
ponentially with the difference of the twob ’s @see Eqs.~12!
and ~13!#. Note also that whenever a replica exchange is
accepted in step 2, the permutation functions in Eq.~3! are
updated.

The major advantage of REM over other generalized-
ensemble methods such as multicanonical algorithm5 and
simulated tempering6,7 lies in the fact that the weight factor
is a priori known @see Eq.~5!#, while in the latter algorithms
the determination of the weight factors can be very tedious
and time-consuming. A random walk in ‘‘temperature
space’’ is realized for each replica, which in turn induces a
random walk in potential energy space. This alleviates the
problem of getting trapped in states of energy local minima.

We now present our multidimensional extension of
REM, which we refer to as themultidimensional replica-
exchange method~MREM!. The crucial observation that led
to the new algorithm is: As long as we haveM noninteract-
ing replicas of the original system, the HamiltonianH(q,p)
of the system does not have to be identical among the repli-
cas and it can depend on a parameter with different param-
eter values for different replicas. Namely, we can write the
Hamiltonian for thei-th replica at temperatureTm as

Hm~q[ i ] ,p[ i ] !5K~p[ i ] !1Elm
~q[ i ] !, ~14!

where the potential energyElm
depends on a parameterlm

and can be written as

Elm
~q[ i ] !5E0~q[ i ] !1lmV~q[ i ] !. ~15!

This expression for the potential energy is often used in
simulations. For instance, in umbrella sampling,48 E0(q) and
V(q) can be respectively taken as the original potential en-
ergy and the ‘‘biasing’’ potential energy with the coupling
parameterlm . In simulations of spin systems, on the other
hand,E0(q) and V(q) ~here,q stands for spins! can be re-
spectively considered as the zero-field term and the magne-
tization term coupled with the external fieldlm .

While replica i and temperatureTm are in one-to-one
correspondence in the original REM, replicai and ‘‘param-
eter set’’Lm[(Tm ,lm) are in one-to-one correspondence in
the new algorithm. Hence, the present algorithm can be con-
sidered as a multidimensional extension of the original
replica-exchange method where the ‘‘parameter space’’ is
one dimensional~i.e., Lm5Tm). Because the replicas are
noninteracting, the weight factor for the stateX in this new
generalized ensemble is again given by the product of Bolt-
zmann factors for each replica@see Eq.~5!#,

WMREM~X!5expH 2(
i 51

M

bm( i )Hm( i )~q[ i ] ,p[ i ] !J
5expH 2 (

m51

M

bmHm~q[ i (m)] ,p[ i (m)] !J , ~16!

where i (m) and m( i ) are the permutation functions in Eq.
~3!. Then the same derivation that led to the original replica-
exchange criterion@Eq. ~13!# follows, and we have the fol-
lowing transition probability of replica exchange@see Eq.
~11!#:

w~X→X8![w~xm
[ i ] uxn

[ j ] !5H 1, for D<0,

exp~2D!, for D.0,
~17!

where

D5bm~Elm
~q[ j ] !2Elm

~q[ i ] !!2bn~Eln
~q[ j ] !2Eln

~q[ i ] !!.
~18!

Here,Elm
and Eln

are the total potential energies@see Eq.
~15!#. Note that we need to newly evaluate the potential en-
ergy for exchanged coordinates,Elm

(q[ j ] ) andEln
(q[ i ] ), be-

causeElm
and Eln

are in general different functions. The
method is particularly suitable for parallel computers. Be-
cause one can minimize the amount of information ex-
changed among nodes, it is best to assign each replica to
each node~exchangingTm ,Elm

andTn ,Eln
among nodes is

much faster than exchanging coordinates and momenta!.
This means that we keep track of the permutation function
m( i ;t)5 f 21( i ;t) in Eq. ~3! as a function of MD stept
throughout the simulation.

For obtaining the canonical distributions, the weighted
histogram analysis method~WHAM !4 is particularly suit-
able. Suppose we have made a single run of the present
replica-exchange simulation withM replicas that correspond
to M different parameter setsLm[(Tm ,lm) (m51,...,M ).
Let Nm(E0 ,V) andnm be, respectively, the potential-energy
histogram and the total number of samples obtained for the
m-th parameter setLm . The expectation value of a physical
quantityA for any potential-energy parameter valuel at any
temperatureT51/kBb is then given by3,4

^A&T,l5

(
E0 ,V

A~E0 ,V!PT,l~E0 ,V!

