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We have performed two-dimensional simulated tempering (ST) simulations of the two-dimensional Ising model
with different lattice sizes in order to investigate the two-dimensional ST’s applicability to dealing with phase
transitions and study the crossover of critical scaling behavior. The external field, as well as the temperature,
was treated as a dynamical variable updated during the simulations. Thus this simulation can be referred to
as simulated tempering and magnetizing (STM). We also performed simulated magnetizing (SM) simulations,
in which the external field was considered as a dynamical variable and temperature was not. As discussed in
previous studies, the ST method is not always compatible with first-order phase transitions. This is also true in the
magnetizing process. Flipping of the entire magnetization did not occur in the SM simulations under the critical
temperature Tc in large-lattice-size simulations; however, the phase changed through the high-temperature region
in the STM simulations. Thus the dimensional extension let us eliminate the difficulty of the first-order phase
transitions and study a wide area of the phase space. We discuss how frequently parameter-updating attempts
should be made for optimal convergence. The results favor frequent attempts. We finally study the crossover
behavior of the phase transitions with respect to the temperature and external field. The crossover behavior is
clearly observed in the simulations, in agreement with the theoretical implications.
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I. INTRODUCTION

In the computational statistical physics field, Monte Carlo
(MC) and molecular dynamics simulations have been com-
monly used. However, the quasiergodicity problem, where
simulations tend to get trapped in states of energy local
minima, has often posed great difficulty. In order to overcome
this difficulty, generalized-ensemble algorithms have been
developed and applied to many systems including spin systems
and biomolecular systems (for reviews, see, e.g., Refs. [1–3]).

Commonly used examples of generalized-ensemble al-
gorithms are the multicanonical algorithm (MUCA) [4,5],
simulated tempering (ST) method [6,7], and replica-exchange
method (REM) [8,9] (it is also referred to as parallel tem-
pering). Closely related to the MUCA are the Wang-Landau
method [10,11] and metadynamics [12]; closely related to the
REM is the method in Ref. [13].

In the ST method, temperature is regarded as a dynamical
variable, which is updated by the Metropolis criterion during
the simulation and consequently a random walk is realized
in the temperature space. This random walk in turn causes
a random walk of the energy, which enables the system in
question to overcome free-energy barriers. However, it is
well known that the ST method is not very compatible with
first-order phase transitions (for a review, see, e.g., Ref. [14]).
When there is a first-order phase transition, the random walk
of temperature across the phase-transition point hardly occurs.
We remark that there has been a recent attempt to deal with
this difficulty by an extension of ST [15].

Recently, the multidimensional generalizations of the
generalized-ensemble algorithms, including the MUCA, ST,
and REM, were discussed and general formalisms were
given [16–18]. In these methods, the energy of the system

is generalized by adding other energy term or terms with
some coupling constants. In the multidimensional ST method,
not only the temperature but also the coupling constants are
considered as dynamical variables.

In this work we study a special case of the above general
multidimensional ST methods. Namely, the additional term
is −hM , where h and M are the external field and the
magnetization, respectively. The external field h corresponds
to the coupling constant that is updated during MC simulations.
Therefore, not only temperature but also external field becomes
a dynamical variable and is expected to realize a random walk
during the simulations. Thus this simulation can be referred to
as simulated tempering and magnetizing (STM). In order to
test the effectiveness of the present method, we applied it to
the two-dimensional Ising model.

The Ising model has two kinds of phase transitions. One
occurs with the change of temperature when the external field
is zero. The other occurs with the change of the external field
when the temperature is under the critical temperature Tc.
The former is classified as a second-order phase transition. The
latter is categorized as a first-order phase transition unless the
temperature is exactly equal to Tc. When T = Tc the transitions
are classified as second-order phase transitions. This system
allows us to confirm the applicability of the two-dimensional
ST to the first-order phase transitions with the external field
changes.

