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Explicit symplectic integrators of molecular dynamics algorithms
for rigid-body molecules in the canonical, isobaric-isothermal,
and related ensembles

Hisashi Okumura,a� Satoru G. Itoh,b� and Yuko Okamotoc�

Department of Physics, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya,
Aichi 464-8602, Japan

�Received 12 October 2006; accepted 28 December 2006; published online 26 February 2007�

The authors propose explicit symplectic integrators of molecular dynamics �MD� algorithms for
rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a
symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that
combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD
algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform
a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this
algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the
Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was
conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than
typical values of 0.5–2 fs which are used by the conventional nonsymplectic algorithms.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2434972�

I. INTRODUCTION

There are two models for molecules in molecular dy-
namics �MD� simulations. One model is a rigid-body model
and the other is a flexible model. Relative coordinates in a
molecule are fixed in the rigid-body model, while they vary
in the flexible model. Because degrees of freedom in the
rigid-body model are fewer than in the flexible model, the
simulational cost is less expensive. Several MD techniques
have thus been proposed for rigid-body molecules.

One possibility for the rigid-body modeling is to con-
strain a bond length and a bond angle among atoms in the
molecules such as in the SHAKE algorithm.1 Although it is
easy to write a computer program for this constraint algo-
rithm, it requires iteration procedures to fulfill the constraint.
It means that one has to perform implicit time development.

Another algorithm is a quaternion scheme which gives
explicit time development. One integrator to carry out a
quaternion MD simulation is Gear’s predictor-corrector
algorithm.2 However, this algorithm is not a symplectic
integrator3 nor time reversible. It hardly reflects characteris-
tics of Hamiltonian dynamics. Another algorithm for the
quaternion MD was proposed by Matubayasi and Nakahara.4

Although this algorithm is not a symplectic integrator, it con-
serves volume in phase space and is time reversible. Miller
et al. recently proposed a symplectic quaternion algorithm.5

This algorithm also conserves volume in phase space and is
time reversible. However, this symplectic quaternion algo-
rithm has been proposed only in the microcanonical en-
semble. There is no symplectic quaternion algorithm in the
canonical ensemble and in the isobaric-isothermal ensemble.

A representative MD algorithm to obtain the canonical
ensemble is the Nosé thermostat.6,7 Because the original
Nosé Hamiltonian gives dynamics in virtual time, a symplec-
tic canonical MD simulation can be carried out in virtual
time. However, a symplectic MD simulation cannot be real-
ized in real time. Nonsymplectic integrators such as Gear’s
predictor-corrector algorithm are often employed for real-
time development for the Nosé thermostat. Hoover improved
the Nosé thermostat to propose the Nosé-Hoover
thermostat.8 Because the Nosé-Hoover thermostat is not
based on a Hamiltonian, there is no symplectic algorithm9

for the Nosé-Hoover thermostat. However, there exists an
explicit time reversible integrator, although it does not con-
serve the volume in the phase space. This integrator was
proposed by Martyna et al.10 Bond et al. then proposed a
symplectic constant temperature algorithm in real time,
which is referred to as the Nosé-Poincaré thermostat.11 How-
ever, the original symplectic algorithm for the Nosé-Poincaré
thermostat is an implicit integrator. Iterations are necessary
for the thermostat. Nosé improved the original algorithm and
proposed an explicit symplectic integrator for the Nosé-
Poincaré thermostat.12 Although this formalism may not be
widely known, we found it very powerful and useful as was
shown in Refs. 13–15 and will be demonstrated below.

An explicit MD algorithm closest to a symplectic algo-
rithm for rigid-body molecules in the canonical ensemble
proposed so far is a combined algorithm16 of the symplectic
quaternion algorithm by Miller et al.5 and time reversible
algorithm for the Nosé-Hoover thermostat.10 Because the
Nosé-Hoover thermostat is a nonsymplectic algorithm, the
whole algorithm is also nonsymplectic. Employing a sym-
plectic MD algorithm, there is a conserved quantity which is
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close to Hamiltonian and the long-time deviation of the
Hamiltonian is suppressed. Symplectic MD algorithms are
thus getting popular recently.

In this article, we propose an explicit symplectic MD
algorithm for rigid-body molecules in the canonical en-
semble. Our strategy is to combine the quaternion algorithm
by Miller et al.5 with the explicit symplectic algorithm for
the Nosé-Poincaré thermostat by Nosé.12 We further combine
our algorithm with the Andersen barostat17 to present an ex-
plicit symplectic MD algorithm for rigid-body molecules in
the isobaric-isothermal ensemble. An explicit symplectic MD
algorithm for spherical atoms in the isobaric-isothermal en-
semble has been presented in Refs. 13 and 14. The isobaric-
isothermal algorithm in this article is an extension of the
algorithm for spherical atoms to that for rigid-body mol-
ecules. We also present a symplectic integrator in the con-
stant normal pressure and lateral surface area ensemble and a
symplectic integrator combined with the Parrinello-Rahman
algorithm.

In Sec. II we first give brief reviews of the Nosé-
Poincaré thermostat and the rigid-body MD algorithm. We
then explain the symplectic MD algorithms for rigid-body
molecules in the canonical, isobaric-isothermal, and related
ensembles. In Sec. III we compare our symplectic MD algo-
rithm with nonsymplectic MD algorithms in the canonical
ensemble. We apply our symplectic MD algorithm to a rigid-
body water model and make numerical comparisons with the
nonsymplectic MD algorithms. Section IV is devoted to con-
clusions.

II. METHODS

A. Nosé-Poincaré thermostat

The Nosé-Poincaré Hamiltonian HNP for N spherical at-
oms at temperature T0 is given by11,12

HNP = s��
i=1

N
pi�

2

2mis
2 + E�r�N�� +

Ps
2

2Q
+ gkBT0 log s − H0	

= s�HN�r�N�,p��N�,s,Ps� − H0� , �1�

where pi� and Ps are the conjugate momenta for the coordi-
nate ri of particle i and Nosé’s additional degree of freedom
s, respectively, and kB the is the Boltzmann constant. We
have introduced a simplified notation by the superscript �N�
for the set of coordinate and momentum vectors: r�N�


�r1 ,r2 , . . . ,rN�T and p��N�
�p1� ,p2� , . . . ,pN� �T, where the su-
perscript T stands for transpose. The real momentum pi and
the virtual momentum pi� are related by

pi =
pi�

s
. �2�

E is the potential energy. The constant mi is the mass of
particle i and Q is the artificial “mass” associated with s. The
constant g corresponds to the number of degrees of freedom.
In the case of a spherical atomic system, g equals 3N
�g equals 6N in the case of a rigid-body molecular system�.
The Hamiltonian HN is the original Nosé Hamiltonian and
H0 is the initial value of HN.

The equations of motion for the Nosé-Poincaré thermo-
stat are given by

ṙi =
pi

mi
, �3�

ṗi = Fi −
ṡ

s
pi, �4�

ṡ = s
Ps

Q
, �5�

Ṗs = �
i=1

N
pi

2

mi
− gkBT0, �6�

where the dot above each variable stands for the time deriva-
tive and the relation of

HN − H0 = 0 �7�

is used because HN is conserved. Equations �3�–�6� are the
same as those for the Nosé thermostat in the real time.

