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Multioverlap simulations for transitions between reference configurations
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We introduce a procedure to construct weight factors, which flatten the probability density of the overlap
with respect to some predefined reference configuration. This allows one to overcome free-energy barriers in
the overlap variable. Subsequently, we generalize the approach to deal with the overlaps with respect to two
reference configurations so that transitions between them are induced. We illustrate our approach by simula-
tions of the brain peptide Met-enkephalin with the ECEP@&pirical Conformational Energy Program for
Peptides energy function using the global-energy-minimum and the second lowest-energy states as reference
configurations. The free energy is obtained as functions of the dihedral and the root-mean-square distances
from these two configurations. The latter allows one to identify the transition state and to estimate its associ-
ated free-energy barrier.
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[. INTRODUCTION long production run with these weights. There is no need for
that estimate to converge towards the exact inverse spectral
Markov chain Monte CarloMC) simulations, for in- density. Once the working estimate of the weights exists, MC
stance, by means of the Metropolis methidd, are well  simulations with frozen weights converge and allow one to
suited to simulate generalized ensembles. Generalized enalculate thermodynamical observables with, in principle, ar-
sembles do not occur in nature, but are of relevance for conbitrary precision. Various methods, ranging from finite-size
puter simulationgsee Refs[2—4] for recent reviews They  scaling estimate§8] in case of suitable systems to general
may be designed to overcome free-energy barriers, which apgurpose recursiong9—11], are at our disposal to obtain a
encountered in Metropolis simulations of the Gibbs-working estimate of the weights.
Boltzmann canonical ensemble. Generalized ensembles do In the present paper we deal with a variant of the multi-
still allow for rigorous estimates of the canonical expectationcanonical approach: Instead of flattening the energy distribu
values, because the ratios between their weight factors an@n, we construct weights to flatten the probability density
the canonical Gibbs-Boltzmann weights are exactly known.of the overlap with a given reference configuration. This al-
Umbrella sampling [5] was one of the earliest lows one to overcome energy barriers in the overlap variable
generalized-ensemble algorithms. In the multicanonical apand to get accurate estimates of thermodynamic observables
proach[6,7] one weights with a microcanonical temperature,at overlap values which are rare in the canonical ensemble. A
which corresponds, in a selected energy range, to a workingimilar concept was previously used in spin glass simulations
estimate of the inverse density of states. Expectation valud4 2], but there is a crucial difference: In R¢12] the weight-
of the canonical ensembles can be constructed for a widimg was done for the self-overlap of two replicas of the sys-
temperature range, hence the name “multicanonical.” Heretem and a proper name would be multi-self-overlap simula-
“working estimate” means that running the updating proce-tions, while in the present paper we are dealing with the
dure with the(fixed) multicanonical weight factors covers overlap to a predefined configuration.
the desired energy range. The Markov process exhibits ran- We next generalize our approach to deal with two refer-
dom walk behavior and moves in cycles from the maximumence configurations so that transitions between them become
(or above to the minimum(or below) of the chosen energy covered and our method then allows one to estimate the tran-
range, and back. A working estimate of the multicanonicalsition states and its associated free-energy barrier. We have in
weights allows for calculations of the spectral density and almind situations where experimentalists determined the refer-
related thermodynamical observables with any desired accwence configurations and observed transitions between them,
racy by simply increasing the MC statistics. Thus, we have dut an understanding of the free-energy landscape between
two-step approach: The first step is to obtain the workinghe configurations is missing. An example would be the con-
estimate of the weights and the second step is to perform zersion from a configuration withw helix structures to a
native structure which is mostly in the sheet, as it is the
case forg-lactoglobulin[13,14).
*Email address: berg@csit.fsu.edu The paper is organized as follows. In the following sec-
"Present address: Instituf rfFestkaperforschung, Forschungs- tion we describe the algorithmic details, using first one and
zentrum Jlich, D-52425 Jiich, Germany. Email address: then two reference configurations. In particular, a two-step
hi.noguchi@fz-juelich.de updating procedure is defined, which is typically more effi-
*Email address: okamotoy@ims.ac.jp cient than the conventional one-step updating. Moreover,
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based on the sums of uniformly distributed random numbersere, v; is our generic notation for the dihedral angle
a method to obtain a working estimate of the multioverlap— w<uv;<r, andv? is the vector of dihedral angles of the
weights is introduced. In Sec. Il we illustrate the method forreference configuration. The distarttgv; ,v/) between two
a simulation with the pentapeptide Met-enkephalin. Ourangles is defined by
simulations use the all-atom energy function ECEP(eff-
pirical conformational energy program for peptidés]) and da(vi,vi)=min(|v;—v{[.27—|vi—v]|). ()
rely on its implementation in the computer packagevip ] ) )
(simple molecular mechanics for proteifs]). We use as The symk_JOI||.|| defines a norm in a vector space. In particu-
reference configurations the global energy minim@gM)  1ar, the triangle inequality holds:
state, which has been determined by many authibfs-21], 1_ 2 <1l o
and the second lowest-energy state, as identified in Refs. o =vl[<llo*=vl[+[Jo=v]. “)
[19_,2.2.. While our overlap definition relies on a distance o 5 single angle we have
definition in the space of the dihedral angles, it turns out that
for the data analysis the use of the root-mean-squane) 0<|vi—v}|<m=0=d=n. 5)
distance is crucial. It is only in the latter variable that one
obtains a clear picture of the transition saddle point in theAt 8=0 (i.e., infinite temperatupe
two-dimensional free-energy diagram. In the final section a
summary of the present results and an outlook with respect 1 1
to future applications are given. di=—da(vi,vi) (6)

is a uniformly distributed random variable in the range O
Il. MULTIOVERLAP METROPOLIS ALGORITHM =<d;=<1 and the distancd in Eqg. (2) becomes the sum of