(
E0 ,V

PT,l~E0 ,V!

, ~19!

where
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PT,l~E0 ,V!5F (
m51

M

gm
21Nm~E0 ,V!

(
m51

M

nmgm
21ef m2bmElm

G e2bEl, ~20!

and

e2 f m5 (
E0 ,V

PTm ,lm
~E0 ,V!. ~21!

Here,gm5112tm , andtm is the integrated autocorrelation
time at temperatureTm with the parameter valuelm . Note
that the unnormalized probability distributionPT,l(E0 ,V)
and the ‘‘dimensionless’’ Helmholtz free energyf m in Eqs.
~20! and ~21! are solved self-consistently by iteration.3,4

We can use this new replica-exchange method for free-
energy calculations. We first describe the free-energy pertur-
bation case. The potential energy is given by

El~q!5EI~q!1l~EF~q!2EI~q!!, ~22!

whereEI andEF are the potential energy for a ‘‘wild-type’’
molecule and a ‘‘mutated’’ molecule, respectively. Note that
this equation has the same form as Eq.~15!.

Our replica-exchange simulation is performed forM rep-
licas with M different values of the parametersLm

5(Tm ,lm). Since El50(q)5EI(q) and El51(q)5EF(q),
we should choose enoughlm values distributed in the range
between 0 and 1 so that we may have sufficient replica ex-
changes. From the simulation,M histogramsNm(EI ,EF

2EI), or equivalentlyNm(EI ,EF), are obtained. The Helm-
holtz free-energy difference of ‘‘mutation’’ at temperatureT,
DF[Fl512Fl50, can then be calculated from

exp~2bDF !5
ZT,l51

ZT,l50
5

(
EI ,EF

PT,l51~EI ,EF!

(
EI ,EF

PT,l50~EI ,EF!

, ~23!

wherePT,l(EI ,EF) are obtained from the WHAM equations
of Eqs.~20! and ~21!.

We now describe another free-energy calculation based
on MREM applied to umbrella sampling,48 which we refer to
as replica-exchange umbrella sampling~REUS!. The poten-
tial energy is a generalization of Eq.~15! and is given by

El~q!5E0~q!1(
l 51

L

l ( l )Vl~q!, ~24!

where E0(q) is the original unbiased potential,Vl(q) ( l
51,...,L) are the biasing~umbrella! potentials, andl ( l ) are
the corresponding coupling constants@l5(l (1),...,l (L))#.
Introducing a ‘‘reaction coordinate’’j, the umbrella poten-
tials are usually written as harmonic restraints,

Vl~q!5kl@j~q!2dl #
2, ~ l 51,...,L !, ~25!

wheredl are the midpoints andkl are the strengths of the
restraining potentials. We prepareM replicas withM differ-
ent values of the parametersLm5(Tm ,lm), and the replica-
exchange simulation is performed. Since the umbrella poten-
tials Vl(q) in Eq. ~25! are all functions of the reaction

coordinatej only, we can take the histogramNm(E0 ,j) in-
stead ofNm(E0 ,V1 ,...,VL). The WHAM equations of Eqs.
~20! and ~21! can then be written as

PT,l~E0 ,j!5F (
m51

M

gm
21Nm~E0 ,j!

(
m51

M

nmgm
21ef m2bmElm

G e2bEl, ~26!

and

e2 f m5 (
E0 ,j

PTm ,lm
~E0 ,j!. ~27!

The expectation value of a physical quantityA is now given
by @see Eq.~19!#

,A.T,l5

(
E0 ,j

A~E0 ,j!PT,l~E0 ,j!

(
E0 ,j

PT,l~E0 ,j!

. ~28!

The potential of mean force~PMF!, or free energy as a
function of the reaction coordinate, of the original, unbiased
system at temperatureT is given by

WT,l5$0%~j!52kBT lnF(
E0

PT,l5$0%~E0 ,j!G , ~29!

where$0%5(0,...,0). In the examples presented below, rep-
licas were chosen so that the potential energy for each replica
includes exactly one~or zero! biasing potential.