B. Molecular dynamics algorithm for rigid-body
molecules in the microcanonical ensemble

Hamiltonian for rigid-body molecules HRB are given
by5,18

HRB = �
i=1

N
1

8
�i

TSI�qi�DI iSI
T�qi��i + E�q�N�� , �8�

where qi is a quaternion of molecule i, which indicates the
orientation of the rigid-body molecule. Here, the quaternion
q= �q0 ,q1 ,q2 ,q3�T is related to the Euler angle �� ,� ,�� as
follows:

q0 = cos��

2
�cos�� + �

2
� , �9�

q1 = sin��

2
�cos�� − �

2
� , �10�

q2 = sin��

2
�sin�� − �

2
� , �11�

q3 = cos��

2
�sin�� + �

2
� . �12�

The elements of the matrix S�q� are given by

SI�q� =
q0 − q1 − q2 − q3

q1 q0 − q3 q2

q2 q3 q0 − q1

q3 − q2 q1 q0

� . �13�

The variable �i is the conjugate momentum for qi. The ma-

trix DJ is a 4�4 matrix consisting of the inverse of the prin-
cipal moments of inertia I1, I2, and I3 of molecule i,
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DI =
I0

−1 0 0 0

0 I1
−1 0 0

0 0 I2
−1 0

0 0 0 I3
−1
� , �14�

where I0 is an artificial constant. Note that the correct equa-
tions of motion for rigid-body molecules are obtained in the
limit of I0→�. In order to write the equations of motion
more elegantly, we may introduce the angular velocity

� = ��1,�2,�3�T, �15�

and the four-dimensional angular velocity

��4� = �0,�1,�2,�3�T, �16�

where �1, �2, and �3 are the angular velocities along each of
the corresponding principal axes. In the limit of I0→�, the
four-dimensional angular velocity �i

�4� is related to �i by

�i
�4� =

1

2
DI iSI

T�qi��i. �17�

In this limit the equations of motion for rigid-body molecules
are obtained as follows:

q̇i =
1

2
SI�qi��i

�4�, �18�

IIi�̇i = Ni − �i � �IIi�i� . �19�

Equation �19� is called the Euler equation of motion. Here, I
is the 3�3 diagonal matrix whose diagonal elements are I1,
I2, and I3. The vector Ni is the torque acting on molecule i,
which is calculated by

Ni = �
��i

r� � F�, �20�

where F� and r� are the coordinate and force of atom �,
respectively, in a rigid-body-fixed coordinate system for mol-
ecule i. The torque Ni is related to the potential energy E by

−
�E

�qi
= 2SI�qi�Ni

�4�, �21�

where

Ni
�4� = ��

��i

r� · F�, �
��i

r� � F�� . �22�

C. Symplectic molecular dynamics algorithm
for rigid-body molecules combined with the
Nosé-Poincaré thermostat

We here present the explicit symplectic MD algorithm
for rigid-body molecules in the canonical ensemble. We
combine the Nosé-Poincaré Hamiltonian in Eq. �1� �Refs. 11
and 12� and the Hamiltonian for rigid-body molecules in
Eq. �8�.5,18 The Nosé-Poincaré Hamiltonian for rigid-body
molecules is given by

HNP-RB = s��
i=1

N
pi�

2

2mis
2 + �

i=1

N
1

8s2�i�
TSI�qi�DI iSI

T�qi��i�

+ E�r�N�,q�N�� +
Ps

2

2Q
+ gkBT0 log s − H0	 , �23�

where r�N�= �r1 ,r2 , . . . ,rN�T stands for the set of the coordi-
nates of the center of mass for the rigid-body molecules. The
vector �i� is the conjugate momentum for quaternion qi. The
real momentum �i of the quaternion is related to the virtual
momentum �i� by

�i =
�i�

s
. �24�

The equations of motion are given from the Hamiltonian in
Eq. �23� by

ṙi =
pi

mi
, �25�

ṗi = Fi −
ṡ

s
pi, �26�

q̇i =
1

2
SI�qi��i

�4�, �27�

IIi�̇i = Ni − �i � �IIi�i� −
ṡ

s
IIi�i, �28�

ṡ = s
Ps

Q
, �29�

Ṗs = �
i=1

N
pi

2

mi
+ �

i=1

N

�i
TIIi�i − gkBT0. �30�

The time development of a physical quantity Z��� in the
phase space �
�r�N� ,p��N� ,q�N� ,���N� ,s , Ps�T is written by

dZ

dt
= �̇ ·

�Z

��
. �31�

The formal solution of the time development of Z from time
t to t+�t is given by

Z�t + �t� = eD�tZ�t� , �32�

where eD�t is called a time propagator. The operator D is
defined by

D 
 �̇ ·
�

��
. �33�

In the symplectic algorithm, the Hamiltonian in Eq. �23�
is separated into six terms here as follows:

HNP-RB = HNP-RB0 + HNP-RB1 + HNP-RB2 + HNP-RB3

+ HNP-RB4 + HNP-RB5, �34�

HNP-RB0 = s�
i=1

N
1

8I0s2 ��i�
TPI 0qi�2, �35�
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HNP-RB1 = s��
i=1

N
pi�

2

2mis
2 + �

i=1

N
1

8I1s2 ��i�
TPI 1qi�2

+ gkBT0 log s − H0	 , �36�

HNP-RB2 = s�
i=1

N
1

8I2s2 ��i�
TPI 2qi�2, �37�

HNP-RB3 = s�
i=1

N
1

8I3s2 ��i�
TPI 3qi�2, �38�

HNP-RB4 = sE�r�N�,q�N�� , �39�

HNP-RB5 = s
Ps

2

2Q
, �40�

where

PI 0q = �q0,q1,q2,q3�T, �41�

PI 1q = �− q1,q0,q3,− q2�T, �42�

PI 2q = �− q2,− q3,q0,q1�T, �43�

PI 3q = �− q3,q2,− q1,q0�T. �44�

If the Hamiltonian is decomposed so that each partial Hamil-
tonian may not have a conjugate pair of a coordinate and

momentum, the symplectic integrator will be straightfor-
wardly obtained. In the case that the partial Hamiltonian has
to have coupled conjugate variables, it is not always guaran-
teed to yield a symplectic integrator. This is why we tried to
avoid coupled variables in the partial Hamiltonians. Al-
though there are two types of coupled variables of

�i=1
N ��i�

TPI kqi�2 /8Iks
2, where k=0,1 , . . . ,3, and sPs

2 /2Q �the
pair of qi and �� and that of s and Ps are the coupled con-
jugate variables�, the corresponding symplectic integrators
can also be obtained as described below. In the limit of
I0→�, HNP-RB0 goes to zero: HNP-RB0→0. Hereafter, then
only Hamiltonians from HNP-RB1 to HNP-RB5 are considered.
The second-order formula with respect to �t is obtained by
the decomposition of the time propagator exp�D�t� into a
product of five time propagators:

exp�D�t� = exp�D5
�t

2
	exp�D4

�t

2
	exp�D3

�t

2
	

�exp�D2
�t

2
	exp�D1�t�exp�D2

�t

2
	

�exp�D3
�t

2
	exp�D4

�t

2
	exp�D5

�t

2
	

+ O����3� . �45�

Higher-order formulas can also be obtained in a similar man-
ner. The explicit form of each operator is as follows:

