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We propose an efficient method to enhance sampling in computer simulations by combining the
simulated tempering algorithm with a fast on-the-fly weight determination scheme. The weights
are self-updated via a trapezoid rule during the simulated tempering simulation. With our pro-
posed scheme, simulated tempering requires neither prior trial simulations nor complicated update
schemes. The advantage of our method over replica exchange molecular dynamics has been demon-
strated with the study of the folding of the 20-residue alanine peptide and the aggregation of a
trimer formed by the Alzheimer’s peptide fragment Aβ16−22. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4792046]

Convergence of the configuration space sampling is a pri-
mary concern of any simulation study of complex systems. At
physiological temperature, a canonical Boltzmann simulation
tends to get trapped in deep minima indefinitely, rendering
the simulation ineffective. To accelerate the sampling, there
has been considerable progress in developing a new class of
simulation methods, referred to as the generalized-ensemble
algorithms.1–4 One of widely used generalized-ensemble al-
gorithms is simulated tempering (ST).5, 6 The basic idea is
that by coupling low temperature simulations with high tem-
perature ones, one hopes to transfer the improved sampling
at the higher temperature to the lower temperature. Although
comparative studies between ST and replica exchange (RE)7, 8

have concluded that ST gives a higher rate of exchanging be-
tween high and low temperature states as well as a higher rate
of traversing the potential space,9–11 RE is used more often
than ST. RE is simple in theory and implementation, while ST
requires the determination of a priori unknown weight param-
eters to ensure a uniform random walk in temperature space
and this is non-trivial and very tedious for complex systems.
It is, therefore, desirable to develop efficient methods to de-
termine accurate ST weight parameters. A common strategy
is to perform short trial simulations to estimate weights from
average potential energies6, 12–14 or via multiple-histogram
reweighting.9, 15, 16 However, both approaches bear the risk
that these weights are of insufficient accuracy, resulting in
poor or non-optimal ST performances. As a remedy, several
schemes have been suggested to refine those initial rough
weights during the subsequent ST production run.11, 17, 18 The
proposed procedures are, however, still complicated and com-
putationally expensive.

In this Communication we propose a simple, yet practical
scheme to perform a ST simulation without a prior iteration
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of trial simulations that guarantees random walk in temper-
ature space. The simulation starts with zero weight parame-
ters, which are then updated on-the-fly as the simulation pro-
gresses. The scheme can be very easily coded and automated,
and therefore a wide range of applications is foreseen.

In the ST simulation, temperature itself becomes a dy-
namical variable which could take discrete values Tm (T1 < T2

< ··· < TM). Probability distribution of a state at temperature
Tm and potential energy E is given by the following general-
ized canonical distribution:

WST(E, βm) = exp(−βmE + fm), (1)

where βm = 1/kBTm (kB is the Boltzmann constant). If the
weight parameters fm are chosen as fm = −ln (

∫
dEn(E)exp

(−E/kBTm)) (n(E) is the density of states, hence, fm are di-
mensionless Helmholtz free energy at Tm), then it follows im-
mediately that the distribution of temperature is flat, i.e., a
free random walk in temperature space is realized, which in
turn induces a random walk in potential energy space and al-
lows the system to escape from local energy minima. Once
the ST weight parameters fm are determined, the ST algo-
rithm consists of repeating the following two steps:5, 6 (i) per-
form a canonical Monte Carlo (MC) or molecular dynamics
(MD) simulation at constant Tm for a certain number of steps,
and (ii) update the current temperature Tm to a new value Tn,
while the configurations are fixed, according to the following
Metropolis-like transition probability:

w(Tm, Tn) = min (1, exp(−[(βn − βm)Em − (fn − fm)])) ,

(2)

where Em is the potential energy at temperature Tm. If MD is
employed in step (i), the momentum rescaling is necessary,16

