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Multioverlap simulations for transitions between reference configurations
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We introduce a procedure to construct weight factors, which flatten the probability density of the overlap
with respect to some predefined reference configuration. This allows one to overcome free-energy barriers in
the overlap variable. Subsequently, we generalize the approach to deal with the overlaps with respect to two
reference configurations so that transitions between them are induced. We illustrate our approach by simula-
tions of the brain peptide Met-enkephalin with the ECEPP/2~Empirical Conformational Energy Program for
Peptides! energy function using the global-energy-minimum and the second lowest-energy states as reference
configurations. The free energy is obtained as functions of the dihedral and the root-mean-square distances
from these two configurations. The latter allows one to identify the transition state and to estimate its associ-
ated free-energy barrier.
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I. INTRODUCTION

Markov chain Monte Carlo~MC! simulations, for in-
stance, by means of the Metropolis method@1#, are well
suited to simulate generalized ensembles. Generalized
sembles do not occur in nature, but are of relevance for c
puter simulations~see Refs.@2–4# for recent reviews!. They
may be designed to overcome free-energy barriers, which
encountered in Metropolis simulations of the Gibb
Boltzmann canonical ensemble. Generalized ensemble
still allow for rigorous estimates of the canonical expectat
values, because the ratios between their weight factors
the canonical Gibbs-Boltzmann weights are exactly know

Umbrella sampling @5# was one of the earlies
generalized-ensemble algorithms. In the multicanonical
proach@6,7# one weights with a microcanonical temperatu
which corresponds, in a selected energy range, to a wor
estimate of the inverse density of states. Expectation va
of the canonical ensembles can be constructed for a w
temperature range, hence the name ‘‘multicanonical.’’ He
‘‘working estimate’’ means that running the updating proc
dure with the~fixed! multicanonical weight factors cover
the desired energy range. The Markov process exhibits
dom walk behavior and moves in cycles from the maxim
~or above! to the minimum~or below! of the chosen energy
range, and back. A working estimate of the multicanoni
weights allows for calculations of the spectral density and
related thermodynamical observables with any desired a
racy by simply increasing the MC statistics. Thus, we hav
two-step approach: The first step is to obtain the work
estimate of the weights and the second step is to perfor
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long production run with these weights. There is no need
that estimate to converge towards the exact inverse spe
density. Once the working estimate of the weights exists, M
simulations with frozen weights converge and allow one
calculate thermodynamical observables with, in principle,
bitrary precision. Various methods, ranging from finite-si
scaling estimates@8# in case of suitable systems to gene
purpose recursions@9–11#, are at our disposal to obtain
working estimate of the weights.

In the present paper we deal with a variant of the mu
canonical approach: Instead of flattening the energy distr
tion, we construct weights to flatten the probability dens
of the overlap with a given reference configuration. This
lows one to overcome energy barriers in the overlap varia
and to get accurate estimates of thermodynamic observa
at overlap values which are rare in the canonical ensembl
similar concept was previously used in spin glass simulati
@12#, but there is a crucial difference: In Ref.@12# the weight-
ing was done for the self-overlap of two replicas of the s
tem and a proper name would be multi-self-overlap simu
tions, while in the present paper we are dealing with
overlap to a predefined configuration.

We next generalize our approach to deal with two ref
ence configurations so that transitions between them bec
covered and our method then allows one to estimate the t
sition states and its associated free-energy barrier. We ha
mind situations where experimentalists determined the re
ence configurations and observed transitions between th
but an understanding of the free-energy landscape betw
the configurations is missing. An example would be the c
version from a configuration witha helix structures to a
native structure which is mostly in theb sheet, as it is the
case forb-lactoglobulin@13,14#.

The paper is organized as follows. In the following se
tion we describe the algorithmic details, using first one a
then two reference configurations. In particular, a two-s
updating procedure is defined, which is typically more e
cient than the conventional one-step updating. Moreo
©2003 The American Physical Society26-1
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based on the sums of uniformly distributed random numb
a method to obtain a working estimate of the multiover
weights is introduced. In Sec. III we illustrate the method
a simulation with the pentapeptide Met-enkephalin. O
simulations use the all-atom energy function ECEPP/2~em-
pirical conformational energy program for peptides@15#! and
rely on its implementation in the computer packageSMMP

~simple molecular mechanics for proteins@16#!. We use as
reference configurations the global energy minimum~GEM!
state, which has been determined by many authors@17–21#,
and the second lowest-energy state, as identified in R
@19,22#. While our overlap definition relies on a distanc
definition in the space of the dihedral angles, it turns out t
for the data analysis the use of the root-mean-square~rms!
distance is crucial. It is only in the latter variable that o
obtains a clear picture of the transition saddle point in
two-dimensional free-energy diagram. In the final sectio
summary of the present results and an outlook with resp
to future applications are given.