We also investigate the crossover phenomena in the phase
transitions, in which critical exponents are changed. We study
the behavior of magnetization per spin m, which follows
m ∼ |T − Tc|β and m ∼ |h|1/δ near the critical point, where
β and δ are critical exponents [19]. Our simulation method,
with a combination of histogram reweighting techniques,
enables us to calculate physical values such as the energy
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and magnetization at various values of T and h from a single
production run.

This article is organized as follows. In Sec. II we present
the STM method. In Sec. III we present the results. Section IV
is devoted to conclusions.

II. MATERIALS AND METHODS

A. System

We study the two-dimensional Ising model in an external
field. The total energy is given by

H = E − hM, (1)

E = −
∑
〈i,j〉

σiσj , (2)

M =
N∑

i=1

σi, (3)

where i, N , σi , and h are the index of spin, the total number of
spins, the spin at the ith site, and the external field, respectively.
The spin σi takes on the values ±1. The sum in Eq. (2) goes over
the nearest-neighbor pairs. The spins are arranged on a square
L × L lattice. We impose periodic boundary conditions. Data
were obtained for lattice sizes from 2 × 2 to 160 × 160.

B. Simulation methods

Whereas the conventional ST method considers temper-
ature as a dynamical variable, the STM method considers
not only temperature but also external field as a dynamical
variable. Here, before explaining the STM method, we shortly
review the conventional ST method [6,7].

In the conventional ST method, temperature is a dynamical
variable that takes on one of the NT values (here temperature
is discretized into NT values). In other words, denoting by X

and x a sampling space and its microscopic state, respectively,
the Boltzmann factor

e−E(x)/T +a(T ) (4)

is regarded as a joint probability for the state (x,T ) (∈
X ⊗ {T1,T2, . . . ,TNT

}). Here a(T ) [or a(Ti)] is a parameter for
obtaining uniform distributions of temperature values. Here
and hereafter, we set Boltzmann’s constant to unity. Now
that the temperature is a dynamical variable, the simulated
system is allowed to realize a random walk in the temperature
space. This random walk in turn causes a random walk of
energy. Consequently, the simulated system has more chance
to overcome energy barriers.

Even though temperature changes during ST simulations,
any thermodynamic quantity at temperature Ti , 〈A〉Ti

, can be
reconstructed with the conditional expectation of a physical
quantity A given at Ti , or 〈A|Ti〉. Note that

〈A|Ti〉ST =
∑NT

j=1

∫
dx A(x)δij exp

( − E(x)
Tj

+ a(Tj )
)

∑NT

j=1

∫
dx δij exp

( − E(x)
Tj

+ a(Tj )
)

=
∫

dx A(x)exp
( − E(x)

Ti
+ a(Ti)

)
∫

dx exp
( − E(x)

Ti
+ a(Ti)

)
= 〈A〉Ti

, (5)

where δij is the Kronecker delta. Namely, we have

〈A〉Ti
= 1

NTi

NTi∑
j=1

A
j

Ti
, (6)

where NTi
and A

j

Ti
stand for the total number of samples and

the j th sample at Ti .
To find a candidate for a(Ti), let us look at the probability of

visiting Ti . By summing over the delta function, the probability
of occupying Ti is given by

P (Ti) =
∑NT

j=1

∫
dx δij exp

( − E(x)
Tj

+ a(Tj )
)

∑NT

j=1

∫
dx exp

( − E(x)
Tj

+ a(Tj )
)

= e−f (Ti )+a(Ti )∑NT

j=1 e−f (Tj )+a(Tj )

∝ e−f (Ti )+a(Ti ), (7)

where f is the dimensionless (Helmholtz) free energy and

e−f (T ) ≡
∫

dx e−E(x)/T . (8)

Substituting f (Ti) into a(Ti) gives constant probability regard-
less of Ti . Thus the dimensionless free energy f (Ti) is a good
choice for a(Ti) to obtain a uniform temperature distribution
and realize a random walk in the temperature space. Although
the free energy is not known a priori, unless the system
is exactly solvable, the free-energy calculation methods (the
details will be provided below) enable us to get a good estimate
from preliminary simulation runs.