. . . . . such uniformly distributed random variables, which allows
In this section we explain the details of our multioverlap for an exact calculation of its distribution

algorithm. The overlap of a configuration versus a reference
configuration is defined in the following section. In Sec. 1B
we discuss details of the updating. To achieve step one of the
method, i.e., the construction of a working estimate of the We choose a reference configurationnoflinedral angles
multioverlap weights, one could employ a similar recursionvi1 (i=1,...)n), to define the dihedral distand®). We

as the one used in RdfL2] or explore the approach of Ref. want to simulate the system with weight factors that lead to
[11]. Instead of doing so, we decided to test a new methoda random walk RW) process in the dihedral distande

At infinite temperature3=0, the overlap distributions can

be calculated analyticallysee Sec. Il D We use this as d<dmjp—d>dmna and back. (7)
starting point and estimate the overlap weights at the desired ) o )
temperature by increasing in sufficiently small steps so Here,dmi is chosen sufficiently small so that one can claim
that the entire overlap range remains covered. In the findhat the reference configuration has been reached, e.g., a few
section we define the overlap with respect to two distinctP@rcent oin/2, which is the average at T=c. The value of

reference configurations to cover the transition region befmax has to be sufficiently large to introduce a considerable
tween them. amount of disorder, e.gdy.=n/2. In the following we call

one event of form(7) a random walk cycléRWC).
One possibility is to choose weight factors which give a
A. Definition of the overlap flat probability density in the dihedral distance ranged

There is a considerable amount of freedom in defining thé="/2. falling off for d>n/2 by keeping thel dependence of

overlap of two configurations. For instance, one may rely orf€ weight constant fod=n/2. This is quite similar to mul-
the rms distance between configurations, and in Sec. III §imagnetical simulationg8], for which the external magnetic
we analyze some of our results with this variable. Howeverfi€ld takes the place of the reference configuration. The anal-
the computation of the rms distance is slow and for MCO9Y becomes obvious, when the external field is defined via
calculations it is important to rely on a computationally fast® 9host spin, which couples to all other spins. For instance,
definition. Therefore, we define the overlap in the space othe spinss of the Heisenberg ferromagnet are three-
dihedral angles by, as it was already used in R24], dimensional vectors of magnitude one. Their interaction with

an external magnetic field can be written as

B. Multioverlap weights

gq=(n—d)/n, &Y

H-X s=H> sy-s=NHg, (8)
wheren is the number of dihedral angles adds the dis- | '
tance between configurations defined by .
wheres,, is the unit vector in the direction of the magnetic
field, §i is the Heisenberg spin at siteN is the number of

spins, andj is the overlap of the spin configuration with the

1 n
d=llo—plll== d.(v.,o}). 2 2
|lo—v] p .21 a(vi.v7) @ reference configuratios, :
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1 L Proof. We show detailed balance for two subsequent up-
=N 2 SH" S - ©) dates of the same dihedral angle with the two-step procedure.
! There are four cases with probabilities of acceptance:

Using the multioverlap languagd 2], the multimagnetical P, i=1234. (14)
[8] weight factors may then be rewritten as
They are listed in the following:
exg — BE+ =w.(E) w, , 10
1= BE+S(@)]=w(E) wqla) (19 Case 1l:wy(d')=wy(d) and w(E")=w(E),
where
P;=1, (15)

W (E)=exp—BE), 11
(E)=exn~BE) (1) Case 2:wy(d')=wy(d) and w.(E')<w(E),
and E=—3,,S,-s: is energy function of the Heisenberg _ :
(1)1 =) 1> ; . P,= E")/w(E), 16
ferromagnet(the sum is over nearest neighbor spirtdere, 2=W(E")We(E) (16

S(q) has the meaning of a microcanonical entropy of the  cgse 3-w (d')<wy(d) and w.(E')=w(E),
overlap parameter, which has to be determined so that the d d ¢ ¢

probability density becomes flat op Weights for other than Ps=w,(d’)/wy(d), (17)
the flat distribution have also been discussed in the literature,
e.g., Ref.[25], on which we shall comment in connection Case 4:wq(d")<wy(d) and wg(E")<wg(E),

with Fig. 7 below.
Py=wq(d")We(E")/[wq(d) we(E)]. (18)