II. MULTIOVERLAP METROPOLIS ALGORITHM

In this section we explain the details of our multioverl
algorithm. The overlap of a configuration versus a refere
configuration is defined in the following section. In Sec. II
we discuss details of the updating. To achieve step one o
method, i.e., the construction of a working estimate of
multioverlap weights, one could employ a similar recursi
as the one used in Ref.@12# or explore the approach of Re
@11#. Instead of doing so, we decided to test a new meth
At infinite temperature,b50, the overlap distributions ca
be calculated analytically~see Sec. II D!. We use this as
starting point and estimate the overlap weights at the des
temperature by increasingb in sufficiently small steps so
that the entire overlap range remains covered. In the fi
section we define the overlap with respect to two disti
reference configurations to cover the transition region
tween them.

A. Definition of the overlap

There is a considerable amount of freedom in defining
overlap of two configurations. For instance, one may rely
the rms distance between configurations, and in Sec. I
we analyze some of our results with this variable. Howev
the computation of the rms distance is slow and for M
calculations it is important to rely on a computationally fa
definition. Therefore, we define the overlap in the space
dihedral angles by, as it was already used in Ref.@24#,

q5~n2d!/n, ~1!

wheren is the number of dihedral angles andd is the dis-
tance between configurations defined by

d5uuv2v1uu5
1

p (
i 51

n

da~v i ,v i
1!. ~2!
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Here, v i is our generic notation for the dihedral anglei,
2p,v i<p, andv1 is the vector of dihedral angles of th
reference configuration. The distanceda(v i ,v i8) between two
angles is defined by

da~v i ,v i8!5min~ uv i2v i8u,2p2uv i2v i8u!. ~3!

The symboluu.uu defines a norm in a vector space. In partic
lar, the triangle inequality holds:

uuv12v2uu<uuv12vuu1uuv2v2uu. ~4!

For a single angle we have

0<uv i2v i
1u<p⇒0<d<n. ~5!

At b50 ~i.e., infinite temperature!

di5
1

p
da~v i ,v i

1! ~6!

is a uniformly distributed random variable in the range
<di<1 and the distanced in Eq. ~2! becomes the sum ofn
such uniformly distributed random variables, which allow
for an exact calculation of its distribution.

B. Multioverlap weights

We choose a reference configuration ofn dihedral angles
v i

1 ( i 51, . . . ,n), to define the dihedral distance~2!. We
want to simulate the system with weight factors that lead
a random walk~RW! process in the dihedral distanced,

d,dmin→d.dmax and back. ~7!

Here,dmin is chosen sufficiently small so that one can cla
that the reference configuration has been reached, e.g., a
percent ofn/2, which is the averaged at T5`. The value of
dmax has to be sufficiently large to introduce a considera
amount of disorder, e.g.,dmax5n/2. In the following we call
one event of form~7! a random walk cycle~RWC!.

One possibility is to choose weight factors which give
flat probability density in the dihedral distance range 0<d
<n/2, falling off for d.n/2 by keeping thed dependence of
the weight constant ford>n/2. This is quite similar to mul-
timagnetical simulations@8#, for which the external magnetic
field takes the place of the reference configuration. The a
ogy becomes obvious, when the external field is defined
a ghost spin, which couples to all other spins. For instan
the spins sW of the Heisenberg ferromagnet are thre
dimensional vectors of magnitude one. Their interaction w
an external magnetic fieldHW can be written as

HW •(
i

sW i5H(
i

sWH•sW i5N H q, ~8!

wheresWH is the unit vector in the direction of the magnet
field, sW i is the Heisenberg spin at sitei, N is the number of
spins, andq is the overlap of the spin configuration with th
reference configurationsWH :
6-2
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q5
1

N (
i

sWH•sW i . ~9!

Using the multioverlap language@12#, the multimagnetical
@8# weight factors may then be rewritten as

exp@2bE1S~q!#5wc~E! wq~q!, ~10!

where

wc~E!5exp~2b E!, ~11!

and E52(^ i j &sW i•sW j is energy function of the Heisenber
ferromagnet~the sum is over nearest neighbor spins!. Here,
S(q) has the meaning of a microcanonical entropy of
overlap parameter, which has to be determined so that
probability density becomes flat inq. Weights for other than
the flat distribution have also been discussed in the literat
e.g., Ref.@25#, on which we shall comment in connectio
with Fig. 7 below.

C. The updating procedure

In essence, there are two ways to implement the upda
~1! Combine the multioverlap and the canonical weig

to one probability, which is accepted or rejected in one r
dom step.

~2! Accept or reject the multioverlap and the canonic
probabilities sequentially in two random steps.

