
Exact and Heuristic Algorithms for the Interval Min-Max Regret Generalized
Assignment ProblemI

Wei Wua,∗, Manuel Iorib, Silvano Martelloc, Mutsunori Yagiurad

aSeikei University, Tokyo, Japan
bUniversity of Modena and Reggio Emilia, Reggio Emilia, Italy

cUniversity of Bologna, Bologna, Italy
dNagoya University, Nagoya, Japan

Abstract

We consider the generalized assignment problem (GAP) with min-max regret criterion under interval costs. This
problem models many real-world applications in which jobs must be assigned to agents but the costs of assignment
may vary after the decision has been taken. We computationally examine two heuristic methods: a fixed-scenario ap-
proach and a dual substitution algorithm. We also examine exact algorithmic approaches (Benders-like decomposition
and branch-and-cut) and further introduce a more sophisticated algorithm that incorporates various methodologies, in-
cluding Lagrangian relaxation and variable fixing. The resulting Lagrangian-based branch-and-cut algorithm performs
satisfactorily on benchmark instances.

Keywords: Combinatorial optimization, Min-max regret generalized assignment problem, Branch-and-cut,
Lagrangian relaxation, Variable fixing

1. Introduction

Several optimization problems arising in real world applications do not have accurate estimates of the problem
parameters when the optimization decision is taken. Stochastic programming (SP) and robust optimization (RO)
are two common approaches for the solution of optimization problems under uncertainty. A decision maker should
select a model and a solution approach based on careful examination of the input parameters. In an SP approach,
the decision maker has the probability distribution for the random parameters observed in the problem. SP aims
to minimize the expected cost, and in most cases it is able to obtain high-quality solutions based on the fact that
probability distributions of the parameters are known or can be estimated. However, collecting such distributions
can be very time-consuming in many read-world situations, and sometimes they are even unable to obtain. On the
other hand, RO aims to minimize the worst-case cost or to minimize the maximum regret without typically requiring
any probability distribution of the problem parameters. However, the biggest disadvantage of an RO approach is
that a min-max result may be extremely pessimistic. The min-max criterion, known as a typical approach for RO,
looks for a solution with the best worst-case value across all scenarios. To deal with the trade-off between robustness
and performance, the min-max regret criterion is defined to minimize the worst-case regret, where the regret is the
difference between the actual cost and the optimal cost that would have been obtained if a different solution had been
chosen.

Robust optimization has been one of the hottest topic of the last decade. Buhmann et al. [1] proposed a generic
approach based on a measure of similarity of typical scenarios. Snyder and Daskin [2] proposed the stochastic p-robust
model in which the object is to minimize the expected cost while bounding the relative regret in each scenario.

IA preliminary version of this paper was presented at the IEEE International Conference on Industrial Engineering and Engineering Manage-
ment 2014 (IEEM 2014).
∗Corresponding author. Tel: +81-422-37-3440; fax: +81-422-37-3871.
Email address: wuwei@st.seikei.ac.jp (Wei Wu)

Preprint submitted to Computers & Industrial Engineering December 18, 2018

Poss [3] provided exact and approximation algorithms to min-max robust combinatorial optimization problems for
an uncertainty polytope that is defined by knapsack constraints, where the uncertainty set is an extension of the one
considered by Bertsimas and Sim [4]. Lappas and Gounaris [5] considered RO under endogenous uncertainty which
is affected by the decision maker’s strategy. Recently, RO has also been applied to multi-objective optimization
problems [6, 7]. Moreover, RO has many important applications in industry, such as energy planning [8, 9] and
aircraft routing [10].

The min-max regret version of a number of important combinatorial optimization problems has been recently
studied, such as the traveling salesman problem [11], the assignment problem [12], the minimum spanning tree prob-
lem [13, 14], scheduling problems [15, 16], the shortest path problem [17], the facility location problem [18], the
resource allocation problem [19], the set covering problem [20], and the 0-1 knapsack problem [21]. The min-max
regret criterion has also been applied to revenue management [22], and the assembly line worker assignment and
balancing problem [23]. In the literature, the solution of this kind of problems has been tackled with a number of
exact and heuristic techniques. Concerning exact algorithms, Benders-like decomposition methods iteratively solve a
relaxed master problem in which only a subset of scenarios is considered. Cuts corresponding to violated scenarios
are computed by the solution of a slave problem and possibly added to the master problem, until a solution satisfying
all scenarios is found (see, e.g., Montemanni [24]). Branch-and-cut methods extend the Benders-like decomposition
by including the solution of the slave problem at all nodes of the enumeration tree, and have been applied to several
min-max regret problems (see Pereira and Averbakh [20]). Other authors used instead the structure of the min-max
regret problem at hand to devise tailored combinatorial branch-and-bound algorithms, such as the one by Montemanni
and Gambardella [25]. Concerning heuristic methods, several attempts have been made, including constructive heuris-
tics based on the solution of a fixed scenario (Kasperski and Zielinski [16]) or on the inclusion of a dual relaxation
component (Furini et al. [21]), as well as more elaborated metaheuristics such as genetic algorithms and filter-and-fan
methods (Pereira and Averbakh [20]). For a deeper analysis of the existing literature, we refer the interested reader
to Kouvelis and Yu [26], Kasperski [27], Aissi, Bazgan and Vanderpooten [28], and Candia-Véjar, Álvarez-Miranda,
and Maculan [29].

In this paper we consider the generalized assignment problem (GAP) with min-max regret criterion under in-
terval costs. The classical GAP is an NP-hard combinatorial optimization problem [30] having many applications
in different real-world areas, such as production planning, scheduling, timetabling, telecommunication, investment
and transportation (see [31], [32], [33], and [34]). The interval min-max regret generalized assignment problem
(MMR-GAP) is a generalization of the GAP to the case in which the cost coefficients are uncertain. Consider, for
example, the case in which a seller aims at serving customers by assigning their demands to different shippers. This
problem is easily formalized by the classical GAP, but in a more general situation, the final assignment costs are often
affected by variability. The seller could aim at minimizing a posteriori regret of the selected choice with respect to
any possible assignment-cost scenario. Then, the solution of a MMR-GAP would allow the seller to obtain a robust
assignment with low regret. As another real-life example, the assignment cost in many cases represents risk aversion
(or penalty) in an investment problem (or in a scheduling problem) which is known to be an important application of
the generalized assignment problem (see [32]). The degree of risk aversion or penalty is affected by many factors and
is hard to accurately quantify at the optimization stage. Then, a min-max regret result would be robust to avoid high
risk or penalty. We assume that every cost coefficient can take any value in a corresponding given interval, regardless
of the values taken by the other cost coefficients. The problem requires to find a robust solution that minimizes the
maximum regret. We computationally evaluate a heuristic algorithm for the MMR-GAP that solves the underlying
GAP to optimality under a fixed scenario. We consider three scenarios: lowest cost, highest cost, and median cost.
The median cost scenario leads to a solution of the MMR-GAP whose objective value is within twice the optimal
value. We also computationally evaluate a dual substitution heuristic based on a mixed integer programming (MIP)
model obtained by replacing some constraints with the dual of their continuous relaxation.

We also examine three exact algorithmic approaches that iteratively solve the problem by only including a subset
of scenarios. The first approach is based on Benders-like decomposition: it solves a MIP with incomplete scenarios
and iteratively supplements the scenarios corresponding to violated constraints. The second approach is a basic
branch-and-cut algorithm, in which the violated constraints are added at the nodes of a MIP enumeration tree. We
then introduce a new Lagrangean-based branch-and-cut algorithm and enhance it through: (i) effective Lagrangian
relaxations, to provide tighter lower bounds than those produced by the linear programming relaxation; (ii) an efficient
variable fixing technique; (iii) a two-direction dynamic programming approach to effectively solve the Lagrangian

2

subproblems. We evaluate the algorithms through computational experiments on different benchmarks.
The classical GAP is a very general and difficult optimization problem and exploring its min-max regret version

is important both from a theoretical and a practical point of view. In this work, we consider both heuristic and
exact approaches for the MMR-GAP. The algorithms have been obtained both by a non-trivial use of results from
the literature and by original developments of new ideas. We provide extensive computational experiments, and the
results show that a Lagrangian-based branch-and-cut approach can exactly solve 102 out of 240 instances with up
to 10 agents and 80 jobs within reasonable running times. Some of the results presented in the next sections were
sketched, without proofs, in the proceeding paper [35], together with a small set of preliminary computational results.
We hope our results can stimulate further research in the area of min-max regret optimization problems.

2. Problem Description

2.1. Generalized Assignment Problem

The generalized assignment problem (GAP) is defined as follows. Given a set of n jobs J = {1, . . . , n} and a set
of m agents I = {1, . . . ,m}, we look for a minimum cost assignment, subject to assigning each job to exactly one
agent and satisfying a resource constraint for each agent. Assigning job j to agent i incurs a cost ci j and consumes an
amount ai j of a resource, whereas the total amount of the resource available at agent i (agent capacity) is bi.