III. RESULTS AND DISCUSSION

One of the applications of MREM,replica-exchange
umbrella sampling~REUS!, was tested for the system of a
blocked peptide, alanine trimer. The N and C termini of the
peptide were blocked with acetyl and N-methyl groups, re-
spectively. Since the thermodynamic behavior of this peptide
was extensively studied by the conventional umbrella
sampling,51 it is a good test case to examine the effectiveness
of the new method. All calculations were based on MD
simulations, and the force field parameters were taken from
the all-atom version of AMBER62 with a distance-dependent
dielectric,e5r , which mimics the presence of solvent. The
computer code developed in Refs. 56 and 63, which is based
on Version 2 ofPRESTO,64 was used. The temperature during
the MD simulations was controlled by the constraint
method.65,66 The unit time step was set to 0.5 fs, and we
made an MD simulation of 43106 time steps~or 2.0 ns! for
each replica, starting from an extended conformation. The
data were stored every 20 steps~or 10 fs! for a total of 2
3105 snapshots.~Before taking the data, we made regular
canonical MD simulations of 100 ps for thermalization. For
replica-exchange simulations an additional REM simulation
of 100 ps was made for further thermalization.!

In Table I we summarize the parameters characterizing
the replicas for the simulations performed in the present
work. They are one original replica-exchange simulation
~REM1!, two replica-exchange umbrella sampling simula-
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tions ~REUS1 and REUS2!, and two conventional umbrella
sampling simulations~US1 and US2!. The purpose of the
present simulations is to test the effectiveness of the replica-
exchange umbrella sampling with respect to the conventional
umbrella sampling~REUS1 and REUS2 versus US1 and
US2!. The original replica-exchange simulation without um-
brella potentials~REM1! was also made to set a reference
standard for comparison. For REM1, replica exchange was
tried every 20 time steps~or 10 fs!, as in our previous
work.44 For REUS simulations, on the other hand, replica
exchange was tried every 400 steps~or 200 fs!, which is less
frequent than in REM1. This is because we wanted to ensure
sufficient time for system relaxation afterl-parameter ex-
change.

In REM1 there are 16 replicas with 16 different tempera-
tures listed in Table I. The temperatures are distributed ex-
ponentially, following the optimal distribution found in Ref.
44. After every 10 fs of parallel MD simulations, eight pairs
of replicas corresponding to neighboring temperatures were
simultaneously exchanged, and the pairing was alternated
between the two possible choices.44

For umbrella potentials, the O1 to H5 hydrogen-bonding
distance, or ‘‘end-to-end distance,’’ was chosen as the reac-
tion coordinatej and the harmonic restraining potentials ofj
in Eq. ~25! were imposed. The force constants,kl , and the
midpoint positions,dl , are listed in Table I.

In REUS1 and US1, 14 replicas were simulated with the
same set of umbrella potentials atT5300 K. The first pa-
rameter value, 0.0~0.0!, in Table I means that the restraining
potential is null, i.e.,Vl 50. The remaining 13 sets of pa-
rameters are the same as those adopted in Ref. 51. Let us
order the umbrella potentials,Vl in Eq. ~24!, in the increas-
ing order of the midpoint valuedl , i.e., the same order that
appears in Table I. We prepared replicas so that the potential
energy for each replica includes exactly one umbrella poten-
tial ~here, we haveM5L514). Namely, in Eq.~24! for l
5lm we set

lm
(l )5d l ,m , ~30!

wheredk,l is Kronecker’s delta function, and we have

Elm
~q[ i ] !5E0~q[ i ] !1Vm~q[ i ] !. ~31!

The difference between REUS1 and US1 is whether replica
exchange is performed or not during the parallel MD simu-
lations. In REUS1 seven pairs of replicas corresponding to
‘‘neighboring’’ umbrella potentials,Vm and Vm11, were si-
multaneously exchanged after every 200 fs of parallel MD
simulations, and the pairing was alternated between the two
possible choices.~Other pairings will have much smaller ac-
ceptance ratios of replica exchange.! The acceptance crite-
rion for replica exchange is given by Eq.~17!, where Eq.
~18! now reads ~with the fixed inverse temperatureb
51/300kB)

D5b~Vm~q[ j ] !2Vm~q[ i ] !2Vm11~q[ j ] !1Vm11~q[ i ] !!,
~32!

where replicai and j, respectively, have umbrella potentials
Vm andVm11 before the exchange.

In REUS2 and US2, 16 replicas were simulated at four
different temperatures with four different restraining poten-
tials ~there areL54 umbrella potentials atNT54 tempera-
tures, making the total number of replicasM5NT3L516;
see Table I!. We can introduce the following labeling for the
parameters characterizing the replicas:

Lm5~Tm ,lm! → LI ,J5~TI ,lJ!,

~m51,...,M ! ~ I 51,...,NT ,J51,...,L !. ~33!

