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We introduce two simple models with nearest-neighbor interactions on three-dimensional hexagonal lattices.
Each model allows one to calculate the residual entropy of ice I �ordinary ice� by means of multicanonical
simulations. This gives the correction to the residual entropy derived by Pauling �J. Am. Chem. Soc. 57, 2680
�1935��. Our estimate is found to be within less than 0.1% of an analytical approximation by Nagle �J. Math.
Phys. 7, 1484 �1966��, which is an improvement of Pauling’s result. We pose it as a challenge to experimen-
talists to improve on the accuracy of a 1936 measurement by Giauque and Stout �J. Am. Chem. Soc. 58, 1144
�1936�� by about one order of magnitude, which would allow one to identify corrections to Pauling’s value
unambiguously. It is straightforward to transfer our methods to other crystal systems.
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A thorough understanding of the properties of water has a
long history and is of central importance for life sciences.
After the discovery of the hydrogen bond,1 it was recognized
that the unusual properties of water and ice owe their exis-
tence to a combination of strong directional polar interac-
tions and a network of specifically arranged hydrogen
bonds.2 The liquid phase of water differs from simple fluids
in that there is a large qualitative remnant of ice structure in
the form of local tetrahedral ordering.3

In contrast to liquid water, the properties of ice are rela-
tively well understood. Most of them have been interpreted
in terms of crystal structures, the forces between its constitu-
ent molecules, and the energy levels of the molecules
themselves.4,5 A two-dimensional projection of the hexago-
nal crystal structure of ordinary ice �ice I� is depicted in
Fig. 1 �other forms of ice occur, in particular, at high pres-
sures�. Each oxygen atom is located at the center of a tetra-
hedron and straight lines �bonds� through the sites of the
tetrahedron point toward four nearest-neighbor oxygen at-
oms. Hydrogen atoms are distributed according to the ice
rules:2,6 �A� There is one hydrogen atom on each bond �then
called hydrogen bond�. �B� There are two hydrogen atoms
near each oxygen atom �these three atoms constitute a water
molecule�.

In our figure, distances are given in units of a lattice con-
stant a, which is chosen to be the edge length of the tetrahe-
dra �this is not the conventional crystallographic definition�.
For each molecule shown, one of the surface triangles of its
tetrahedron is placed in the xy plane. The molecules labeled
by u �up� are then at z=1/�24 above and the molecules
labeled by d �down� at z=−1/�24 below the xy plane at the
centers of their tetrahedra. In our computer simulations, in-
formation about the molecules will be stored in arrays of
length N, N being the number of molecules.

Essentially by experimental discovery, extrapolating low-
temperature calorimetric data �then available down to about
10 K� toward zero absolute temperature, it was found that
ice has a residual entropy,7

S0 = k ln�W� � 0, �1�

where W is the number of configurations for N molecules.
Subsequently, Pauling6 derived estimates of W= �W1�N by
two approximate methods, obtaining

W1
Pauling = 3/2 �2�

in each case. W= �W1�N is the number of Pauling configura-
tions. Assuming that the H2O molecules are essentially intact
in ice, his arguments are as follows.

�1� A given molecule can orient itself in six ways, satis-
fying ice rule B. Choosing the orientations of all molecules
at random, the chance that the adjacent molecules permit a
given orientation of the two hydrogen atoms is 1 /4. The total
number of configurations is thus W= �6/4�N.

�2� Ignoring condition B of the ice rules, Pauling allows
22N configuration on the hydrogen bonds between adjacent
oxygen atoms: Each hydrogen nucleus is given the choice of

FIG. 1. �Color online� Lattice structure of one layer of ice I. The
up �u� sites are at z=1/�24 and the down �d� sites at z=−1/�24.
For each site, three of its four pointers to nearest-neighbor sites are
shown.
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two positions, near to one of the two oxygen atoms. At one
oxygen atom, there are now 16 arrangements of the four
hydrogen nuclei. Of those, ten are ruled out by ice rule B.
For each oxygen atom this condition permits 6 /16=3/8 of
the configurations. Accordingly, the total number of configu-
rations becomes W=22N�3/8�N.

Equation �2� converts to the residual entropy,

S0
Pauling = 0.805 74 ¯ cal/deg mole, �3�

where we have used R=8.314 472�15� J /deg mol for the gas
constant as of 20 August 2006 given on the NIST website8

�relying on CODATA 2002 recommended values�. This is in
good agreement with the experimental estimate,

S0
experimental = 0.82�5� cal/deg mole, �4�

which was subsequently obtained by Giauque and Stout9 us-
ing refined calorimetry �we give error bars with respect to the
last digit�s� in parentheses�.