C. The updating procedure .
P gp For the inverse move

In essence, there are two ways to implement the update.
(1) Combine the multioverlap and the canonical weights (d",E")—(d,E), (19
to one probability, which is accepted or rejected in one ran- .
dom step. with probabilities of acceptance
(2) Accept or reject the multioverlap and the canonical

probabilities sequentially in two random steps. P, 1=1234, (20

1. One-step updating the cases are the following:

As defined in Eqs(10) and (11), the weight factor is a Case l:wgy(d)swgy(d’) and w(E)<swc(E'),
product ofw (E) andwy(d), wherew,(E) is the usual ca- ,
nonical Gibbs-Boltzmann factor awd,(d) is the multiover- P1=wq(d) wc(E)/[wg(d") we(E")], (21)
lap weight factor, where we now use the distaddeom the
reference configuratiofinstead of the overlaj) as argu- Case 2:wg(d)swg(d’) and w(E)>w(E"),
ment. As is clear from Eq(l), the use of eitheg or d as
argument is equivalent, while in the presentation of results Ps=wq(d)/wg(d"), (22)
the use of either variable can have intuitive advantages. In
the one-step updating we combine the weights to Case 3:wg(d)>wg(d") and w(E)<w(E’),

W(E,d)=wW(E) wy(d), (12) Ps=w(E)/w(E"), (23

and accept or reject newly proposed configurations in the Case 4:wq(d)>wg(d") and we(E)>w(E"),
standard Metropolis way. Notably, the calculationvaf(d) )

(a simple table lookupis very fast compared with the cal- P,=1. (24)
culation ofw.(E). Therefore, the following two-step proce-

dure is of interest. For the ratios we find

2. Two-step updating Pi _ Wg(d") we(E") 25
P/ Wy(d)we(E) ’

Suppose that the present configurationdsx) and a new i

configuration @1",E") is proposed: independently of =1,2,3,4. Therefore, we have constructed

a valid Metropolis updating procedure.

(d,E)—(d",E"). (13
We can sequentially first accept or reject with tig(d) D. Sums of a uniformly distributed random variable
probabilities and then conditionally, when tkepart is ac- To calculate the overlap weights at infinite temperature,
cepted, with thew (E) probabilities. we consider the sum
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u'=xj+ -+ X, (26) o ah_ k-1 i o ah_ 1 Ah_1x-1

. . . . =T aano i1

of the random vanablex{(J =1, ... ), each uniformly dis- ! !

tributed in the interval0,1) and derive a recursion formula

for the probability densityf,(u) of this distribution. Care is  once the coefficients!, , are available, one can easily evalu-

taken to cast the recursion in a form which allows for agie the probability derisitiefs,(u) and the corresponding cu-

numerically stable implementatiof26] over a reasonably |, jative distribution functions.

large range oh. - _ _ _ . The probability densityf28) takes its maximum value for
Let us recall the probability density of the uniform distri- ,— /2 "Due to the central limit theorem the fall-off behavior

bution: is Gaussian as long asstays sufficiently close to/2. In the

tails, for u—0 or u—n, the fall off is much faster than
_ 27) Gaussian, namely, an exponential of an exponential as fol-
0 otherwise. lows from extreme value statisti¢27].

(33

1 for 0=x<1,
f1(x)=

To derive the recursion formula for the probability density of

the random variablé26), it is convenient to cast it in the i
form In the following the weights with superscript wg(_dj),

correspond to two distinct reference configuratians (]
n =1,2), andd; is the distance from the configuration at hand
fn(U)=Z fak(X) with  xy=u—k+1, (28)  to the configurationv!. Let us assume that multioverlap
K=t simulations with respect to the two reference configurations
where hezlve been carried out and that the Weighm%(dl) and
wg(dz), have been determined so that they sample their dis-
tance distributions approximately uniformly.
We want to construct combined Weighwéz(dl,dz)

E. Combination of two weights

n

-1
al x for 0=x<1,
=0 !

fak(X)=1 i _ (29 which lead to a RW process between the configuratiohs
0 otherwise. andv?. Our choice is
The master formula for the recursion is obtained from the 1 Wé(dl) for d;<d,,
convolution Wy (dy,dp)= 2 (34)
Cjwy(dy) for di=ds.
fa(u)= Jufl(u—v)fn,l(v)dv. (30) The constant;, with j either 1 or 2, is introduced to allow
0 for smooth transitions frord,; <d, to d;=d; and vice versa.

We determineg; from the analysis of either run (br run 2,

The distributions of sums of random variables are often e_l'vvhich are thgone reference configuratipeimulations lead-

egantly obtained from the inverse transformation of their. ; 1 2 ;
product in Fourier spacée.g., Ref.[26]). However, for the ing to the weightswq(dy) [or wq(dz)]. The constant, is

uniform distribution this approach leads to a rather Compli-found from run 1 by scanning the time series for configura-

. X . tion for which d;=d, holds and which have a one-update
cated inverse transformation. Let naw=x+k—1 with 0 . y o .
<x<1, and Eqs(27)—(29) imply t_ranS|t|_on (dl,dz)—>(d1,_d2) with d;<d,. From these con-

' figurationsk we determine the constant so that

k—=1+x
f“'k(x):fkfm fo-alv)dv S widi(01= .S widy(k)] (35

1 X
Zf fnfl,kfl(y)dy""J' fooik(y)dy. (31D holds. Similarly, run 2 may be used to get It turns out that

X 0 the normalized weights almost agree in the transition region
and, therefore, the patchiri@4) works. The dependence of

Using Eq.(29) and performing the integrations, we obtain the constant on the run used for its determination is small,

n-2 n-2 i+l and it appears not worthwhile to explore more sophisticated
fo(X)=> a ;> a methods.
i o I S 4L It is straightforward to implement the Metropolis updating

with respect to weight$34). For the transition
i
* & BT (32 (0. d)— (0}, ), (36
Expanding in powers ok and comparing Eq(29) with Eq.  one has to distinguish four more cases as follows:

(32) allows one to calculate the coefficierds , recursively L
in a numerically robust way: Case 1:d;<d, and d;<dj, (37
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FIG. 1. Reference configuration 1. Only backbone structure is

shown. TheN-terminus is on the left-hand side and the C-terminus

PHYSICAL REVIEW E 68, 036126 (2003

FIG. 2. Reference configuration 2. See the caption of Fig. 1 for

on the right-hand side. The dotted lines stand for hydrogen bondsgyetails.