The potential energy is given by Eq.~31! with the replace-
ment:m→J. Let us again order the umbrella potentials,VJ ,
and the temperatures,TI , in the same order that appear in
Table I. The difference between REUS2 and US2 is whether
replica exchange is performed or not during the MD simula-

TABLE I. Summary of the replica parameters for the present simulations.

Runa Mb NT
b Temperature@K# Lb dl @Å # (kl @kcal/mol•Å 2]) c

REM1 16 16 200, 229, 262, 299, 0
342, 391, 448, 512,
586, 670, 766, 876,
1002, 1147, 1311,

1500
REUS1, US1 14 1 300 14 0.0~0.0!d, 1.8 ~1.2!, 2.8 ~1.2!, 3.8 ~ 1.2!,

4.8 ~1.2!, 5.8 ~1.2!, 6.8 ~1.2!, 7.8 ~1.2!,
8.8 ~1.2!, 9.8 ~1.2!, 10.8 ~1.2!, 11.8 ~1.2!,

12.8 ~1.2!, 13.8 ~1.2!
REUS2, US2 16 4 250, 315, 397, 500 4 0.0~0.0!, 7.8 ~0.3!, 10.8 ~ 0.3!, 13.8 ~0.3!

aREM, REUS, and US stand for an original replica-exchange simulation, replica-exchange umbrella sampling
simulation, and conventional umbrella sampling simulation, respectively.

bM , NT , andL are the total numbers of replicas, temperatures, and restraining potentials, respectively@see Eqs.
~16! and~24!#. In REUS2 and US2 we setM5NT3L for simplicity. We remark that this relation is not always
required. For instance, the 16 replicas could have 16 different temperatures with 16 different restraining
potentials~i.e., M5NT5L516).

cdl and kl ( l 51,...,L) are the strengths and the midpoints of the restraining potentials, respectively@see Eq.
~25!#.

dThe parameter value 0.0~0.0! means that the restraining potential is null, i.e.,Vl50.

6046 J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Sugita, Kitao, and Okamoto



tions. In REUS2 we performed the following replica-
exchange processes alternately after every 200 fs of parallel
MD simulations:

~1! Exchange pairs of replicas corresponding to neighboring
temperatures,TI andTI 11 ~i.e., exchange replicasi andj
that respectively correspond to parametersLI ,J and
LI 11,J). ~We refer to this process asT-exchange.!

~2! Exchange pairs of replicas corresponding to ‘‘neighbor-
ing’’ umbrella potentials,VJ and VJ11 ~i.e., exchange
replicas i and j that respectively correspond to param-
eters LI ,J and LI ,J11). ~We refer to this process as
l-exchange.!

In each of the above processes, two pairs of replicas were
simultaneously exchanged, and the pairing was further alter-
nated between the two possibilities. The acceptance criterion
for these replica exchanges is given by Eq.~17!, where Eq.
~18! now reads

D5~b I2b I 11!~E0~q[ j ] !1VJ~q[ j ] !2E0~q[ i ] !

2VJ~q[ i ] !!, ~34!

for T-exchange, and

D5b I~VJ~q[ j ] !2VJ~q[ i ] !2VJ11~q[ j ] !1VJ11~q[ i ] !!,
~35!

for l-exchange. By this procedure, the random walk in the
reaction coordinate space as well as in temperature space can
be realized. Note that we carry out the velocity rescaling of
Eq. ~8! in T-exchange. In principle, we can also introduce a
similar velocity rescaling inl-exchange to the two relevant
atoms O1 and H5 in order to adjust for the exchange of the
restraining potentials~because the restraining force acts only
on O1 and H5!. We also incorporated this rescaling but did
not see much improvement in performance. The results pre-
sented below are thus those from no velocity rescaling in
l-exchange.