In the two-dimensional ST algorithm, in contrast, we
consider that another parameter is also a dynamical variable
[16–18]. Particularly in the STM method, the external field h

is a second dynamical variable. In other words, we consider

e−(E−hM)/T +a(T ,h) (9)

as a joint probability for (x,T ,h) (∈ X ⊗ {T1,T2, . . . ,TNT
} ⊗

{h1,h2, . . . hNh
}), where a(T ,h) is a parameter.

To find a candidate for a(Ti,hj ), we again look at the
probability of staying at each set of parameter values. It is
given by

P (Ti,hj )

=
∑NT

k=1

∑Nh

l=1

∫
dx δikδjlexp

( − E(x)−hlM(x)
Tk

+ a(Tk,hl)
)

∑NT

k=1

∑Nh

l=1

∫
dx exp

( − E(x)−hlM(x)
Tk

+ a(Tk,hl)
)

= e−f (Ti ,hj )+a(Ti ,hj )∑NT

k=1

∑Nh

l=1 e−f (Tk,hl )+a(Tk,hl )

∝ e−f (Ti ,hj )+a(Ti ,hj ), (10)

where

e−f (Ti ,hj ) =
∫

dx e−(E−hj M)/Ti . (11)

The dimensionless free energy f (Ti,hj ) is again a good choice
for a(Ti,hj ) to acquire a uniform distribution of T and h. These
values can be estimated from preliminary simulation runs and
reweighting techniques.

As in the conventional ST method, any thermal
average 〈A〉Ti ,hj

at given Ti (∈ {T1,T2, . . . ,TNT
}) and
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TABLE I. Conditions of the two-dimensional ST simulations.

Lattice size L 2, 4, 8, 10, 20 30 80 160
Number of production runs 1 2 4 2
Total MC sweeps per run 42000000 42000000 1000000000 321300000
Parameter-updating period 50 20 10 5

T1–TNT
1.0–5.0 1.0–5.0 1.0–5.0 1.0–3.6

h1–hNh
−1.5–1.5 −1.5–1.5 −1.5–1.5 −0.5–0.5

NT 20 20 70 63
Nh 21 21 51 51
Ndata

a 10 10 100 50

aThe data were stored every Ndata MC sweeps.

hj (∈ {h1,h2, . . . ,hNh
}) can be obtained by calculating

the conditional expectation 〈A〉Ti ,hj
= 〈A|Ti,hj 〉ST. Namely,

we have

〈A〉Ti ,hj
= 1

NTi,hj

NTi ,hj∑
k=1

Ak
Ti ,hj

, (12)

where NTi,hj
is the total number of samples at Ti and hj , and

Ak
Ti,hj

stands for the kth sample at Ti and hj .
The method of updating T or h is similar to that of updating

spins because T and h are considered as dynamical variables.
The Metropolis criterion for updating T or h is given by the
following transition probability:

w(Ti,hj → Ti ′ ,hj ′)

= min

(
1,

P (Ti ′ ,hj ′ )

P (Ti,hj )

)

= min

{
1, exp

[
−

(
1

Ti ′
− 1

Ti

)
E +

(
hj ′

Ti ′
− hj

Ti

)
M

+ a(Ti ′ ,hj ′ ) − a(Ti,hj )

]}
. (13)

Once an initial state is given, the STM simulations can be
performed by repeating the following two steps. (i) We perform
a conventional canonical simulation at Ti and hj for certain
MC sweeps. (ii) We update the temperature or external field
by Eq. (13) with a(T ,h) = f (T ,h).

In our implementation, every certain MC sweeps either T

or h was updated (the choice between T and h was made at
random) by Eq. (13) to a neighboring value (the choice of two
neighbors was also made at random). Here one MC sweep

 1

 2

 3
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 0  0.5  1  1.5x106

T

MC sweep

FIG. 1. (Color online) History of the temperature T . The linear
lattice size L is 80.

stands for L × L single-spin updates. The number of MC
sweeps performed between parameter updates is here referred
to as the parameter-updating period.

