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Generalized-ensemble Monte Carlo method for systems with rough energy landscape
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We present a Monte Carlo algorithm which enhances equilibrization of low-temperature simulations and
allows sampling of configurations over a large range of energies. The method is based on a non-Boltzmann
probability weight factor and is another version of the so-called generalized-ensemble techniques. The effec-
tiveness of the approach is demonstrated for the system of a small peptide, an example of the frustrated system
with a rugged energy landsca&1063-651X%97)03508-3

PACS numbes): 02.70.Lqg, 05.50tq, 87.10+e, 64.60.Fr

The energy landscape of many important physical sysglobal minimum but also obtain the canonical distribution
tems is characterized by a huge number of local minimdor a wide temperature range by the reweighting techniques
separated by high energy barriers. In the canonical ensemb]&].
with temperaturd’, the probability to cross an energy barrier  Despite their successful applications to systems with first-
of heightsAE is proportional toe2¥/keT, wherekg is the  order phase transitiorf€], spin glasse$8], and the protein
Boltzmann constant. Hence, at low temperatures, canonicéblding problem[9,10], generalized-ensemble methods are
molecular dynamics and Monte Carlo simulations will getnot without problems. Unlike in the canonical ensemble, the
trapped in configurations corresponding to one of these locgirobability weights are nat priori known. For instance, for
minima. Only small parts of the entire phase space can bthe case of multicanonical algorithm, Ed) implies
explored, rendering the calculation of physical quantities un-
reliable. Wno(E)en™Y(E), 2

In principle, one can think of two ways to overcome this
difficulty. One way is to look for improved updates of con- and the knowledge of the exact weight would be equivalent
figurations in the numerical simulation. The cluster algo-to obtaining the density of stategE), i.e., solving the sys-
rithm [1] is an example of global updates that enhance thertem. Hence, one needs its estimator for a numerical simula-
malization and has been very successful in spin system$ion. The determination of the weighw,(E) is usually
However, for most other systems with frustration, no suchbased on an iterative procedure first described in Faf.
updates are known. Another way to overcome the supercritiand can be nontrivial and tedious. In this paper, we present a
cal slowing down is to perform a simulation in a so-calledgeneralized-ensemble algorithm in which the determination
generalized ensemblavhich is based on a non-Boltzmann of the weight is simple and straightforward.
probability distribution. Multicanonical algorithri,3], 1k Our aim is to develop a generalized-ensemble algorithm
sampling[4], and simulated temperinp,6] are prominent in which the determination of the probability weight factor is
examples of such an approach. Common to the three teclsimpler. For this, we try to slightly modify the Boltzmann
niques is that a molecular dynamics or Monte Carlo simulaweight, whereas other generalized-ensemble approaches use
tion is performed in an artificial ensemble defined in such edrastically different weights. The weight should enhance the
way that a uniform(noncanonicaldistribution of the chosen thermalization of low-temperature simulations and ensure
physical quantity is obtained. For instance, in the multica-sufficient sampling in the low-energy region. Hence, we are
nonical algorithm the weightv,,(E) is chosen so that the interested in an ensemble where not only the low-energy

distribution of energy is uniform: region can be sampled efficiently but also the high-energy
states can be visited with finite probability. The latter feature
P(E)*n(E)w,,(E)=const, (1)  ensures that energy barriers can be overcome and that the

simulation can escape from local minima. The probability
wheren(E) is the density of states. A simulation based ondistribution of energy should resemble that of an ideal low-
this weight factor results in a free random walk in the energytemperature Boltzmann distribution, but with a tail to higher
space. Hence, the simulation can escape from any energ@pergies. One choice is that the sampling of low-energy
barrier, and even regions with smallE) can be explored in States is described by an exponential functi@oltzmann
detail. Similarly, 1k sampling yields a uniform distribution Weighd, while that of high-energy states follows a power
in (microcanonical entropy, and simulated tempering a uni- law. Guided by these considerations, we propose the follow-
form distribution in temperature. The great advantage ofnd as the new weight:
these generalized-ensemble methods lies in the fact that from

