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It is shown that two Monte Carlo methods in generalized ensemble, multicanonical algorithm and simulated
tempering, are closely related. The equivalence and effectiveness of the two methods are illustrated by taking
an energy function for the protein folding problem as an exanj8#063-651X96)11311-§

PACS numbsgps): 02.70.Lq, 02.50.Ng, 02.60.Pn

The energy landscape of many important physical sys- S(E)=Inn(E) 2)
tems such as spin glasses or biological macromolecules is
characterized by a multitude of local minima separated byis the microcanonical entropy. A uniform distribution of en-
high-energy barriers. For this class of systems low-ergy is obtained with this weight factor:
temperature simulations by conventional meth¢sisch as
canonical molecular dynamics and Monte Carlo with local Pmu(E)<n(E)w,,(E)=const. ©)
updates will necessarily get trapped in configurations corre-
sponding to one of these local minima. This is because th&lence, a simulation with this weight factor, which has no
probability to cross an energy barrier of heighE is pro-  temperature dependence, generates a one-dimensidnal
portiona| to efAE/T (We set the Boltzmann Constahé to random walk in the energy space, aIIOWing itself to escape
unity hereafter. Hence, only small parts of the entire phasefrom any energy barrier.
space are exp|0redn finite t|me) and physica| quantities Unlike in a simulation of the canonical ensemble, the
cannot be calculated accurately. One effective way to overweightwg,(E) is nota priori known, and it should be de-
come this difficulty is to perform a simulation in a so-called termined by an iterative procedufgee Refs[2] and[10] for
generalized ensemblghere the probability to cross an en- the detailg. Once the multicanonical weight facter, (E)
ergy barrier is independent of temperature. MulticanonicalS obtained, one performs with this weight factor a multica-
algorithm[1,2] and simulated temperiri@,4] are two promi-  honical simulation with high statistics. From this single
nent examples of such an approach. The multicanonical apimulation one cannot only locate the energy global mini-
gorithm was originally developed to overcome the supercritiimum but can also obtain the canonical distribution at any
cal slowing down of first-order phase transitigiig, and it ~ inverse temperatur@= 1/T for a wide range of temperatures
was then proposed to be used for systems that suffer from tHay reweighting techniqueld 1]:
above-mentioned multiple-minima problem such as spin . .
glasseq5] and the protein folding problerf6]. Simulated Pg(T,E)* Py E)Wny(E)e™ 5, 4
tempering, which is also called a method of “expanded en- ) o )
sembles,” was originally introduced as a method for calcu-Where Pn(E) is the distribution of energy obtained from
lating a free energy from a single simulation run in a modeithis production run. One can then calculate the expectation
of electrolyte [3] and as an algorithm for overcoming a Vvalue of any physical quantit® at temperaturd by
multiple-minima problem in a random-field Ising modd].
Subsequgnt works in condensed_matter physics an.d theoreti- J' dE O(E)Pg(T,E)
cal chemistry followed7—-9]. In this paper we examine the

relation between multicanonical algorithm and simulated (O)r= ' ®)
tempering and numerically compare their performances by dE Pg(T,E)
taking an energy function for the protein folding problem as
an example. While in the multicanonical ensemble there is no tempera-

In the multicanonical approadi,2] configurations with  ture dependence, temperature itself becomes a dynamical
energyE are updated with a weight variable in simulated tempering. Temperature and configura-

tion are both updated with a weight
-1E)= e~ S(E)
Wmu(E)ocn (E) € ’ (l) WST(T,E):E_E/T_Q(T), (6)

wheren(E) is the density of states and where the functiong(T) is chosen so that the probability

distribution of temperature is given by
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= —E/T—9(T) =
"Electronic address: okamotoy@ims.ac.jp Psr(T) J dE n(E)e const. (@)
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Hence, in simulated temperirtgmperaturels sampled uni-

Multicanonical Ensemble
T

formly, while simulations in multicanonical ensemble
sample energy uniformly. A random walk in temperature %
space is realized. This in turn leads tdveeighted random 2
walk in energy space, allowing the simulation to escape from 2
any energy barrier. Again, the weights{(T,E) is not a J
priori known and should be obtained iterativelgee, for = Ll
instance, Ref.[9] for detailg. Once the weight factor w ‘;‘ | ‘
ws(T,E) is obtained, we make a single production run with s ” ‘
high statistics. A physical quantit9 has to be sampled for 0
each temperature point separately. Its expectation value at
temperatureT is then calculated by s
10
JdX O(X)efE(X)/T (@) b 50000 100000 ‘i Jnsvco‘g%%eps 200000 250000 300000
<O>T= ’ (8)
f dX e_ E(X)/T ' ' Simulaledl'l'empering
1000

wherex labels configurations, and only those configurations
that were obtained at temperatureare included in the inte-
gral.

The defining equation, Eq7), for the distribution of tem- 600 -
peratures in simulated tempering implies that

800 -

400 |

e9Mec f dE n(E)e &/, 9)

200

Therefore, the density of state¢E) [and hence, the multi- M NMW

canonical weightv,,(E)=n"(E)] and the exponential of y o so000 100000 m&%"lﬁa‘leps 200000 200w 500000
the functiong(T) [and hence the simulated tempering weight

wg(T,E)] are related by a Laplace transform. Knowledge
of one implies that of the other, although in numerical Work’multicanonical simulation of 300 000 MC sweejs) Time series

the Inverzs% Laplape ;r_ansform of E@)I is nontrivial. The of temperatureT (K) from a simulated tempering simulation of
two methods are in this sense equivalent. 300 000 MC sweeps.