Whereas updating the parameter to a neighboring value
with the Metropolis algorithm should be considered the easiest
to implement, we remark that, as spins can be updated by
a number of methods such as the heat bath method, other
schemes of updating the parameters can be employed [20].
There also exists a temperature updating scheme for ST by the
Langevin algorithm [21].

Table I summarizes the conditions of the present simu-
lations. For L = 80, instead of a single 4 000 000 000 MC
sweep production run, four 1 000 000 000 MC sweep runs
were performed. This was just to make one trajectory shorter
and easier to deal with numerically. Similarly, two production
runs (instead of a single run) were made for L = 30 and 160.

As for spin updates, we employed the single-spin-update
algorithm; we updated spins one by one with the Metropolis
criterion. As for a quasi-random-number generator, we used
the Mersenne twister [22].

C. Free-energy calculations

The simulated tempering parameters, or free energy in
Eqs. (9) and (11), can be simply obtained by the reweighting
techniques applied to the results of preliminary simulation runs
[16–18,23]. We employed two reweighting methods for this
free-energy calculation. One method is the multiple-histogram
reweighting method, or weighted histogram analysis method
(WHAM) [24,25], and the other is the multistate Bennett
acceptance ratio (MBAR) estimator [26], which is based on
the WHAM.
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FIG. 2. (Color online) History of the external field h. The linear
lattice size L is 80.
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FIG. 3. (Color online) History of the total energy per spin εtot.
The linear lattice size L is 80.

The equations of the WHAM algorithm that were applied to
the simulation results are as follows. For details, the reader is
referred to Refs. [17,25]. The density of states (DOS) n(E,M)

and free-energy values f (Ti,hj ) can be obtained by

n(E,M) =
∑

Ti ,hj
nTi ,hj

(E,M)∑
Ti ,hj

NTi ,hj
exp[f (Ti,hj ) − (E − hjM)/Ti]

,

(14)

f (Ti,hj ) = − ln
∑
E,M

n(E,M)exp[−(E − hjM)/Ti], (15)

where nTi,hj
(E,M) is the histogram of E and M at Ti and

hj , and NTi,hj
is the total number of samples obtained at

Ti and hj . By solving these two equations self-consistently
by iterations, we can obtain n(E,M) and f (Ti,hj ). The
obtained n(E,M) allows one to calculate any thermal average
at arbitrary temperature and external field values. Note that
f (Ti,hj ) is determined up to a constant, which sets the zero
point of the free energy. Accordingly, n(E,M) is determined
up to a normalization constant.

The MBAR estimator is based on the following equations.
Namely, by combing Eqs. (14) and (15), the free energy can
be written as

f (Ti,hj ) = − ln
N∑

n=1

exp[−(En − hjMn)/Ti]∑NT

k=1

∑Nh

l=1 NTk,hl
exp[f (Tk,hl) − (En − hlMn)/Tk]

, (16)

where N , NTk,hl
, En, and Mn are the total number of data, the number of samples associated with Tk and hl , the energy of the

nth data, and the magnetization of the nth data, respectively. This equation should be solved self-consistently for f (Ti,hj ). Note
that, as in the WHAM, f (Ti,hj ) is determined up to a constant.

We repeat the preliminary STM simulations and free-energy calculations until we finally obtain sufficiently accurate free-energy
values that let the system perform a random walk in the temperature and external field space during the STM simulation. We
then perform a single, final production run.

Note that these two reweighting methods enable us to obtain not only dimensionless free-energy values but also physical
values at any temperature and at any external field, which are given by

〈A〉T ,h =
N∑

n=1

WnaA(xn), (17)

Wna = 1

〈ca〉
exp[−(En − hMn)/T ]∑NT

k=1

∑Nh

l=1 NTk,hl
expf (Tk,hl) − (En − hlMn)/Tk]

, (18)

〈ca〉 =
N∑

n=1

exp[−(En − hMn)/T ]∑NT

k=1

∑Nh

l=1 NTk,hl
exp[f (Tk,hl) − (En − hlMn)/Tk]

. (19)

For details, the reader is referred to Refs. [26,27].
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m

MC sweep

FIG. 4. (Color online) History of the magnetization per spin m

(≡ M/L2). The linear lattice size L is 80.

