
PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Generalized-ensemble Monte Carlo method for systems with rough energy landscape

Ulrich H. E. Hansmann* and Yuko Okamoto†

Department of Theoretical Studies, Institute for Molecular Science, Okazaki, Aichi 444, Japan
~Received 9 December 1996; revised manuscript received 29 April 1997!

We present a Monte Carlo algorithm which enhances equilibrization of low-temperature simulations and
allows sampling of configurations over a large range of energies. The method is based on a non-Boltzmann
probability weight factor and is another version of the so-called generalized-ensemble techniques. The effec-
tiveness of the approach is demonstrated for the system of a small peptide, an example of the frustrated system
with a rugged energy landscape.@S1063-651X~97!03508-3#

PACS number~s!: 02.70.Lq, 05.50.1q, 87.10.1e, 64.60.Fr
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The energy landscape of many important physical s
tems is characterized by a huge number of local mini
separated by high energy barriers. In the canonical ensem
with temperatureT, the probability to cross an energy barri
of heightsDE is proportional toe2DE/kBT, wherekB is the
Boltzmann constant. Hence, at low temperatures, canon
molecular dynamics and Monte Carlo simulations will g
trapped in configurations corresponding to one of these lo
minima. Only small parts of the entire phase space can
explored, rendering the calculation of physical quantities
reliable.

In principle, one can think of two ways to overcome th
difficulty. One way is to look for improved updates of co
figurations in the numerical simulation. The cluster alg
rithm @1# is an example of global updates that enhance th
malization and has been very successful in spin syste
However, for most other systems with frustration, no su
updates are known. Another way to overcome the superc
cal slowing down is to perform a simulation in a so-call
generalized ensemble, which is based on a non-Boltzman
probability distribution. Multicanonical algorithm@2,3#, 1/k
sampling@4#, and simulated tempering@5,6# are prominent
examples of such an approach. Common to the three t
niques is that a molecular dynamics or Monte Carlo simu
tion is performed in an artificial ensemble defined in suc
way that a uniform~noncanonical! distribution of the chosen
physical quantity is obtained. For instance, in the multi
nonical algorithm the weightwmu(E) is chosen so that the
distribution of energy is uniform:

P~E!}n~E!wmu~E!5const, ~1!

wheren(E) is the density of states. A simulation based
this weight factor results in a free random walk in the ene
space. Hence, the simulation can escape from any en
barrier, and even regions with smalln(E) can be explored in
detail. Similarly, 1/k sampling yields a uniform distribution
in ~microcanonical! entropy, and simulated tempering a un
form distribution in temperature. The great advantage
these generalized-ensemble methods lies in the fact that
a single simulation run one can not only locate the ene
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global minimum but also obtain the canonical distributi
for a wide temperature range by the reweighting techniq
@7#.

Despite their successful applications to systems with fi
order phase transitions@2#, spin glasses@8#, and the protein
folding problem @9,10#, generalized-ensemble methods a
not without problems. Unlike in the canonical ensemble,
probability weights are nota priori known. For instance, for
the case of multicanonical algorithm, Eq.~1! implies

wmu~E!}n21~E!, ~2!

and the knowledge of the exact weight would be equival
to obtaining the density of statesn(E), i.e., solving the sys-
tem. Hence, one needs its estimator for a numerical sim
tion. The determination of the weightwmu(E) is usually
based on an iterative procedure first described in Ref.@3#,
and can be nontrivial and tedious. In this paper, we prese
generalized-ensemble algorithm in which the determinat
of the weight is simple and straightforward.