A natural formulation of the GAP is defined over a two-dimensional binary variable xi j indicating that job j is
assigned to agent i if and only if xi j = 1:

min
m∑

i=1

n∑
j=1

ci jxi j (1)

s.t.
n∑

j=1

ai jxi j ≤ bi ∀i ∈ I (2)

m∑
i=1

xi j = 1 ∀ j ∈ J (3)

xi j ∈ {0, 1} ∀i ∈ I, ∀ j ∈ J. (4)

For convenience, we define X0 to be the set of all feasible solutions of the GAP, i.e.,

X0 = {x | x satisfies constraints (2)–(4)}. (5)

2.2. Interval Min-Max Regret Generalized Assignment Problem

In this paper we assume that the cost ci j can take any value within a given range [c−i j, c
+
i j]. An array of costs cs

i j
satisfying cs

i j ∈ [c−i j, c
+
i j] ∀i ∈ I, j ∈ J, is called a scenario and is denoted by s. We define zs(x) to be the objective

value of solution x ∈ X0 under scenario s:

zs(x) =

m∑
i=1

n∑
j=1

cs
i jxi j. (6)

We denote by zs
∗ the optimal solution value under scenario s, i.e., zs

∗ = miny∈X0 zs(y). The regret rs(x) associated with
solution x under scenario s is then the difference between these two values:

rs(x) = zs(x) − zs
∗. (7)

Let S denote the set of all possible scenarios, i.e., S = {s | cs
i j ∈ [c−i j, c

+
i j] ∀i ∈ I, j ∈ J}. The maximum regret of a

solution x is then the maximum rs(x) value over all scenarios:

rmax(x) = max
s∈S

rs(x). (8)

3

The MMR-GAP is to find a feasible solution x such that the maximum regret is minimized:

min
x∈X0

rmax(x) = min
x∈X0

max
s∈S

rs(x) = min
x∈X0

max
y∈X0
s∈S

m∑

i=1

n∑
j=1

cs
i jxi j −

m∑
i=1

n∑
j=1

cs
i jyi j

 . (9)

This formulation can be rewritten using the following classical general result that was proposed by Aissi et al. [28]
(whose roots are in Yaman et al. [14]), which also applies to many other interval min-max problems.

Lemma 2.1. The regret of a solution x ∈ X0 is maximized under the following scenario σ(x):

cσ(x)
i j =

c+
i j if xi j = 1

c−i j otherwise
∀i ∈ I, ∀ j ∈ J. (10)

In other words, the value rmax(x) is achieved by the scenario that gives the worst costs to the job-agent pairs
selected by the assignment x, and the best costs to the non-selected job-agent pairs. Since xi j is a binary variable, cσ(x)

i j

can also be written as cσ(x)
i j = c−i j + (c+

i j − c−i j)xi j.
From Lemma 2.1, the maximum regret is achieved if we apply the worst scenario σ(x) to s, and, from (9), the

MMR-GAP can be rewritten as

min
x∈X0

rmax(x) = min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j −min

y∈X0

m∑
i=1

n∑
j=1

cσ(x)
i j yi j

 . (11)

We assume in the following that all input data are integers.

3. Heuristic Algorithms

In this section we present heuristic algorithms that, in view of the considerations of the previous section, are not
guaranteed to run in polynomial time.

3.1. Fixed-Scenario Algorithm
We introduce a heuristic approach based on the observation that a feasible solution to an MMR-GAP instance can

be obtained by fixing a scenario, solving the resulting GAP instance to optimality, and evaluating the maximum regret
of the obtained solution using (11). This approach was used for other interval min-max regret problems (see, e.g., [16]
and [20]).

We consider three scenarios: the lowest cost cs
i j = c−i j, the highest cost cs

i j = c+
i j, and the median cost cs

i j =

(c−i j + c+
i j)/2.

For the median-cost scenario, the following result is a special case of a more general result proved in [16].

Lemma 3.1. Let s̃ be the median-cost scenario, i.e., cs̃
i j = (c−i j + c+

i j)/2 ∀i ∈ I, ∀ j ∈ J, and let x̃ be an optimal solution
to the GAP under s̃. Then, rmax(x̃) ≤ 2rmax(x) holds for all x ∈ X0.

Proof. For any two solutions x, y ∈ X0 and scenario s ∈ S , we have

zs(x) − zs(y) =

m∑
i=1

n∑
j=1

cs
i j(xi j − yi j) (12)

from definition (6). Using (12) and definitions (7) and (8), the following inequality holds:

rmax(y) = max
s∈S
{zs(y) − zs

∗}

≥ max
s∈S
{zs(y) − zs(x)}

= max
s∈S

m∑
i=1

n∑
j=1

cs
i j(yi j − xi j)

=
∑

(i, j): yi j>xi j

c+
i j(yi j − xi j) +

∑
(i, j): yi j<xi j

c−i j(yi j − xi j). (13)

4

From (12), we can also obtain

zσ(x)(x) = zσ(x)(y) +

m∑
i=1

n∑
j=1

cσ(x)
i j (xi j − yi j) = zσ(x)(y) +

∑
(i, j): xi j>yi j

c+
i j(xi j − yi j) +

∑
(i, j): xi j<yi j

c−i j(xi j − yi j), (14)

where σ(x) is the worst-case scenario defined by Lemma 2.1. Then, by subtracting zσ(x)
∗ from both sides of (14), we

get

rmax(x) = zσ(x)(x) − zσ(x)
∗ = zσ(x)(y) − zσ(x)

∗ +
∑

(i, j): xi j>yi j

c+
i j(xi j − yi j) +

∑
(i, j): xi j<yi j

c−i j(xi j − yi j). (15)

By combining this with rmax(y) ≥ zσ(x)(y) − zσ(x)
∗ , we get

rmax(x) ≤ rmax(y) +
∑

(i, j): xi j>yi j

c+
i j(xi j − yi j) +

∑
(i, j): xi j<yi j

c−i j(xi j − yi j). (16)

Now we consider the median-cost scenario s̃. Since x̃ is an optimal solution under s̃, we have zs̃(x̃) ≤ zs̃(y), and
according to (12),

m∑
i=1

n∑
j=1

1
2

(c+
i j + c−i j)(x̃i j − yi j) = zs̃(x̃) − zs̃(y) ≤ 0 (17)

holds, which is equivalent to∑
(i, j): yi j>x̃i j

c+
i j(yi j − x̃i j) +

∑
(i, j): yi j<x̃i j

c−i j(yi j − x̃i j) ≥
∑

(i, j): x̃i j>yi j

c+
i j(x̃i j − yi j) +

∑
(i, j): x̃i j<yi j

c−i j(x̃i j − yi j). (18)

Then, by applying this to (13), we obtain

rmax(y) ≥
∑

(i, j): x̃i j>yi j

c+
i j(x̃i j − yi j) +

∑
(i, j): x̃i j<yi j

c−i j(x̃i j − yi j). (19)

By combining (16) and (19), we finally obtain

rmax(x̃) ≤ 2rmax(y) ∀y ∈ X0. (20)

We found a tight example for the approximation ratio of Lemma 3.1.

Lemma 3.2. There is an instance of the MMR-GAP for which an optimal solution to GAP under the median-cost
scenario s̃ has a regret twice as large as the optimal regret.

Proof. Let m = 3, n = 1, a11 = a21 = a31, b1 = 1 with interval costs c11 ∈ [1, 1], c21 ∈ [0, 2], c31 ∈ [0, 2]. Assigning
the unique job to any agent gives an optimal solution to GAP under the median-cost scenario, because all median costs
have value 1. The optimal MMR-GAP solution assigns the job to agent 1, attaining the maximum regret of value 1,
while assigning the job to agent 2 (or 3) gives the maximum regret of value 2.

3.2. Dual Substitution Heuristic
The dual substitution heuristic introduced in this section is based on a MIP formulation in which some of the

constraints are replaced by their dual counterpart in the linear relaxation of the problem. Kasperski provided a general
technique in [27], and similar ideas of using MIP models have been used a number of times to produce exact algorithms
for other min-max regret problems having zero duality gap, such as the min-max regret shortest problem [17], the
min-max regret spanning tree problem [14]. To our knowledge, it is relatively new to use such ideas to design heuristic

5

algorithms for problems with possibly non-zero duality gaps [21], and not much has been done to apply such ideas to
various problems and computationally evaluate the resulting heuristics. In our research, we use it as a heuristic for the
MMR-GAP.

The minimization problem over y in (11), miny∈X0

∑m
i=1

∑n
j=1 cσ(x)

i j yi j, for every fixed x is an instance of the GAP. We
consider the linear program obtained by replacing the integrality constraint yi j ∈ {0, 1} with the weaker requirement
yi j ≥ 0 for all i ∈ I and j ∈ J, i.e.,

min
m∑

i=1

n∑
j=1

cσ(x)
i j yi j (21)

s.t.
n∑

j=1

ai jyi j ≤ bi ∀i ∈ I (22)

m∑
i=1

yi j = 1 ∀ j ∈ J (23)

yi j ≥ 0 ∀i ∈ I, ∀ j ∈ J. (24)

We introduce two types of dual variables: λi (i ∈ I) for constraints (22) and µ j (j ∈ J) for constraints (23). The
dual of (21)–(24) is then

max −
m∑

i=1

biλi +

n∑
j=1

µ j (25)

s.t. −ai jλi + µ j ≤ cσ(x)
i j ∀i ∈ I, ∀ j ∈ J (26)

λi ≥ 0 ∀i ∈ I. (27)

By embedding (25)–(27) into (11), we obtain the following dual substitution model (D-MMR-GAP):

min
m∑

i=1

n∑
j=1

c+
i jxi j +

m∑
i=1

biλi −

n∑
j=1

µ j (28)

s.t. −ai jλi + µ j ≤ c−i j + (c+
i j − c−i j)xi j ∀i ∈ I,∀ j ∈ J (29)

λi ≥ 0 ∀i ∈ I (30)
x ∈ X0. (31)

Intuitively, the D-MMR-GAP is not easier than the GAP, since it contains all the GAP constraints. In fact, the
D-MMR-GAP has the following complexity:

Property 3.1. Problem D-MMR-GAP is NP-hard in the strong sense.