. . . E_ E —m
a single simulation run one can not only locate the energy W(E)=|1+p = GS) , 3
*Electronic address: hansmann@ims.ac.jp where B=1/kgT, Egg is the global-minimum energy, and
TElectronic address: okamotoy@ims.ac.jp m(>0) is a free parameter. Here, we are shifting the zero of
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FIG. 1. Time series of the total ener@y,, (in kcal/mo) from a I ' I ) PrespntlAIgorithm —
regular canonical simulation at temperatiire 50 K (dotted curve or %% Multicanonical Algorithm +——
and from a simulation of the present method with the parameters: %
Eo=—12.2 kcal/mol,m=n;=19, andT=50 K (solid curve. 5r { %
I
energy byEgs in order to assure that energy is always non- st l ]
negative. We remark that weights with the same mathemati-© i i
cal structure also appear in the framework of Tsallis gener- i i
alized statistical mechanidd.1], which was developed for o i . |
simulations of nonextensive systens.g., fractal random ﬁi .
walks). An application to optimization problems can be 2 ¢ . 1
found in Ref.[12]. N
Obviously, the new weight in Eq3) reduces to the ca- | . . . L e
nonical Boltzmann weight in the low-energgnd hence low- b 0 200 400 60 800 1000

temperaturge region for [ 3(E—Egg]/m<1. On the other

hand, this weight at high energies is no longer exponentially FIG. 2. Average energgin kcal/mo) (a) and specific heab) as
suppressed, but only according to a power law with the exa function of temperaturén K). They were calculated by the re-
ponentm. Note that our choice of the sign in E(B) is weighting techniques from a single simulation run of the present
important. From a mathematical point of vie§d—B[(E  method with the parametersf,=—12.2 kcal/mol, m=ng=19,
—Eg9/m]}™ is equally a good approximation to the canoni- andT=50 K. The results from a multicanonical simulation are also
cal weight, but is not useful as a weight in numerical simu-shown for comparison. In both simulatiofisy the present method

lations, since the expression inside the curly brackets cafi"d by the multicanonical algorithnthe total number of Monte
become negative. Carlo sweeps was £0

In this work we consider a system with contin_uous de'_deviating from the (expongdntially damped Boltzmann
grees of freedom. At low temperatures the harmonic approXigeight at the energy near its mean val{eecause at low

mation holds, and the density of states is given by temperatures there are only small fluctuations of energy
B 2 around its mean This requires thatB({E)r—Eggd/m
N(E)>(E—Eg9)""™ @ Z0(1) in Eq.(3). We may thus set
whereng is the number of degrees of freedom of the system (E);—Egs 1
under consideration. Hence, by E¢3). and(4) the probabil- B m 2 ()
ity distribution of energy at low temperatures for the present
ensemble is given by The mean value at low temperatures is given by the har-
monic approximation
P(E)=n(E)W(E)*(E—Egg "? ™™, (5)
Ng Ng
for B[(E—Eag/m]s1. This implies that we need (B)r=Eest 5 keT=Eost 75- 8
m>E_ (6)  Substituting this value into Eq7), we obtain the following
2 optimal value for the exponemi:
For, otherwise, the sampling of high-energy configurations me=n 9)
will be enhanced too much. On the other hand, in the limit opt—TF
m—oce our weight tends for all energies to the BoltzmannHence, the optimal weight factor is given by
weight and high-energy configurations will not be sampled. Cne
In order for low-temperature simulations to be able to W(E)=|1+8 E_EO) (10)
escape from energy local minima, the weight should start Ng '
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TABLE |. Lowest energy(in kcal/mo) obtained by the present method with several different choices of
the free parametem. The other free paramet&, was fixed at the value of the global-minimum energy
Egs=—12.2 kcal/mol. The temperature was seflte 50 K. The case fom=« stands for a regular canoni-
cal run atT=50 K. For all cases, the total number of Monte Carlo sweeps per run was 5QB0& the
average of the lowest energy obtained by the ten fwith the standard deviations in parenthgsasdngg
is the number of runs in which a conformation wigk< — 11.0 kcal/mol(the average energy @it= 50 K) was

obtained.