The figure was created with RasM@&@3].

Case 2:d;<d, and d;=d;, (38
Case 3:d;=d, and d;<d;, (39
Case 4:d,=d, and d;=d;. (40

between Gly-2 and Met-5 and configuration Bdurn with
a hydrogen bond between Tyr-1 and Phg22].

For our present work the two reference configurations
were obtained by minimizing the GEM and the second
lowest-energy state of previous literature with respect to the
ECEPP/2 energy function. The minimization was performed
with the sMmmP minimizer[16] and by quenching. Both meth-
ods gave identical final energies. In Table | we list the vari-

Alternatively to the approach outlined, one may combine

d, andd, into a new variabled, for which the weights are

TABLE |. Met-enkephalin reference configurations. The col-

then calculated as in the one-dimensional case. A suitablgmns GEM,,, andB,,, correspond to configuration 1 and configu-

choice along this line is

2

dy
04=—arcta
v

0 (41

%

IIl. MET-ENKEPHALIN SIMULATIONS

In the following we introduce two reference configura-

tions. Subsequently, we discuss first the results for simula-

tions with one reference configuration and then those involv
ing both reference configurations.

A. The reference configurations

Met-enkephalin has the amino-acid sequence Tyr-Gly-

Gly-Phe-Met. We fix the peptide-bond dihedral angieso
180°, which implies that the total number of variable dihe-
dral angles isn=19. We neglect the solvent effects as in
previous works. The low-energy configurations of Met-
enkephalin in the gas phase have been classified into seve
groups of similar structurefsl9,22. Two reference configu-

rations, called configuration 1 and configuration 2, are used

in the following and depicted in Figs. 1 and 2, respectively.
Configuration 1 has @-turn structure with hydrogen bonds

ration 2, respectively.

Residue  Angle GEM21] GEM,, BI[19] Bmin
1 X1 -179.9 —179.8 —179 +179.4
1 X2 -111.3 -1114 -95 -943
1 X6 +1453  +1453 +169 —179.9
1 ¢ —-86.4 -86.3 +111 +557
2 W +153.7 +153.7 +157 +157.6
2 ® -1616 —161.5 -71 —70.7

T3 W +71.2 +71.1  +78  +78.0
3 ® +64.1 +64.1 159  +156.5
4 W -93.5 -935 -37 -357
4 X1 +179.8 +179.8 +59  +553
4 X2 +380.0 +80.0 +87 +86.8
4 @ -81.7 -81.7 —154 —1557
5 W —-29.2 —-29.2 4151 +1516
5 X1 —-65.1 -651 -68 —69.4
5 X2 -179.2 —179.2 +177 -—176.3

ral 5 X3 -179.3 —1793 -—179 -—179.7
5 Xa -60.0 —-59.9 +60 +59.9
5 & -80.8  —80.7 —140 —140.0
5 A +1439 +1435 -29 -30.6
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TABLE Il. Energies(in kcal/mo) of the Met-enkephalin refer-
ence configurations 1 and 2.

Total Coulomb  Lennard-Jones H Bond  Torsion

1 —10.72 +21.41 —27.10 —-6.21 +1.19 E;
2 —8.42 +22.59 —26.38 —485 +0.23 %.

able dihedral angles of the configurations before and after
this minimization. The initial dihedral angles for the GEM
are taken from Table 1 of Ref21] and the initial dihedral
angles for the second lowest-energy sttare from Table |

of Ref.[19]. In Table | we give the angles in degrees, while
for the MC simulations radians were used as in Efjsand _ FIG_. 3. Weight estimates from sim_ulations v_vith reference con-
(2) for the overlap. Our labeling of the residues follows the figuration 1 From up to down the weight functions correspond to
SMMP convention and deviates from those of Ré&1,19. the following te_mpe_ratures: 230, 300, 400, 700, 2000, 10000,

The distance between the two minimized configurations ig-00 000 K. and infinity §=0).
d=6.62 (q=0.652) and their energies are given in Table II.