We also used another method of calculating the free energy.
By substituting a(T ,h) in Eq. (10) for the estimates for free
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FIG. 5. (Color online) Free energy per spin f/L2 and its contour
curves as functions of T and h. The linear lattice size L is 80.
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FIG. 6. Distribution of m as a function of T for h = 0. The linear
lattice size L is 80.

energy f̃ (T ,h), we obtain

P (T ,h) ∝ e−f (T ,h)+f̃ (T ,h). (20)

From this we can write

f (T ,h) = f̃ (T ,h) − ln P (T ,h) + const. (21)

Here P (T ,h) can be obtained as the number of samples at each
set of parameter values in a preliminary STM simulation. Thus
this equation enables one to refine the free energy much more
easily than the reweighting methods because the method does
not require any iterations. This method does not work well,
however, when P (Ti,hj ) is too small [or f̃ (Ti,hj ) is too far
away from true values] to obtain samples at (Ti,hj ), while the
reweighting techniques are still able to work. In the present
work we first use the reweighting methods to obtain rough
estimates of the free energy for the entire parameter space.
We then use the combination of the reweighting methods and
Eq. (21) for further refinements of the free energy.

Note that the WHAM gives another piece of information,
namely, the DOS, which the MBAR estimator cannot directly
calculate. However, the WHAM requires one to make his-
tograms before iterations and two kinds of calculations in
an iteration step. As the system size grows, the number of
possible states increases. Thus the calculation of the DOS can
be quite time consuming. In contrast, the MBAR estimator can
be used without making histograms and one MBAR estimator
iteration step needs one equation. The length of one iteration,
which is approximately proportional to the number of samples
and parameter values, increases and can be time consuming, as
the system size is enlarged. However, we have the impression
that the MBAR estimator is less time consuming and more
easily implemented than the WHAM. The parallelization of
the MBAR estimator is slightly easier than that of the WHAM
and we actually did it with OpenMP.
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FIG. 8. (Color online) Binder cumulant U vs temperature.

D. Temperature and external field distributions

As mentioned in the preceding sections, we have to give
the set of temperature and external field values before ST or
STM simulations. Actually, the determination involves trial
and error. However, the reweighting methods still help one to
do this to a certain extent.

The maximum and minimum values of the temperature and
external field were chosen so that the area of the temperature
and external field was wide enough to investigate the critical
behaviors. This should be done separately for each system and
what is to be investigated.

The distribution of temperature was chosen to be pro-
portional to an exponential to the index number in small
lattice sizes, as is common in simulated tempering and replica-
exchange methods. However, in large-lattice-size systems, we
assigned more values around Tc by hand. A denser distribution
is required where the heat capacity is large or the phase
transition occurs. The distribution of the external field is
similarly assigned. In small lattice sizes it was proportional
to the index of the external field. However, in the larger lattice
sizes we assigned more points around h = 0, in which the
phase transition occurs. We assigned them in such a manner
that the acceptance rate of ST parameter updates are preferably
between 10% and 50%. This fuzzy criterion is partly due to the
two-dimensional distributions. A temperature distribution at a
certain external field does not always give the same acceptance
rates under another external field.

When the distributions of Ti and hj turned out to be
improper, we reassigned the distributions. In this case, we
already had the samples and free-energy estimates at a
previous distribution, with which the reweighting method
lets one estimate the free energy at the newly distributed
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  m

(b)
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FIG. 7. Distribution of m as a function of h for (a) T = 3.21, (b) T = 2.316, and (c) T = 1.967. The linear lattice size L is 80.
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FIG. 9. (Color online) Binder cumulant U vs temperature under
different external fields: (a) h = 0, (b) h = 0.01, (c) h = 0.05, and (d)
h = 0.1. The red solid, dashed green, dark blue short-dashed, purple
dotted, and light blue dot-dashed lines stand for L = 10, 20, 30, 80,
and 160, respectively.

values. Consequently, we did not have to start the free-energy
calculations over from the beginning. We actually repeated this
parameter redistribution procedure several times, especially in
large-lattice-size simulations.