1. One-step updating

As defined in Eqs.~10! and ~11!, the weight factor is a
product ofwc(E) andwq(d), wherewc(E) is the usual ca-
nonical Gibbs-Boltzmann factor andwq(d) is the multiover-
lap weight factor, where we now use the distanced from the
reference configuration~instead of the overlapq) as argu-
ment. As is clear from Eq.~1!, the use of eitherq or d as
argument is equivalent, while in the presentation of res
the use of either variable can have intuitive advantages
the one-step updating we combine the weights to

w~E,d!5wc~E! wq~d!, ~12!

and accept or reject newly proposed configurations in
standard Metropolis way. Notably, the calculation ofwq(d)
~a simple table lookup! is very fast compared with the ca
culation ofwc(E). Therefore, the following two-step proce
dure is of interest.

2. Two-step updating

Suppose that the present configuration is (d,E) and a new
configuration (d8,E8) is proposed:

~d,E!→~d8,E8!. ~13!

We can sequentially first accept or reject with thewq(d)
probabilities and then conditionally, when thed part is ac-
cepted, with thewc(E) probabilities.
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Proof. We show detailed balance for two subsequent
dates of the same dihedral angle with the two-step proced
There are four cases with probabilities of acceptance:

Pi , i 51,2,3,4. ~14!

They are listed in the following:

Case 1: wq~d8!>wq~d! and wc~E8!>wc~E!,

P151, ~15!

Case 2: wq~d8!>wq~d! and wc~E8!,wc~E!,

P25wc~E8!/wc~E!, ~16!

Case 3: wq~d8!,wq~d! and wc~E8!>wc~E!,

P35wq~d8!/wq~d!, ~17!

Case 4: wq~d8!,wq~d! and wc~E8!,wc~E!,

P45wq~d8!wc~E8!/@wq~d! wc~E!#. ~18!

For the inverse move

~d8,E8!→~d,E!, ~19!

with probabilities of acceptance

Pi8 , i 51,2,3,4, ~20!

the cases are the following:

Case 1: wq~d!<wq~d8! and wc~E!<wc~E8!,

P185wq~d! wc~E!/@wq~d8! wc~E8!#, ~21!

Case 2: wq~d!<wq~d8! and wc~E!.wc~E8!,

P285wq~d!/wq~d8!, ~22!

Case 3: wq~d!.wq~d8! and wc~E!<wc~E8!,

P385wc~E!/wc~E8!, ~23!

Case 4: wq~d!.wq~d8! and wc~E!.wc~E8!,

P4851. ~24!

For the ratios we find

Pi

Pi8
5

wq~d8! wc~E8!

wq~d! wc~E!
, ~25!

independently ofi 51,2,3,4. Therefore, we have construct
a valid Metropolis updating procedure.

D. Sums of a uniformly distributed random variable

To calculate the overlap weights at infinite temperatu
we consider the sum
6-3
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ur5x1
r 1•••1xn

r ~26!

of the random variablesxj
r( j 51, . . . ,n), each uniformly dis-

tributed in the interval@0,1) and derive a recursion formul
for the probability densityf n(u) of this distribution. Care is
taken to cast the recursion in a form which allows for
numerically stable implementation@26# over a reasonably
large range ofn.

Let us recall the probability density of the uniform distr
bution:

f 1~x!5H 1 for 0<x,1,

0 otherwise.
~27!

To derive the recursion formula for the probability density
the random variable~26!, it is convenient to cast it in the
form

f n~u!5 (
k51

n

f n,k~xk! with xk5u2k11, ~28!

where

f n,k~x!5H (
i 50

n21

an,k
i xi for 0<x,1,

0 otherwise.

~29!

The master formula for the recursion is obtained from
convolution

f n~u!5E
0

u

f 1~u2v ! f n21~v !dv. ~30!

The distributions of sums of random variables are often
egantly obtained from the inverse transformation of th
product in Fourier space~e.g., Ref.@26#!. However, for the
uniform distribution this approach leads to a rather com
cated inverse transformation. Let nowu5x1k21 with 0
<x,1, and Eqs.~27!–~29! imply

f n,k~x!5E
k221x

k211x

f n21~v !dv

5E
x

1

f n21,k21~y!dy1E
0

x

f n21,k~y!dy. ~31!

Using Eq.~29! and performing the integrations, we obtain

f n,k~x!5 (
i 50

n22

an21,k21
i 1

i 11
2 (

i 50

n22

an21,k21
i xi 11

i 11

1 (
i 50

n22

an21,k
i xi 11

i 11
. ~32!

Expanding in powers ofx and comparing Eq.~29! with Eq.
~32! allows one to calculate the coefficientsan,k

i recursively
in a numerically robust way:
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an,k
0 5 (

j 50

n21 an21,k21
j

j 11
, an,k

i 5 (
j 50

n21 an21,k
j 2an21,k21

j

j 11
.

~33!

Once the coefficientsan,k
i are available, one can easily eval

ate the probability densitiesf n(u) and the corresponding cu
mulative distribution functions.