We next rely on the peaked distribution functif26] to
visualize some of the data kept in the time series of our
simulations. The peaked distribution function of a probability

Each of our multioverlap simulations at fixed temperaturedensityf(x) is defined by
relies on a statistics of 16 777 216 sweeps for which data are
recorded in a time series of 524 288 events, i.e., with a step- _|F() for F(x)=<0.5,
size of 32 sweeps. We started most of our simulations with FpeakelX) = 1-F(x) for F(x)>0.5,
the GEM configuration, but some random starts were also
performed and no noticeable differences were encounteredwhere

Starting with the analytical resu(28), valid at 3=0, the )
weights are calculated by increasigy(i.e., decreasing the :f P
temperaturgbetween simulations slowly so that the RW of FOO wdx rx) 49
each simulation still covers the desired overlap range when
using the weight estimates from the previous temperaturds the usual cumulative distribution functiosee, for in-
Discretization errors due to histograming can be severe angtance, Ref{28]).
instead of weights which are piecewise constant within each To visualize how the canonical energy distribution moves
one histogram interval, we used the interpolation of Rgf.  when we lower the temperature, we plot in Fig. 4 the peaked

energy distributions as obtained by reweighting some of the
Inw(d)=(1-a)Inw(d;)+alnw(d;,1) multioverlap simulations of Fig. 3 to the canonical ensemble
of their simulation temperature. Due to the reweighting the

B. Simulations with one reference configuration

(44)

for di<d<di.,, (42 distributions look precisely as one expects for energies from
canonical MC simulations. In contrast to conventional ca-
where nonical simulations, the raw data feature a considerably
larger number of events at low energies. This is illustrated in
d—d, Fig. 5, where we plot the 300 K and 400 K peaked distribu-
@= dii—d 43 tion functions of Fig. 4 together with their raw multioverlap

peaked distributions

Figure 3 depicts the thus obtained weight function estimates
from simulations with reference configuration 1. After five
simulations we arrive at the physical temperatufe

=300 K. The same iteration works with reference configu-

TABLE IIl. Number of random walk cycles in the simulations
with our two reference configurations. The last column lists the
CPU time ratios for one-step versus two-step updating.

ration 2. T (K) Configuration 1  Configuration 2  One-step/two-step
For the valued,,;=0.025n and d,,,,=0.495n, where
n=19 is the number of angels in E(), we list in Table 1l 100000 9458 9514 3.0
the number of RWCg7) achieved at each temperature. We 10000 3122 3149 1.8
also list the CPU time ratios for the one-step versus the two2000 2893 2741 1.6
step updating procedures, which we discussed in the prece@o0 2169 2227 15
ing section. Especially at high temperatures, which aret00 1342 1693 13
needed in our approach, the two-step updating turns out to keno 462 610 1.2
more efficient than the one-step updating and all of our pro23p 46 41 1.2

duction runs were done with it.
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FIG. 4. Canonical, peaked energy distributions obtained by re-
weighting multioverlap simulations. From left to right the tempera-
tures used are 230, 300, 400, and 700 K.

FIG. 6. Probability density of the distance from a multioverlap
simulation atT=400 K (flat) and its canonically reweighted prob-
ability density(peakedl.

In Fig. 6 we give an example of the probability density of ~ For multioverlap simulations the reweighting towards low
the distance. For the 400 K simulation with reference coniemperatures can work much better than for canonical simu-
figuration 1 we plot the probability density df as obtained lations. This is due to the fact that the low-energy configu-
from the multioverlap simulation together with its canoni- rations close to low-energy reference configuration are al-
cally reweighted probability density. The simulation itself is ready in the ensemble. This is illustrated in Fig. 8, where we
run with the multioverlap weights from the 700 K simula- reweight the data from a multioverlap simulation with refer-
tions and the multioverlap histogram shown is reweighted tNce configuration 1 af=300 K and compare with a con-
the multioverlap 400 K weights. As expected, we have a flaventional multicanonical simulation based on tsevp
distribution between 0 and/2=9.5 (the latter is the average Package16]. The specific hea€, and the derivative of the
value of the distance af=). Moreover, there is a good overlap with respect to the temperature are shown. From 200
coverage of configurations close to the GEM, which areK to 400 K the deviations of the results are of the order of
highly suppressed in the 400 K canonical ensemble. Théhe statistical errors, whlqh are not shown fqr clarity of the
maximum ratio of the multioverlap density divided by the figure. Below 200 K deviations of the reweighted overlap
canonical density is 8 10 in this plot. simulation from the correct behavior become visible, first in

For the same simulation Fig. 7 depicts separately théldi/dT then inCy. Such deviations are expected as the
peaked distribution function of the forward and backward!OW-energy attractor does not lead to a uniform coverage of
RWCs (7). A considerable asymmetry is noticeable and it@ll low-energy states. The successful reweighting from high
turns out that the weights of theklensembld25] lead to ~ Simulation temperatures to lower temperatures is an im-
more RWCs than the flat distribution of Fig. 6. In connectionProvement, because the Metropolis dynamics at high tem-
with our simulations this is a lucky circumstance, becausé€ratures is faster. But the reweighting of a multioverlap
the 1k distribution of weights is in essence the distribution Simulation to a lower temperature will fail at some point,
at a somewhat higher temperature than that of the simulatior&i’.ecause the reference con'flgura}non introduces a bias towards
This increases the flexibility when estimating good weightsParticular low-energy configurations.

at a lower temperature from the already existing simulation The temperature at whicBy and —dq,/dT take peak
results at a higher temperature. values correspond to the coil-globule transition temperature

05| ; dsd
N / \ d->c{nmin ____________
04 ’I ‘\\
04 | \
o 03]V \
n ;
0.3 |
/ AN
0.2 ;, !
0.1 | ,, \\\
o / —
0 . ) e
i 0 10000 20000 30000 40000
MC sweeps

E (kcal/mol)