Pauling’s arguments omit correlations induced by closed
loops when one requires fulfillment of the ice rules for all
atoms, and it was shown by Onsager and Dupuis10 that
W1=1.5 is in fact a lower bound. Onsager’s student Nagle
used a series expansion method to derive the estimate,11

W1
Nagle = 1.506 85�15� �5�

or

S0
Nagle = 0.814 80�20� cal/deg mole. �6�

Here, the error bar is not statistical but reflects higher-order
corrections of the expansion, which are not entirely under
control. The slight difference between Eq. �6� and the value
in Nagle’s paper is likely due to improvements in the mea-
surements of Avogadro’s number.8 The only independent the-
oretical value appears to be one for cubic ice, which is ob-
tained by numerical integration of Monte Carlo data12 and is
in good agreement with Nagle.11

Despite Nagle’s high precision estimate, there has appar-
ently been almost no improvement on the accuracy of the
experimental value �Eq. �4��. Some of the difficulties are
addressed in a careful study by Haida et al.,13 but their final
estimate remains �Eq. �4�� with no reduction of the error bar.
We noted that by treating the contributions in their Table 3 as
statistically independent quantities and using Gaussian error
propagation �instead of adding up the individual error bars�,
the final error bar becomes reduced by almost a factor of 2
and their value would then read S0=0.815�26� cal/deg mol.
Still, Pauling’s value is safely within one standard deviation.
Modern electronic equipment should allow for a much better
precision. We think that an experimental verification of the
difference to Pauling’s estimate would be an outstanding
confirmation of structures imposed by the ice rules.

In this Brief Report we provide a high-precision numeri-
cal estimate of S0 for ordinary ice. Our calculations are based
on two simple statistical models, which reflect Pauling’s ar-
guments. Each model is defined on the hexagonal lattice
structure of Fig. 1.

In the first model, called six-state H2O molecule model,
we allow for six distinct orientations of each H2O molecule
and define its energy by

E = − �
b

h�b,sb
1,sb

2� . �7�

Here, the sum is over all bonds b of the lattice and �sb
1 and sb

2

indicate the dependence on the states of the two H2O mol-
ecules, which are connected by the bond�

h�b,sb
1,sb

2� = �1 for hydrogen bond

0 otherwise.
� �8�

In the second model, called two-state H-bond model, we
do not consider distinct orientations of the molecule but al-
low two positions for each hydrogen nucleus on the bonds.
The energy is defined by

E = − �
s

f�s,bs
1,bs

2,bs
3,bs

4� , �9�

where the sum is over all sites �oxygen atoms� of the lattice.
The function f is given by

f�s,bs
1,bs

2,bs
3,bs

4�

= 	2 for two hydrogen nuclei close to s

1 for one or three hydrogen nuclei close to s

0 for zero or four hydrogen nuclei close to s .



�10�

The ground states of each model fulfill the ice rules. At
�=0, the number of configurations is 6N for the six-state
model and 22N for the two-state model. Because the normal-
izations at �=0 are known, multicanonical �MUCA�
simulations14 allow us in either case to estimate accurately
the number of ground-state configurations.15 Superficially,
both systems resemble Potts models �see, e.g., Ref. 16 for
Potts model simulations�, but their thermodynamic properties
are entirely different. For instance, we do not find any sign of
a disorder-order phase transition, which is for our purposes
advantageous as the MUCA estimates for the ground-state
entropy become particularly accurate. This absence of a bulk
transition does not rule out long-range correlations between
bonds of the ground-state configurations, which are imposed
by the conservation of the flow of hydrogen bonds at each
molecule. In that sense, the ground state is a critical en-
semble.

Using periodic boundary conditions �BCs�, our simula-
tions are based on a lattice construction set up earlier by one
of us.17 Following closely the method outlined in Chapter
3.1.1 of Ref. 16 four index pointers from each molecule to
the array positions of its nearest-neighbor molecules are con-
structed. The order of pointers one to three is indicated in
Fig. 1. The fourth pointer is up the z direction for the u
molecules and down the z direction for the d molecules. The
lattice then contains N=nxnynz molecules, where nx, ny, and
nz are the number of sites along the x, y, and z axes, respec-
tively. The periodic BCs restrict the allowed values of nx, ny,
and nz to nx=1,2 ,3 , . . ., ny =4, 8, 12,…, and nz=2, 4, 6,….
Otherwise, the geometry does not close properly. Using the
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intersite distance rOO=2.764 Å from Ref. 5, the physical size
of the box is obtained by putting the lattice constant a to
a=2.257 Å, and the physical dimensions of the box are cal-
culated to be Bx=2nxa, By = �ny

�3/2�a, and Bz= �nz4/�6�a.
In our choices of nx, ny, and nz values, we aimed within
reasonable limitations at symmetrically sized boxes.

Table I compiles our MUCA W1 estimates for the lattice
sizes used. In each case, a Wang-Landau recursion18

was used to estimate the MUCA parameters, for which,
besides a certain number of cycling events,16 a flatness of
Hmin/Hmax�0.5 was considered sufficient to stop the recur-
sion and start the second part of the MUCA simulation with
fixed weights �H�E� is the energy histogram, Hmin is the
smallest, and Hmax is the largest number of entries in the
flattened energy range�.