The performances of the two methods were compared by
taking an energy function for the protein folding problem. Tosingle production run of 300000 MC sweeps for each
be specific, we studied the system of one of the simplesinethod. The simulations started from completely random
peptides, Met-enkephalin. The potential energy functionnitial configurations.
E.: that we used is given by the sum of electrostatic term As explained above, we expect to obtain a 1D random
Ec, Lennard-Jones terrg, ;, and hydrogen-bond terfd,,,  walk in energy(temperaturke for multicanonical algorithm
for all pairs of atoms in the peptide together with the torsion(simulated tempering In Fig. 1 we show the time series of
term E,s for all torsion angles. The parameters for the en-the potential energ¥, (kcal/mo) [Fig. 1(a)] and tempera-
ergy function were adopted from the Empirical Conforma-ture T (K) [Fig. 1(b)] for multicanonical and simulated tem-
tional Energy Program for Peptides, versiof2CEPP/2  pering algorithms, respectively. They both exhibit a random
[12]. The computer codgONF90[13] was used. One Monte walk between low-energytemperature states and high-
Carlo(MC) sweep updates every torsion angle of the peptidenergy (temperaturg states. For simulated tempering, the
once. time series ofE,,; also produces &wveighted random walk

In the case of simulated tempering we chose 30 temperdhat is positively correlated with that of in Fig. 1(b). In
ture points betweerT ;=50 K and T,,,,=1000 K. We Ref.[14] it was shown that with the energy parameters of
found it convenient to choose the temperature points nokONF90, states with energies less tharill kcal/mol essen-
equidistant, but so that the increment of adjacent temperatut@lly have the same structure, ground-state structure. The
points decreases exponentially with decreasing temperatureandom walks in Fig. 1 both reached this lowest-energy state
We needed 150 000 MC sweeps to obtain the simulated tenmany times. The number of independent such visits was 7
pering parameteg(T). In our earlier work[6] we needed for both multicanonical and simulated tempering simula-
40 000 MC sweeps to calculate the multicanonical weight fottions. We conclude that both algorithms do not differ signifi-
Met-enkephalin. Instead of attempting to optimize ourcantly in their numerical performance.
method of calculating the simulated tempering weight, we The independently obtained weight factors for the two
tried to improve the multicanonical weight by further itera- methods should be related to each other by &4. Both
tions until the total number of MC sweeps was also 150 000sides of Eq.(9) are plotted in Fig. 2. The results are in
After the determination of the weight factors, we made acomplete agreement, as they should be. This shows that it is

FIG. 1. (a) Time series of potential enerdy (kcal/mo)) from a



54 BRIEF REPORTS 5865

0 Simulated Tempering Parameters 25 T
10 T T T T T MuCa re—i
LHS —+— SiTe ——
RHS -+
20
*
10| 15 Y
10 -
-
.
10 L3
L
= ®
f
= 1 i) 5 L
=1 v
3 ®
s
or L}
L]
2
107101 5 @
o
o“‘
10 - /
10-20 1 L ) L . 2 ) . . 15 L . ) . \
0 100 200 300 400 5?0 600 700 800 9200 1000 0 200 400 600 800 1000
T

FIG. 2. Comparison of the weight factors obtained from the FIG. 3. Average potential energ{j_:) (kcal/mol) as a function of
multicanonical simulation and from simulated tempering simula-temperaturel (K) calculated from the data of multicanonical and
tion. The left-hand sidéLHS) and right-hand sidéRHS) of Eq.(9)  simulated tempering simulations. The number of MC sweeps was
are plotted. The weights were obtained from iterations of simula-300 000 for each method.
tions with a total of 150 000 MC sweeps.

_ ) In summary, we have shown that the multicanonical algo-
not necessary to estimate the weight factors for each enthm and simulated tempering are closely related and that
semble independently. . _they are equally effective in the numerical work. Weight

A major advantage of the two methods studied in thisgyetors for the two algorithms can be calculated from each
paper over conventional Ones IS that from just one SImUIat'orbther. Hence, both methods can be easily used to cross-check
::l:arI}calr;EtzeC?r?e?rﬁtog;ga(r)nt;f:agug]rii':ioevge;tt-zgir‘?eymsggtg[u?:(te alsPesuIts at low temperatures where otherwise no comparison
Egs. (5) and (8)]. As an example we show in Fig. 3 the is possmle_. We remark that uniform sar_npll_ng in temperature

) X i or energy is by no means the only realizatiorgeheralized

average potential energfe); as a function of temperature . . i
calculated from the production runs of the two algorithms.en.semblessee’ forllnstance, Ref15)), nor is there any re
triction to one variable.

They are again in complete agreement. The agreement iy
plies that our calculations are reliablgince they were ob- Our simulations were performed on the computers at the
tained from independent dataNote that the average poten- Computer Center at the Institute for Molecular Science
tial energy at the lowest-temperature region is abedf2  (MmS), Okazaki, Japan. This work was supported, in part, by
keal/mol, which is the global-minimum energy value for the he Grants-in-Aid for Scientific Research from the Japanese
energy function okoNF9o[14]. The value at a high tempera- \jinistry of Education, Science, Sports, and Culture and by

ture, sayT=1000 K, is as large as16 kcal/mol. Thus, the  he schweizerische Nationalfon@Srant No. 20-40'838.9%4
random walk in Fig. (a) indeed covered a very wide range

of the phasdenergy space.
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