D1 = �
i=1

N � �HNP-RB1

�pi
·

�

�ri
−

�HNP-RB1

�ri
·

�

�pi�
� + �

i=1

N � �HNP-RB1

��i
·

�

�qi
−

�HNP-RB1

�qi
·

�

��i
� +

�HNP-RB1

�Ps

�

�s
−

�HNP-RB1

�s

�

�Ps

= �
i=1

N
pi�

mis
·

�

�ri
+ �

i=1

N
1

4I1s
��i�

TPI 1qi��PI 1qi� ·
�

�qi
+ �

i=1

N
1

4I1s
��i�

TPI 1qi��PI 1�i�� ·
�

��i�

+ ��
i=1

N
pi�

2

2mis
2 + �

i=1

N
1

8I1s2 ��i�
TPI 1qi�2 − gkBT0 log s + H0 − gkBT0	 �

�Ps
, �46�

D2 = �
i=1

N
1

4I2s
��i�

TPI 2qi��PI 2qi� ·
�

�qi
+ �

i=1

N
1

4I2s
��i�

TPI 2qi��PI 2�i�� .
�

��i�
+ ��

i=1

N
1

8I2s2 ��i�
TPI 2qi�2	 �

�Ps
, �47�

D3 = �
i=1

N
1

4I3s
��i�

TPI 3qi��PI 3qi� ·
�

�qi
+ �

i=1

N
1

4I3s
��i�

TPI 3qi��PI 3�i�� ·
�

��i�
+ ��

i=1

N
1

8I3s2 ��i�
TPI 3qi�2	 �

�Ps
, �48�

D4 = �
i=1

N

sFi ·
�

�pi�
+ �

i=1

N

2s�SI�qi�Ni
�4�� ·

�

��i�
− E�r�N�,q�N��

�

�Ps
, �49�
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D5 =
sPs

Q

�

�s
−

Ps
2

2Q

�

�Ps
. �50�

There is no term higher than the second power of �t in the
time developments by D4, because there is no conjugate pair
in HNP-RB4. Although there is a conjugate pair of qi and �i� in
HNP-RB1, the time developments of qi and �i� by HNP-RB1 are
given by5

exp�D1�t�qi = cos�	i1�t�qi + sin�	i1�t�PI 1qi, �51�

exp�D1�t��i� = cos�	i1�t��i� + sin�	i1�t�PI 1�i�, �52�

where

	i1 =
1

4I1s
�i�

TPJ 1qi. �53�

The time developments of qi and �i� by D2 and D3 are also
obtained in the same way. Although there is another conju-
gate pair of s and Ps in HNP-RB5, the time developments of s
and Ps by D5 are given explicitly by12

exp�D5�t�s = s�1 +
Ps

2Q
�t�2

, �54�

exp�D5�t�Ps = Ps��1 +
Ps

2Q
�t� . �55�

Finally, the explicit symplectic time developments for
rigid-body molecules in the canonical ensemble is obtained
from Eq. �45�. Here, a symbol of ← stands for a substitution
in a computer program �i.e., the variables in each step adopt
the substitutions in the preceding steps�.

Step 1. exp�D5�t /2� operation:

s ← s�1 +
Ps

2Q

�t

2
�2

, �56�

Ps ← Ps��1 +
Ps

2Q

�t

2
� . �57�

Step 2. exp�D4�t /2� operation:

pi� ← pi� + sFi
�t

2
, �58�

�i� ← �i� + 2sSI�qi�Ni
�4��t

2
, �59�

Ps ← Ps − E�r�N�,q�N��
�t

2
. �60�

Step 3. exp�D3�t /2� operation:

	i3 ←
1

4I3s
�i�

TPJ 3qi, �61�

qi ← cos�	i3
�t

2
�qi + sin�	i3

�t

2
�PI 3qi, �62�

�i� ← cos�	i3
�t

2
��i� + sin�	i3

�t

2
�PI 3�i�, �63�

Ps ← Ps + ��
i=1

N

2I3	i3
2 ��t

2
. �64�

Step 4. exp�D2�t /2� operation:

	i2 ←
1

4I2s
�i�

TPJ 2qi, �65�

qi ← cos�	i2
�t

2
�qi + sin�	i2

�t

2
�PI 2qi, �66�

�i� ← cos�	i2
�t

2
��i� + sin�	i2

�t

2
�PI 2�i�, �67�

Ps ← Ps + ��
i=1

N

2I2	i2
2 ��t

2
. �68�

Step 5. exp�D1�t� operation:

ri ← ri +
pi�

mis
�t , �69�

	i1 ←
1

4I1s
�i�

TPJ 1qi, �70�

qi ← cos�	i1�t�qi + sin�	i1�t�PI 1qi, �71�

�i� ← cos�	i1�t��i� + sin�	i1�t�PI 1�i�, �72�

Ps ← Ps + ��
i=1

N
pi�

2

2mis
2 + �

i=1

N

2I1	i1
2 − gkBT0 log s + H0

− gkBT0��t . �73�

Step 6. exp�D2�t /2� operation:

	i2 ←
1

4I2s
�i�

TPJ 2qi, �74�

qi ← cos�	i2
�t

2
�qi + sin�	i2

�t

2
�PI 2qi, �75�

�i� ← cos�	i2
�t

2
��i� + sin�	i2

�t

2
�PI 2�i�, �76�

Ps ← Ps + ��
i=1

N

2I2	i2
2 ��t

2
. �77�

Step 7. exp�D3�t /2� operation:

	i3 ←
1

4I3s
�i�

TPJ 3qi, �78�
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qi ← cos�	i3
�t

2
�qi + sin�	i3

�t

2
�PI 3qi, �79�

�i� ← cos�	i3
�t

2
��i� + sin�	i3

�t

2
�PI 3�i�, �80�

Ps ← Ps + ��
i=1

N

2I3	i3
2 ��t

2
. �81�

Step 8. exp�D4�t /2� operation:

pi� ← pi� + sFi
�t

2
, �82�

�i� ← �i� + 2sSI�qi�Ni
�4��t

2
, �83�

Ps ← Ps − E�r�N�,q�N��
�t

2
. �84�

Step 9. exp�D5�t /2� operation:

s ← s�1 +
Ps

2Q

�t

2
�2

, �85�

Ps ← Ps��1 +
Ps

2Q

�t

2
� . �86�

D. Symplectic molecular dynamics algorithm for
rigid-body molecules combined with the
Nosé-Poincaré thermostat and the Andersen barostat

In this section we present the explicit symplectic MD
algorithm for rigid-body molecules in the isobaric-isothermal
ensemble. The Hamiltonian for rigid-body molecules at tem-
perature T0 and pressure P0 is given by combining the
Hamiltonian in Eq. �23� and the Andersen barostat17 as
follows:

HNPA-RB = s��
i=1

N
p̃i

2

2mis
2V2/3 + �

i=1

N
1

8s2�i�
TSI�qi�DI iSI

T�qi��i�

+ E�r̃�N�,q�N�,V� +
Ps

2

2Q
+ gkBT0 log s +

PV
2

2W

+ P0V − H0	
= s�HNA�r̃�N�, p̃�N�,q�N�,���N�,s,Ps,V,PV� − H0� ,

�87�

where p̃i and r̃i are the scaled momentum and the scaled

coordinate by volume V and the degree of the Nosé-Poincaré
thermostat s. They are related to pi and ri by

pi =
p̃i

sV1/3 , �88�

ri = V1/3r̃i. �89�

The constant W is the “mass” associated with V. The variable
PV is the conjugate momenta for V. The constant H0 here is
the initial value of the Nosé-Andersen Hamiltonian HNA. The
equations of motion are given by