We now give the details of the results obtained in the
present work. First of all, we examine whether the replica-
exchange processes properly occurred in REM and REUS
simulations. One criterion for the optimal performance is:
whether the acceptance ratio of replica exchange is uniform

and sufficiently large or not. In Tables II–IV we list the
acceptance ratios of replica exchange corresponding to the
adjacent pairs of temperatures or the restraining potentials. In
all cases the acceptance ratios are almost uniform and large
enough (.10 %!; all simulations indeed performed properly.
In particular, the acceptance ratios for exchanging adjacent
temperatures are significantly uniform in all cases, implying
that the exponential temperature distributions of Ref. 44 are
again optimal. However, the acceptance ratios for exchang-
ing adjacent restraining potentials are not perfectly uniform,
and there is some room for fine tuning. The acceptance ratio
for exchanging restraining potentials depends on the strength
of the force constants,kl , @see Eq.~25!# and we weakened
the value from 1.2 kcal/mol•Å 2 in REUS1 to 0.3 kcal/mol
•Å 2 in REUS2 in order to have sufficient replica exchanges
in REUS2. This is because we have a much smaller number

TABLE II. Acceptance ratios of replica exchange in REM1.

Pair of temperatures Acceptance ratio

200↔229 0.430
229↔262 0.433
262↔299 0.433
299↔342 0.428
342↔391 0.430
391↔448 0.423
448↔512 0.429
512↔586 0.427
586↔670 0.434
670↔766 0.437
766↔876 0.445
876↔1002 0.446

1002↔1147 0.446
1147↔1311 0.454
1311↔1500 0.452

TABLE III. Acceptance ratios of replica exchange in REUS1.

Pair of restraint parameters Acceptance ratio

0.0 ~0.0!↔1.8 ~1.2! 0.202
1.8~1.2!↔2.8 ~1.2! 0.210
2.8 ~1.2!↔3.8 ~1.2! 0.174
3.8 ~1.2!↔4.8 ~1.2! 0.161
4.8 ~1.2!↔5.8 ~1.2! 0.223
5.8 ~1.2!↔6.8 ~1.2! 0.155
6.8 ~1.2!↔7.8 ~1.2! 0.211
7.8 ~1.2!↔8.8 ~1.2! 0.229
8.8~1.2!↔9.8 ~1.2! 0.119

9.8 ~1.2!↔10.8 ~1.2! 0.276
10.8 ~1.2!↔11.8 ~1.2! 0.156
11.8 ~1.2!↔12.8 ~1.2! 0.138
12.8 ~1.2!↔13.8 ~1.2! 0.383

TABLE IV. Acceptance ratios of replica exchange in REUS2.

Temperature Pair of restraint parameters Acceptance ratio

250 0.0~0.0!↔7.8 ~0.3! 0.149
250 7.8~0.3!↔10.8 ~0.3! 0.104
250 10.8~0.3!↔13.8 ~0.3! 0.127
315 0.0~0.0!↔7.8 ~0.3! 0.250
315 7.8~0.3!↔10.8 ~0.3! 0.105
315 10.8~0.3!↔13.8 ~0.3! 0.120
397 0.0~0.0!↔7.8 ~0.3! 0.363
397 7.8~0.3!↔10.8 ~0.3! 0.135
397 10.8~0.3!↔13.8 ~0.3! 0.160
500 0.0~0.0!↔7.8 ~0.3! 0.483
500 7.8~0.3!↔10.8 ~0.3! 0.185
500 10.8~0.3!↔13.8 ~0.3! 0.228

Restraint parameters Pair of temperatures Acceptance ratio

0.0 ~0.0! 250↔315 0.193
0.0 ~0.0! 315↔397 0.186
0.0 ~0.0! 397↔500 0.189
7.8 ~0.3! 250↔315 0.174
7.8 ~0.3! 315↔397 0.179
7.8 ~0.3! 397↔500 0.190
10.8 ~0.3! 250↔315 0.189
10.8 ~0.3! 315↔397 0.184
10.8 ~0.3! 397↔500 0.195
13.8 ~0.3! 250↔315 0.185
13.8 ~0.3! 315↔397 0.184
13.8 ~0.3! 397↔500 0.205

6047J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Multidimensional replica-exchange method



of restraining potentials in REUS2 than in REUS1~3 versus
13!, and yet both simulations have to cover the same range
of reaction coordinatej, i.e., from 0 Å to 13.8 Å .

In order to have sufficient replica exchanges between
neighboring temperatures and between neighboring restrain-
ing potentials, the probability distributions corresponding to
neighboring parameters should have enough overlaps. In Fig.
1~a! the canonical probability distributions of the unbiased
potential energyE0 at the four chosen temperatures are
shown. The results are for the parametersLI ,1 (I 51,...,4),
i.e., for the case of no restraining potentials, and were ob-
tained from the REUS2 simulation. In Fig. 1~b! the probabil-
ity distributions of the reaction coordinatej with the four
chosen restraining potentials are shown. The results are for
the parametersL2,J (J51,...,4), i.e., for the temperatureT
5315 K, and were also obtained from the REUS2 simula-
tion. In both figures we do observe sufficient overlaps in
pairs of the distributions corresponding to the neighboring
parameter values, and this is reflected in the reasonable ac-
ceptance ratios listed in Table IV.