as in Replica-Exchange MD (REMD).19

As seen, ST requires the determination of the weight
parameters fm. By modifying the original recursion
formulae6, 12, 13 slightly, Park and Pande recently derived
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a simple formula which yields good estimates to the weight
parameters from preparatory simulations:14

fn+1 = fn + (βn+1 − βn)(Ēn+1 + Ēn)/2, (3)

where Ēn is the average potential energy at temperature Tn.
By setting f1 = 0, all remaining weight parameters are deter-
mined from Eq. (3), assuming that averaged potential energies
Ēn at temperatures Tn are known. Here, we show that the ST
weight parameters can be updated on-the-fly, directly using
Eq. (3), as follows:

� Start the ST simulation at the lowest temperature T1,
accumulating potential energy Ē1(t) = 1

t

∫ t

0 dτE1(τ )
and estimating f2(t) = (β2 − β1)Ē1(t)/2. During this
time, switching to temperature T2 is repeatedly
attempted.

� Once the trajectory at T2 is sampled, accumulate po-
tential energy Ē2, then update f2 and f3.

� Now, the ST simulation runs with T1, T2, and T3 using
weights f2 and f3. Once the trajectory at T3 is sampled,
calculate potential energy Ē3, then update f3 and f4.

� Continue this procedure as the simulation progresses
and eventually all weight parameters are updated ac-
cording to Eq. (3).

Technically, this procedure can be easily automated, coded,
and is very less time-consuming. At the beginning, the weight
parameters are continuously updated and therefore the de-
tailed balance condition is continuously broken. As the simu-
lation progresses, the weight parameters are self-updated and
eventually converge to the true values of the system’s di-
mensionless free energies. The initial stage of the ST trajec-
tory, where the weight parameters are significantly changed,
is excluded in the analysis. Theoretically, two questions arise.
First, are the weights updated if the system is trapped at one
temperature? If βm ≈ βn, then Ēm ≈ Ēn, and Eq. (2) (with
Eq. (3)) can be approximately written as

w(Tm, Tn) = min(1, exp(−(βn − βm)(Em − Ēm))). (4)

As seen from Eq. (4), the fluctuation of the instantaneous en-
ergy Em around the averaged value Ēm drives the temperature
transition. The system tends to change to a lower temperature
Tn if Em < Ēm, and to a higher temperature, otherwise. Thus,
a random walk in temperature space can be always realized if
the temperature intervals are appropriately chosen, depending
on energy fluctuations. Second, is the distribution of tempera-
tures really flat since Eq. (3) does not take into account higher
orders of the cumulant expansion of the energy difference be-
tween two temperatures? In practice, Park showed that Eq. (3)
is an excellent approximation for systems with many degrees
of freedom,20 and we show that inclusion of higher orders is
not necessary for the three systems studied here with our on-
the-fly weight updating. We also remark that we can use the
original recursion formulae6, 12, 13 instead of Eq. (3) in our on-
the-fly scheme.

In order to understand the essential physics and to
demonstrate the validity as well as the good performance of
the new method, we first applied it to a 1D system whose exact
weights and conformational distribution are known. The sys-

FIG. 1. ST simulation of the 1D system with on-the-fly weights determi-
nation. (a) Time evolution of the weights during ST. (b) Exact weights.
(c) Change of temperatures during ST. (d) Temperature distribution. Time
evolution (e) and distribution (f) of the positions of both particles at T = 0.2.
(f) Results obtained from ST (black) and analytical calculation (red).

tem consists of 2 non-interacting particles, each has the poten-
tial energy of the form U(x) = [(x + 1)2 − 1][(x − 1)2 − 0.9].
It is an asymmetrical double well potential with two minima
at x ≈ −1.5 and ≈1.5. For simplicity, we set kB = 1, and mass
of particle m = 1. The ST simulation was performed using 6
temperatures with uniform interval, T = 0.2, . . . , 0.7, for 107

steps. The MD time step was 0.002 in reduced unit. The initial
105 MD steps were discarded from the analysis. The Nosé-
Hoover thermostat was used to maintain the system’s temper-
ature. The exact weights were calculated by performing nu-
merical integration f = − ln[