ṙi =
pi

mi
+

V̇

3V
ri, �90�

ṗi = Fi − � ṡ

s
+

V̇

3V
�pi, �91�

q̇i =
1

2
SI�qi��i

�4�, �92�

IIi�̇i = Ni − �i � �IIi�i� −
ṡ

s
IIi�i, �93�

ṡ = s
Ps

Q
, �94�

Ṗs = �
i=1

N
pi

2

mi
+ �

i=1

N

�i
TIIi�i − gkBT0, �95�

V̇ = s
PV

W
, �96�

ṖV = s� 1

3V
��

i=1

N
pi

2

mi
+ �

i=1

N

Fi · ri� − P0	 , �97�

where the relation of

HNA − H0 = 0 �98�

is used.
The Hamiltonian in the isobaric-isothermal ensemble is

separated into six terms as follows:

HNPA-RB = HNPA-RB1 + HNPA-RB2 + HNPA-RB3 + HNPA-RB4

+ HNPA-RB5 + HNPA-RB6, �99�

HNPA-RB1 = s��
i=1

N
p̃i

2

2mis
2V2/3 + �

i=1

N
1

8I1s2 ��i�
TPI 1qi�2

+ gkBT0 log s − H0	 , �100�

HNPA-RB2 = s�
i=1

N
1

8I2s2 ��i�
TPI 2qi�2, �101�
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HNPA-RB3 = s�
i=1

N
1

8I3s2 ��i�
TPI 3qi�2, �102�

HNPA-RB4 = s
PV

2

2W
, �103�

HNPA-RB5 = s�E�r̃�N�,q�N�,V� + P0V� , �104�

HNPA-RB6 = s
Ps

2

2Q
, �105�

where the term of s�i=1
N ��i�

TPI 0qi�2 /8I0s2 has been neglected
again because it is zero in the limit of I0→�. As in the
decomposition in Eq. �45� in the canonical ensemble, the
second-order formula is obtained for the time propagator
exp�D�t� as a product of six time propagators:

exp�D�t� = exp�D6
�t

2
	exp�D5

�t

2
	exp�D4

�t

2
	exp�D3

�t

2
	exp�D2

�t

2
	exp�D1�t�exp�D2

�t

2
	

� exp�D3
�t

2
	exp�D4

�t

2
	exp�D5

�t

2
	exp�D6

�t

2
	 + O���t�3� , �106�

where D1 ,D2 , . . . ,D6 are the time propagators which corre-
spond to HNPA-RB1 ,HNPA-RB2 , . . . ,HNPA-RB6, respectively.

According to the decomposition in Eq. �106�, the explicit
symplectic time developments for rigid-body molecules in
the isobaric-isothermal ensemble are given as follows:

Step 1. exp�D6�t /2� operation:

s ← s�1 +
Ps

2Q

�t

2
�2

, �107�

Ps ← Ps��1 +
Ps

2Q

�t

2
� . �108�

Step 2. exp�D5�t /2� operation:

p̃i ← p̃i + sV1/3Fi
�t

2
, �109�

�i� ← �i� + 2sSI�qi�Ni
�4��t

2
, �110�

Ps ← Ps − �E�r̃�N�,q�N�,V� + P0V�
�t

2
, �111�

PV ← PV + s� 1

3V
�
i=1

N

Fi · ri − P0��t

2
. �112�

Step 3. exp�D4�t /2� operation:

Ps ← Ps −
PV

2

2W

�t

2
, �113�

V ← V + s
PV

W

�t

2
. �114�

Step 4. exp�D3�t /2� operation:

	i3 ←
1

4I3s
�i�

TPJ 3qi, �115�

qi ← cos�	i3
�t

2
�qi + sin�	i3

�t

2
�PI 3qi, �116�

�i� ← cos�	i3
�t

2
��i� + sin�	i3

�t

2
�PI 3�i�, �117�

Ps ← Ps + ��
i=1

N

2I3	i3
2 ��t

2
. �118�

Step 5. exp�D2�t /2� operation:

	i2 ←
1

4I2s
�i�

TPJ 2qi, �119�

qi ← cos�	i2
�t

2
�qi + sin�	i2

�t

2
�PI 2qi, �120�

�i� ← cos�	i2
�t

2
��i� + sin�	i2

�t

2
�PI 2�i�, �121�

Ps ← Ps + ��
i=1

N

2I2	i2
2 ��t

2
. �122�

Step 6. exp�D1�t� operation:

r̃i ← r̃i +
p̃i

misV2/3�t , �123�

	i1 ←
1

4I1s
�i�

TPJ 1qi, �124�

qi ← cos�	i1�t�qi + sin�	i1�t�PI 1qi, �125�

�i� ← cos�	i1�t��i� + sin�	i1�t�PI 1�i�, �126�
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Ps ← Ps + ��
i=1

N
p̃i

2

2mis
2V2/3 + �

i=1

N

2I1	i1
2 − gkBT0 log s

+ H0 − gkBT0��t . �127�

PV ← PV + �
i=1

N
p̃i

2

3misV5/3�t . �128�

Step 7. exp�D2�t /2� operation:

	i2 ←
1

4I2s
�i�

TPJ 2qi, �129�

qi ← cos�	i2
�t

2
�qi + sin�	i2

�t

2
�PI 2qi, �130�

�i� ← cos�	i2
�t

2
��i� + sin�	i2

�t

2
�PI 2�i�, �131�

Ps ← Ps + ��
i=1

N

2I2	i2
2 ��t

2
. �132�

Step 8. exp�D3�t /2� operation:

	i3 ←
1

4I3s
�i�

TPJ 3qi, �133�

qi ← cos�	i3
�t

2
�qi + sin�	i3

�t

2
�PI 3qi, �134�

�i� ← cos�	i3
�t

2
��i� + sin�	i3

�t

2
�PI 3�i�, �135�

Ps ← Ps + ��
i=1

N

2I3	i3
2 ��t

2
. �136�

Step 9. exp�D4�t /2� operation:

Ps ← Ps −
PV

2

2W

�t

2
, �137�

V ← V + s
PV

W

�t

2
. �138�

Step 10. exp�D5�t /2� operation:

p̃i ← p̃i + sV1/3Fi
�t

2
, �139�

�i� ← �i� + 2sSI�qi�Ni
�4��t

2
, �140�

Ps ← Ps − �E�r̃�N�,q�N�,V� + P0V�
�t

2
, �141�

PV ← PV + s� 1

3V
�
i=1

N

Fi · ri − P0��t

2
. �142�

Step 11. exp�D6�t /2� operation:

s ← s�1 +
Ps

2Q

�t

2
�2

, �143�

Ps ← Ps��1 +
Ps

2Q

�t

2
� . �144�

E. Symplectic molecular dynamics algorithm for
rigid-body molecules in the constant temperature,
constant normal pressure, and constant lateral surface
area ensemble