Eo Egs=—122 -—12.2 -12.2 -12.2 -12.2

m N 14 ng=19 50 100 o0
—=95
2

Run

1 0.8 -5.2 —-11.8 -6.9 -6.8 —-4.2

2 -14 —2.6 —115 -7.1 -7.7 —-5.2

3 0.1 -6.8 —-115 -6.9 -4.9 -11.8

4 0.5 -55 -11.7 -8.2 -9.9 -7.1

5 -1.0 —3.4 —-116 —-7.4 —-12.0 -3.3

6 1.1 —6.4 —-116 —-101 —-8.8 0.9

7 -1.3 —-5.1 -85 —-8.7 —-8.7 -5.3

8 0.4 -3.3 -9.7 -10.8 -95 -6.3

9 1.2 -8.1 —-11.6 -12.0 -6.8 —-6.4

10 1.2 -3.3 -11.9 -10.8 -95 —-4.7

(E) 0.2 (1.0 —5.0 (1.8) -11.1 (1.1) —-8.9 (1.9) —-8.5 (2.0) —-5.3 (3.2)

Ngs 0/10 0/10 8/10 1/10 1/10 1/10

whereE, is the best estimate of the global-minimum energy2. Fixing the peptide bond anglesto 180° leaves us with 19
Egs. torsion angles as independent degrees of freedoe,

We have tested our method in the system for the proteinne=19). The computer cod&oNF9o [14] was used. One
folding problem, a long-standing problem in biophysics with Monte Carlo sweep updates every torsion angle of the pep-
rough energy landscape. Here, Met-enkephalin has becontigle once.
an often-used model to examine the performance of new al- It is known from our previous work that the global-
gorithms, and we study the same system. Met-enkephalin hasinimum value ofKONF90 energy for Met-enkephalin is
the amino-acid sequence Tyr-Gly-Gly-Phe-Met. The energygs= —12.2 kcal/mol[15]. The peptide has essentially a
function E (in kcal/mol) that we used is given by the sum unique three-dimensional structure at temperatuies
of the electrostatic ternk-, 12-6 Lennard-Jones teris, ; <50K, and the average energy is aboufl kcal/mol at
and hydrogen-bond terrgg for all pairs of atoms in the T=50K [9]. Hence, in the present work we always Jet
peptide together with the torsion terf,, for all torsion  =50K (or, 8=10.11/kcal/moal)) in our probability weight
angles: factor. All simulations were started from completely random

initial configurations(hot starj.
Ewor=EctELtEngt Etors (11) To demonstrate that thermalization is greatly enhanced in
our ensemble, we first compare the “time series” of energy

B 332;q; 1 @sa function of Monte Carlo sweep. In Fig. 1 we show the
G ery (12 results from a regular canonical Monte Carlo simulation at
temperatureT=50 K (dotted curvé and those from a
A B generalized-ensemble simulation of the new algoritsolid
EL= (iEj) (ﬁ— Pk (13 curve. Here, the weight we used for the latter simulation is
) ij ij