In order to further confirm that our REM simulations
performed properly, we have to examine the time series of
various quantities and observe random walks. For instance,

in Fig. 2 the trajectories of a few quantities in REUS2 are
shown. In Fig. 2~a! we show the time series of replica ex-
change for the parameterL1,15(T1 ,l1) ~i.e.,T15250 K and
k15d150.0). We do observe a random walk in replica
space, and we see that all the replicas frequently visited the
parameter valueL1,1.

The complementary picture to this is the time series of
T-exchange andl-exchange for each replica. Free random
walks both in ‘‘temperature space’’ and in ‘‘restraining po-
tential space’’ were indeed observed. For instance, the time
series of temperature exchange for one of the replicas~rep-
lica 1! is shown in Fig. 2~b!. The corresponding time series
of the reaction coordinatej, the distance between atoms O1
and H5, for the same replica is shown in Fig. 2~c!. We see

FIG. 1. Probability distributions obtained from the replica-exchange um-
brella sampling simulation~REUS2!. ~a! The canonical probability distribu-
tions of the unbiased potential energyE0 at the four chosen temperatures
~the curves from left to right correspond toT5 250, 315, 397, 500 K!. The
results are for the parametersLI ,1 (I 51,...,4), i.e., for the case of no re-
straining potentials~see Table I!. ~b! The probability distributions of the
reaction coordinatej, the distance between the atoms O1 and H5, with the
four chosen restraining potentials@the curves from left to right correspond to
dl @Å # (kl @kcal/mol•Å 2]) 5 0.0 ~0.0!, 7.8 ~0.3!, 10.8 ~0.3!, 13.8 ~0.3!#.
The results are for the parametersL2,J (J51,...,4), i.e., for the temperature
T5315 K ~see Table I!.

FIG. 2. Time series of the replica-exchange umbrella sampling simulation
~REUS2!. ~a! Replica exchange for the parameterL1,15(T1 ,l1) ~i.e., T1

5250 K andk15d150.0, see Table I!. ~b! Temperature exchange for one
of the replicas~replica 1!. ~c! The reaction coordinatej for one of the
replicas~replica 1!.
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that the conformational sampling along the reaction coordi-
nate is significantly enhanced. In the blocked alanine trimer,
the reaction coordinatej can be classified into three
regions:51 the helical region (j,3 Å!, the turn region~3 Å
,j, 7 Å!, and the extended region (j. 7 Å!. Thus, Fig.
2~c! implies that helix-coil transitions frequently occurred
during the replica-exchange simulation, whereas in the con-
ventional canonical simulations such a frequent folding and
unfolding process cannot be seen.

After confirming that the present REM and REUS simu-
lations performed properly, we now present and compare the
physical quantities calculated by these simulations. In Fig. 3
the potentials of mean force~PMF! of the unbiased system
along the reaction coordinatej at T5300 K are shown. The
results are from REM1, REUS1, and US1 simulations. For
these calculations, the WHAM equations of Eqs.~26! and
~27! were solved by iteration first, and then Eq.~29! was
used to obtain the PMF. We remark that for biomolecular
systems the results obtained from the WHAM equations are
insensitive to the values ofgm in Eq. ~26!.4 Hence, we set
gm5 constant in the present article. From Fig. 3 we see that
the PMF curves obtained by REM1 and REUS1 are essen-
tially identical for low values ofj (j,7 Å!. The two PMF
curves start deviating slightly, asj gets larger, and forj
.9 Å the agreement completely deteriorates. The disagree-
ment comes from the facts that the averagej at the highest
temperature in REM1 (T1651500 K! is ,j.T16

58.0 Å and
that the original REM withT-exchange only cannot sample
accurately the region wherej is much larger than,j.T16

.
These two simulations were performed under very different
conditions: One was run at different temperatures without
restraining potentials and the other at one temperature with
many restraining potentials~see Table I!. We thus consider
the results to be quite reliable for (j,9 Å!.

