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2Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444, Japan
~Received 3 July 1996!

It is shown that two Monte Carlo methods in generalized ensemble, multicanonical algorithm and simulated
tempering, are closely related. The equivalence and effectiveness of the two methods are illustrated by taking
an energy function for the protein folding problem as an example.@S1063-651X~96!11311-8#
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The energy landscape of many important physical sys-
tems such as spin glasses or biological macromolecules is
characterized by a multitude of local minima separated by
high-energy barriers. For this class of systems low-
temperature simulations by conventional methods~such as
canonical molecular dynamics and Monte Carlo with local
updates! will necessarily get trapped in configurations corre-
sponding to one of these local minima. This is because the
probability to cross an energy barrier of heightDE is pro-
portional toe2DE/T ~we set the Boltzmann constantkB to
unity hereafter!. Hence, only small parts of the entire phase
space are explored~in finite time! and physical quantities
cannot be calculated accurately. One effective way to over-
come this difficulty is to perform a simulation in a so-called
generalized ensemblewhere the probability to cross an en-
ergy barrier is independent of temperature. Multicanonical
algorithm@1,2# and simulated tempering@3,4# are two promi-
nent examples of such an approach. The multicanonical al-
gorithm was originally developed to overcome the supercriti-
cal slowing down of first-order phase transitions@1#, and it
was then proposed to be used for systems that suffer from the
above-mentioned multiple-minima problem such as spin
glasses@5# and the protein folding problem@6#. Simulated
tempering, which is also called a method of ‘‘expanded en-
sembles,’’ was originally introduced as a method for calcu-
lating a free energy from a single simulation run in a model
of electrolyte @3# and as an algorithm for overcoming a
multiple-minima problem in a random-field Ising model@4#.
Subsequent works in condensed matter physics and theoreti-
cal chemistry followed@7–9#. In this paper we examine the
relation between multicanonical algorithm and simulated
tempering and numerically compare their performances by
taking an energy function for the protein folding problem as
an example.

In the multicanonical approach@1,2# configurations with
energyE are updated with a weight

wmu~E!}n21~E!5e2S~E!, ~1!

wheren(E) is the density of states and

S~E!5 lnn~E! ~2!

is the microcanonical entropy. A uniform distribution of en-
ergy is obtained with this weight factor:

Pmu~E!}n~E!wmu~E!5const. ~3!

Hence, a simulation with this weight factor, which has no
temperature dependence, generates a one-dimensional~1D!
random walk in the energy space, allowing itself to escape
from any energy barrier.

Unlike in a simulation of the canonical ensemble, the
weightwmu(E) is not a priori known, and it should be de-
termined by an iterative procedure~see Refs.@2# and@10# for
the details!. Once the multicanonical weight factorwmu(E)
is obtained, one performs with this weight factor a multica-
nonical simulation with high statistics. From this single
simulation one cannot only locate the energy global mini-
mum but can also obtain the canonical distribution at any
inverse temperatureb51/T for a wide range of temperatures
by reweighting techniques@11#:

PB~T,E!}Pmu~E!wmu
21~E!e2bE, ~4!

wherePmu(E) is the distribution of energy obtained from
this production run. One can then calculate the expectation
value of any physical quantityO at temperatureT by

^O&T5

E dE O~E!PB~T,E!

E dE PB~T,E!

. ~5!

While in the multicanonical ensemble there is no tempera-
ture dependence, temperature itself becomes a dynamical
variable in simulated tempering. Temperature and configura-
tion are both updated with a weight

wST~T,E!5e2E/T2g~T!, ~6!

where the functiong(T) is chosen so that the probability
distribution of temperature is given by

PST~T!5E dE n~E!e2E/T2g~T!5const. ~7!
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Hence, in simulated temperingtemperatureis sampled uni-
formly, while simulations in multicanonical ensemble
sample energy uniformly. A random walk in temperature
space is realized. This in turn leads to a~weighted! random
walk in energy space, allowing the simulation to escape from
any energy barrier. Again, the weightwST(T,E) is not a
priori known and should be obtained iteratively~see, for
instance, Ref.@9# for details!. Once the weight factor
wST(T,E) is obtained, we make a single production run with
high statistics. A physical quantityO has to be sampled for
each temperature point separately. Its expectation value at
temperatureT is then calculated by

^O&T5

E dx O~x!e2E~x!/T

E dx e2E~x!/T

, ~8!

wherex labels configurations, and only those configurations
that were obtained at temperatureT are included in the inte-
gral.

The defining equation, Eq.~7!, for the distribution of tem-
peratures in simulated tempering implies that

eg~T!}E dE n~E!e2E/T. ~9!

Therefore, the density of statesn(E) @and hence, the multi-
canonical weightwmu(E)5n21(E)] and the exponential of
the functiong(T) @and hence the simulated tempering weight
wST(T,E)] are related by a Laplace transform. Knowledge
of one implies that of the other, although in numerical work,
the inverse Laplace transform of Eq.~9! is nontrivial. The
two methods are in this sense equivalent.