Our aim is to develop a generalized-ensemble algorit
in which the determination of the probability weight factor
simpler. For this, we try to slightly modify the Boltzman
weight, whereas other generalized-ensemble approache
drastically different weights. The weight should enhance
thermalization of low-temperature simulations and ens
sufficient sampling in the low-energy region. Hence, we
interested in an ensemble where not only the low-ene
region can be sampled efficiently but also the high-ene
states can be visited with finite probability. The latter featu
ensures that energy barriers can be overcome and tha
simulation can escape from local minima. The probabil
distribution of energy should resemble that of an ideal lo
temperature Boltzmann distribution, but with a tail to high
energies. One choice is that the sampling of low-ene
states is described by an exponential function~Boltzmann
weight!, while that of high-energy states follows a pow
law. Guided by these considerations, we propose the foll
ing as the new weight:

w~E!5S 11b
E2EGS

m D 2m

, ~3!

where b[1/kBT, EGS is the global-minimum energy, an
m(.0) is a free parameter. Here, we are shifting the zero
2228 © 1997 The American Physical Society



rgy

ar-

-
ent

so

56 2229GENERALIZED-ENSEMBLE MONTE CARLO METHOD FOR . . .
energy byEGS in order to assure that energy is always non
negative. We remark that weights with the same mathema
cal structure also appear in the framework of Tsallis gene
alized statistical mechanics@11#, which was developed for
simulations of nonextensive systems~e.g., fractal random
walks!. An application to optimization problems can be
found in Ref.@12#.

Obviously, the new weight in Eq.~3! reduces to the ca-
nonical Boltzmann weight in the low-energy~and hence low-
temperature! region for @b(E2EGS)#/m!1. On the other
hand, this weight at high energies is no longer exponential
suppressed, but only according to a power law with the ex
ponentm. Note that our choice of the sign in Eq.~3! is
important. From a mathematical point of view,$12b@(E
2EGS)/m#%m is equally a good approximation to the canoni-
cal weight, but is not useful as a weight in numerical simu
lations, since the expression inside the curly brackets ca
become negative.

In this work we consider a system with continuous de
grees of freedom. At low temperatures the harmonic approx
mation holds, and the density of states is given by

n~E!}~E2EGS!
nF/2, ~4!

wherenF is the number of degrees of freedom of the system
under consideration. Hence, by Eqs.~3! and~4! the probabil-
ity distribution of energy at low temperatures for the presen
ensemble is given by

P~E!}n~E!w~E!}~E2EGS!
~nF/2!2m, ~5!

for b@(E2EGS)/m#@1. This implies that we need

m.
nF

2
. ~6!

For, otherwise, the sampling of high-energy configuration
will be enhanced too much. On the other hand, in the lim
m→` our weight tends for all energies to the Boltzmann
weight and high-energy configurations will not be sampled

In order for low-temperature simulations to be able to
escape from energy local minima, the weight should sta

FIG. 1. Time series of the total energyEtot ~in kcal/mol! from a
regular canonical simulation at temperatureT550 K ~dotted curve!
and from a simulation of the present method with the parameter
E05212.2 kcal/mol,m5nf519, andT550 K ~solid curve!.
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deviating from the ~exponebntially damped! Boltzmann
weight at the energy near its mean value~because at low
temperatures there are only small fluctuations of ene
around its mean!. This requires thatb(^E&T2EGS)/m
5O(1) in Eq. ~3!. We may thus set

b
^E&T2EGS

m
5

1

2
. ~7!

The mean value at low temperatures is given by the h
monic approximation

^E&T5EGS1
nF

2
kBT5EGS1

nF

2b
. ~8!

Substituting this value into Eq.~7!, we obtain the following
optimal value for the exponentm:

mopt5nF . ~9!

Hence, the optimal weight factor is given by

w~E!5S 11b
E2E0

nF
D 2nF

, ~10!

s:

FIG. 2. Average energy~in kcal/mol! ~a! and specific heat~b! as
a function of temperature~in K!. They were calculated by the re
weighting techniques from a single simulation run of the pres
method with the parameters:E05212.2 kcal/mol, m5nF519,
andT550 K. The results from a multicanonical simulation are al
shown for comparison. In both simulations~by the present method
and by the multicanonical algorithm! the total number of Monte
Carlo sweeps was 106.
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TABLE I. Lowest energy~in kcal/mol! obtained by the present method with several different choice
the free parameterm. The other free parameterE0 was fixed at the value of the global-minimum ener
EGS5212.2 kcal/mol. The temperature was set toT550 K. The case form5` stands for a regular canoni
cal run atT550 K. For all cases, the total number of Monte Carlo sweeps per run was 50 000.^E& is the
average of the lowest energy obtained by the ten runs~with the standard deviations in parentheses!, andnGS

is the number of runs in which a conformation withE<211.0 kcal/mol~the average energy atT550 K! was
obtained.