The probability density~28! takes its maximum value fo
u5n/2. Due to the central limit theorem the fall-off behavio
is Gaussian as long asu stays sufficiently close ton/2. In the
tails, for u→0 or u→n, the fall off is much faster than
Gaussian, namely, an exponential of an exponential as
lows from extreme value statistics@27#.

E. Combination of two weights

In the following the weights with superscriptj, wq
j (dj ),

correspond to two distinct reference configurationsv j , ( j
51,2), anddj is the distance from the configuration at ha
to the configurationv j . Let us assume that multioverla
simulations with respect to the two reference configuratio
have been carried out and that the weights,wq

1(d1) and
wq

2(d2), have been determined so that they sample their
tance distributions approximately uniformly.

We want to construct combined weightswq
12(d1 ,d2)

which lead to a RW process between the configurationsv1

andv2. Our choice is

wq
12~d1 ,d2!5H wq

1~d1! for d1,d2,

cj wq
2~d2! for d1>d2 .

~34!

The constantcj , with j either 1 or 2, is introduced to allow
for smooth transitions fromd1,d2 to d18>d28 and vice versa.
We determinecj from the analysis of either run 1~or run 2!,
which are the~one reference configuration! simulations lead-
ing to the weightswq

1(d1) @or wq
2(d2)]. The constantc1 is

found from run 1 by scanning the time series for configu
tion for which d1>d2 holds and which have a one-upda
transition (d1 ,d2)→(d18 ,d28) with d18,d28 . From these con-
figurationsk we determine the constantc1 so that

(
k

wq
1@d1~k!#5c1(

k
wq

2@d2~k!# ~35!

holds. Similarly, run 2 may be used to getc2. It turns out that
the normalized weights almost agree in the transition reg
and, therefore, the patching~34! works. The dependence o
the constant on the run used for its determination is sm
and it appears not worthwhile to explore more sophistica
methods.

It is straightforward to implement the Metropolis updatin
with respect to weights~34!. For the transition

~d1 ,d2!→~d18 ,d28!, ~36!

one has to distinguish four more cases as follows:

Case 1: d1,d2 and d18,d28 , ~37!
6-4
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Case 2: d1,d2 and d18>d28 , ~38!

Case 3: d1>d2 and d18,d28 , ~39!

Case 4: d1>d2 and d18>d28 . ~40!

Alternatively to the approach outlined, one may comb
d1 andd2 into a new variableud for which the weights are
then calculated as in the one-dimensional case. A suit
choice along this line is

ud5
2

p
arctanS d1

d2
D . ~41!

III. MET-ENKEPHALIN SIMULATIONS

In the following we introduce two reference configur
tions. Subsequently, we discuss first the results for sim
tions with one reference configuration and then those invo
ing both reference configurations.

A. The reference configurations

Met-enkephalin has the amino-acid sequence Tyr-G
Gly-Phe-Met. We fix the peptide-bond dihedral anglesv to
180°, which implies that the total number of variable dih
dral angles isn519. We neglect the solvent effects as
previous works. The low-energy configurations of Me
enkephalin in the gas phase have been classified into se
groups of similar structures@19,22#. Two reference configu-
rations, called configuration 1 and configuration 2, are u
in the following and depicted in Figs. 1 and 2, respective
Configuration 1 has ab-turn structure with hydrogen bond

FIG. 1. Reference configuration 1. Only backbone structure
shown. TheN-terminus is on the left-hand side and the C-termin
on the right-hand side. The dotted lines stand for hydrogen bo
The figure was created with RasMol@23#.
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between Gly-2 and Met-5 and configuration 2 ab-turn with
a hydrogen bond between Tyr-1 and Phe-4@22#.

For our present work the two reference configuratio
were obtained by minimizing the GEM and the seco
lowest-energy state of previous literature with respect to
ECEPP/2 energy function. The minimization was perform
with theSMMP minimizer@16# and by quenching. Both meth
ods gave identical final energies. In Table I we list the va

is
s
s.

FIG. 2. Reference configuration 2. See the caption of Fig. 1
details.

TABLE I. Met-enkephalin reference configurations. The co
umns GEMmin andBmin correspond to configuration 1 and config
ration 2, respectively.

Residue Angle GEM@21# GEMmin B @19# Bmin

1 x1 2179.9 2179.8 2179 1179.4
1 x2 2111.3 2111.4 295 294.3
1 x6 1145.3 1145.3 1169 2179.9
1 f 286.4 286.3 1111 155.7
2 c 1153.7 1153.7 1157 1157.6
2 f 2161.6 2161.5 271 270.7
3 c 171.2 171.1 178 178.0
3 f 164.1 164.1 159 1156.5
4 c 293.5 293.5 237 235.7
4 x1 1179.8 1179.8 159 155.3
4 x2 180.0 180.0 187 186.8
4 f 281.7 281.7 2154 2155.7
5 c 229.2 229.2 1151 1151.6
5 x1 265.1 265.1 268 269.4
5 x2 2179.2 2179.2 1177 2176.3
5 x3 2179.3 2179.3 2179 2179.7
5 x4 260.0 259.9 160 159.9
5 f 280.8 280.7 2140 2140.0
5 c t 1143.9 1143.5 229 230.6
6-5