given by Eq. (100 with ng=19 and Ey=Egs=
C. D —12.2 kcal/mol. For the canonical run the curve stays
( ! ”), (14)  around the valu€ = —7 kcal/mol with small thermal fluc-
tuations, reflecting the low-temperature nature. The run has
apparently been trapped in a local minimum, since the mean
_ energy at this temperature (&)= —11.1 kcal/mol as found
E“”_Z Ui(1=cognix)). (15 by a multicanonical simula<ticzn in Ref15]. On the other
hand, the simulation based on the new weight covers a much
Here,rj; is the distancdin A) between the atomsandj, wider energy range than the canonical run. It is a random
and y, is the torsion angle for the chemical bohd The  walk in energy space, which keeps the simulation from get-
parameters for the energy function and the molecular geonting trapped in a local minimum. It indeed visits the ground-
etry (with fixed bond lengths and bond anglegere adopted state region many times in £Monte Carlo sweeps. These
from ECEPP/2(Empirical Conformational Energy Program properties are common features of generalized-ensemble
for Peptides[13]. The dielectric constarnt was set equal to methods.
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Since the simulation by the present algorithm samples a 1 - - - - ~
large range of energies, we can use the reweighting tech Canonicay
niques[7] to construct canonical distributions and calculate 04 b st SI
thermodynamic quantities over a wide temperature range.
Following 10 000 sweeps for thermalization, we performed a 001 F i
single simulation of 10 Monte Carlo sweeps, storing the
configuration information at every second sweep. We haveg g | g5
set againE,= —12.2 kcal/mol anchg=19 in the weight of  ©
Eq. (10). From this production run one can calculate various 0.0001 L 1
thermodynamic quantities as a function of temperature. As
examples we show the average energy and the specific he:
in Figs. 4a) and 2b), respectively. The specific heat here is 105 ¢
defined by the following equation: .
1e-06 : : L '
d( <Etot>-|-) (a) 12 10 -8 E6 4 2 o}
=1 NT_ (Etwr— (Bt 18 0005 | | | |
ks dT N 0.0045 | Eoi55 ©
o E_0=-142 ©
whereN(=5) is the number of amino-acid residues in the 0004 | s e, E0=152 ~
peptide. The harmonic approximation holds at low tempera- 035 L S s
tures, and by substitutingE )1 — Egs= (ng/2)kgT in Eq. (8) oo0s | ) ou,
into (Ey in the first equation of Eq(16), we have o ° -
£ o.0025 | . o%%
o
c= Zn—lz =1.9. (17) el I o
0.0015 o LW o]
P : ; 0.001 | T g e
Note that the curve in Fig.(B) approaches this value in the R E o
T—0 limit. The results from a multicanonical production run 00005 | © sy
with the same statistics are also shown in the figures for o0 Lt
comparison. The results from both methods are in complete 12 ; £ 0

agreement.

We now examine the dependence of the simulations on FIG. 3. Probability distributions of energy for various values of
the values of the exponent in our weight[see Egs(3) and  the exponenin (a) and the global-minimum energy estimdig (b)
(10] and demonstrate than=ng is indeed an optimal in the present method. The ordinate fey is logarithmic. The re-
choice. SettingE,=Egs= —12.2 kcal/mol, we performed sults were obtained by the reweighting techniques from a single
ten independent simulation runs of 50 000 Monte Carlosimulation run with the parameterf,=—12.2 kcal/mol,m=ng
sweeps with various choices of. In Table | we list the =19, andT=50 K. The total number of Monte Carlo sweeps was
lowest energies obtained during each of the ten runs for fivé®- For (@ the regular canonical distribution @t=50 K as calcu-
choices ofm values: 9.5€ng/2), 14, 19&ng), 50, and lated by the reweighting techniques is also shown for comparison.
100. The results from regular canonical simulationsTat £ _ _ 15 5 kcal/mol and m=ng=19]. The results are

=50 K with 50 000 .Monte Qarlo sweeps are also listed i”sr?own in Fig. 3a). By examining the figure, we again find
the table for comparison. ff is chosen to be too sma.g.,  thatm=n is an optimal choice. It yields to an energy dis-
m=9.5), then the weight follows a power law in which the tripution which has a pronounced peak around the mean en-
suppression for the higher-energy region is insufficls@e  ergy value (E)=— 11.1 kcalimol) aff=50 K. At the same

Eq. (5] As a result, the simulations tend to stay at hightime, it has a tail to higher energies. This behavior is exactly
energies and fail to sample low-energy configurations. Onwhat we were looking for and justifies our definition of
the other hand, for too large a valuerof(e.g.,m=100), the  weights in Eq.(10).

weight is too close to the canonical weight, and therefore the The greatest advantage of our method over other
simulations will get trapped in local minima. It is clear from generalized-ensemble approaches is the simplicity of the
the table thatm=n¢ is an optimal choice. In this case the weight factor. In multicanonical algorithms,kléampling, or
simulations found the ground-state configurations 80% of theimulated tempering, the explicit functional forms of the
time (eight runs out of ten runsThis should be compared weights are not knowm priori and they have to be deter-
with 90%, 75%, 80%, and 40% for multicanonical annealing,mined numerically by iterations of trial simulations. This can
1/k annealing, simulated tempering annealing, and simulatetle a formidable task in many cases. On the other hand, the
annealing algorithms, respectively, in simulations with theweight factor of the present algorithm just depends on the
same number of Monte Carlo swedi$). knowledge of the global-minimum energiss [see Eq.