E0 EGS5212.2 212.2 212.2 212.2 212.2
m nF

2
59.5

14 nF519 50 100 `

Run
1 0.8 25.2 211.8 26.9 26.8 24.2
2 21.4 22.6 211.5 27.1 27.7 25.2
3 0.1 26.8 211.5 26.9 24.9 211.8
4 0.5 25.5 211.7 28.2 29.9 27.1
5 21.0 23.4 211.6 27.4 212.0 23.3
6 1.1 26.4 211.6 210.1 28.8 0.9
7 21.3 25.1 28.5 28.7 28.7 25.3
8 0.4 23.3 29.7 210.8 29.5 26.3
9 1.2 28.1 211.6 212.0 26.8 26.4
10 1.2 23.3 211.9 210.8 29.5 24.7
^E& 0.2 ~1.0! 25.0 (1.8) 211.1 (1.1) 28.9 (1.9) 28.5 (2.0) 25.3 (3.2)
nGS 0/10 0/10 8/10 1/10 1/10 1/10
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whereE0 is the best estimate of the global-minimum ener
EGS.

We have tested our method in the system for the prot
folding problem, a long-standing problem in biophysics w
rough energy landscape. Here, Met-enkephalin has bec
an often-used model to examine the performance of new
gorithms, and we study the same system. Met-enkephalin
the amino-acid sequence Tyr-Gly-Gly-Phe-Met. The ene
function Etot ~in kcal/mol! that we used is given by the sum
of the electrostatic termEC , 12-6 Lennard-Jones termELJ
and hydrogen-bond termEHB for all pairs of atoms in the
peptide together with the torsion termEtor for all torsion
angles:

Etot5EC1ELJ1EHB1Etor , ~11!

EC5(
~ i , j !

332qiqj

er i j
, ~12!

ELJ5(
~ i , j !

S Ai j

r i j
122

Bi j

r i j
6 D , ~13!

EHB5(
~ i , j !

S Ci j

r i j
122

Di j

r i j
10D , ~14!

Etor5(
l

Ul„16cos~nlx l !…. ~15!

Here, r i j is the distance~in Å! between the atomsi and j ,
and x l is the torsion angle for the chemical bondl . The
parameters for the energy function and the molecular ge
etry ~with fixed bond lengths and bond angles! were adopted
from ECEPP/2~Empirical Conformational Energy Program
for Peptides! @13#. The dielectric constante was set equal to
-

me
l-
as
y

-

2. Fixing the peptide bond anglesv to 180° leaves us with 19
torsion angles as independent degrees of freedom~i.e.,
nF519!. The computer codeKONF90 @14# was used. One
Monte Carlo sweep updates every torsion angle of the p
tide once.

It is known from our previous work that the globa
minimum value of KONF90 energy for Met-enkephalin is
EGS5212.2 kcal/mol @15#. The peptide has essentially
unique three-dimensional structure at temperaturesT
<50 K, and the average energy is about211 kcal/mol at
T550 K @9#. Hence, in the present work we always setT
550 K ~or, b510.1@1/kcal/mol#! in our probability weight
factor. All simulations were started from completely rando
initial configurations~hot start!.

To demonstrate that thermalization is greatly enhance
our ensemble, we first compare the ‘‘time series’’ of ener
as a function of Monte Carlo sweep. In Fig. 1 we show t
results from a regular canonical Monte Carlo simulation
temperatureT550 K ~dotted curve! and those from a
generalized-ensemble simulation of the new algorithm~solid
curve!. Here, the weight we used for the latter simulation
given by Eq. ~10! with nF519 and E05EGS5
212.2 kcal/mol. For the canonical run the curve sta
around the valueE527 kcal/mol with small thermal fluc-
tuations, reflecting the low-temperature nature. The run
apparently been trapped in a local minimum, since the m
energy at this temperature is^E&5211.1 kcal/mol as found
by a multicanonical simulation in Ref.@15#. On the other
hand, the simulation based on the new weight covers a m
wider energy range than the canonical run. It is a rand
walk in energy space, which keeps the simulation from g
ting trapped in a local minimum. It indeed visits the groun
state region many times in 106 Monte Carlo sweeps. Thes
properties are common features of generalized-ensem
methods.
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Since the simulation by the present algorithm sample
large range of energies, we can use the reweighting te
niques@7# to construct canonical distributions and calcula
thermodynamic quantities over a wide temperature ran
Following 10 000 sweeps for thermalization, we performe
single simulation of 106 Monte Carlo sweeps, storing th
configuration information at every second sweep. We h
set againE05212.2 kcal/mol andnF519 in the weight of
Eq. ~10!. From this production run one can calculate vario
thermodynamic quantities as a function of temperature.
examples we show the average energy and the specific
in Figs. 2~a! and 2~b!, respectively. The specific heat here
defined by the following equation:

C[
1

kB

dS ^Etot&T

N D
dT

5b2
^Etot

2 &T2^Etot&T
2

N
, ~16!

whereN(55) is the number of amino-acid residues in t
peptide. The harmonic approximation holds at low tempe
tures, and by substitutinĝE&T2EGS5(nF/2)kBT in Eq. ~8!
into ^Etot& in the first equation of Eq.~16!, we have

C5
nF

2N
51.9. ~17!

Note that the curve in Fig. 2~b! approaches this value in th
T→0 limit. The results from a multicanonical production ru
with the same statistics are also shown in the figures
comparison. The results from both methods are in comp
agreement.

We now examine the dependence of the simulations
the values of the exponentm in our weight@see Eqs.~3! and
~10!# and demonstrate thatm5nF is indeed an optima
choice. SettingE05EGS5212.2 kcal/mol, we performed
ten independent simulation runs of 50 000 Monte Ca
sweeps with various choices ofm. In Table I we list the
lowest energies obtained during each of the ten runs for
choices ofm values: 9.5(5nF/2), 14, 19(5nF), 50, and
100. The results from regular canonical simulations aT
550 K with 50 000 Monte Carlo sweeps are also listed
the table for comparison. Ifm is chosen to be too small~e.g.,
m59.5!, then the weight follows a power law in which th
suppression for the higher-energy region is insufficient@see
Eq. ~5!#. As a result, the simulations tend to stay at hi
energies and fail to sample low-energy configurations.
the other hand, for too large a value ofm ~e.g.,m5100!, the
weight is too close to the canonical weight, and therefore
simulations will get trapped in local minima. It is clear fro
the table thatm5nF is an optimal choice. In this case th
simulations found the ground-state configurations 80% of
time ~eight runs out of ten runs!. This should be compare
with 90%, 75%, 80%, and 40% for multicanonical annealin
1/k annealing, simulated tempering annealing, and simula
annealing algorithms, respectively, in simulations with t
same number of Monte Carlo sweeps@16#.

To analyze the above results further, we calculated
actual probability distributions of energy for various valu
of m. This can be done by the reweighting techniques fr
the single production run of 106 Monte Carlo sweeps men
tioned above@which is based on the weight of Eq.~10! with
a
h-
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E05212.2 kcal/mol and m5nF519#. The results are
shown in Fig. 3~a!. By examining the figure, we again fin
that m5nF is an optimal choice. It yields to an energy dis
tribution which has a pronounced peak around the mean
ergy value (̂E&5211.1 kcal/mol) atT550 K. At the same
time, it has a tail to higher energies. This behavior is exac
what we were looking for and justifies our definition o
weights in Eq.~10!.

The greatest advantage of our method over ot
generalized-ensemble approaches is the simplicity of
weight factor. In multicanonical algorithms, 1/k sampling, or
simulated tempering, the explicit functional forms of th
weights are not knowna priori and they have to be deter
mined numerically by iterations of trial simulations. This ca
be a formidable task in many cases. On the other hand,
weight factor of the present algorithm just depends on
knowledge of the global-minimum energyEGS @see Eq.
~10!#. If its value is known, which is the case for some sy
tems with frustration, the weight is completely determine
However, if EGS is not known, we have to obtain its be
estimateE0 . We can calculate the actual probability distr
butions of energy for various values ofE0 by the reweighting