ft
M

ile

he

s
II

r
a

te
it
ls
e

of
he
ur
a
ac

te
e

u

e
wo
ce
ar
o
ro

our
ity

es
ked
the
ble
he
om
a-
bly
in

u-
p

n-
to

00,

s
the

p
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able dihedral angles of the configurations before and a
this minimization. The initial dihedral angles for the GE
are taken from Table 1 of Ref.@21# and the initial dihedral
angles for the second lowest-energy stateB are from Table I
of Ref. @19#. In Table I we give the angles in degrees, wh
for the MC simulations radians were used as in Eqs.~1! and
~2! for the overlap. Our labeling of the residues follows t
SMMP convention and deviates from those of Refs.@21,19#.

The distance between the two minimized configuration
d56.62 (q50.652) and their energies are given in Table

B. Simulations with one reference configuration

Each of our multioverlap simulations at fixed temperatu
relies on a statistics of 16 777 216 sweeps for which data
recorded in a time series of 524 288 events, i.e., with a s
size of 32 sweeps. We started most of our simulations w
the GEM configuration, but some random starts were a
performed and no noticeable differences were encounter

Starting with the analytical result~28!, valid atb50, the
weights are calculated by increasingb ~i.e., decreasing the
temperature! between simulations slowly so that the RW
each simulation still covers the desired overlap range w
using the weight estimates from the previous temperat
Discretization errors due to histograming can be severe
instead of weights which are piecewise constant within e
one histogram interval, we used the interpolation of Ref.@6#:

ln w~d!5~12a!ln w~di !1a ln w~di 11!

for di<d,di 11 , ~42!

where

a5
d2di

di 112di
. ~43!

Figure 3 depicts the thus obtained weight function estima
from simulations with reference configuration 1. After fiv
simulations we arrive at the physical temperatureT
5300 K. The same iteration works with reference config
ration 2.

For the valuesdmin50.025n and dmax50.495n, where
n519 is the number of angels in Eq.~2!, we list in Table III
the number of RWCs~7! achieved at each temperature. W
also list the CPU time ratios for the one-step versus the t
step updating procedures, which we discussed in the pre
ing section. Especially at high temperatures, which
needed in our approach, the two-step updating turns out t
more efficient than the one-step updating and all of our p
duction runs were done with it.

TABLE II. Energies~in kcal/mol! of the Met-enkephalin refer-
ence configurations 1 and 2.

Total Coulomb Lennard-Jones H Bond Torsion

1 210.72 121.41 227.10 26.21 11.19
2 28.42 122.59 226.38 24.85 10.23
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We next rely on the peaked distribution function@26# to
visualize some of the data kept in the time series of
simulations. The peaked distribution function of a probabil
density f (x) is defined by

Fpeaked~x!5H F~x! for F~x!<0.5,

12F~x! for F~x!.0.5,
~44!

where

F~x!5E
2`

x

dx8 f ~x8! ~45!

is the usual cumulative distribution function~see, for in-
stance, Ref.@28#!.

To visualize how the canonical energy distribution mov
when we lower the temperature, we plot in Fig. 4 the pea
energy distributions as obtained by reweighting some of
multioverlap simulations of Fig. 3 to the canonical ensem
of their simulation temperature. Due to the reweighting t
distributions look precisely as one expects for energies fr
canonical MC simulations. In contrast to conventional c
nonical simulations, the raw data feature a considera
larger number of events at low energies. This is illustrated
Fig. 5, where we plot the 300 K and 400 K peaked distrib
tion functions of Fig. 4 together with their raw multioverla
peaked distributions

FIG. 3. Weight estimates from simulations with reference co
figuration 1. From up to down the weight functions correspond
the following temperatures: 230, 300, 400, 700, 2 000, 10 0
100 000 K, and infinity (b50).

TABLE III. Number of random walk cycles in the simulation
with our two reference configurations. The last column lists
CPU time ratios for one-step versus two-step updating.

T ~K! Configuration 1 Configuration 2 One-step/two-ste

100 000 9458 9514 3.0
10 000 3122 3149 1.8
2000 2893 2741 1.6
700 2169 2227 1.5
400 1342 1693 1.3
300 462 610 1.2
230 46 41 1.2
6-6
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MULTIOVERLAP SIMULATIONS FOR TRANSITIONS . . . PHYSICAL REVIEW E 68, 036126 ~2003!
In Fig. 6 we give an example of the probability density
the distance. For the 400 K simulation with reference c
figuration 1 we plot the probability density ofd1 as obtained
from the multioverlap simulation together with its canon
cally reweighted probability density. The simulation itself
run with the multioverlap weights from the 700 K simul
tions and the multioverlap histogram shown is reweighted
the multioverlap 400 K weights. As expected, we have a
distribution between 0 andn/259.5 ~the latter is the averag
value of the distance atT5`). Moreover, there is a good
coverage of configurations close to the GEM, which a
highly suppressed in the 400 K canonical ensemble.
maximum ratio of the multioverlap density divided by th
canonical density is 631016 in this plot.