Proof. Given an instance of the classical GAP, we transform it to an instance of the D-MMR-GAP by considering
intervals with no gap c+

i j = c−i j = ci j. Then, because the right-hand side of (29) becomes a constant value ci j, the
resulting D-MMR-GAP decomposes into two problems:

(i) min
m∑

i=1

n∑
j=1

ci jxi j (32)

s.t. x ∈ X0; (33)

(ii) min
m∑

i=1

biλi −

n∑
j=1

µ j (34)

s.t. −ai jλi + µ j ≤ ci j ∀i ∈ I, ∀ j ∈ J (35)
λi ≥ 0 ∀i ∈ I. (36)

6

Note that these two problems are totally separated and the former problem is exactly the same as the given GAP
instance. This implies that the GAP is polynomial-time reducible to the D-MMR-GAP, and in this reduction it is not
necessary to introduce large numbers (i.e., the maximum among the absolute values of the coefficients c+

i j, c−i j, ai j, and
bi of the D-MMR-GAP instance is the same as that of the GAP instance). Since the GAP is known to be NP-hard in
the strong sense, the same hods for the D-MMR-GAP.

Property 3.2. The optimal solution value of the D-MMR-GAP is an upper bound for the MMR-GAP.

Proof. Let X̂ denote the set of feasible solutions for the continuous relaxation of the GAP:

X̂ = {y | y satisfies constraints (22)–(24)}.

From (5), we have X0 ⊆ X̂, and hence

min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j −min

y∈X0

m∑
i=1

n∑
j=1

cσ(x)
i j yi j

 ≤ min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j −min

y∈X̂

m∑
i=1

n∑
j=1

cσ(x)
i j yi j

 . (37)

Note that, according to (11), the left side of the above inequality is the optimal value of the MMR-GAP.
Let D(x) denote the set of feasible solutions of the dual problem in (25)–(27):

D(x) = {(u, v) | (u, v) satisfies constraints (26)–(27)}.

Due to the strong duality theorem, the optimal values of the two problems (21)–(24) and (25)–(27) are the same, and
hence

min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j −min

y∈X̂

m∑
i=1

n∑
j=1

cσ(x)
i j yi j

 = min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j − max

(u,v)∈D(x)

−
m∑

i=1

biλi +

n∑
j=1

µ j

 . (38)

It is not hard to see that the D-MMR-GAP is equivalent to the right-hand side of equality (38). The thesis follows
from (37) and (38).

In addition, it easily follows that a tighter upper bound can be obtained as follows.

Property 3.3. The upper bound obtained by evaluating the maximum regret of any optimal solution of the D-MMR-GAP
is at least as good as the optimal value of the D-MMR-GAP.

Proof. For any feasible solution x ∈ X0, the smallest objective value of the D-MMR-GAP (i.e., x is fixed and u and v
are optimized) is

zσ(x)(x) −min
y∈X̂

zσ(x)(y). (39)

According to (7) and Lemma 2.1, the min-max regret of this solution x is

zσ(x)(x) −min
y∈X0

zσ(x)(y). (40)

Since X0 ⊆ X̂, we have

zσ(x)(x) −min
y∈X̂

zσ(x)(y) ≥ zσ(x)(x) −min
y∈X0

zσ(x)(y). (41)

We observed in our experiments that the dual substitution heuristic tends to obtain better solutions compared to the
fixed-scenario heuristic. However, unlike the fixed-scenario algorithm with the median-cost scenario, this algorithm
cannot have a guarantee on its solution quality.

7

Property 3.4. For any positive K, there exists an instance of the MMR-GAP for which the dual substitution heuristic
obtains a solution whose maximum regret is at least K times the optimal value.

Proof. Let m = 2, n = 3, a11 = a21 = 1, a12 = a22 = 4, a13 = a23 = 2, b1 = 5, b2 = 3 with interval costs c11 ∈ [1,K1],
c21 ∈ [1, 2], c12 ∈ [K2,K2], c22 = c13 = c23 ∈ [1, 1], where K1 and K2 satisfy K2 � K1 � 1 and K1 ≥ K+1. Obviously,
jobs 2 and 3 have to be assigned to agents 1 and 2, respectively, while job 1 can be assigned to either agent. There
are only two feasible solutions: solution x assigning job 1 to agent 1 with maximum regret K1 − 1, and the optimal
solution y assigning job 1 to agent 2 with maximum regret 1. On the other hand, since we applied LP relaxation in the
D-MMR-GAP, solution x with maximum regret (3/4)(K2 − 1) is better than y with maximum regret (3/4)(K2 − 1) + 1
under the formulation (28)–(31), and hence the dual substitution heuristic outputs solution x. Therefore, the ratio of
the obtained objective value to the optimal value is K1 − 1 ≥ K, which can be arbitrarily large.

4. Exact Algorithms

The two exact algorithms examined in this section are both rooted from a MIP model of the MMR-GAP. By
using Lemma 2.1, and introducing a new continuous variable ϕ, along with a constraint that forces ϕ to satisfy ϕ ≤ zs

∗

∀s ∈ S , the MMR-GAP can be expressed by the following MIP model (MIP-MMR-GAP):

min
m∑

i=1

n∑
j=1

c+
i jxi j − ϕ (42)

s.t. ϕ ≤
m∑

i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)xi j)yi j ∀y ∈ X0 (43)

x ∈ X0. (44)

4.1. Benders-Like Decomposition
Benders’ decomposition was originally proposed in [36]. Benders-like decompositions are standard techniques

that have been frequently used for the exact solution of min-max regret problems [11, 20, 21, 24, 37, 38, 39].
Model (42)–(44) is hard to handle due to the exponential number of constraints (43). Let us define a master

problem P(X) as the relaxation of the MIP-MMR-GAP in which set X0 in constraints (43) is replaced by a subset X
of X0:

ϕ ≤

m∑
i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)xi j)yi j ∀y ∈ X. (45)

We name the constraints (45) Benders’ cuts. For an optimal solution (x∗, ϕ∗) to the current master problem P(X), we
define a slave problem Q(x∗) as:

min
y∈X0

m∑
i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)x∗i j)yi j. (46)

Let q(y) be the objective value of a solution y and let y∗ be an optimal solution to Q(x∗). If q(y∗) < ϕ∗ holds, then
the specific constraint (43) induced by y∗ is violated by the current optimal solution (x∗, ϕ∗) of P(X), and it is called
a Benders’ cut. Whenever such a cut is found, the proposed algorithm adds the solution y∗ to X, and it solves the
updated P(X). The process is iterated until the algorithm finds a solution (x∗, ϕ∗) for which no violated constraint
exists.

Since P(X) is a relaxation of the MIP-MMR-GAP, the optimal solution value at each iteration is a valid lower
bound on the optimal solution value of the original MMR-GAP, and hence the final solution, which does not violate
any constraint (43), is an optimal solution to the MMR-GAP.

The choice of the Benders’ cuts added to X at each iteration can have a strong influence on the overall perfor-
mance. We start with set X = {x̃}, where x̃ is the optimal solution obtained by the fixed-scenario heuristic under the
median-cost scenario. When set X contains exactly one Benders’ cut, the optimal solution of P(X) has the following
properties.

8

Property 4.1. If X = {y} for any y ∈ X0, then the optimal value of P(X) cannot be positive.

Proof. In P(X), ϕ only appears in constraint (43) and in the objective function, where its value has to be maximized.
Hence we have

ϕ =

m∑
i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)xi j)yi j.

Accordingly, P(X) can be written as

min
x∈X0

m∑

i=1

n∑
j=1

c+
i jxi j −

m∑
i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)xi j)yi j

 = min
x∈X0

 ∑
(i, j): yi j=0

c+
i jxi j +

∑
(i, j): yi j=1

c−i j(xi j − 1)

 . (47)

Then, the optimal value cannot be positive, because the objective value becomes zero when x = y.

On the other hand, if set X consists of an optimal solution y to the GAP instance with a fixed scenario, we have
the following property.

Property 4.2. If X = {y} for an optimal solution y to the GAP instance obtained by fixing the scenario to any s ∈ S ,
then the optimal value of P(X) cannot be negative.

Proof. We prove the thesis by contradiction. Assume that the optimal value is negative, and let x∗ be an optimal
solution of P(X). Then, from (47), we get ∑

(i, j): yi j=0,

x∗i j=1

c+
i j <

∑
(i, j): yi j=1,

x∗i j=0

c−i j. (48)

Since c−i j ≤ cs
i j ≤ c+

i j for any i, j and s, we have∑
(i, j): yi j=0,

x∗i j=1

cs
i j <

∑
(i, j): yi j=1,

x∗i j=0

cs
i j ∀s ∈ S . (49)

This inequality indicates that the objective value zs(x∗) of x∗ is strictly better than that of y for the GAP instance
with scenario s. This contradicts the assumption that y is an optimal solution to this GAP instance, which completes
the proof.

In our Benders-like decomposition approach, we start with a set X consisting of the solution x̃ obtained by the
fixed-scenario heuristic with the median-cost scenario. From Properties 4.1 and 4.2, the optimal value of P(X) is zero
when X = {x̃}.

4.2. A Branch-and-Cut Algorithm
Branch-and-cut is another basic approach widely applied as an exact algorithm for interval min-max regret prob-

lems [11, 20, 21]. Our second exact algorithm uses Benders’ cuts in the context of a basic branch-and-cut framework.
We define P̄(X) as the linear relaxation of P(X), and we solve it (with respect to the free variables) at each node of the
search tree. Its optimal value is a lower bound for the corresponding partial problem. Since the boundaries of the cost
intervals c− and c+ for all the instances are integral, we strengthen this bound by rounding it up. If it is not smaller
than the incumbent solution value, then we prune the current node. Otherwise, we look for a violated constraint (43)
by solving the slave problem Q(x∗) for an optimal solution x∗ of the current P̄(X). If such a violation is found, we add
an optimal solution y∗ for Q(x∗) to the current set X, and then we solve the updated P̄(X). The process continues until
no violated constraint (43) exists. When this occurs, if the current optimal solution x∗ to P̄(X) is integral, we update
the incumbent solution and terminate the current node. If instead it is fractional, a branching follows.

The general framework of branch-and-cut can be implemented in various ways. We maintain the set X for con-
straints (45) as follows. The search starts with the set X that only contains an optimal solution x̃ to the GAP instance

9

...
...