The statistics we used for measurements varied between
32�106 sweeps for our smallest and 64�107 sweeps for our
largest lattice. By using two 2 GHz personal computers
�PCs�, the simulations take less than one week. The number
of cycles Ncyc completed between �min=0 and the ground
state are listed in the six-state and two-state model columns
of Table I. As each of our simulations includes the �min=0
canonical ensemble, the �logarithmically coded� reweighting
procedure of Chapter 5.1.5 of Ref. 16 delivers estimates for
W1, which are compiled in the same columns. Each error bar
relies on 32 jackknife bins. As expected, the values from
both models are consistent, as demonstrated by Q values of
Gaussian difference tests �see, e.g., Chapter 2.1.3 of Ref. 16�
in the last column of the table. The two-state H-bond model
gives more accurate estimates than the six-state H2O mol-
ecule model, obviously by the reason that the cycling time,
which is �1/Ncyc, is less for the former because the energy
range that needs to be covered is smaller.

In Fig. 2, a fit for the data of the two-state H-bond model
to the form

W1�x� = W1�0� + a1x�, x = 1/N �11�

is shown. The W1=W1�0� estimate from Fig. 2 is given in the
last row of the two-state model column of Table I. The data
point for the smallest lattice is included in the fit, but not
shown in the figure where we want to focus on the large N
region. The goodness of fit �Chapter 2.8 of Ref. 16� is
Q=0.47, as given in the figure. Similarly, the estimate for the
six-state H2O molecule model in the last row of the table is

obtained with a goodness of fit Q=0.78. All Q values
�Gaussian difference tests and fits� are in the range one
would expect for statistically consistent data. The � values of
the fits are also consistent and their combined value is
�=0.923�23�. That we have ��1 reflects bond correlations
in the ground-state ensemble.

Combining the two fit results weighted by their error bars
leads to our final estimate,

W1
MUCA = 1.507 38�16� . �12�

This converts into

S0
MUCA = 0.815 50�21� cal/deg mole �13�

for the residual entropy.
The difference between Eq. �12� and the estimate of

Nagle �Eq. �5�� is 0.035% of the estimated W1 value �0.086%
of S0�, which is much smaller than any foreseeable experi-
mental error. However, within their own error bars, the
Gaussian difference test between the two estimates yields
Q=0.016. As the error bar in Eq. �12� covers only statistical
errors and not systematic errors due to finite size corrections
from larger lattices, the small discrepancy with Nagle’s result
may well be explained this way. In view of the large error bar
in the experimental estimate, it appears somewhat academic
to trace the ultimate reason.

As already �hesitatingly� pointed out by Pauling,6 the real
entropy at zero temperature is not expected to agree with the
residual entropy extrapolated from low but nonzero tempera-

TABLE I. Simulation data for W1.

N nx ny nz

Six-state model Two-state model

QW1 Ncyc W1 Ncyc

128 4 8 4 1.52852 �47� 1854 1.52869 �23� 7092 0.72

360 5 12 6 1.51522 �49� 223 1.51546 �15� 1096 0.65

576 6 12 8 1.51264 �18� 503 1.51279 �10� 1530 0.47

896 7 16 8 1.51075 �16� 208 1.51092 �06� 2317 0.32

1600 8 20 10 1.50939 �09� 215 1.50945 �05� 619 0.56

� �fit� 1.50741 �33� 1.50737 �17� 0.91

FIG. 2. Fit for W1.
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tures. In real ice, one expects a small splitting of the energy
levels of the Pauling configuration, which are degenerate in
both of our models. Once the thermal fluctuations become
small compared with these energy differences, the entropy
will become lower than the residual entropy calculated here.
Such an effect is observed in Ref. 13 by annealing ice I at
temperatures between 85 and 110 K. Refined models are
needed to gain computational insights. Crossing this tem-
perature range sufficiently fast still allows one to extract the
present residual entropy, because the relaxation time has be-
come so long that one does not have ordering of Pauling
states during typical experimental observation times.

It is clear that our method rather easily carries over to
other crystal structures for which one may want to calculate
residual entropies. In particular, structural defects and impu-
rities can be included, although one may have to use more
realistic energy functions, and lattice sizes to put limits on
low densities. Simulations very similar to those performed
here should enable accurate estimates of the residual entro-
pies for other forms of ice and various geometrically frus-
trated systems19 as well as for spin models in the class for
which lower bounds on their residual entropies were derived
in. Ref. 20. For more involved systems, our approach is to
design simple models, which share the relevant ground-state
symmetries with the system of interest. That could, for in-

stance, have applications to the residual entropy of proteins
by allowing for more realistic modeling than that done in
Ref. 21.

Finally, good modeling of water is of crucial importance
for computational progress in biophysics. Clusters of hydro-
gen bonds play a prominent role in water at room tempera-
ture. Our method allows one to calculate the combinatorial
factors W1

N with which small clusters ought to be calculated
in phenomenological water models like those discussed in
Ref. 3. Through a better understanding of hydrogen bond
clusters, insights derived from the study of ordinary ice may
well be of importance for improving on models,22 which
have primarily been constructed to reflect properties of water
under room temperatures and pressures.
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