III. RESULTS AND DISCUSSION

A. Simulated tempering and magnetizing simulations

We shall show that the two-dimensional ST simulations
were carried out properly. Figures 1 and 2 show the temperature
and external field, respectively, as functions of the MC sweep.
Both were obtained from the simulations in which the linear
lattice size was 80. The temperature and external field indeed
realized random walks.

Figures 3 and 4 show the energy and magnetization per spin,
respectively, as functions of the MC sweep. They also realized
random walks. Note that there are expected correlations
between the temperature and energy (see Figs. 1 and 3) and
between the external field and magnetization (see Figs. 2
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-1
-0.5

 0
 0.5

 1

Reweighted (MBAR)
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FIG. 10. (Color) Reweighted data (red) and original data (green)
obtained by the conventional ST. The linear lattice size L is 80.
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FIG. 11. (Color) Reweighted data (red) and original data (green)
obtained by the STM simulations. The linear lattice size L is 80.

and 4). The same behavior was observed in other-lattice-size
simulations (data not shown).

Figure 5 shows the dimensionless free energy per spin
as a function of temperature and external field, which was
obtained by applying the MBAR estimator to the results of the
production runs. Note that the partial differential of this free
energy by h gives 〈m〉

T
. The shape at h = 0 suggests a jump of

m below Tc, indicating the existence of the first-order phase
transitions.

Figure 6 shows the distribution of magnetization as a
function of temperature. Below Tc the distribution is separated
into two parts. As temperature increases, the distribution
becomes broader. Near Tc the distribution is the broadest
and two peaks merge. It then becomes narrower. Note that
this figure was obtained by only four production runs (see
Table I) and can be obtained even by only one produc-
tion run, though the error is expected to become larger.
Figures 7(a), 7(b), and 7(c) show the distribution of magnetiza-
tion as a function of external field above, around, and below Tc,
respectively. Above Tc the change is smooth and continuous
[see Fig. 7(a)]. Around Tc the distribution becomes very wide
around h = 0 [see Fig. 7(b)]. This is one of the properties of
the second-order phase transitions. Below Tc the distribution
jumps from one side to the other side at h = 0 [see Fig. 7(c)].
This abrupt jump of the distribution is one of the properties of
the first-order phase transitions.

We also calculated the Binder cumulant [28] defined by

U (T ,h,L) ≡ 1

2

(
3 − 〈m4〉

〈m2〉2

)
. (22)
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2 2

FIG. 12. (Color) Calculated DOS obtained by the WHAM with
(a) ST and (b) STM data. The linear lattice size L is 80.
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FIG. 13. (Color online) External field vs MC sweep in SM simulations under Tc (T = 1.97). The linear lattice size L is (a) 2, (b) 4, (c) 8,
and (d) 10, respectively.

Figure 8 shows the Binder cumulant as a function of tempera-
ture. As is well known, the graphs cross at one point at Tc. The
error bars were obtained by the jackknife method [29,30].

Figure 9 shows the Binder cumulant as a function of
temperature under different external fields. The graphs do not
cross at one point in the presence of a finite external field. The
amount of errors is expected to be on the same level of Fig. 8
and the error bars are suppressed here to aid the eye.

B. Comparison of ST with STM

We compared the results of the STM method with those
of the conventional ST method. Figures 10 and 11 show
the magnetization as a function of the temperature and
external field, which was calculated using the MBAR estimator
with the data obtained by the conventional ST and STM

simulations, respectively. Figure 10, which was obtained by the
conventional ST, shows artifactual jumps at a high temperature
and a certain external field. This must have been caused
by a failure to sample some parts of states. In contrast, the
results by the STM simulations are smooth (see Fig. 11).
Figure 12 shows the density of states obtained by conventional
ST and STM simulations. This obviously illustrates that the
area in which the energy is relatively high with somewhat
strong magnetizations was not sampled by the conventional ST
method. These results imply that the dimensional extension in
the STM enlarged the sampled space.