The performances of the two methods were compared by
taking an energy function for the protein folding problem. To
be specific, we studied the system of one of the simplest
peptides, Met-enkephalin. The potential energy function
Etot that we used is given by the sum of electrostatic term
EC , Lennard-Jones termELJ , and hydrogen-bond termEhb
for all pairs of atoms in the peptide together with the torsion
termEtors for all torsion angles. The parameters for the en-
ergy function were adopted from the Empirical Conforma-
tional Energy Program for Peptides, version 2~ECEPP/2!
@12#. The computer codeKONF90 @13# was used. One Monte
Carlo ~MC! sweep updates every torsion angle of the peptide
once.

In the case of simulated tempering we chose 30 tempera-
ture points betweenTmin550 K and Tmax51000 K. We
found it convenient to choose the temperature points not
equidistant, but so that the increment of adjacent temperature
points decreases exponentially with decreasing temperature.
We needed 150 000 MC sweeps to obtain the simulated tem-
pering parameterg(T). In our earlier work@6# we needed
40 000 MC sweeps to calculate the multicanonical weight for
Met-enkephalin. Instead of attempting to optimize our
method of calculating the simulated tempering weight, we
tried to improve the multicanonical weight by further itera-
tions until the total number of MC sweeps was also 150 000.
After the determination of the weight factors, we made a

single production run of 300 000 MC sweeps for each
method. The simulations started from completely random
initial configurations.

As explained above, we expect to obtain a 1D random
walk in energy~temperature! for multicanonical algorithm
~simulated tempering!. In Fig. 1 we show the time series of
the potential energyEtot ~kcal/mol! @Fig. 1~a!# and tempera-
tureT ~K! @Fig. 1~b!# for multicanonical and simulated tem-
pering algorithms, respectively. They both exhibit a random
walk between low-energy~temperature! states and high-
energy ~temperature! states. For simulated tempering, the
time series ofEtot also produces a~weighted! random walk
that is positively correlated with that ofT in Fig. 1~b!. In
Ref. @14# it was shown that with the energy parameters of
KONF90, states with energies less than211 kcal/mol essen-
tially have the same structure, ground-state structure. The
random walks in Fig. 1 both reached this lowest-energy state
many times. The number of independent such visits was 7
for both multicanonical and simulated tempering simula-
tions. We conclude that both algorithms do not differ signifi-
cantly in their numerical performance.

The independently obtained weight factors for the two
methods should be related to each other by Eq.~9!. Both
sides of Eq.~9! are plotted in Fig. 2. The results are in
complete agreement, as they should be. This shows that it is

FIG. 1. ~a! Time series of potential energyE ~kcal/mol! from a
multicanonical simulation of 300 000 MC sweeps.~b! Time series
of temperatureT ~K! from a simulated tempering simulation of
300 000 MC sweeps.
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not necessary to estimate the weight factors for each en-
semble independently.

A major advantage of the two methods studied in this
paper over conventional ones is that from just one simulation
run one can not only obtain the lowest-energy state but also
calculate thermodynamic quantities at any temperature@see
Eqs. ~5! and ~8!#. As an example we show in Fig. 3 the
average potential energŷE&T as a function of temperature
calculated from the production runs of the two algorithms.
They are again in complete agreement. The agreement im-
plies that our calculations are reliable~since they were ob-
tained from independent data!. Note that the average poten-
tial energy at the lowest-temperature region is about212
kcal/mol, which is the global-minimum energy value for the
energy function ofKONF90 @14#. The value at a high tempera-
ture, sayT51000 K, is as large as'16 kcal/mol. Thus, the
random walk in Fig. 1~a! indeed covered a very wide range
of the phase~energy! space.

In summary, we have shown that the multicanonical algo-
rithm and simulated tempering are closely related and that
they are equally effective in the numerical work. Weight
factors for the two algorithms can be calculated from each
other. Hence, both methods can be easily used to cross-check
results at low temperatures where otherwise no comparison
is possible. We remark that uniform sampling in temperature
or energy is by no means the only realization ofgeneralized
ensembles~see, for instance, Ref.@15#!, nor is there any re-
striction to one variable.

Our simulations were performed on the computers at the
Computer Center at the Institute for Molecular Science
~IMS!, Okazaki, Japan. This work was supported, in part, by
the Grants-in-Aid for Scientific Research from the Japanese
Ministry of Education, Science, Sports, and Culture and by
the Schweizerische Nationalfonds~Grant No. 20-40’838.94!.
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FIG. 2. Comparison of the weight factors obtained from the
multicanonical simulation and from simulated tempering simula-
tion. The left-hand side~LHS! and right-hand side~RHS! of Eq. ~9!
are plotted. The weights were obtained from iterations of simula-
tions with a total of 150 000 MC sweeps.

FIG. 3. Average potential energy^E& ~kcal/mol! as a function of
temperatureT ~K! calculated from the data of multicanonical and
simulated tempering simulations. The number of MC sweeps was
300 000 for each method.
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