FIG. 7. Peaked distribution functions for the forward (
FIG. 5. Peaked multioverlafleft shifted and canonical energy —d,,,) and backwardd—d,,,) parts of the random walk cycles
distributions afT =300 K andT=400 K. from a multioverlap simulation af =400 K.
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FIG. 8. Left-hand side ordinate: specific heat reweighted from a FIG. 10. Probability density of the rms distance from the mul-
multicanonical(MUCA) and from a 300 K multioverlagMUQV) tioverlap simulation af'=400 K of Fig. 6, and its canonically re-
simulation with reference configuration 1. Right-hand side ordinateweighted probability density. The abscissa is the rms distance (A)
dg,/dT reweighted from the same simulations, whepegis the  in Eq. (47) from the reference configuration 1.
overlap with reference configuration 1.

that both reference configurations have been visited with
T, and the folding temperatuf® [24]. From Fig. 8 we read high probability.

off the following approximate values:
D. Physics results

We would like to analyze the transitions between our two
reference configurations in some detail. For this purpose we
use the rms distance, which is defined by

T,=280 K and T;=245 K. (46)

C. Simulations with two reference configurations

At 300 K we combine the weights from the runs with
reference configurations 1 and 2 to one weight function ac-
cording to our EqQ.(34). We record now three different
RWCs.

(1) With respect to reference configuration 1 fraky;, to
dmax @nd back, found 315 times.

(2) With respect to reference configuration 2 fraiy;, to
dmax @nd back, found 545 times.

(3) Fromd,;, of reference configuration 1 @y, of ref- Distance(2) and the rms distancel7) are quite distinct.
erence configuration 2 and back, found 196 times. The reason is that a change of a single dihedral angle in the

In Fig. 9 we show the probability densities of this simu- central parts of the molecule can cause a large deviation in
lation with respect to the distances from our reference conthe rms distance. Although the two configurations are then
figurations. They are no longer flat, but a satisfactory coverclose-by from the point of view of the MC algorithm, physi-
age in the variablesl; andd, is still achieved. Note that cally they are rather far apart, as the similarity of the three-
both probability densities have peaksdt6.62, which is dimensional structures is governed by the rms distance.

the distance between configurations 1 and 2. This impliedherefore, the rms distance distribution deviates consider-
ably from the dihedral distance distribution. We illustrate this

, (47)

d;ms= Min

N
1 . L
— —x 2
D WER)

whereN is the number of atom:{;?ij} are the coordinates of
the reference configuratiop) and the minimization is over
the translations and rotations of the coordinates of the con-

figuration{x;}.

by plotting in Fig. 10 the rms probability density of the 400

0.045
0.04 | 3; ____________ ] K simulation for which the dihedral distance probability den-
. 0035 sity is shown in Fig. 6. Note that the rms distribution has a
% 03l few peaks, i.e., stays kind of rough, despite the flat dihedral
S o005 | distance distribution.
z 002 | We now analyze the free-energy landscfp@ from the
s 0(;15 | results of our simulation with combined weights at 300 K in
2 b, some detail. We study the landscape with respect to some
0.01 ¢ . A ™ reaction coordinategand hence it should be called the po-
0.005 | "y tential of mean force In order to study the transition states
0 0 , . 5 5 1'0 1 between reference configurations 1 and 2, we first plotted the

FIG. 9. Combined weight simulation dt=300 K: probability

densities with respect to the distanahsandd,.

free-energy landscape with respect to the distamgeand
d,. However, we did not observe any transition saddle point.
A satisfactory analysis of the saddle point becomes possible
when the rms distancénstead of the dihedral distances
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1

o =< N Wk~ OO
-
»

01 2 3 4 5 6

r1
FIG. 11. Free-energy landscapeTat 250 K with respect to rms
distances (A) from the two reference configuratioRgs,r,). ‘g
Contour lines are drawn evenkgT. The labelsA; andB, indicate . ) )
the positions for the local-minimum statesTt 250 K that origi- FIG. 12. The transition state between reference configurations 1

nate from the reference configuration 1 and the reference configind 2. See the caption of Fig. 1 for details.
ration 2, respectively. The lab& stands for the saddle point that

corresponds to the transition state. bond with Phe-4(the transition stabe this new hydrogen

bond is broken, and finally Phe-4 forms a hydrogen bond
with Tyr-1 (configuration 2.

used. Figure 11 shows contour lines of the free energy re- |t js interesting to see in Fig. 11 that there is only one
weighted toT=250 K, which is close to the folding tem- saddle point in the free-energy landscape that connects con-
perature(46). Here, the free energly(r,,r») is defined by  figurations 1 and 2. Hence, the transition between configura-
tions 1 and 2 always passes through the dtate

In Ref. [22] the low-energy conformations of Met-

enkephalin were studied in detail and they were classified

into several groups of similar structures based on the pattern
of backbone hydrogen bonds. It was found there that below
T=2300 K there are two dominant groups, which correspond

Yo configurations 1 and 2 in the present paper. Although

much less conspicuous, the third most populated structure is
indeed the group that is identified to be the transition state in

the present work.

In Figs. 13 and 14 we show the internal energy landscape
and the entropy landscape Bt 250 K, respectively. Here,
She internal energy is defined by thdreweighted average

ECEPP/2 potential energy:

F(rqi,ro)=—kgTInP(rq,ry), (48

wherer; andr, are the rms distances defined in E47)
from the reference configuration 1 and the reference config
ration 2, respectively, anB(r,r,) is the(reweighted prob-
ability at T=250 K to find the peptide with values,,r».
The probability was calculated from the two-dimensional
histogram of bin size 0.060.06 A?. The contour lines were
plotted every RgT (=0.99 kcal/mol forT= 250 K).