An explicit symplectic MD algorithm in the constant
temperature, constant normal pressure, and constant lateral
surface area ensemble is also easily obtained. In Sec. II D
Andersen’s constant pressure algorithm was employed for all
three side lengths of the simulation cell. On the other hand,
one of the side lengths of the simulation cell fluctuates in the
constant normal pressure and constant lateral surface area
ensemble. This ensemble is often used for membrane
systems.16 The Hamiltonian for this ensemble is given by

HNPA1-RB = s��
i=1

N
p̃xi

2

2mis
2L2 + �

i=1

N
pyi�

2 + pzi�
2

2mis
2

+ �
i=1

N
1

8s2�i�
TSI�qi�DI iSI

T�qi��i�

+ E�x̃�N�,y�N�,z�N�,q�N�,L� +
Ps

2

2Q
+ gkBT0 log s

+
PL

2

2W
+ P0AL − H0	 , �145�

where the variable PL is the conjugate momenta for the side
length L of the simulation cell along the x axis. The constant
A is the lateral surface area on the yz plane. Therefore the
volume of the simulation cell V is given by AL. Note that x
components of pi and ri are scaled by pxi= p̃xi /sL and
xi=Lx̃i, respectively, whereas y and z components of pi are
scaled by Eq. �2�. The equations of motion are given by

ẋi =
pxi

mi
+

L̇

L
xi, �146�

ẏi =
pyi

mi
, żi =

pzi

mi
, �147�

ṗxi = Fxi − � ṡ

s
+

L̇

L
�pxi, �148�

ṗyi = Fyi −
ṡ

s
pyi, ṗzi = Fzi −

ṡ

s
pzi, �149�
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q̇i =
1

2
SI�qi��i

�4�, �150�

IIi�̇i = Ni − �i � �IIi�i� −
ṡ

s
IIi�i, �151�

ṡ = s
Ps

Q
, �152�

Ṗs = �
i=1

N
pi

2

mi
+ �

i=1

N

�i
TIIi�i − gkBT0, �153�

L̇ = s
PL

W
, �154�

ṖL = sA� 1

V
��

i=1

N
pxi

2

mi
+ �

i=1

N

Fxi · xi� − P0	 . �155�

The Hamiltonian in Eq. �145� is separated into six terms as
follows:

HNPA1-RB1 = s��
i=1

N
p̃xi

2

2mis
2L2 + �

i=1

N
pyi�

2 + pzi�
2

2mis
2

+ �
i=1

N
1

8I1s2 ��i�
TPI 1qi�2 + gkBT0 log s − H0	 ,

�156�

HNPA1-RB2 = s�
i=1

N
1

8I2s2 ��i�
TPI 2qi�2, �157�

HNPA1-RB3 = s�
i=1

N
1

8I3s2 ��i�
TPI 3qi�2, �158�

HNPA1-RB4 = s
PL

2

2W
, �159�

HNPA1-RB5 = s�E�x̃�N�,y�N�,z�N�,q�N�,L� + P0AL� , �160�

HNPA1-RB6 = s
Ps

2

2Q
. �161�

In order to obtain the second-order symplectic formula, the
time propagator exp�D�t� is again decomposed to a product
of six time propagators as in Eq. �106�. The symplectic time
developments are then given by

exp�D1�t�x̃i = x̃i +
p̃xi

misL2�t , �162�

exp�D1�t�yi = yi +
pyi�

2

mis
�t , �163�

exp�D1�t�zi = zi +
pzi�

2

mis
�t , �164�

exp�D1�t�qi = cos�	i1�t�qi + sin�	i1�t�PI 1qi,

where

	i1 =
1

4I1s
�i�

TPI 1qi, �165�

exp�D1�t��i� = cos�	i1�t��i� + sin�	i1�t�PI 1�i�, �166�

exp�D1�t�Ps = Ps + ��
i=1

N
p̃xi

2

2mis
2L2 + �

i=1

N
pyi�

2 + pzi�
2

2mis
2

+ �
i=1

N

2I1	i1
2 − gkBT0 log s + H0

− gkBT0��t , �167�

exp�D1�t�PL = PL + �
i=1

N
p̃xi

2

misL3�t , �168�

exp�D2�t�qi = cos�	i2�t�qi + sin�	i2�t�PI 2qi,

where

	i2 =
1

4I2s
�i�

TPI 2qi, �169�

exp�D2�t��i� = cos�	i2�t��i� + sin�	i2�t�PI 2�i�, �170�

exp�D2�t�Ps = Ps + ��
i=1

N

2I2	i2
2 ��t , �171�

exp�D3�t�qi = cos�	i3�t�qi + sin�	i3�t�PI 3qi,

where

	i3 =
1

4I3s
�i�

TPI 3qi, �172�

exp�D3�t��i� = cos�	i3�t��i� + sin�	i3�t�PI 3�i�, �173�

exp�D3�t�Ps = Ps + ��
i=1

N

2I3	i3
2 ��t , �174�

exp�D4�t�Ps = Ps −
PL

2

2W
�t , �175�

exp�D4�t�L = L + s
PL

W
�t , �176�

exp�D5�t�p̃xi = p̃xi + sLFxi�t , �177�

exp�D5�t�pyi� = pyi� + sFyi�t , �178�

exp�D5�t�pzi� = pzi� + sFzi�t , �179�
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exp�D5�t��i� = �i� + 2sSI�qi�Ni
�4��t , �180�

exp�D5�t�Ps = Ps − �E + P0AL��t , �181�

exp�D5�t�PL = PL + s� 1

L
�
i=1

N

Fxi · xi − P0A��t , �182�

exp�D6�t�s = s�1 +
Ps

2Q
�t�2

, �183�

exp�D6�t�Ps = Ps��1 +
Ps

2Q
�t� . �184�

Note that �t will be replaced in a computer program by �t /2
for the time propagation by D2 ,D3 , . . . ,D6 in Eqs.
�169�–�184�. These time propagators are used in the order of
Eq. �106�.

F. Symplectic molecular dynamics algorithm for
rigid-body molecules combined with the
Nosé-Poincaré thermostat and the Parrinello-Rahman
barostat

In this section we present an explicit symplectic MD
algorithm for rigid-body molecules in the isobaric-isothermal
ensemble with simulation-cell deformation. The Hamiltonian
is given by combining the Hamiltonian in Eq. �23� and the
Parrinello-Rahman barostat19 as follows:

HNPPR-RB = s��
i=1

N
1

2mis
2 p̃i

TGI−1p̃i

+ �
i=1

N
1

8s2�i�
TSI�qi�DI iSI

T�qi��i�

+ E�r̃�N�,q�N�,LI� +
Ps

2

2Q
+ gkBT0 log s

+
1

2W
Tr�PIL

TPIL� + P0V − H0	 , �185�

where LI is the matrix of cell parameters, PIL is the conjugate

momenta for LI, and GI is given by LITLI. The scaled momen-
tum p̃i and the scaled coordinate r̃i are related to pi and ri

here by

pi =
1

s
�LIT�−1p̃i, �186�

ri = LIr̃i. �187�

The equations of motion are given by

ṙi =
pi

mi
+ LİLI−1ri, �188�

ṗi = Fi −
ṡ

s
pi − �LİLI−1�Tpi, �189�

q̇i =
1

2
SI�qi��i

�4�, �190�

IIi�̇i = Ni − �i � �IIi�i� −
ṡ

s
IIi�i, �191�

ṡ = s
Ps

Q
, �192�

Ṗs = �
i=1

N
pi

2

mi
+ �

i=1

N

�i
TIIi�i − gkBT0, �193�

Lİ =
s

W
PIL, �194�

PİL = s� 1

V
��

i=1

N
1

mi
pipi

T + �
i=1

N

Firi
T� − P01I	�I , �195�

where �I is related to LI by �IT=VLI−1 and 1I is the identity
matrix. Note that pipi