∫ ∞
−∞ dx exp(−U (x)/kBT )]. As

seen from Fig. 1(a), the simulation starting at T1 = 0.2 spent
about 7.5 × 105 steps to accumulate average energy, and esti-
mate the parameter f2. Once the first transition T1 → T2 was
successful, all weights were updated and reached quickly to
the exact values (Fig. 1(b)). The system was able to explore
all the temperatures (Fig. 1(c)) by performing an efficient ran-
dom walk in temperature space as indicated by the uniform
distribution of temperatures (Fig. 1(d)). At the lowest tem-
perature T1 = 0.2, Fig. 1(e) shows that particles were able to
move between minima, resulting in a distribution of positions,
identical to the analytical distribution (Fig. 1(f)). Note that at
this temperature, the particles were trapped indefinitely in one
of the two minima using a conventional MD (data not shown).
To explain in detail the working mechanism of our on-the-fly
weight updating scheme, Fig. 2 displays a short time win-
dow of the ST trajectory. Clearly, the trajectory starting at
T1 = 0.2 got trapped at x ≈ −1.5 for up to 8.7 × 105

steps (Fig. 2(a)). During this time, the weight f2 (correspond-
ing to T2 = 0.3) was continuously updated via the accumu-
lated average potential energy at T1 = 0.2, and the transitions
T1 → T2 were repeatedly attempted but all failed (Fig. 2(c)).
At the step 7.65 × 105, a large positive energy fluctuation
occurred (Fig. 2(b)) and this induced successfully the T1

→ T2 transition (Fig. 2(c)). Immediately, the average energy
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FIG. 2. Short time window of the ST trajectory of the 1D system. (a) Time
evolution of the coordinates of two particles, and (b) fluctuation of the instan-
taneous energy around the average energy at T1 = 0.2. (c) Change of temper-
atures during ST. (d) Time evolution of two selected weights corresponding
to T2 = 0.3 (black) and T3 = 0.4 (red).

Ē2 at T2 was populated and consequently f2 was updated from
f2 ≈ 6 to f2 ≈ 13. Of course, f3 (≡ f4 ≡ ··· ≡ f7) was also
updated via the new values of f2 and Ē2 (Fig. 2(d)). After this
step, the simulation ran with three weight parameters f1, f2,
and f3. As seen, while the T1 ↔ T2 transitions took place more
often because the parameter f2 was getting better, the T2 → T3

transitions were also attempted but all failed. At the step 7.95
× 105, another large positive energy fluctuation occurred and
the attempt T2 → T3 was successful, and this resulted in the
new update for f3 (Fig. 2(d)). This update process was contin-
ued as the simulation progressed, and finally all weights con-
verged and correct sampling was realized (Fig. 1). The anal-
ysis also shows that the weights were able to be self-updated
even if the system was trapped in one state and instantaneous
energy fluctuation drove the temperature transitions.

Next, we applied the ST simulations to two more realis-
tic models, namely, a 20-residue alanine peptide (Ala20) and a
trimer formed by the 7-residue Alzheimer’s peptide fragment
Aβ16−22 ((Aβ16−22)3) blocked by Ace and NH2. Both systems
were modeled using the coarse-grained Optimized Potential
for Efficient peptide structure Prediction (OPEP) force field,
found appropriate for studying the folding and self-assembly
of non-amyloid and amyloid peptides.21 Oligomers of amy-
loid peptides are of therapeutic interest since they are the
most toxic species in human neurodegenerative diseases.22