On the other hand, the PMF obtained by US1 is rela-
tively larger than those obtained by REM1 and REUS1 in the
region of 2 Å,j, 4 Å , which corresponds to the structural
transition state between thea-helical and turn structures.
This suggests that US1 got trapped in states of energy local
minima atT5300 K. In the region of completely extended

structures (j.9 Å!, the results of REUS1 and US1 are simi-
lar but the discrepancy is again non-negligible. We remark
that atT5300 K the PMF is the lowest forj52 Å , which
implies that thea-helical structure is favored at this tempera-
ture.

We next study the temperature dependence of physical
quantities obtained from the REM1, REUS2, and US2 simu-
lations. In Fig. 4~a! we show the PMF again atT5300 K.
We observe that the PMF curves from REM1 and REUS2
are essentially identical forj,9 Å and that they deviate for
j.9 Å , because the results for REM1 are not reliable in this
region, as noted above. In fact, by comparing Figs. 3 and
4~a!, we find that the PMF obtained from REUS1 and
REUS2 are almost in complete agreement atT5300 K in the
entire range ofj values shown. On the other hand, we ob-
serve a discrepancy between REUS2 and US2 results. The
PMF curve for US2 is significantly less than that for REUS2
in the region 2 Å,j, 8 Å . Note that the PMF curves for
US1 and US2 are completely in disagreement@compare Figs.
3 and 4~a!#.

In Fig. 4~b! we show the PMF atT5500 K, which we
obtained from REM1, REUS2, and US2 simulations. We
again observe that the results from REM1 and REUS2 are in
good agreement for a wide range ofj values. We find that
the results from REM1 do not significantly deteriorate until
j.11 Å atT5500 K, whereas it did start deviating badly for

FIG. 3. The PMF along the reaction coordinatej at T5300 K. The dotted,
solid, and dashed curves were obtained from the original REM~REM1!, the
replica-exchange umbrella sampling~REUS1!, and the conventional um-
brella sampling~US1!, respectively.

FIG. 4. The PMF along the reaction coordinatej at two temperatures.~a!
The PMF atT5300 K. The dotted, solid, and dashed curves were obtained
from the original REM~REM1!, the replica-exchange umbrella sampling
~REUS2!, and the conventional umbrella sampling~US2!, respectively.~b!
The PMF atT5500 K. The dotted, solid, and dashed curves were obtained
from the original REM~REM1!, the replica-exchange umbrella sampling
~REUS2!, and the conventional umbrella sampling~US2!, respectively.
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j.9 Å at T5300 K. The PMF curve for US2 deviates
strongly from the REUS2 results forj.6 Å and is much
larger than that of REUS2~and REM1! in this region. We
remark that atT5500 K the PMF is the lowest forj'6 Å ,
which implies that extended structures are favored at this
temperature.

In Fig. 5 we show the average values of the reaction
coordinatej as a function of temperature. The results are
again from the REM1, REUS2, and US2 simulations. The
expectation values were calculated from Eq.~28!. We find
that the average reaction coordinate, or the average end-to-
end distance, grows as the temperature is raised, reflecting
the unfolding of the peptide upon increased thermal fluctua-
tions. Again we observe an agreement between REM1 and
REUS2, whereas the results of US2 deviate.

Let us emphasize that the total length of the MD simu-
lations was the same~2 ns! for each replica in all the simu-
lations performed. Hence, we have shown that the replica-
exchange umbrella sampling can give much more accurate
free-energy profiles along a reaction coordinate than the con-
ventional umbrella sampling.

IV. CONCLUSIONS

In this article we have presented a multidimensional ex-
tension of the original replica-exchange method. One ex-
ample of this approach is the combination of the replica-
exchange method with the umbrella sampling, which we
refer to as thereplica-exchange umbrella sampling~REUS!.
While pairs of replicas with different temperatures are ex-
changed during the simulation in the original replica-
exchange method, pairs of replicas with different tempera-
tures and/or different biasing potentials for the umbrella
sampling are exchanged in REUS. This greatly enhances the
sampling of the conformational space and allows accurate
calculations of free energy in a wide temperature range from
a single simulation run, using the weighted histogram analy-
sis method. The difference between REUS and the conven-
tional umbrella sampling is just whether the replica-

exchange process is performed or not. Only minor
modifications to the conventional umbrella sampling method
are necessary. However, the advantage of REUS over the
umbrella sampling is significant, and the effectiveness was
established with the system of an alanine trimer.
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