T and Firi
T are dyadic tensors, whose

�� ,
� elements �� ,
=x ,y ,z� are p�ip
i and F�ir
i, respec-
tively. The Hamiltonian in Eq. �185� is also separated into six
terms as follows:

HNPPR-RB1 = s��
i=1

N
1

2mis
2 p̃i

TGI−1p̃i + �
i=1

N
1

8I1s2 ��i�
TPI 1qi�2

+ gkBT0 log s − H0	 , �196�

HNPPR-RB2 = s�
i=1

N
1

8I2s2 ��i�
TPI 2qi�2, �197�

HNPPR-RB3 = s�
i=1

N
1

8I3s2 ��i�
TPI 3qi�2, �198�

HNPPR-RB4 =
s

2W
Tr�PIL

TPIL� , �199�

HNPPR-RB5 = s�E�r̃�N�,q�N�,LI� + P0V� , �200�

HNPPR-RB6 = s
Ps

2

2Q
. �201�

The symplectic time developments are given using the de-
composition of exp�D�t� in Eq. �106� by

exp�D1�t�r̃i = r̃i +
�t

mis
GI−1p̃i, �202�

exp�D1�t�qi = cos�	i1�t�qi + sin�	i1�t�PI 1qi,

where

	i1 =
1

4I1s
�i�

TPI 1qi, �203�
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exp�D1�t��i� = cos�	i1�t��i� + sin�	i1�t�PI 1�i�, �204�

exp�D1�t�Ps = Ps + ��
i=1

N
1

2mis
2 p̃i

TGI−1p̃i + �
i=1

N

2I1	i1
2

− gkBT0 log s + H0 − gkBT0��t , �205�

exp�D1�t�PIL = PIL +
�t

V ��
i=1

N
1

mis
��LIT�−1p̃i�

���LIT�−1p̃i�T��I , �206�

exp�D2�t�qi = cos�	i2�t�qi + sin�	i2�t�PI 2qi,

where

	i2 =
1

4I2s
�i�

TPI 2qi, �207�

exp�D2�t��i� = cos�	i2�t��i� + sin�	i2�t�PI 2�i�, �208�

exp�D2�t�Ps = Ps + ��
i=1

N

2I2	i2
2 ��t , �209�

exp�D3�t�qi = cos�	i3�t�qi + sin�	i3�t�PI 3qi,

where

	i3 =
1

4I3s
�i�

TPI 3qi, �210�

exp�D3�t��i� = cos�	i3�t��i� + sin�	i3�t�PI 3�i�, �211�

exp�D3�t�Ps = Ps + ��
i=1

N

2I3	i3
2 ��t , �212�

exp�D4�t�Ps = Ps −
�t

2W
Tr�PIL

TPIL� , �213�

exp�D4�t�LI = LI +
s�t

W
PIL, �214�

exp�D5�t�p̃i = p̃i + sLITFi�t , �215�

exp�D5�t��i� = �i� + 2sSI�qi�Ni
�4��t , �216�

exp�D5�t�Ps = Ps − �E�r̃�N�,q�N�,LI� + P0V��t , �217�

exp�D5�t�PIL = PIL + s�t� 1

V
�
i=1

N

Firi
T − P01J��I , �218�

exp�D6�t�s = s�1 +
Ps

2Q
�t�2

, �219�

exp�D6�t�Ps = Ps��1 +
Ps

2Q
�t� . �220�

Note again that �t will be replaced in a computer program
by �t /2 for the time propagation by D2 ,D3 , . . . ,D6 in Eqs.

�207�–�220�. Taking the matrix LI symmetric �LIT=LI�, the
symplectic integrator for the Nosé-Klein form20 of the
Parrinello-Rahman barostat19 is also obtained in the same
manner.

G. Symplectic condition and time reversibility

In this section we discuss the symplectic condition and
the time reversibility.9 Let us consider a time-independent
canonical transformation from

� = �Q

P
� �221�

to

�� = �Q��Q,P�
P��Q,P�

� , �222�

where Q and P are the generalized coordinate and the gen-
eralized momentum, respectively. The canonical equation of
� is given by

�̇ = J
�H

��
, �223�

where

J = � 0I 1I

− 1I 0I
� . �224�

Because �� is given by the canonical transformation from �,
the canonical equation of �� is also given by

�̇� = J
�H

���
. �225�

The time derivative of ����� is derived in another way
by the chain rule,

�̇� =
���

��
�̇ = M�̇ = MJ

�H

��
= MJMT �H

���
, �226�

where M is the Jacobian matrix for the canonical transfor-
mation from � to �� and its �i , j� element is given by

Mij =
��i�

�� j
. �227�

Comparing Eqs. �225� and �226�, we obtain the symplectic
condition,

MJMT = J . �228�

In general, the generalized coordinates and momenta ob-
tained by a Hamiltonian dynamics fulfills the symplectic
condition in Eq. �228�.
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Each factor in the decompositions in Eqs. �45� and �106�
is a time propagator based on the corresponding Hamil-
tonian. For example, exp�D1�t� in Eqs. �45� is a time propa-
gator by the Hamiltonian of HNP-RB1. Therefore, the time
developments by the decompositions in Eqs. �45� and �106�
fulfill the symplectic condition. All variables in Eqs.
�56�–�86� are canonical variables such as ri, pi�, qi, �i�, s,
and Ps. Besides, the time propagator here is decomposed so
that the MD algorithm will be time reversible; namely,
exp�−D�t�exp�D�t�=1 holds in Eqs. �45� and �106�.

Employing the symplectic MD algorithm, there is a con-
served quantity which is close to the Hamiltonian.3 It means
that the long-time deviation of the Hamiltonian is sup-
pressed. Therefore, we can perform a MD simulation more
stably than by conventional nonsymplectic algorithms.

From the symplectic condition in Eq. �228�, the Jacobian
determinant is calculated to be 1:

det M = 1. �229�

It means that the phase-space volume is conserved during the
simulation. Note that the phase-space-volume conservation is
a necessary condition of the symplectic condition and not a
sufficient condition. The condition that the Jacobian determi-
nant is one does not always mean symplectic. Even if the
Jacobian determinant is 1, there is not always conserved
quantity which is close to the Hamiltonian. In other words,
there are nonsymplectic MD algorithms which are phase-
space volume conserving and time reversible. The time
propagators in these nonsymplectic algorithms are not based
on Hamiltonian and the variables are not canonical variables.
That is, the symplectic condition in Eq. �228� is not fulfilled.
Therefore, there is no conserved quantity which is close to
the Hamiltonian. It means that the value of the Hamiltonian
deviates gradually from its initial value in a long-time simu-
lation. In the next section we compare our symplectic algo-
rithm with the nonsymplectic time-reversible algorithms.