For both systems, we chose the T range of 280–500 K
spaced exponentially into 20 values. Starting from fully ex-
tended conformations for both systems and well separated
peptides for the trimer, the ST simulations were performed for
400 ns using an integration step of 1.5 fs and the Langevin
thermostat.23 Temperature transitions were attempted every
250 steps. All weight parameters were initially set to zero.
Data were collected every 1000 steps. As a reference, we also
performed a 100 ns REMD simulation24 for each system us-
ing 20 replicas and the same other technical parameters. The

FIG. 3. ST simulation of Ala20 with on-the-fly weights determination.
(a) Time evolution of the weights during ST. (b) Weights obtained from
100 ns REMD. (c) Change of temperatures during ST. (d) Temperature dis-
tribution. Time evolution (e) and distribution (f) of the RMSD at T = 300 K.
(f) Results obtained from ST (black) and REMD (red) simulations. The struc-
tures corresponding to the two dominant peaks are shown.

first 100 ns and 20 ns of the ST and RE simulations, respec-
tively, were excluded in the analyses.

For the Ala20 system, the time evolution of five selected
weight parameters is shown in Fig. 3(a). Starting from zero
values, all weight parameters were updated to non-zero val-
ues within a few picoseconds. Then, the weights were con-
tinuously updated and reached plateau values after 100 ns,
which are essentially identical with those obtained from 100
ns REMD with a difference of less than 1% (Fig. 3(b)). The
system was able to explore all the temperatures (Fig. 3(c))
with a nearly uniform distribution of temperatures (Fig. 3(d)).
The slight non-flatness, which can result from a relatively
short simulation, can also be controlled by the selection of
temperatures (optimization of the T values or slight increase
in the number of temperatures). To characterize the sampling,
Fig. 3(e) shows the time evolution of the root-mean-square
deviation (RMSD) of the configurations at T = 300 K from
the initial fully extended state. As seen, the peptide under-
went many transitions between the β-hairpin (RMSD ≈4 Å)
and α-helical (RMSD ≈9 Å) states. Figure 3(f) displays the
distribution of the RMSDs at T = 300 K obtained using ST
and REMD simulations. There is an excellent agreement be-
tween the two simulations.

For the (Aβ16−22)3 system, as seen from Fig. 4(a), the
weight parameters were quickly updated within 10 ns and
then essentially converged after 100 ns to the values ob-
tained from 100 ns REMD with a difference of less than 1%
(Fig. 4(b)). The system performed a random walk and visited
all temperatures (Fig. 4(c)). To characterize the aggregates,
we calculated the nematic order parameter P2,25 and its distri-
bution is shown in Fig. 4(d). As seen, the system mainly un-
derwent the transition between two peptides forming an an-
tiparallel β-sheet with the third peptide moving around the
sheet (P2 ≈ 0.3), and three peptides forming a fully antipar-
allel β-sheet (P2 ≈ 0.7) (Fig. 4(d)). Such a conformational
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FIG. 4. ST simulation of the (Aβ16−22)3 system with on-the-fly weights de-
termination. (a) Time evolution of the weights during ST. (b) Weights ob-
tained from 100 ns REMD. (c) Change of temperatures during ST. (d) Distri-
bution of the order parameter P2 at T = 300 K. (d) Results obtained from ST
(black) and REMD (red). The structures corresponding to the two dominant
peaks are shown.

ensemble has already been discussed using atomistic simula-
tions in explicit solvent.25 Again, the ST-derived configura-
tional distribution matches that obtained from 100 ns REMD
(Fig. 4(d)).

We proposed a scheme for the on-the-fly ST weight de-
termination. Testing on two complex systems has shown that
the method is not only simple but also accurate and very fast
as indicated by the excellent agreement of results obtained
from 400 ns ST simulation and 2000 ns (100 ns/replica × 20
replicas) REMD simulation. This efficient adaptive scheme
coupled to the ST algorithm, which is five times faster than
REMD in the two systems studied, should be very useful in
the computer simulation community. Its applications to pro-
tein folding/aggregation problems in explicit solvent are un-
der way.
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