Once one succeeds in estimating the free-energy values, or
ST and STM parameters a(Ti) and a(Ti,hj ), with sufficient
accuracy, one can perform ST and STM simulations properly.
However, the computational efforts in free-energy calculations
are still much larger for STM than for ST. Therefore, it is
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FIG. 14. (Color online) External field and MC sweep in the SM simulations (a) under Tc (T = 1.97) and (b) above Tc (T = 3.88). The
linear lattice size L is 20.
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FIG. 15. (Color online) Heat capacity per spin C at h = 0. The
linear lattice size L is 80. As shown in the legend, green squares, blue
circles, purple triangles, and light-blue inverse triangles represent one
parameter-updating attempt being made every 1, 2, 20, and 100 MC
sweeps, respectively. The exact result (red solid line) was obtained
by Berg’s program [30] based on Ref. [33].

desirable to develop an even more efficient method for the
STM free-energy estimation than the present ones.

C. Simulated magnetizing

We study the compatibility of ST with the first-order phase
transition with external field changes by performing simulated
magnetizing (SM) simulations, in which the temperature is
fixed and the external field is updated by the Metropolis
criterion. Figure 13 shows the external field as a function of
the MC sweep in the SM simulations below Tc. We performed
SM simulations in a number of lattice sizes from 2 × 2 to
20 × 20. These graphs illustrate the fact that as the system size
becomes larger, the difficulty in simulations grows. In fact, it
finally became impossible to observe the events in which the
magnetization goes to the other side across the zero point [see
Fig. 14(a)], while it was still possible above Tc [see Fig. 14(b)].
These results imply that the full range random walk happens
above Tc but not below Tc. Therefore, this result suggests that
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-0.5

 0

 0.5

 1

 1.5  2  2.5

m

T

Exact
Every 1

Every 20
Every 100

FIG. 16. (Color online) Magnetization per spin m for h = 0. As
shown in the legend, green squares, blue circles, and purple triangles
represent one parameter-updating attempt being made every 1, 20,
and 100 MC sweeps, respectively. Some error bars were slightly
shifted horizontally to aid the eye.
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FIG. 17. (Color online) Correlation time analysis. Error bars
show the 95% confident interval.

the random walk of temperature is crucial for the full range
random walk of the external field. The full range random walk
of the external field happens in the STM simulation when the
temperature is high above Tc. Note that the Ising model is
equivalent to the lattice gas model [31]. Hence, what happens
in STM simulations can be understood as follows: Even though
the phase transitions between gas and liquid do not directly
occur, they do occur through the supercritical water region.

To explore this phenomenon more clearly, readers are
referred to Ref. [32], which shows how the temperature and
external field change during the STM simulation.

D. Frequency of temperature or external field updates

A common question about this kind of simulation is how
frequently the parameter-updating attempts should be made.
We want to emphasize that as long as the detailed balance
condition is satisfied, the simulations should be correctly
carried out.

We compared STM simulations performed with different
parameter-updating frequencies. Figure 15 shows the results of
the heat capacity as a function of temperature at h = 0, which
were obtained by the STM method with different conditions.
The conditions are one parameter-updating attempt every 1,
2, 20, and 100 MC sweeps. They show good agreement with
each other. The error bars were obtained by the jackknife

 0.1

 1

 0.1  1  10

 <
|m

|>
 L

β/
ν

 L1/νt 
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80x80
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slope =1/8
slope=-7/8

FIG. 18. (Color online) Scaled m for h = 0. The lines are the
same as those used in Ref. [36].
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FIG. 19. (Color online) Scaled m at T = Tc.

method [29,30]. Note that the error bars tend to be larger as
the parameter-updating frequency becomes less.

Figure 16 shows the magnetization as a function of tem-
perature at h = 0. Data were obtained with several parameter-
updating frequencies, such as one parameter-updating attempt
every 1, 20, and 100 MC sweeps. They also agree with
each other. Note that because finite sizes are employed, the
magnetization under Tc at h = 0 is also zero. With the lower
parameter-updating frequency, the convergence was not so
good and the error bars tend to be larger. The error bars
were obtained by the jackknife method [29,30]. These results
suggest that the frequent parameter update does not make any
artifacts and that it should be recommended.