Note that the reference configurations 1 and 2, which ar
respectively, located atr{,r,)=(0,4.95) and (4.95,0), are
not local minima in free energy at the finite temperatufe (
=250 K) because of the entropy contributions. The corre- U(ry,ra)=(E(ry,ra)). (49)
sponding local-minimum states & and B still have the
characteristics of the reference configurations in that theylere, the average was again calculated from the two-
have backbone hydrogen bonds between Gly-2 and Met-g8imensional histogram of bin size 0.8®.06 A2. The en-
and between Tyr-1 and Phe-4, respectively. We remark thadtopy Swas then calculated by
we observe in Fig. 11 another well-defined local-minimum
state aroundr(;,r,)=(4.7,3.5). This state can also be con-
sidered to correspond to configuration 2 because we again
observe the backbone hydrogen bond between Tyr-1 and
Phe-4. The side-chain structures are, however, more deviated
from configuration 2 tham,, resulting in a larger value of
r2.

The transition stat€ in Fig. 11 should have intermediate
structure between configurations 1 and 2. In Fig. 12 we show
a typical backbone structure of this transition state. We see
the backbone hydrogen bond between Gly-2 and Phe-4. This
is precisely the expected intermediate structure between con-
figurations 1 and 2, because going from configuration 1 to
configuration 2 we can follow the backbone hydrogen-bond FIG. 13. Internal energy landscapeTat 250 K with respect to
rearrangements: The hydrogen bond between Gly-2 angns distances (A) from the two reference configuratith@,; ,r»).
Met-5 of configuration 1 is broken, Gly-2 forms a hydrogen Contour lines are drawn evenkgT.
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ratherA, B,, andC. The stateA; can be considered to be
“deformed” configuration 1, and; deformed configuration
2 due to the entropy effects, where@ss the transition state
betweenA; andB;. Among these three points, the free en-
ergy F and the internal energy are the lowest af\;, while
the entropy contribution-TS is the lowest atC. The free
energy differencF, internal energy differencAU, and
entropy contribution difference-TAS are 1.0 kcal/mol, 1.9
kcal/mol, and— 0.9 kcal/mol betwee; and A4, 2.2 kcal/
mol, 4.6 kcal/mol, and-2.4 kcal/mol betweerC and A;,
and 1.2 kcal/mol, 2.7 kcal/mol, and 1.5 kcal/mol between
C and B;. Hence, the internal energy contribution and the
FIG. 14. Entropy landscape dt=250 K with respect to rms entropy contribution to free-energy are opposite in sign and
distances (A) from the two reference configurations, the magnitude of the former is roughly twice as that of the
—T9Hrq,r,). Contour lines are drawn evenkgT. latter at this temperature.

o= N®WL~ OO
oy

1
S(rl,r2)=?[U(rl,rz)—F(rl,rz)]. (50) IV. SUMMARY AND CONCLUSIONS
We have outlined an approach to perform MC simulations
which yield the free-energy distribution between two refer-
ence configurations. The multioverlap weights for this pur-
5ose were obtained by a novel, iterative process. The main

. N - point of this iterative process is not that it is supposed to be
number of contour lines in Figs. 13 and 14 than in Fig. 11 more efficient than the recursion that was used in the multi-

The internal energy has clear local minima at the point§qy oy erlap simulations of Ref12], but that it is an entirely

(r1,r)=(0,4.95) and (4.95,0), which, respectively, COITe-j,yonendent approach, which starts from an analytically con-
spond to configurations 1 and 2, while the entropy Iandscapﬁoued limit. Recursions such as the one used in Ref] are

has local maxima at these points. These two terms tend ot “foolproof.” For instance, while most of the spin glass
cancel each other, and the free-energy landscape is smooth lica in Ref.[12] were well behaved, a few did not com-

OUtl' Table IV list th ical val f the f plete their recursion after more than an entire year of single
n Table IV we list the numerical values of the free en- ., osq6r CPU time. Similar situations could be encountered
ergy, internal energy, and entropy multlphgd py temperaturq,, g1-atom simulations of larger peptides, where the normal
at the two local-minimum states\¢ andB, in Fig. 11 and 1, sicanonical weight recursion as well as similar multiover-

the fransition state( in Fig. 1. The ".“e”‘a' energy Is just lap weight recursion could fail. The present method provides
the average of the ECEPP/2 potential enefgjthout any o an alternative, approaching the physical region from a
shift of zero point. The free energy was normalized so that yigtarent limit.

the value atA; is zero. The values at the coordinates of
reference configurations 1 and 2, which are, respectively,

The landscape in Fig. 14 is actualyTS(r,r,).
Both internal energy and entropy landscapes are mor
rugged than free-energy landscapee observe much more

Noticeable, our multioverlap approach is well-suited to be
; , '%ombined with a recently introduced, biased Metropolis sam-
ferred to asA, andBy in the table, are also listed. pling [30]. Namely, the required configurations at higher
Among the five pointsA, and B, are unfavored in free  omperatures are as well necessary for our particular multi-
energy mainly due to the large entropy effects, although theyerjap recursion, so that no extra simulations are required in
are energetically most favored. This means that at this temy,g respect.
perature the exact conformations of the reference configura- g, the physical side, we have found that entropy effects
tions 1 and 2 are not populated much. The relevant states atge rather important for a small peptide. The effects of en-