For the same simulation Fig. 7 depicts separately
peaked distribution function of the forward and backwa
RWCs ~7!. A considerable asymmetry is noticeable and
turns out that the weights of the 1/k ensemble@25# lead to
more RWCs than the flat distribution of Fig. 6. In connecti
with our simulations this is a lucky circumstance, becau
the 1/k distribution of weights is in essence the distributi
at a somewhat higher temperature than that of the simula
This increases the flexibility when estimating good weig
at a lower temperature from the already existing simulat
results at a higher temperature.

FIG. 5. Peaked multioverlap~left shifted! and canonical energy
distributions atT5300 K andT5400 K.

FIG. 4. Canonical, peaked energy distributions obtained by
weighting multioverlap simulations. From left to right the tempe
tures used are 230, 300, 400, and 700 K.
03612
-

o
t

e
e

e

t

e

n.
s
n

For multioverlap simulations the reweighting towards lo
temperatures can work much better than for canonical si
lations. This is due to the fact that the low-energy config
rations close to low-energy reference configuration are
ready in the ensemble. This is illustrated in Fig. 8, where
reweight the data from a multioverlap simulation with refe
ence configuration 1 atT5300 K and compare with a con
ventional multicanonical simulation based on theSMMP

package@16#. The specific heatCV and the derivative of the
overlap with respect to the temperature are shown. From
K to 400 K the deviations of the results are of the order
the statistical errors, which are not shown for clarity of t
figure. Below 200 K deviations of the reweighted overl
simulation from the correct behavior become visible, first
dq1 /dT then in CV . Such deviations are expected as t
low-energy attractor does not lead to a uniform coverage
all low-energy states. The successful reweighting from h
simulation temperatures to lower temperatures is an
provement, because the Metropolis dynamics at high te
peratures is faster. But the reweighting of a multioverl
simulation to a lower temperature will fail at some poin
because the reference configuration introduces a bias tow
particular low-energy configurations.

The temperature at whichCV and 2dq1 /dT take peak
values correspond to the coil-globule transition temperat

FIG. 6. Probability density of the distance from a multioverl
simulation atT5400 K ~flat! and its canonically reweighted prob
ability density~peaked!.

-
-

FIG. 7. Peaked distribution functions for the forward (d
→dmax) and backward (d→dmin) parts of the random walk cycle
from a multioverlap simulation atT5400 K.
6-7
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Tu and the folding temperatureTf @24#. From Fig. 8 we read
off the following approximate values:

Tu5280 K and Tf5245 K. ~46!

C. Simulations with two reference configurations

At 300 K we combine the weights from the runs wi
reference configurations 1 and 2 to one weight function
cording to our Eq.~34!. We record now three differen
RWCs.

~1! With respect to reference configuration 1 fromdmin to
dmax and back, found 315 times.

~2! With respect to reference configuration 2 fromdmin to
dmax and back, found 545 times.

~3! From dmin of reference configuration 1 todmin of ref-
erence configuration 2 and back, found 196 times.

In Fig. 9 we show the probability densities of this sim
lation with respect to the distances from our reference c
figurations. They are no longer flat, but a satisfactory cov
age in the variablesd1 and d2 is still achieved. Note tha
both probability densities have peaks atd56.62, which is
the distance between configurations 1 and 2. This imp

FIG. 8. Left-hand side ordinate: specific heat reweighted from
multicanonical~MUCA! and from a 300 K multioverlap~MUOV!
simulation with reference configuration 1. Right-hand side ordina
dq1 /dT reweighted from the same simulations, whereq1 is the
overlap with reference configuration 1.

FIG. 9. Combined weight simulation atT5300 K: probability
densities with respect to the distancesd1 andd2.
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that both reference configurations have been visited w
high probability.

D. Physics results

We would like to analyze the transitions between our t
reference configurations in some detail. For this purpose
use the rms distance, which is defined by

drms5minFA1

N (
i 51

N

~xW i2xW i
j !2G , ~47!

whereN is the number of atoms,$xW i
j% are the coordinates o

the reference configurationj, and the minimization is over
the translations and rotations of the coordinates of the c
figuration$xW i%.

Distance~2! and the rms distance~47! are quite distinct.
The reason is that a change of a single dihedral angle in
central parts of the molecule can cause a large deviatio
the rms distance. Although the two configurations are th
close-by from the point of view of the MC algorithm, phys
cally they are rather far apart, as the similarity of the thre
dimensional structures is governed by the rms distan
Therefore, the rms distance distribution deviates consid
ably from the dihedral distance distribution. We illustrate th
by plotting in Fig. 10 the rms probability density of the 40
K simulation for which the dihedral distance probability de
sity is shown in Fig. 6. Note that the rms distribution has
few peaks, i.e., stays kind of rough, despite the flat dihed
distance distribution.