III. COMPARISONS WITH NONSYMPLECTIC
TIME-REVERSIBLE ALGORITHMS

In this section we explain three nonsymplectic algo-
rithms in the canonical ensemble, which are time reversible.
We then apply our symplectic algorithm and these nonsym-
plectic algorithms to a rigid-body water model and compare
them numerically.

A. Molecular dynamics algorithm based on the
Nosé-Poincaré thermostat and the nonsymplectic
rigid-body algorithm

Instead of the symplectic rigid-body MD algorithm by
Miller et al.,5 we here combine the nonsymplectic rigid-body
MD algorithm by Matubayasi and Nakahara4 with the Nosé-
Poincaré thermostat.11,12 In this algorithm, angular velocity
�i�
s�i instead of �i� is employed, that is, the variables
here are ri, pi�, qi, �i�, s, and Ps.

The time propagator exp�D�t� is decomposed as

exp�D�t� = exp�D5
�t

2
	exp�D4

�t

2
	exp�D3

�t

2
	

�exp�D2
�t

2
	exp�D1�t�exp�D2

�t

2
	

�exp�D3
�t

2
	exp�D4

�t

2
	exp�D5

�t

2
	

+ O���t�3� . �230�

where each time propagator is given by

D1 = �
i=1

N
pi�

mis
·

�

�ri
+ �

i=1

N
1

2s
�SI�qi��i�

�4�� ·
�

�qi

+ ��
i=1

N
pi�

2

2mis
2 + �

i=1

N
1

2s2�i�
�4�TDI i�i�

�4� − gkBT0 log s

+ H0 + gkBT0	 �

�Ps
, �231�

D2 = �
i=1

N
Iiy − Iiz

Iixs
�iy� �iz�

�

��ix�
+ �

i=1

N
Iiz − Iiy

Iizs
�ix� �iy�

�

��iz�
,

�232�

D3 = �
i=1

N
Iiz − Iix

Iiys
�iz��ix�

�

��iy�
+ �

i=1

N
Iix − Iiz

Iizs
�ix� �iy�

�

��iz�
,

�233�

D4 = �
i=1

N

sFi ·
�

�pi�
+ �

i=1

N

s�Ii
−1Ni� ·

�

��i�

− �
i=1

N

E�r�N�,q�N��
�

�Ps
, �234�

D5 =
sPs

Q

�

�s
−

Ps
2

2Q

�

�Ps
. �235�

B. Molecular dynamics algorithm based on the
Nosé-Hoover thermostat and the symplectic rigid-body
algorithm

We here combine the symplectic rigid-body MD
algorithm5 with the Nosé-Hoover thermostat6–8,10 �the latter
is nonsymplectic�. This combination has been employed in
Ref. 16. Instead of s and Ps, �=log s and = Ps /Q are used
for the thermostat, that is, the variables employed here are ri,
pi, qi, �i, �, and .

The time propagator exp�D�t� is decomposed as10
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exp�D�t� = exp�D6
�t
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+ O���t�3� , �236�

where each time propagator is given by16
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N
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��i
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4I2
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TSI�qi�DI iSI
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�242�

We remark that we can also make another second-order in-
tegrator by the decomposition in Eq. �106� instead of Eq.
�236�. However, the original time reversible algorithm for
the Nosé-Hoover thermostat decomposed the time propaga-
tor as in Eq. �236�,10 thus we used this decomposition.

C. Molecular dynamics algorithm based on the
Nosé-Hoover thermostat and the symplectic rigid-body
algorithm

We can also make a nonsymplectic algorithm by the
rigid-body algorithm by Matubayasi and Nakahara4 and the
Nosé-Hoover thermostat.6–8,10 In this algorithm the follow-
ing variables are developed with time: ri, pi, qi, �i, �, and .

The time propagator exp�D�t� is decomposed as in Eq.
�236�. Each decomposed time propagator is given by
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1
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pi
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�i
�4�TDI i�i

�4� − gkBT0� �

�
. �248�

D. Numerical comparisons: Application to a pure water
system

We applied the symplectic and nonsymplectic MD algo-
rithms to a rigid-body model of water in the canonical en-
semble. We employed the TIP3P rigid-body model for the
water molecules.21 We used 80 water molecules in a cubic
unit cell with periodic boundary conditions. The temperature
was set at 300 K and the mass density was set to
0.997 g/cm3. The electrostatic potential was calculated by
the Ewald method. We calculated the van der Waals interac-
tion, which is given by the Lennerd-Jones term, of all pairs
of the molecules within the minimum image convention in-
stead of introducing the spherical potential cutoff. If one in-
troduces a potential cutoff carelessly, the potential energy
will not be a continuous function and the Hamiltonian will
not be conserved. In order to check the Hamiltonian conser-
vation, we avoided such an artifact induced by the potential
energy cutoff. We tested the time steps of �t=2, 3, 4, and
5 fs. We performed the MD simulations for 1.5 ns in all
cases of �t. We employed Eqs. �56�–�86� for the Nosé-
Poincaré thermostat and symplectic rigid-body MD simula-
tions, Eqs. �231�–�235� for the Nosé-Poincaré thermostat and
nonsymplectic rigid-body MD simulations, Eqs. �237�–�242�
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for the Nosé-Hoover thermostat and symplectic rigid-body
MD simulations, and the time development in Eqs.
�243�–�248� for the Nosé-Hoover thermostat and nonsym-
plectic rigid-body MD simulations. The same initial condi-
tions were used for all algorithms and time steps.

We observed the deviations of the Nosé Hamiltonian
from its initial values,

�H�t� = �
i=1

N
pi�

2

2mis
2 + �

i=1

N
1

8s2�i�
TSI�qi�DI iSI

T�qi��i�

+ E�r�N�,q�N�� +
Ps

2

2Q
+ gkBT0 log s − H0. �249�

Figures 1–4 show �H�t� for �t=2, 3, 4, and 5 fs, respec-

tively. The gradient of the linear fitting for each �H�t� is
shown in Table I.

In every nonsymplectic MD algorithm, the Hamiltonian
deviates from its initial value as time passes even for
�t=2 fs as shown in Figs. 1�b�–1�d�. This deviation in-
creases as the time step increases from �t=2 to 5 fs as
shown in Figs. 2–4. Note that the energy scale in the ordinate
increases as �t increases.

On the other hand, the Nosé-Poincaré thermostat and
symplectic rigid-body MD algorithm guarantees the exis-
tence of a conserved quantity which is close to the Hamil-
tonian. Because of this conserved quantity, the difference
�H�t� was suppressed well for time steps of �t=2, 3, and
4 fs as shown in Figs. 1�a�–3�a�. The Hamiltonian starts to

FIG. 1. The time series of the differ-
ence �H�t� of Hamiltonian from its
initial value. The time step was set to
�t=2 fs. �a� Nosé-Poincaré thermostat
and symplectic rigid-body MD, �b�
Nosé-Poincaré thermostat and non-
symplectic rigid-body MD, �c� Nosé-
Hoover thermostat and symplectic
rigid-body MD, and �d� Nosé-Hoover
thermostat and nonsymplectic rigid-
body MD.