_ o tropy on the folding of real proteins in realistic solvent have
TABLE IV. Free energy, internal energy, entropy multiplied by yet to be studied in detalil.
temperature atT=250 K (all in kcal/mo) at the two local- We have also performed the analysis of this paper for
minimum state#\; andB, and the transition stat@ in Fig. 11. The et-enkephalin with variable» angles and, in particular
values at th(_a coordinates of reference configuratiqns 1 and 2, whic] imulated with combined weights at a nun'1ber of tempéra-
z:st’agecsepseZtl’lgei:‘?/’ar:;zgs?n;c.) 4 andB,, are also listed. The rms tures. The results found are quite similar to those reportg_d in
this paper. In future work we intend to analyze the transition
Coordinate (,.1,) F U “Ts _between reference configurgtion for larger systems of actual
interest such ag-lactoglobulin.

A, (1.23, 4.83 0 -5.4 5.4

B, (4.17,2.43 1.0 —35 4.5 ACKNOWLEDGMENTS

C (3.09, 4.05 2.2 -0.8 3.0

A, (0.03, 4.95 15 -105 26 We are grateful for the financial support from the Joint
B, (4.95, 0.03 20 -81 28 Studies Program of the Institute for Molecular Science

(IMS). One of the author$B.B.) would like to thank the

036126-10



MULTIOVERLAP SIMULATIONS FOR TRANSITIONS . .. PHYSICAL REVIEW E 68, 036126 (2003

IMS faculty and staff for their kind hospitality during his tion of Science for Young Scientistfor H.N.), and from the
stay. In part, this work was supported by grants from the U.SResearch for the Future Program of the Japan Society for the
Department of Energy under Contract No. DE-FGO02-Promotion of SciencéGrant No. JSPS-RFTF98P01101or
97ER40608(for B.A.B.), the Japan Society for the Promo- Y.O.).

[1] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. [17] Z. Li and H.A. Scheraga, Proc. Natl. Acad. Sci. U.S8¥4,

Teller, and E. Teller, J. Chem. Phy&l, 1087(1953. 6611(1987.
[2] U.H. Hansmann and Y. Okamoto, Annual Reviews of Com- [18] B. von Freyberg and W.J. Braun, J. Comput. Ché®).1065

putational Physics Vledited by D. StauffefWorld Scientific, (1991.

Singapore, 1999 p. 129. [19] Y. Okamoto, T. Kikuchi, and H. Kawai, Chem. Lett992
[3] A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymei8, 96 1275(1992.

(2009). [20] U.H. Hansmann and Y. Okamoto, J. Comput. Ché#).1333
[4] B.A. Berg, Comput. Phys. Commuf04, 52 (2002. (1993.

[5] G.M. Torrie and J.P. Valleau, J. Comput. Phg8, 187 (1977). [21] H. Meirovitch, E. Meirovitch, A.G. Michel, and M. \uez, J.
[6] B.A. Berg and T. Neuhaus, Phys. Lett. 267, 249 (1991). Phys. Chem3s, 6241(1994.
[7] B.A. Berg and T. Celik, Phys. Rev. LeB9, 2292(1992. [22] A. Mitsutake, U.H. Hansmann, and Y. Okamoto, J. Mol.

Graphics Modell.16, 226 (1998.
[8] B.A. Berg, U.H. Hansmann, and T. Neuhaus, Phys. Re478 [23] R.A. Sayle and E.J. Milner-White, Trends Biochem. 36,

497 (1993. 374(1995.
[9] B.A. Bfarg, J. Stat. Phys2, 323(1996. [24] U.H. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl.
[10] Y. Sugita and Y. Okamoto, Chem. Phys. L&29 261 (2000. Acad. Sci. U.S.A94, 10 652(1997).
[11] F. Wang and D.P. Landau, Phys. Rev. L&8, 2050(2002. [25] B. Hesselbo and R. Stinchcombe, Phys. Rev. L. 2151
[12] B.A. Berg, A. Billoire, and W. Janke, Phys. Rev.@, 12143 (1995.
(2000. [26] B.A. Berg (unpublishedl
[13] K. Kuwajima, H. Yamaya, S. Miwa, S. Sugai, and T. Naga- [27] E.J. Gumbel, Statistics of ExtremegColumbia University
mura, FEBS Lett221, 115(1987. Press, New York, 1958
[14] D. Hamada, S. Segawa, and S. Goto, Nat. Struct. Bid68  [28] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,
(1996. Numerical Recipes in Fortrar2nd ed.(Cambridge University
[15] M.J. Sippl, G. Nenethy, and H.A. Scheraga, J. Phys. Chem. Press, Cambridge, 1992
88, 6231(1984), and references given therein. [29] U.H. Hansmann, Y. Okamoto, and J.N. Onuchic, Proteins:
[16] F. Eisenmenger, U.H. Hansmann, S. Hayryan, and C.-K. Hu,  Struct., Funct., Gene84, 472(1999.
Comput. Phys. Commuri38 192 (200J. [30] B.A. Berg, Phys. Rev. Let90, 180601(2003.

036126-11