...

x1 j2 = 1

...
...

...

x2 j2 = 1

x3 j2 = 1

x1 j1 = 1

x2 j1 = 1

...
...

...

x1 j3 = 1

...
...

...

x2 j3 = 1

...
...

...

x3 j3 = 1

x3 j1 = 1

Figure 1: A branching tree for the MMR-GAP with m = 3

with the median-cost scenario s̃. The cuts added to X at each active node are used throughout the entire computation
of the branch-and-cut algorithm, i.e., they contribute to all other active nodes.

In the branching step, we branch on the most fractional variable, i.e., the one closest to 0.5, and we adopt a depth-
first search strategy that chooses, as the next node to search, an active node at the maximum depth in the search tree.
This tends to allow the upper bound to be improved quickly in the early phases of the algorithm.

The Benders-like decomposition approach of the previous section cannot provide a feasible solution until it ter-
minates, while the branch-and-cut algorithm usually obtains feasible solutions before reaching optimality. Hence,
branch-and-cut algorithms can also serve as heuristics by prematurely halting them.

5. Lagrangian-Based Branch-and-Cut Algorithm

To improve the performance of the basic branch-and-cut algorithm of the previous section, we introduce a
Lagrangian-based branch-and-cut algorithm. A similar approach has been used in [21], but we make use of many
new techniques tailored for the MMR-GAP. In particular, we propose a stronger lower bound, an efficient variable
fixing method, and an effective solution of the Lagrangian subproblems through dynamic programming.

5.1. Branching Strategy Based on Semi-Assignment Constraints

In this section, we consider a branching strategy that exploits the structure of semi-assignment constraints (3). In
the MMR-GAP, fixing a variable xi j to one requires job j to be assigned to agent i and forbids xk j to take the value
one for all agents k , i. Based on this, we adopted the following branching rule: a partial problem branches to at most
m partial problems by fixing the assignment of an unfixed job j to each possible agent i ∈ I, except for those agents
i whose remaining capacity is less than ai j or those for which xi j has already been fixed by the variable fixing rules
described in Section 5.3. A branching tree for the case with m = 3 is illustrated in Figure 1, in which the branches in
dashed lines represent the nodes that are not generated due to earlier variable fixing or violation of capacity constraint.

We choose a job j for branching by utilizing the information from the lower bound computation. Let µ∗j denote the
optimal value of the dual variable associated with the semi-assignment constraints (3), which is obtained by solving
P̄(X), the linear relaxation of the master problem P(X), with respect to the free variables. Indeed, solving P̄(X) also

10

provides an optimal solution to its dual D̄(X):

max
n∑

j=1

µ j −

m∑
i=1

biλi −
∑
ys∈X

νs
m∑

i=1

n∑
j=1

c−i jy
s
i j

 (50)

s.t.
∑
ys∈X

(
c+

i j − c−i j

)
ys

i jν
s − ai jλi + µ j ≤ c+

i j ∀i ∈ I, ∀ j ∈ J (51)∑
ys∈X

νs = 1 (52)

λi ≥ 0 ∀i ∈ I (53)
νs ≥ 0 ∀ys ∈ X, (54)

where λ, µ, and ν are the dual variables associated with the capacity constraints (2), the semi-assignment constraints
(3), and the Benders’ constraints (43), respectively. For branching, we select the job j ∈ J with the highest |µ∗j | among
those whose assignment has not been fixed yet. For this job j, a branch is considered for each agent that has sufficient
remaining capacity to receive it, thus creating up to m child nodes. The highest |µ∗j | value intuitively indicates that the
corresponding semi-assignment constraint is critical, and hence it is expected that the LP lower bound of the current
node can be strengthened after such fixing.

It is not hard to see that the resulting branching scheme reduces the number of nodes in the entire enumeration
tree from O(2mn) of the basic 0-1 branching to O(mn). (Note however that, in our case, the number of nodes that can
actually be generated will not be that different, because the rule to choose the most fractional variable prevents the 0-1
branching from generating those nodes in which the semi-assignment constraints are violated.)

5.2. Lagrangian-Based Lower Bound

In this section we propose an improved lower bound computation based on Lagrangian relaxation. Other studies
on min-max regret problems also applied Lagrangian methods (see [40] and [21]). By embedding constraints (3)
and (45) in the objective function (42) through Lagrangian multipliers µ j and νs, respectively, we get the following
Lagrangian relaxation L(X, µ, ν):

min

m∑

i=1

n∑
j=1

c+
i jxi j − ϕ +

n∑
j=1

µ j

1 − m∑
i=1

xi j

 +
∑
ys∈X

νs

ϕ − m∑
i=1

n∑
j=1

(c−i j + (c+
i j − c−i j)xi j)ys

i j

 (55)

s.t. (2) and (4).

We use the values of µ and ν in an optimal solution to D̄(X) as the Lagrangian multipliers for (55). Then we have∑
ys∈X ν

s = 1 according to (52), and hence the objective function (55) of L(X, µ, ν) can be rewritten as follows:

min
m∑

i=1

n∑
j=1

ĉi jxi j +

n∑
j=1

µ j −
∑
ys∈X

νs
m∑

i=1

n∑
j=1

c−i jy
s
i j

 (56)

where ĉi j = c+
i j − µ j −

∑
ys∈X

(
c+

i j − c−i j

)
ys

i jν
s.

Note that L(X, µ, ν) is independent from ϕ, and its optimal solution can be obtained by solving m 0-1 knapsack
problems in the x variables. To solve such knapsack problems, we use a dynamic programming algorithm, introduced
in Section 5.4.

It is not hard to show that L(X, µ, ν) provides a lower bound at least as good as the LP lower bound of Section 4.2
when we use the values of µ and ν in an optimal solution to the dual D̄(X) of problem P̄(X).

At each active node, we first obtain a lower bound by solving P̄(X). If it is lower than the incumbent solution value,
then a round of Benders’ cut additions is performed. When no violated constraint (43) exists, we solve L(X, µ, ν) by
setting µ and ν to the values they have in an optimal solution to D̄(X). If the resulting lower bound is not smaller than
the incumbent solution value, the node is fathomed.

11

5.3. Variable Fixing
An advantage of Lagrangian relaxation is that the obtained information can also be used for variable fixing in an

efficient way. Let U be the incumbent solution value and l∗(X, µ, ν) the optimal solution value of L(X, µ, ν). We denote
by ∆, the optimality gap at the current node: ∆ = U − l∗(X, µ, ν).

For obtaining l∗(X, µ, ν), recall that the Lagrangian relaxation decomposes into m independent 0-1 knapsack prob-
lems, one for each agent i ∈ I:

Li(X, µ, ν) min
n∑

j=1

ĉi jxi j (57)

s.t.
n∑

j=1

ai jxi j ≤ bi (58)

xi j ∈ {0, 1} ∀ j ∈ J. (59)

For a given set of multipliers µ, ν and Benders’ cut set X, let l∗i (X, µ, ν) denote the optimal solution value of Li(X, µ, ν).
Using (57)–(59), the Lagrangian function (56) can be rewritten as

l∗(X, µ, ν) =

n∑
j=1

µ j −
∑
ys∈X

νs
m∑

i=1

n∑
j=1

c−i jy
s
i j

 +

m∑
i=1

l∗i (X, µ, ν). (60)

Now, let x̆ be an optimal solution of L(X, µ, ν) and l∗i (X, µ, ν)xi j=1−x̆i j be the optimal value of the knapsack problem
for agent i in which we force xi j to take value 1 − x̆i j. The increase Ξi j on lower bound l∗(X, µ, ν) can be written as
follows when we force xi j to take value 1 − x̆i j:

Ξi j =

l∗i (X, µ, ν)xi j=0 − l∗i (X, µ, ν) if x̆i j = 1
l∗i (X, µ, ν)xi j=1 − l∗i (X, µ, ν) if x̆i j = 0

∀i ∈ I, ∀ j ∈ J. (61)

With the definitions above, we can consider many variable fixing rules:

• Rule 1: If x̆i j = 0 and Ξi j ≥ ∆, then xi j can be fixed to 0.

• Rule 2: If x̆i j = 1 and Ξi j ≥ ∆, then xi j can be fixed to 1 and xk j to 0 for all k , i.

• Rule 3: This is a rule strengthened from Rule 1. Suppose that x̆i j = 0. If xi j took the value 1 in a feasible
solution, then all other xk j would have to take the value 0; therefore if Ξi j +

∑
k: x̆k j=1 Ξk j ≥ ∆, then xi j can be

fixed to 0.

• Rule 4: Suppose that x̆i j = 1 and x̆k j = 0 for all k , i. If xi j took the value 0 in a feasible solution, then some
xk j with k , i would have to take value 1; therefore if Ξi j + min

{
Ξk j | k , i

}
≥ ∆, then xi j can be fixed to 1 and

xk j can be fixed to 0 for all k , i.

• Rule 5: If xk j is fixed to 0 for all k , i then xi j must be fixed to 1. Moreover, if x̆i j = 0 and Ξi j ≥ ∆, then the
current node can be pruned.

• Rule 6: Suppose that
∑m

i=1 x̆i j = 0. At least one unfixed variable xi j for some i ∈ I must take the value 1;
therefore if min

{
Ξi j | i ∈ I

}
≥ ∆, then the current node can be pruned.

• Rule 7: If xi j is fixed to 0 for all i ∈ I then the current node can be pruned.

• Rule 8: Suppose that x̆i j = 1 for more than one i ∈ I. As only one of them can take the value 1, if
∑

k: x̆k j=1 Ξk j −

max
{
Ξk j | x̆k j = 1, k ∈ I

}
≥ ∆, then the current node can be pruned.

Rules 1–7 have been proposed by Posta et al. [41] for the classical GAP. Preliminary computational experiments
confirmed that they are also effective for the MMR-GAP, and hence they were incorporated in our variable fixing step.