To analyze the above results further, we calculated th€10)]. If its value is known, which is the case for some sys-
actual probability distributions of energy for various valuestems with frustration, the weight is completely determined.
of m. This can be done by the reweighting techniques fronHowever, if Egg is not known, we have to obtain its best
the single production run of £0Monte Carlo sweeps men- estimateE,. We can calculate the actual probability distri-
tioned abovdwhich is based on the weight of EELO) with  butions of energy for various values Bf by the reweighting
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TABLE II. Lowest energy(in kcal/mol) obtained by the present method with several different choices of
the free parametef,. The other free parameter was fixed at the optimal value of-=19, the number of
degrees of freedom. The temperature was sét=t®0 K. For all cases, the total number of Monte Carlo
sweeps per run was 200 00(E) is the average of the lowest energy obtained by the ten (with the
standard deviations in parentheseand ngg is the number of runs in which a conformation wikh<
—11.0 kcal/mol(the average energy at=50 K) was obtained.

Eo Egs=—12.2 —-13.2 —-14.2 —-15.2
m n-=19 19 19 19
Run

1 -11.8 -111 -105 -9.0

2 —-11.9 -10.8 -8.3 -10.3

3 -11.9 -11.3 —-116 -9.7

4 —-11.9 —-10.2 —-10.9 -10.8

5 —-11.8 -11.2 —-6.9 -9.2

6 -11.3 —-115 —-10.8 —-9.6

7 -11.9 -11.3 -8.3 -10.3

8 -11.8 -11.4 -5.9 -6.8

9 —-12.0 —-115 -10.6 —8.6

10 —11.7 —-10.0 —-10.3 —-8.9
(E) —11.8 (0.2) —11.0 (0.5) —9.4 (1.9) -9.3 (1.1)
Ngs 10/10 7110 1/10 0/10

techniques again. The results are shown in F{g).3Ve see  chosen temperaturE by the reweighting techniques. (E)

that for the system of Met-enkephalin, one needs the accu- Eg>(ng/2)kgT, one raises the value d, by a certain
racy of about 2 kcal/mol in the estimate of the global- amount and repeats the short simulation. One iterates this
minimum energyEgs in order for our algorithm to be effec- process untikE)—Eq~(ne/2)kgT. The search of the opti-
tive. This implication is supported by Table Il where we list mal Eq can be further facilitated by information such as the
the lowest energies obtained during each of ten independeferage energy and the specific heat obtained from high tem-
simulation runs of 200 000 Monte Carlo sweeps with ~ Perature simulations. For Met-enkephalin the incorporation

—ne=19. Four choices were considered for g value; ~©Of such information gave a start value OEq=
~12.2. —13.2, —14.2, and—15.2 kcal/mol. We remark — 13.8 kcal/mol, which is already within the 2 kcal/mol ac-

curacy required by our methadee Ref[17] for details.

In summary, we have introduced a generalized-ensemble
orithm for simulations of systems with frustration. We

. ! ; have demonstrated the effectiveness of the method by taking
ergy is required for Met-enkephalin. ... .the example of the system of a small peptide Met-

_ The use of our method therefore depends on the qblllty t%nkephalin, which has a rough energy landscape with a huge
find a good estimate for the ground-state enegy, which mper of local minima. The advantage of the method lies in
is still much easier than the determination of the weights foipe fact that the determination of the probability weight fac-
other generalized-ensemble algorithms. In principle, such egpr is much simpler than in other generalized-ensemble ap-
timates can be found in an iterative way. Here, we give ongygaches.

of the effective iteration procedures. One first sets an initial The simulations were performed on the computers at the
guess of the optimak, which should be lower thakgs. Computer Center at the Institute for Molecular Science
One performs a simulation with the weight of the present(IMS), Okazaki, Japan. This work is supported, in part, by
method with small number of Monte Carlo sweeps. FromGrants-in-Aid for Scientific Research from the Japanese
this simulation one calculates the average enéEy at the  Ministry of Education, Science, Sports, and Culture.

that E; has to underestimatégg to ensure thaE—E, can-
not become negative. Our data show again that an accuracy
of 1~2 kcal/mol in the estimate of the global-minimum en- 9
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