We now analyze the free-energy landscape@29# from the
results of our simulation with combined weights at 300 K
some detail. We study the landscape with respect to so
reaction coordinates~and hence it should be called the p
tential of mean force!. In order to study the transition state
between reference configurations 1 and 2, we first plotted
free-energy landscape with respect to the distancesd1 and
d2. However, we did not observe any transition saddle po
A satisfactory analysis of the saddle point becomes poss
when the rms distance~instead of the dihedral distance! is

a

:

FIG. 10. Probability density of the rms distance from the m
tioverlap simulation atT5400 K of Fig. 6, and its canonically re
weighted probability density. The abscissa is the rms distance
in Eq. ~47! from the reference configuration 1.
6-8
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MULTIOVERLAP SIMULATIONS FOR TRANSITIONS . . . PHYSICAL REVIEW E 68, 036126 ~2003!
used. Figure 11 shows contour lines of the free energy
weighted toT5250 K, which is close to the folding tem
perature~46!. Here, the free energyF(r 1 ,r 2) is defined by

F~r 1 ,r 2!52kBT ln P~r 1 ,r 2!, ~48!

where r 1 and r 2 are the rms distances defined in Eq.~47!
from the reference configuration 1 and the reference confi
ration 2, respectively, andP(r 1 ,r 2) is the~reweighted! prob-
ability at T5250 K to find the peptide with valuesr 1 ,r 2.
The probability was calculated from the two-dimension
histogram of bin size 0.0630.06 Å2. The contour lines were
plotted every 2kBT (50.99 kcal/mol forT5250 K).

Note that the reference configurations 1 and 2, which
respectively, located at (r 1 ,r 2)5(0,4.95) and (4.95,0), are
not local minima in free energy at the finite temperatureT
5250 K) because of the entropy contributions. The cor
sponding local-minimum states atA1 and B1 still have the
characteristics of the reference configurations in that t
have backbone hydrogen bonds between Gly-2 and M
and between Tyr-1 and Phe-4, respectively. We remark
we observe in Fig. 11 another well-defined local-minimu
state around (r 1 ,r 2)5(4.7,3.5). This state can also be co
sidered to correspond to configuration 2 because we a
observe the backbone hydrogen bond between Tyr-1
Phe-4. The side-chain structures are, however, more dev
from configuration 2 thanB1, resulting in a larger value o
r 2.

The transition stateC in Fig. 11 should have intermediat
structure between configurations 1 and 2. In Fig. 12 we sh
a typical backbone structure of this transition state. We
the backbone hydrogen bond between Gly-2 and Phe-4.
is precisely the expected intermediate structure between
figurations 1 and 2, because going from configuration 1
configuration 2 we can follow the backbone hydrogen-bo
rearrangements: The hydrogen bond between Gly-2
Met-5 of configuration 1 is broken, Gly-2 forms a hydrog

FIG. 11. Free-energy landscape atT5250 K with respect to rms
distances (Å) from the two reference configurations,F(r 1 ,r 2).
Contour lines are drawn every 2kBT. The labelsA1 andB1 indicate
the positions for the local-minimum states atT5250 K that origi-
nate from the reference configuration 1 and the reference con
ration 2, respectively. The labelC stands for the saddle point tha
corresponds to the transition state.
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bond with Phe-4~the transition state!, this new hydrogen
bond is broken, and finally Phe-4 forms a hydrogen bo
with Tyr-1 ~configuration 2!.

It is interesting to see in Fig. 11 that there is only o
saddle point in the free-energy landscape that connects
figurations 1 and 2. Hence, the transition between configu
tions 1 and 2 always passes through the stateC.

In Ref. @22# the low-energy conformations of Met
enkephalin were studied in detail and they were classi
into several groups of similar structures based on the pat
of backbone hydrogen bonds. It was found there that be
T5300 K there are two dominant groups, which correspo
to configurations 1 and 2 in the present paper. Althou
much less conspicuous, the third most populated structu
indeed the group that is identified to be the transition stat
the present work.

In Figs. 13 and 14 we show the internal energy landsc
and the entropy landscape atT5250 K, respectively. Here
the internal energyU is defined by the~reweighted! average
ECEPP/2 potential energy:

U~r 1 ,r 2!5^E~r 1 ,r 2!&. ~49!

Here, the average was again calculated from the tw
dimensional histogram of bin size 0.0630.06 Å2. The en-
tropy S was then calculated by

u-

FIG. 12. The transition state between reference configuratio
and 2. See the caption of Fig. 1 for details.