12

5.4. Dynamic Programming Approach

As all input data are integers, the knapsack problems (57)–(59), which are needed to compute l∗(X, µ, ν) as in (60),
can be solved through the following two-direction dynamic programming approach, which was first proposed for the
classical GAP by Posta et al. [41].

For each agent i, we introduce a quantity fi(j, k) for j = 0, 1, . . . , n and k = 0, 1, . . . , bi, where j is the number of
jobs and k is an amount of resource. The value fi(j, k) gives the minimum cost when only jobs from 1 to j are available,
and the resource limit is k instead of bi in (2). We can compute fi(j, k) through the classical dynamic programming
recursion

fi(j, k) =

0 if j = 0;
fi(j − 1, k) if j ≥ 1 and k < ai j;
min

{
fi(j − 1, k), fi(j − 1, k − ai j) + ĉi j

}
otherwise.

The computation can be implemented using an (n + 1) × (bi + 1) array whose (j, k)-element contains the value of
fi(j, k), and computing their values by increasing j. The value of fi(n, bi) gives the optimal value l∗i (X, µ, ν). We call
this dynamic programing a head-to-tail approach.

In order to efficiently determine on variable fixing, we additionally use a tail-to-head approach for each knapsack
problem. For each agent i, we define gi(j, k) as the minimum cost when we are only allowed to use jobs from j to n,
and we have a resource restriction of bi − k. Values gi(j, k) are computed in a symmetric way, by decreasing j:

gi(j, k) =

0 if j = n + 1;
gi(j + 1, k) if j ≤ n and k > bi − ai j;
min

{
gi(j + 1, k), gi(j + 1, k + ai j) + ĉi j

}
otherwise.

Next, we show how this DP approach also provides l∗i (X, µ, ν)xi j=1−x̆i j from the two DP tables, i.e., the table of
fi(j, k) and that of gi(j, k). We compute l∗i (X, µ, ν)xi j=1−x̆i j by considering the combination of two partial knapsack
problems for each k: a knapsack problem on jobs from 1 to j − 1 with capacity k and another one on jobs from j + 1
to n with capacity bi − ai j(1 − x̆i j) − k. Formally, when n ≥ 2, l∗i (X, µ, ν)xi j=1−x̆i j can be obtained by

l∗i (X, µ, ν)xi j=0 = min
0≤k≤bi

gi(j + 1, k) if j = 1;
fi(j − 1, k) if j = n;
fi(j − 1, k) + gi(j + 1, k) otherwise

(62)

or

l∗i (X, µ, ν)xi j=1 = min
0≤k≤bi−ai j

ĉi j + gi(j + 1, k + ai j) if j = 1;
ĉi j + fi(j − 1, k) if j = n;
ĉi j + fi(j − 1, k) + gi(j + 1, k + ai j) otherwise.

(63)

The computation of (62) and (63) can be done in O(bi) time for each pair (i, j), and hence, this two-direction dynamic
programming approach has time complexity O(nbi) for each i, i.e., O(n

∑m
i=1 bi) in total to compute Ξi j for all i and j.

Figure 2 illustrates the case in which we fix xi j to 1 and the value of ai j is 1. The upper and lower parts represent the
tables for fi(j, k) and gi(j, k), and the lines in the jth column connect the two elements in the table corresponding to
the two terms in the last line of (63). Then, the value of l∗i (X, µ, ν)xi j=1 can be obtained by searching for the minimum
among the sums of the values at the two ends.

5.5. Benders’ Cuts Management

In our Lagrangian-based branch-and-cut approach, it takes only polynomial or pseudo-polynomial time to solve
the LP relaxation P̄(X) or the Lagrangian relaxation problems, while the slave problem Q(·) is NP-hard in the strong
sense. We handle such difficulty by reducing the computation time needed to solve each Q(·), and by limiting the
number of times we solve it. We consider the following methods.

13

0 1 · · · · · · bi − 1 bi

1 f (1, 0) f (1, 1) · · · · · · f (1, bi − 1) f (1, bi)

2 f (2, 0) f (2, 1) · · · · · · f (2, bi − 1) f (2, bi)

...
...

...
...

...
...

...

j− 1 f (j − 1, 0) f (j − 1, 1) · · · · · · f (j−1, bi−1) f (j − 1, bi)

j

j + 1 g(j + 1, 0) g(j + 1, 1) · · · · · · g(j+1, bi−1) g(j + 1, bi)

...
...

...
...

...
...

...

n−1 g(n − 1, 0) g(n − 1, 1) · · · · · · g(n−1, bi−1) g(n − 1, bi)

n g(n, 0) g(n, 1) · · · · · · g(n, bi − 1) g(n, bi)

Figure 2: Two-direction dynamic programing for fixing xi j = 1, where ai j = 1

Full-cut
This approach generates, at every node, as many Benders’ cuts as possible, and adds them to X.
Cut-and-branch
At the root node we repeat the process of adding Benders’ cuts to X until no such cut can be found. For the other
nodes, we solve the LP relaxation P̄(X) first and continue our Benders’ cut generation only if in the optimal solution
(x∗, ϕ∗) to P̄(X), x∗ is integral. Whenever a new Benders’ cut is found, we add it to X and we solve the updated P̄(X)
again. This process is repeated until the obtained x∗ becomes fractional or we find a solution (x∗, ϕ∗) for which no
constraint is violated. Note that we can terminate an active node if we find an optimal solution (x∗, ϕ∗) to P̄(X) such
that x∗ is integral and no violated constraint exists, because such a solution is also optimal to problem P(X0) (with
respect to the free variables at the node). The rule for non-root nodes is adopted for this reason. In this approach, the
number of solved Q(·) is drastically reduced with respect to the full-cut approach.
Adaptive generation
We now introduce two techniques to improve the performance of the cut-and-branch method. The cut-and-branch
strategy concentrates on lowering the number of times cuts are generated, which is shown to be more effective than
the full-cut approach by the computational experiments of Section 6. However, this comes at the expense of sacrificing
the quality of lower bounds due to the lack of effective Benders’ cuts. That is, there is a trade-off between the quality
of lower bounds and the time to generate Benders’ cuts. A simple idea to reduce the time for generating Benders’ cuts
without sacrificing the quality of the lower bound (i.e., without reducing the number of Benders’ cuts) is to shorten
the time for solving Q(·) by using heuristic approaches instead of exact ones. Note that even if we use heuristics to
solve Q(·), the lower bounds are valid and hence the resulting branch-and-cut algorithm remains exact. It should also
be noted, however, that when integral solutions of P̄(X) are obtained, they are not necessarily feasible with respect
to the MIP-MMR-GAP (42)–(44) unless Q(·) is solved to optimality. Thus, we solve Q(·) exactly only if integral
solutions of P̄(X) are obtained, and use heuristics otherwise. We tested two heuristics, originally developed for the
classical GAP: an ejection chain approach [42] and a path relinking approach with ejection chains [43], with a limit
T (a parameter) on the number of calls to EC probe, which is the basic local search component of these heuristic
algorithms. If no violated Benders’ constraint is found within T iterations, a branching follows. On the basis of
preliminary computational experiments, we adopted the ejection chain approach.

The second improvement is the method we use for adding Benders’ cuts at non-root nodes. For this approach,
we impose an upper limit on the total number of Benders’ cuts generated at non-root nodes, and we skip the cut
generation once this number was been reached (except for the case where x∗ is integral). The upper limit was set to
W times the number of Benders’ cuts generated at the root (W a parameter). Moreover, for each non-root node, we
stop the Benders’ cut generation process when the ratio α =

ϕ∗−q(y∗)
q(y∗) becomes smaller than or equal to a parameter Υ

(except for the case where x∗ is integral), where (x∗, ϕ∗) is an optimal solution to P̄(X) and y∗ is a (not necessarily

14

optimal) solution to the slave problem Q(x∗) defined by (46). Preliminary computational experiments showed that
high increments in the lower bound mostly occur at early iterations, when α > 2%, while most cuts with α ≤ 1%
only produce a tiny increase of the node lower bound. This suggests that it is possible to save computational effort by
halting the generation of Benders’ cuts when α becomes small. It turned out that the adaptive generation of Benders’
cuts performs well with parameter setting T = 100, W = 8, and Υ = 1%.

6. Computational Experiments

6.1. Instance Generation
To the best of our knowledge, this is the first research on the MMR-GAP. In order to test our approaches, we

generated MMR-GAP instances from the following well-known (see [44] and [45]) GAP benchmark instances known
as Types A, B, C, D, and E (u.d. stands for “uniformly distributed”):

A: ∀i, j, ai j is a random integer u.d. in [5, 25], ci j is a random integer u.d. in
[10, 50]; bi = 0.6(n/m)15 + 0.4γ, where γ = maxi∈I

∑
j∈J, θ j=i ai j and θ j =

min{i | ci j ≤ ck j,∀k ∈ I}.
B: ai j and ci j as for Type A; bi is set to 70% of the value in Type A.
C: ai j and ci j as for Type A; bi = 0.8

∑n
j=1 ai j/m.

D: ∀i, j, ai j is a random integer u.d. in [1, 100] and ci j = 111 − ai j + e1 (e1 a
random integer u.d. in [−10, 10]); bi = 0.8

∑n
j=1 ai j/m.

E: ∀i, j, ai j = 1 − 10 ln e2 (e2 a random number u.d. in (0, 1]), ci j = 1000/ai j −

10e3 (e3 a random number u.d. in [0, 1]); bi = 0.8
∑n

j=1 ai j/m.