FIG. 2. The time series of �H�t�. The
time step was set to �t=3 fs �see the
caption of Fig. 1 for further details�.
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deviate slightly by d�H�t� /dt=3.7�10−3 kcal/mol ns in the
case of �t=5 fs as shown in Table I and Fig. 4�a�. However,
the other nonsymplectic integrators perform much worse
here. They deviate by the order of d�H�t� /dt
=10−1 kcal/mol ns �see Table I�. This fact implies that by
employing the combination of the Nosé-Poincaré thermostat
and the symplectic rigid-body algorithm, one can take a time
step of as much as 4 fs. This time step is longer than typical
values of 0.5–2 fs which are used by the conventional non-
symplectic algorithms.

We comment here on the temperature control by the
Nosé-Poincaré thermostat. Figure 5 shows the difference of
temperature calculated by the MD simulations from its preset
value of T0=300 K:

�T� − T0 =� 1

6NkB
��

i=1

N
pi

2

mi
+ �

i=1

N

�i
TIIi�i�� − T0. �250�

The error bars were estimated by the jackknife method22 by
dividing the production run into ten segments. In the case
that the Nosé-Poincaré thermostat was employed, this devia-
tion is larger than that by the Nosé-Hoover thermostat. Fig-
ure 5�a� shows that this deviation by the symplectic rigid-
body integrator with the Nosé-Poincaré thermostat is of the
order of ��t�2 as for �t=2, 3, and 4 fs. The straight line in
Fig. 5�a� was determined by the least-squares fitting for the
data at �t=2, 3, and 4 fs to

FIG. 3. The time series of �H�t�. The
time step was set to �t=4 fs �see the
caption of Fig. 1 for further details�.

FIG. 4. The time series of �H�t�. The
time step was set to �t=5 fs �see the
caption of Fig. 1 for further details�.
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�T� − T0 = a��t�2, �251�

where a is a fitting parameter. This deviation possibly comes
from the equations of motion for the Nosé-Poincaré thermo-
stat. It is not due to the combination of the Nosé-Poincaré
thermostat and the symplectic rigid-body MD algorithm. The

conserved quantity H̃ in the Nosé-Poincaré thermostat has a
difference of the order of ��t�2 from the original Nosé-
Poincaré Hamiltonian HNP=s�HN−H0�,

H̃ = s�HN�r�N�,p��N�,s,Ps� − H0� + O���t�2� . �252�

The dynamics of the actual symplectic MD simulation is

based on H̃ rather than HN. The conserved quantity H̃ has a
role of the Hamiltonian for the dynamics of the symplectic
MD simulation and is here referred to as the virtual Hamil-

tonian. Based on H̃, Eq. �6� is rewritten as

Ṗs = �
i=1

N
pi

2

mi
− gkBT0 − �HN�r�N�,p��N�,s,Ps� − H0�

+ O���t�2� . �253�

The error term of the order of ��t�2 comes from the virtual

Hamiltonian H̃ in Eq. �252�. This difference means that T0 is
practically modified in the order of ��t�2 in Eq. �253�. This is
why the average temperature �T� was different from T0 by
the order of ��t�2. One possible method to alleviate this tem-
perature deviation is to reset the value of H0 so that it will

compensate for the term of O���t�2� in Eq. �253�. Although
the Hamiltonian conservation is excellent by the symplectic
rigid-body MD integrator with the Nosé-Poincaré thermostat,
one has to pay attention to the temperature control. In the
case of �t=5 fs, the deviation �T�−T0 is not on the line in
Eq. �251�. This is because HN gradually increases as time
passes �see Fig. 4�a��. In the combined algorithm of the
Nosé-Poincaré thermostat and nonsymplectic rigid-body MD
algorithm, HN increases as time passes as well �see Figs.
1�b�–4�b��. The deviation �T�−T0 is thus not on the line in
Eq. �251� as shown in Fig. 5�b�. In the case of the Nosé-
Hoover thermostat �see Figs. 5�c� and 5�d��, �T� also deviates
from T0 as �t increases, although its deviation is much
smaller than that by the Nosé-Poincaré thermostat.

IV. CONCLUSIONS

We have proposed an explicit symplectic MD algorithm
for rigid-body molecules in the canonical ensemble. This al-
gorithm is based on the Nosé-Poincaré thermostat11,12 and
the symplectic rigid-body algorithm.5 We have also pre-
sented an explicit symplectic MD algorithm for rigid-body
molecules in the isobaric-isothermal ensembles by combin-
ing the Andersen barostat17 with the symplectic algorithm in
the canonical ensemble. As a modification of the isobaric-
isothermal algorithm, we further presented the symplectic
integrator in the constant normal pressure and lateral surface
area ensemble and a symplectic algorithm combined with the

TABLE I. Drift of the Hamiltonian per nanosecond d�H /dt �kcal/mol ns�.

�t 2 fs 3 fs 4 fs 5 fs

Nosé-Poincaré and symplectic rigid-body MD −1.4�10−4 −3.0�10−4 2.0�10−4 3.7�10−3

Nosé-Poincaré and nonsymplectic rigid-body MD 4.4�10−3 1.9�10−2 2.8�10−2 2.2�10−1

Nosé-Hoover and symplectic rigid-body MD 5.3�10−3 3.9�10−2 3.8�10−2 6.9�10−2

Nosé-Hoover and nonsymplectic rigid-body MD 2.9�10−3 7.3�10−3 1.3�10−1 1.2�10−1

FIG. 5. The deviations of temperature
�T�−T0 as functions of the square of
the time step ��t�2 �see the caption of
Fig. 1 for further details�.
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Parrinello-Rahman algorithm. Employing the symplectic
MD algorithm, there is a conserved quantity which is close
to the Hamiltonian. Therefore, we can perform a MD simu-
lation more stably than by conventional nonsymplectic
algorithms.

In order to establish this fact numerically, we have ap-
plied this algorithm to a TIP3P pure water system at 300 K
and compared the time evolution of the Hamiltonian with
those by the nonsymplectic algorithms. These nonsymplectic
algorithms are based on the Nosé-Poincaré thermostat11,12

and the nonsymplectic rigid-body algorithm,4 based on the
Nosé-Hoover thermostat10 and the symplectic rigid-body
algorithm,5 and based on the Nosé-Hoover thermostat10 and
the nonsymplectic rigid-body algorithm.4 In these nonsym-
plectic algorithms, the Hamiltonian deviates gradually from
its initial value in all cases of the time steps �t=2, 3, 4, and
5 fs. On the other hand, the Hamiltonian was conserved well
even for a time step of 4 fs in our symplectic algorithm.

The rigid-body model for molecules can be employed
not only for a water system but also for a biomolecular sys-
tem. For example, a partial rigid-body model16 is often used
for a part of a peptide and a protein, in particular, for a
hydrogen-including part such as a methyl group �–CH3� to
alleviate a fast motion of the hydrogen atom. In the case of
the methyl group, the C–H bond length and the H–C–H bond
angles are fixed as a rigid-body model. On the other hand,
the dihedral angles including the C–H bond �X–X–C–H,
where X stands for an arbitrary atom� varies depending on
the methyl group motion and is calculated in the same way
as in the flexible model. Our algorithms will thus be of great
use for MD simulations of an aqueous solution and a biomo-
lecular system at a constant temperature and/or pressure.
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