FIG. 13. Internal energy landscape atT5250 K with respect to
rms distances (Å) from the two reference configurations,U(r 1 ,r 2).
Contour lines are drawn every 2kBT.
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S~r 1 ,r 2!5
1

T
@U~r 1 ,r 2!2F~r 1 ,r 2!#. ~50!

The landscape in Fig. 14 is actually2TS(r 1 ,r 2).
Both internal energy and entropy landscapes are m

rugged than free-energy landscape~we observe much more
number of contour lines in Figs. 13 and 14 than in Fig. 1!.
The internal energy has clear local minima at the poi
(r 1 ,r 2)5(0,4.95) and (4.95,0), which, respectively, corr
spond to configurations 1 and 2, while the entropy landsc
has local maxima at these points. These two terms ten
cancel each other, and the free-energy landscape is smoo
out.

In Table IV we list the numerical values of the free e
ergy, internal energy, and entropy multiplied by temperat
at the two local-minimum states (A1 andB1 in Fig. 11! and
the transition state (C in Fig. 11!. The internal energy is jus
the average of the ECEPP/2 potential energy~without any
shift of zero point!. The free energy was normalized so th
the value atA1 is zero. The values at the coordinates
reference configurations 1 and 2, which are, respectively
ferred to asA0 andB0 in the table, are also listed.

Among the five points,A0 and B0 are unfavored in free
energy mainly due to the large entropy effects, although t
are energetically most favored. This means that at this t
perature the exact conformations of the reference config
tions 1 and 2 are not populated much. The relevant states

FIG. 14. Entropy landscape atT5250 K with respect to rms
distances (Å) from the two reference configuration
2TS(r 1 ,r 2). Contour lines are drawn every 2kBT.

TABLE IV. Free energy, internal energy, entropy multiplied b
temperature atT5250 K ~all in kcal/mol! at the two local-
minimum statesA1 andB1 and the transition stateC in Fig. 11. The
values at the coordinates of reference configurations 1 and 2, w
are, respectively, referred to asA0 andB0, are also listed. The rms
distances are in angstroms.

Coordinate (r 1 ,r 2) F U 2TS

A1 ~1.23, 4.83! 0 25.4 5.4
B1 ~4.17, 2.43! 1.0 23.5 4.5
C ~3.09, 4.05! 2.2 20.8 3.0
A0 ~0.03, 4.95! 15 210.5 26
B0 ~4.95, 0.03! 20 28.1 28
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ratherA1 , B1, andC. The stateA1 can be considered to b
‘‘deformed’’ configuration 1, andB1 deformed configuration
2 due to the entropy effects, whereasC is the transition state
betweenA1 andB1. Among these three points, the free e
ergyF and the internal energyU are the lowest atA1, while
the entropy contribution2TS is the lowest atC. The free
energy differenceDF, internal energy differenceDU, and
entropy contribution difference2TDS are 1.0 kcal/mol, 1.9
kcal/mol, and20.9 kcal/mol betweenB1 and A1, 2.2 kcal/
mol, 4.6 kcal/mol, and22.4 kcal/mol betweenC and A1,
and 1.2 kcal/mol, 2.7 kcal/mol, and21.5 kcal/mol between
C and B1. Hence, the internal energy contribution and t
entropy contribution to free-energy are opposite in sign a
the magnitude of the former is roughly twice as that of t
latter at this temperature.

IV. SUMMARY AND CONCLUSIONS

We have outlined an approach to perform MC simulatio
which yield the free-energy distribution between two refe
ence configurations. The multioverlap weights for this p
pose were obtained by a novel, iterative process. The m
point of this iterative process is not that it is supposed to
more efficient than the recursion that was used in the mu
self-overlap simulations of Ref.@12#, but that it is an entirely
independent approach, which starts from an analytically c
trolled limit. Recursions such as the one used in Ref.@12# are
not ‘‘foolproof.’’ For instance, while most of the spin glas
replica in Ref.@12# were well behaved, a few did not com
plete their recursion after more than an entire year of sin
processor CPU time. Similar situations could be encounte
in all-atom simulations of larger peptides, where the norm
multicanonical weight recursion as well as similar multiove
lap weight recursion could fail. The present method provid
then an alternative, approaching the physical region from
different limit.

Noticeable, our multioverlap approach is well-suited to
combined with a recently introduced, biased Metropolis sa
pling @30#. Namely, the required configurations at high
temperatures are as well necessary for our particular m
overlap recursion, so that no extra simulations are require
this respect.

On the physical side, we have found that entropy effe
are rather important for a small peptide. The effects of
tropy on the folding of real proteins in realistic solvent ha
yet to be studied in detail.

We have also performed the analysis of this paper
Met-enkephalin with variablev angles and, in particular
simulated with combined weights at a number of tempe
tures. The results found are quite similar to those reporte
this paper. In future work we intend to analyze the transit
between reference configuration for larger systems of ac
interest such asb-lactoglobulin.
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