For each type, we generated GAP instances with m ∈ {5, 10} and n ∈ {40, 80}. We then obtained MMR-GAP instances
by setting the extremes of the cost intervals, c−i j and c+

i j, to random integers u.d. in [(1 − δ)ci j, ci j] and [ci j, (1 + δ)ci j],
respectively, with δ ∈ {0.10, 0.25, 0.50}. We randomly generated 5 instances for each δ, thus obtaining 15 MMR-GAP
instances by using each original GAP instance as a seed. As a result, we generated 300 MMR-GAP instances in total,
which are available at http://www.co.mi.i.nagoya-u.ac.jp/~goi/mmr-gap/.

6.2. Implementation Details
The heuristic algorithms proposed for the GAP in [42] and [43] were coded in C, while the algorithms proposed

in this paper were all coded in C++. We used IBM ILOG CPLEX, version 12.4, for solving linear programming and
mixed integer linear programming problems. The CPLEX solver was also used to exactly solve the classical GAP,
the Benders’ master problems P(X) and P̄(X), and problem D-MMR-GAP for the dual substitution heuristic. All
experiments were carried out on a PC with two cores i7-5820K at 3.30 GHz and 32 GB RAM memory, where the
computation was always conducted on a single core.

6.3. Heuristic Algorithms
We compared two heuristic algorithms, the fixed-scenario algorithm of Section 3.1 and the dual substitution heuris-

tic of Section 3.2.
Table 1 shows the upper bounds computed by these algorithms for all instances. The GAP instances are denoted

as Xyyzz, where X = type, yy = m and zz = n. For each GAP instance, we give the results for the three values of δ. For
every 5 random instances under the same δ, the entries give the average CPU time in seconds spent by the algorithm
(“time”), the average optimality gap (“gap”), and the total number of failures (“#f”), i.e., the total number of instances
not solved exactly within the time limit. Both the average CPU times and the average optimality gaps were taken
for those instances whose optimal solutions were found within the time limit. The optimality gap of solution x is the
quantity (rmax(x) − OPT)/OPT, where OPT is the optimal value obtained by the exact algorithms.

We used CPLEX to exactly solve the classical GAP for evaluating the maximum regret of the obtained solutions
through Lemma 2.1. A time limit of 3600 seconds was assigned to each algorithm. Notation “t.l.” indicates that the
algorithm was not able to exactly solve even one of the five instances within the time and memory limit. Columns
“DS” refer to the dual substitution algorithm. An empty entry indicates that no optimal value was available for
calculating the optimality gap.

15

Among the fixed-scenario approaches, the median-cost scenario (c+ + c−)/2 obtains the best solutions for most of
the instances. The dual substitution algorithm provides better solutions with objective values very close to the optimal
values. However, for Types D and E, the computation of the dual substitution algorithm becomes very expensive.
One possible explanation for the hardness of achieving optimality is that the number of mixed integer constraints (26)
increases with the number of jobs n. On the other hand, we also observed that the increase in the value of δ did not
change the size of the problem, while the mixed integer constraints (26) with a wide range of interval caused more
consuming time for a branch-and-cut based solver.

The average gaps from the known optimal values for Types A, B, C, and E are reported in Table 2. The dual
substitution heuristic obtained better upper bounds than the fixed-scenario heuristic for the instances of all types.

A reasonable conclusion can be drawn from these results. A decision maker that aims to find a near-optimal solu-
tion to the MMR-GAP could first adopt the fixed-scenario approach under the median-cost scenario. The advantage
of the fixed-scenario approach is that it is fast and easy to implement. If he/she has sufficient computation time, at the
second attempt, he/she could invoke the dual substitution heuristic, which may provide a better solution.

6.4. Exact Algorithms
We tested the exact algorithms of Section 4 on all instances. Recall that, for the Benders-like decomposition, when

it is halted with a time limit, the objective value of the obtained solution is a valid lower bound, although it is usually an
infeasible solution (see Section 4.1). On the other hand, the solution value obtained by the branch-and-cut framework
provides a valid upper bound on the optimal regret when it terminates with a time limit. Each pair of entries in Table 3
shows the average CPU time in seconds spent by the algorithm (computed for those instances whose optimal solutions
were found within the time limit), the average optimality gap from the optimal value or from a lower bound (taken for
those instances whose optimal solutions or valid lower bounds were found within the time limit), and the number of
instances where an optimal solution was found (in column “#opt”) within the time limit. We calculated the optimality
gap of solution x in the same way as described in Section 6.3, where for those instances whose optimal values are
not known, the valid lower bounds obtained by Benders-like decomposition are used instead. An instance was not
included into the average calculation if no feasible solution was obtained by the corresponding algorithm. We use B&C
and C&B to denote branch-and-cut and cut-and-branch, respectively. “Benders” is the Benders-like decomposition
approach of Section 4.1, while “basic B&C” is the basic branch-and-cut algorithm discussed in Section 4.2. Columns
“Lagrangian-based B&C” refer to the approach proposed in Section 5: “full-cut,” “C&B” and “adaptive” represent
the three cut management approaches discussed in Section 5.5. A time limit of 3600 seconds was assigned to each
algorithm. For the Lagrangian-based branch-and-cut algorithms, the time limit for solving the D-MMR-GAP to obtain
an initial upper bound was set to 300 seconds. Notation “t.l.” has the same meaning as in Table 1.

Table 3 shows that the Lagrangian-based branch-and-cut algorithms dominated the basic branch-and-cut algorithm
for instances of Types B, C, and E, with few exceptions for instances of Type A.

With respect to Benders-like decomposition, the Lagrangian-based branch-and-cut algorithm with adaptive cut
generation has on average shorter CPU times for Types A and E, while for Types B and C there is no clear winner. For
Type D (the most difficult one), we omit the results since none of the algorithms was able to obtain optimal solutions,
and there is a large gap between the lower bound obtained by the Benders-like decomposition approach and the upper
bound obtained by the branch-and-cut algorithms.

Table 4 provides the overall results for the introduced exact algorithms. For each algorithm and instance type, the
entries provide the number of instances for which the algorithm determined the optimal solution with the least com-
putation time among the three methods. The value in parentheses gives the number of instances solved to optimality
within one hour. The Lagrangian-based branch-and-cut algorithm with adaptive cut generation had the best results for
the instances of Types A and E. In total, it solved to optimality 102 out of 240 instances of Types A, B, C, and E, in
64 cases with the lowest CPU time.

These results indicate that the branch-and-cut approach using Benders cut has a better performance than the
simple cutting plane method (Benders-like decomposition). One of the important future research directions could
be to consider improvement on the classical Benders-like decomposition. For the MMR-GAP, the Lagrangian-based
branch-and-cut algorithm that takes advantage of the features of the GAP dominates the classical Benders-like decom-
position and branch-and-cut approach. It indicates that when considering other combinatorial optimization problems
under the min-max regret criterion, a problem-specialized algorithm based on two general frameworks may improve
the overall CPU time.

16

Table 1: Results of heuristic algorithms
Fixed Scenario

c− (c+ + c−)/2 c+ DS
instance δ time #f gap time #f gap time #f gap time #f gap
A0540 0.10 0.03 0 4.3% 0.08 0 1.5% 0.01 0 7.6% 0.06 0 0.0%

0.25 0.02 0 15.2% 0.22 0 1.4% 0.01 0 3.6% 0.50 0 0.7%
0.50 0.02 0 0.05 0 0.01 0 0.60 0

A0580 0.10 0.03 0 16.3% 0.02 0 1.7% 0.03 0 8.0% 0.19 0 1.0%
0.25 0.01 0 0.01 0 0.01 0 0.67 0
0.50 0.02 0 0.01 0 0.03 0 6.45 0

A1040 0.10 0.02 0 17.5% 0.02 0 4.9% 0.02 0 19.4% 0.21 0 0.0%
0.25 0.03 0 9.6% 0.03 0 1.7% 0.04 0 9.9% 0.42 0 0.5%
0.50 0.05 0 0.03 0 0.01 0 1.17 0

A1080 0.10 0.04 0 15.6% 0.03 0 1.1% 0.02 0 6.7% 0.68 0 0.0%
0.25 0.02 0 0.03 0 0.01 0 1.43 0
0.50 0.05 0 0.02 0 0.03 0 15.83 0

B0540 0.10 0.31 0 4.6% 0.15 0 9.7% 0.22 0 12.7% 0.42 0 8.0%
0.25 0.18 0 11.6% 0.34 0 3.1% 0.16 0 9.9% 1.05 0 0.6%
0.50 0.37 0 16.9% 0.20 0 1.2% 0.16 0 3.8% 1.89 0 0.0%

B0580 0.10 0.55 0 15.2% 0.41 0 2.1% 0.41 0 1.1% 2.70 0 0.0%
0.25 0.57 0 0.90 0 0.28 0 19.35 0
0.50 0.57 0 0.35 0 0.73 0 80.03 0

B1040 0.10 0.34 0 11.6% 0.16 0 0.9% 0.12 0 2.5% 0.52 0 6.7%
0.25 0.22 0 5.6% 0.24 0 3.0% 0.17 0 11.3% 4.09 0 3.5%
0.50 0.23 0 24.4% 0.19 0 4.5% 0.14 0 8.7% 14.07 0 0.0%

B1080 0.10 0.90 0 18.0% 0.98 0 5.8% 0.58 0 13.2% 6.31 0 2.2%
0.25 0.63 0 0.56 0 0.45 0 168.19 0
0.50 1.16 0 0.78 0 0.87 0 2052.81 1

C0540 0.10 0.40 0 4.0% 0.26 0 0.0% 0.27 0 6.7% 0.55 0 0.0%
0.25 0.48 0 11.0% 0.22 0 1.7% 0.38 0 6.4% 1.26 0 0.0%
0.50 0.38 0 12.8% 0.45 0 3.2% 0.24 0 4.2% 5.82 0 0.0%

C0580 0.10 0.42 0 11.2% 0.69 0 0.0% 0.58 0 7.1% 3.11 0 0.0%
0.25 0.74 0 0.70 0 0.38 0 13.24 0
0.50 0.51 0 0.44 0 0.53 0 677.74 0