FIG. 3. Probability distributions of energy for various values
the exponentm ~a! and the global-minimum energy estimateE0 ~b!
in the present method. The ordinate for~a! is logarithmic. The re-
sults were obtained by the reweighting techniques from a sin
simulation run with the parameters:E05212.2 kcal/mol,m5nF

519, andT550 K. The total number of Monte Carlo sweeps w
106. For ~a! the regular canonical distribution atT550 K as calcu-
lated by the reweighting techniques is also shown for comparis
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TABLE II. Lowest energy~in kcal/mol! obtained by the present method with several different choice
the free parameterE0 . The other free parameterm was fixed at the optimal value ofnF519, the number of
degrees of freedom. The temperature was set toT550 K. For all cases, the total number of Monte Car
sweeps per run was 200 000.^E& is the average of the lowest energy obtained by the ten runs~with the
standard deviations in parentheses!, and nGS is the number of runs in which a conformation withE<
211.0 kcal/mol~the average energy atT550 K! was obtained.

E0 EGS5212.2 213.2 214.2 215.2
m nF519 19 19 19
Run

1 211.8 211.1 210.5 29.0
2 211.9 210.8 28.3 210.3
3 211.9 211.3 211.6 29.7
4 211.9 210.2 210.9 210.8
5 211.8 211.2 26.9 29.2
6 211.3 211.5 210.8 29.6
7 211.9 211.3 28.3 210.3
8 211.8 211.4 25.9 26.8
9 212.0 211.5 210.6 28.6

10 211.7 210.0 210.3 28.9
^E& 211.8 (0.2) 211.0 (0.5) 29.4 (1.9) 29.3 (1.1)
nGS 10/10 7/10 1/10 0/10
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techniques again. The results are shown in Fig. 3~b!. We see
that for the system of Met-enkephalin, one needs the ac
racy of about 1;2 kcal/mol in the estimate of the globa
minimum energyEGS in order for our algorithm to be effec
tive. This implication is supported by Table II where we li
the lowest energies obtained during each of ten indepen
simulation runs of 200 000 Monte Carlo sweeps withm
5nF519. Four choices were considered for theE0 value:
212.2, 213.2, 214.2, and215.2 kcal/mol. We remark
that E0 has to underestimateEGS to ensure thatE2E0 can-
not become negative. Our data show again that an accu
of 1;2 kcal/mol in the estimate of the global-minimum e
ergy is required for Met-enkephalin.

The use of our method therefore depends on the abilit
find a good estimate for the ground-state energyEGS, which
is still much easier than the determination of the weights
other generalized-ensemble algorithms. In principle, such
timates can be found in an iterative way. Here, we give o
of the effective iteration procedures. One first sets an ini
guess of the optimalE0 which should be lower thanEGS.
One performs a simulation with the weight of the pres
method with small number of Monte Carlo sweeps. Fro
this simulation one calculates the average energy^E&T at the
P.
u-

nt

cy

to

r
s-
e
l

t

chosen temperatureT by the reweighting techniques. If^E&
2E0@(nF/2)kBT, one raises the value ofE0 by a certain
amount and repeats the short simulation. One iterates
process until̂ E&2E0'(nF/2)kBT. The search of the opti-
mal E0 can be further facilitated by information such as t
average energy and the specific heat obtained from high t
perature simulations. For Met-enkephalin the incorporat
of such information gave a start value ofE05
213.8 kcal/mol, which is already within the 2 kcal/mol a
curacy required by our method~see Ref.@17# for details!.

In summary, we have introduced a generalized-ensem
algorithm for simulations of systems with frustration. W
have demonstrated the effectiveness of the method by ta
the example of the system of a small peptide M
enkephalin, which has a rough energy landscape with a h
number of local minima. The advantage of the method lies
the fact that the determination of the probability weight fa
tor is much simpler than in other generalized-ensemble
proaches.

The simulations were performed on the computers at
Computer Center at the Institute for Molecular Scien
~IMS!, Okazaki, Japan. This work is supported, in part,
Grants-in-Aid for Scientific Research from the Japane
Ministry of Education, Science, Sports, and Culture.
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