C1040 0.10 0.44 0 8.3% 0.47 0 7.1% 0.28 0 7.4% 1.08 0 3.8%
0.25 0.40 0 16.6% 0.31 0 5.7% 0.24 0 7.0% 1.68 0 2.1%
0.50 0.85 0 21.4% 0.28 0 0.0% 0.40 0 0.0% 14.00 0 0.0%

C1080 0.10 2.09 0 20.0% 0.88 0 3.5% 0.63 0 7.5% 12.38 0 3.9%
0.25 0.93 0 1.48 0 1.00 0 75.95 0
0.50 1.66 0 1.24 0 0.70 0 1033.34 1

D0540 0.10 10.83 0 11.89 0 21.71 0 121.95 0
0.25 7.77 0 4.89 0 7.53 0 931.42 0
0.50 2.46 0 6.74 0 9.30 0 574.27 0

D0580 0.10 169.32 0 166.96 0 89.29 0 t.l. 5
0.25 98.41 0 178.03 0 214.99 0 t.l. 5
0.50 26.71 0 136.86 0 60.81 0 t.l. 5

D1040 0.10 26.89 0 37.98 0 37.59 0 518.40 0
0.25 6.94 0 58.14 0 19.59 0 1301.18 0
0.50 3.14 0 16.02 0 4.09 0 387.35 0

D1080 0.10 1652.03 4 739.86 3 t.l. 5 t.l. 5
0.25 1422.67 0 t.l. 5 1927.13 4 t.l. 5
0.50 260.87 0 849.46 3 1668.17 3 t.l. 5

E0540 0.10 0.64 0 9.5% 0.51 0 2.5% 0.48 0 5.5% 3.05 0 0.4%
0.25 0.26 0 10.8% 0.68 0 2.5% 0.61 0 4.6% 16.31 0 0.0%
0.50 0.63 0 0.68 0 0.44 0 47.27 0

E0580 0.10 1.06 0 9.9% 1.73 0 2.6% 0.99 0 4.3% 94.13 0 0.0%
0.25 1.84 0 1.02 0 1.18 0 246.46 0
0.50 0.95 0 1.59 0 1.09 0 502.27 1

E1040 0.10 4.03 0 10.6% 2.98 0 5.6% 3.31 0 11.6% 64.45 0 9.1%
0.25 2.46 0 2.25 0 2.62 0 436.48 0
0.50 2.65 0 2.44 0 1.65 0 1185.87 0

E1080 0.10 8.72 0 7.11 0 5.43 0 1477.02 4
0.25 8.76 0 5.14 0 7.70 0 5
0.50 3.69 0 9.87 0 8.57 0 5

17

Table 2: Average optimality gap of heuristic algorithms
Fixed-Scenario

Type c− (c+ + c−)/2 c+ DS
A 13.0% 2.1% 9.3% 0.4%
B 12.5% 3.7% 7.7% 2.9%
C 12.5% 2.9% 6.3% 1.4%
E 10.2% 3.2% 6.4% 2.1%

The results also show that a decision maker could consider attacking through an exact algorithm a real-world
problem that can be modeled as an MMR-GAP, provided the size of the instance is not very large. However, large-
size instances, or instances with large uncertainty, should be preferably handled through heuristic algorithms.

7. Conclusions

The GAP has a number of real world managerial implications in production planning, scheduling, timetabling,
transportation, etc. We studied the min-max regret GAP, a robust version of the GAP. Problems of this class are much
more difficult than NP-hard problems; indeed it is considered very unlikely that they even belong to NP. We presented
and compared heuristic and exact methods.

We computationally examined a fixed-scenario heuristic, for which three scenarios were considered. We also
presented a dual substitution heuristic that uses a mixed integer programming formulation obtained by replacing a
subproblem with its dual. We observed that this heuristic method in most cases provides better upper bounds than the
fixed-scenario heuristic.

We also examined three exact methods: a Benders-like decomposition approach, a basic branch-and-cut algorithm,
and a Lagrangian-based branch-and-cut algorithm that incorporates several ideas. We used a Lagrangian lower bound
that is stronger than the LP lower bound and is obtained by solving m 0-1 knapsack problems through dynamic pro-
gramming. This computation was further exploited for variable fixing. Compared with Benders-like decomposition,
the Lagrangian-based branch-and-cut had better performance for instances of Types A and E, and it exactly solved
102 out of 240 instances of Types A, B, C, and E with m up to 10 and n up to 80.

Snyder and Daskin [2] proposed, for two classical facility location problems, a hybrid stochastic and robust opti-
mization approach (p-robust approach). Future research could consider the development of a similar approach for the
MMR-GAP.

Acknowledgements

This work was partially supported by JSPS KAKENHI [Grant Nos. 15K12460, 15H02969], by the Hori Sciences
and Arts Foundation, and by CAPES/Brazil under grant PVE no. A007/2013, and by MIUR (Italy) under grant PRIN
2015. We are grateful to the referees of this paper for many useful suggestions.

References

[1] J. M. Buhmann, A. Y. Gronskiy, M. Mihalák, T. Pröger, R. Šrámek, P. Widmayer, Robust optimization in the presence of uncertainty: A
generic approach, Journal of Computer and System Sciences 94 (2018) 135–166.

[2] L. V. Snyder, M. S. Daskin, Stochastic p-robust location problems, IIE Transactions 38 (11) (2006) 971–985.
[3] M. Poss, Robust combinatorial optimization with knapsack uncertainty, Discrete Optimization 27 (2018) 88–102.
[4] D. Bertsimas, M. Sim, The price of robustness, Computers & Operations Research 52 (2004) 35–53.
[5] N. H. Lappas, C. E. Gounaris, Robust optimization for decision-making under endogenous uncertainty, Computers & Chemical Engineering

111 (2018) 252–266.
[6] M. Ehrgott, J. Ide, A. Schöbel, Minmax robustness for multi-objective optimization problems, European Journal of Operational Research

239 (1) (2014) 17–31.
[7] A. Raith, M. Schmidt, A. Schöbel, L. Thom, Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncer-

tainty, European Journal of Operational Research 267 (2) (2018) 628–642.

18

Table 3: Results of exact algorithms

Lagrangian-based B&C
Benders basic B&C full-cut C&B adaptive

instance δ time #opt time #opt gap time #opt gap time #opt gap time #opt gap
A0540 0.10 1.15 5 1.14 5 0.0% 2.28 5 0.0% 0.78 5 0.0% 0.32 5 0.0%

0.25 484.01 5 59.38 5 0.0% 420.10 4 0.5% 86.73 5 0.0% 50.83 5 0.0%
0.50 t.l. 0 t.l. 0 11.3% t.l. 0 9.3% t.l. 0 9.3% t.l. 0 9.3%

A0580 0.10 205.50 5 10.79 5 0.0% 114.57 5 0.0% 35.87 5 0.0% 16.65 5 0.0%
0.25 t.l. 0 t.l. 0 20.1% t.l. 0 11.6% t.l. 0 11.6% t.l. 0 11.6%
0.50 t.l. 0 t.l. 0 58.4% t.l. 0 35.8% t.l. 0 35.8% t.l. 0 35.8%

A1040 0.10 2.83 5 3.31 5 0.0% 12.29 5 0.0% 4.99 5 0.0% 1.04 5 0.0%
0.25 1668.20 3 1192.33 4 0.3% 196.80 2 0.5% 1122.51 4 0.0% 926.58 5 0.0%
0.50 t.l. 0 t.l. 0 18.8% t.l. 0 11.9% t.l. 0 11.9% t.l. 0 11.9%

A1080 0.10 1523.17 3 1379.73 4 1.7% 184.69 3 1.7% 1531.68 3 1.7% 1470.31 3 1.7%
0.25 t.l. 0 t.l. 0 31.3% t.l. 0 17.0% t.l. 0 17.0% t.l. 0 17.0%
0.50 t.l. 0 t.l. 0 71.2% t.l. 0 41.5% t.l. 0 41.5% t.l. 0 41.5%

B0540 0.10 1.83 5 29.58 5 0.0% 213.82 5 0.0% 5.53 5 0.0% 6.47 5 0.0%
0.25 49.03 5 167.13 5 0.0% 1580.94 4 0.0% 47.48 5 0.0% 13.95 5 0.0%
0.50 2169.11 4 2152.68 3 4.3% 757.16 1 0.0% 1597.97 4 0.0% 804.76 5 0.0%

B0580 0.10 131.46 5 946.69 4 0.0% 1286.12 2 0.0% 212.03 5 0.0% 80.60 5 0.0%
0.25 t.l. 0 t.l. 0 40.9% t.l. 0 14.8% t.l. 0 14.8% t.l. 0 14.8%
0.50 t.l. 0 t.l. 0 81.0% t.l. 0 40.5% t.l. 0 40.5% t.l. 0 40.5%

B1040 0.10 6.95 5 428.18 5 0.0% 228.66 4 0.0% 15.42 5 0.0% 9.66 5 0.0%
0.25 825.52 4 1653.36 3 4.0% t.l. 0 0.9% 868.61 4 0.6% 822.07 4 0.6%
0.50 3562.28 1 t.l. 0 14.4% t.l. 0 4.0% t.l. 0 4.0% t.l. 0 4.0%

B1080 0.10 463.96 5 2688.55 2 242.4% 696.53 1 1.8% 1706.35 3 1.0% 1597.24 3 1.0%
0.25 t.l. 0 t.l. 0 93.3% t.l. 0 19.8% t.l. 0 19.8% t.l. 0 19.8%
0.50 t.l. 0 t.l. 0 0.00 0 45.6% t.l. 0 45.6% t.l. 0 45.6%

C0540 0.10 2.59 5 20.02 5 0.0% 153.92 5 0.0% 6.36 5 0.0% 5.43 5 0.0%
0.25 63.28 5 217.78 5 0.0% 1010.41 3 0.0% 64.89 5 0.0% 22.58 5 0.0%
0.50 2538.39 2 2411.97 2 4.2% t.l. 0 2.0% 2173.81 3 2.0% 1913.15 4 2.0%

C0580 0.10 95.58 5 429.68 5 0.0% 928.19 1 0.0% 205.20 5 0.0% 75.58 5 0.0%
0.25 t.l. 0 t.l. 0 33.5% t.l. 0 12.7% t.l. 0 12.7% t.l. 0 12.7%
0.50 t.l. 0 t.l. 0 101.5% t.l. 0 45.0% t.l. 0 45.0% t.l. 0 45.0%

C1040 0.10 9.62 5 1072.70 5 0.0% 1111.19 5 0.0% 13.76 5 0.0% 14.67 5 0.0%
0.25 86.96 5 2992.29 1 11.6% t.l. 0 1.4% 174.79 5 0.0% 136.73 5 0.0%
0.50 2883.70 2 t.l. 0 44.1% t.l. 0 4.5% t.l. 0 4.5% t.l. 0 4.5%

C1080 0.10 711.59 5 t.l. 0 451.2% t.l. 0 2.1% 1721.21 3 1.5% 1664.48 3 1.5%
0.25 t.l. 0 t.l. 0 203.5% t.l. 0 16.7% t.l. 0 16.7% t.l. 0 16.7%
0.50 t.l. 0 t.l. 0 t.l. 0 44.4% t.l. 0 44.4% t.l. 0 44.4%

E0540 0.10 54.86 5 386.90 5 0.0% 1712.01 3 0.4% 49.49 5 0.0% 19.50 5 0.0%
0.25 t.l. 0 t.l. 0 10.9% t.l. 0 0.0% 2507.06 5 0.0% 2706.21 3 0.0%
0.50 t.l. 0 t.l. 0 38.7% t.l. 0 22.6% t.l. 0 22.6% t.l. 0 22.6%

E0580 0.10 t.l. 0 t.l. 0 74.2% t.l. 0 22.6% 3281.98 1 22.6% 3121.63 1 22.6%
0.25 t.l. 0 t.l. 0 115.4% t.l. 0 53.7% t.l. 0 53.7% t.l. 0 53.7%
0.50 t.l. 0 t.l. 0 126.6% t.l. 0 63.5% t.l. 0 63.6% t.l. 0 63.6%

E1040 0.10 2110.68 3 t.l. 0 125.2% t.l. 0 5.7% 2248.42 2 4.6% 3399.44 1 5.0%
0.25 t.l. 0 t.l. 0 102.7% t.l. 0 18.6% t.l. 0 18.6% t.l. 0 18.6%
0.50 t.l. 0 t.l. 0 84.0% t.l. 0 27.0% t.l. 0 27.0% t.l. 0 27.0%

E1080 0.10 t.l. 0 t.l. 0 t.l. 0 47.0% t.l. 0 47.3% t.l. 0 47.0%
0.25 t.l. 0 t.l. 0 t.l. 0 61.5% t.l. 0 61.7% t.l. 0 61.9%
0.50 t.l. 0 t.l. 0 t.l. 0 65.5% t.l. 0 65.5% t.l. 0 66.1%

19

Table 4: Results of exact algorithms
Type Benders basic B&C Lagrangian-based B&C

A 0 (26) 7 (28) 22 (28)
B 15 (34) 0 (27) 20 (32)
C 21 (34) 0 (23) 13 (32)
E 3 (8) 0 (5) 9 (10)

[8] E. Craparo, M. Karatas, E. I. Singham, A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts,
Applied Energy 201 (2017) 135–147.

[9] B. Zhang, Q. Li, L. Wang, W. Feng, Robust optimization for energy transactions in multi-microgrids under uncertainty, Applied Energy 217
(2018) 346–360.

[10] L. Marla, V. Vaze, C. Barnhart, Robust optimization: Lessons learned from aircraft routing, Computers & Operations Research 98 (2018)
165–184.

[11] R. Montemanni, J. Barta, M. Mastrolilli, L. M. Gambardella, The robust traveling salesman problem with interval data, Transportation Science
41 (2011) 366–381.

[12] J. Pereira, I. Averbakh, Exact and heuristic algorithms for the interval data robust assignment problem, Computers & Operations Research 38
(2011) 1153–1163.

[13] E. Conde, A. Candia, Minimax regret spanning arborescences under uncertain costs, European Journal of Operational Research 182 (2007)
561–577.

[14] H. Yaman, O. E. Karasan, M. C. Pinar, The robust spanning tree problem with interval data, Operations Research Letters 40 (2001) 29–31.
[15] I. Averbakh, The minmax regret permutation flow-shop problem with two jobs, European Journal of Operational Research 169 (2006) 761–

766.
[16] A. Kasperski, P. Zielinski, An approximation algorithm for interval data minmax regret combinatorial optimization problems, Information

Processing Letters 97 (2006) 177–180.
[17] O. E. Karasan, M. C. Pinar, H. Yaman, The robust shortest path problem with interval data, Tech. Rep., Bilkent University, Ankara, Turkey,

available from the web site of Optimization Online (http://www.optimization-online.org/, accesed on May 3, 2016), 2001.
[18] T. Assavapokee, J. Realff, J. C. Ammons, Min-max regret robust optimization approach on interval data uncertainty, Journal of Optimization

Theory and Applications 137 (2008) 297–316.
[19] I. Averbakh, Minmax regret linear resource allocation problems, Operations Research Letters 32 (2004) 174–180.
[20] J. Pereira, I. Averbakh, The robust set covering problem with interval data, Annals of Operations Research 207 (2013) 217–235.
[21] F. Furini, M. Iori, S. Martello, M. Yagiura, Heuristic and exact algorithms for the interval min-max regret knapsack problem, INFORMS

Journal on Computing 27 (2015) 392–405.
[22] N. Ayvaz-Cavdaroglu, S. Kachani, C. Maglaras, Revenue management with minimax regret negotiations, Omega 63 (2016) 11–22.
[23] J. Pereira, The robust (minmax regret) assembly line worker assignment and balancing problem, Computers & Operations Research 93 (2018)

27–40.
[24] R. Montemanni, A Benders decomposition approach for the robust spanning tree problem with interval data, European Journal of Operational

Research 174 (2006) 1479–1490.
[25] R. Montemanni, L. Gambardella, A branch and bound algorithm for the robust spanning tree with interval data, European Journal of Opera-

tional Research 161 (2005) 771–779.
[26] P. Kouvelis, G. Yu, Robust Discrete Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
[27] A. Kasperski, Discrete Optimization with Interval Data, Springer, Berlin, 2008.
[28] H. Aissi, C. Bazgan, D. Vanderpooten, Minmax and minmax regret versions of combinatorial optimization problems: A survey, European

Journal of Operational Research 197 (2009) 427–438.
[29] A. Candia-Véjar, E. Álvarez-Miranda, N. Maculan, Min-max regret combinatorial optimization problems: An algorithmic perspective,

RAIRO - Operations Research 45 (2011) 101–129.
[30] S. Sahni, T. Gonzalez, P-complete approximation problems, Journal of the Association for Computing Machinery 23 (1976) 555–565.
[31] M. L. Fisher, R. Jaikumar, A generalized assignment heuristic for vehicle routing, Networks 11 (1981) 109–124.
[32] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, Chichester, 1990.
[33] K. S. Ruland, A model for aeromedical routing and scheduling, International Transactions in Operational Research 6 (1999) 57–73.
[34] W. Wu, M. Yagiura, T. Ibaraki, Generalized Assignment Problem, in: T. F. Gonzalez (Ed.), Handbook of Approximation Algorithms and

Metaheuristics: Methologies and Traditional Applications, vol. 1, chap. 40, Chapman & Hall/CRC, 2 edn., 713–736, 2018.
[35] W. Wu, M. Iori, M. Martello, M. Yagiura, Algorithms for the min-max generalized assignment problem with interval data, in: IEEE Interna-

tional Conference on Industrial Engineering and Engineering Management (IEEM), 734–738, 2014.
[36] J. F. Benders, Partitioning procedures for solving mixed variables programming problems, Numerische Mathematik 4 (1962) 238–252.
[37] M. J. Feizollahi, I. Averbakh, The robust (minmax regret) quadratic assignment problem with interval flows, INFORMS Journal on Computing

26 (2014) 321–335.
[38] R. Montemanni, L. Gambardella, The robust shortest path problem with interval data via Benders decomposition, 4OR 3 (2005) 315–328.
[39] S. Siddiqui, S. Azarm, S. Gabriel, A modified Benders decomposition method for efficient robust optimization under interval uncertainty,

Structural & Multidisciplinary Optimization 44 (2011) 259–275.
[40] Y. C. Eldar, A. Ben-Tal, A. Nemirovski, Linear minimax regret estimation of deterministic parameters with bounded data uncertainties, IEEE

Transactions on Signal Processing 52 (2004) 2177–2187.

20

[41] M. Posta, J. A. Ferland, P. Michelon, An exact method with variable fixing for solving the generalized assignment problem, Computational
Optimization and Applications 52 (2012) 629–644.

[42] M. Yagiura, T. Ibaraki, F. Glover, An ejection chain approach for the generalized assignment problem, INFORMS Journal on Computing 16
(2004) 133–151.

[43] M. Yagiura, T. Ibaraki, F. Glover, A path relinking approach with ejection chains for the generalized assignment problem, European Journal
of Operational Research 169 (2006) 548–569.

[44] P. C. Chu, J. E. Beasley, A genetic algorithm for the generalized assignment problem, Computers & Operations Research 24 (1997) 17–23.
[45] M. Laguna, J. P. Kelly, J. González-Velarde, F. Glover, Tabu search for the multilevel generalized assignment problem, European Journal of

Operational Research 82 (1995) 176–189.

21