Figure 17 shows the integrated correlation time of magne-
tization obtained at different parameter-updating frequencies.
The height of data is expected to converge to the integrated
correlation time between samples. This was calculated by
using the jackknife method with different bin sizes [29,30].
Data were stored every ten MC sweeps. Thus the correlation
time measured by one MC sweep should be ten times
larger. The error bars were obtained with the χ2 distribution.
These results suggest that the higher the parameter-updating
frequency employed, the shorter the correlation time obtained.
Therefore, frequent parameter updates are preferred. Note
that the observation that the frequent parameter updates
are preferable is in accord with the statement that frequent
replica-exchanging attempts are recommended [34,35].
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FIG. 20. (Color online) Scaled m near h = 0.

 1

 2

 1  10  100  1000  10000

<
|m

|>
L1/

8

|h|L15/8

T=Tc-0.008
T=Tc-0.004
T=Tc          

T=Tc+0.004
T=Tc+0.008

h1/15

FIG. 21. (Color online) Scaled m near T = Tc.

E. Observation of crossover

We study the crossover behavior of the phase transitions.
We calculate the magnetization by the MBAR estimator around
the critical point.

We employ the finite-size scaling approach, which is
discussed in Ref. [36]. The scaling form of magnetization m

with respect to the temperature and external field is given by

mLβ/ν = �(L1/ν t,L(γ+β)/νh), (23)

where t = |T − Tc|/Tc and L is the linear size of the lattice.
The Greek letters ν and γ stand for critical exponents. In the
two-dimensional Ising model, β = 1/8, δ = 15, ν = 1, and
γ = 7/4.

First we examine the scaling behavior of the magnetization.
Figures 18 and 19 show the magnetization as functions of
T and h, respectively, and we see that it obeys the critical
behavior of m ∼ |T − Tc|β and |h|1/δ , respectively. According
to the scaling approach, when Lt or L15/8h is large enough,
the finite effect can be negligible. In this case, Figs. 18 and
19 imply that those conditions are given by Lt > 0.2 and
L15/8h > 1.1, respectively.

We now study the behavior under conditions slightly differ-
ent from the critical point. Figure 20 shows the magnetization
as a function of temperature near h = 0. As the external field
increases, the behavior differentiates in the low-temperature
region. Even in the presence of a weak external field, the
magnetization obeys t1/8 when the temperature is relatively
high enough. However, with a relatively strong external field,
the scaling behavior disappears.
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FIG. 22. (Color) Scaled m about the critical point. The linear
lattice size L = 160. We display only the results for T < Tc.
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FIG. 23. (Color) Difference between magnetization and its ex-
pected scaling behavior about the critical point. The linear lattice
size L =160. (a) |mL1/8 − 1.22(Lt)1/8| is illustrated. The black
line is t = 0.2h8/15 and the vertical gray line is Lt = 0.2. (b)
|mL1/8 − (L15/8h)1/15| is illustrated. The black line is t = 0.2h8/15

and the horizontal gray line is L15/8h = 0.3

Figure 21 shows the magnetization as a function of the
external field near T = Tc. As the temperature deviates from
Tc, the behavior differentiates in the weak external field region.
Thus, even with a slight difference from Tc, the magnetization
obeys h1/15 when the external field is strong enough.

Figure 22 illustrates the comprehensive behavior of 〈|m|〉
near the critical point. Note that this is a logarithmic scale plot.
Near the h axis 〈|m|〉 obeys |h|1/15 and near the T axis 〈|m|〉
obeys |t |1/8.

Figures 23(a) and 23(b) show the difference between
〈|m|〉L1/8 and 1.22(Lt)1/8 and between 〈|m|〉L1/8 and
(L15/8h)1/15, respectively. These data were obtained by the
(160 × 160)-lattice-size simulations. Note that the factor 1.22
comes from the exact solution [19,37]. According to the
crossover scaling formalism [38], if t−15/8h is large enough,
then the magnetization obeys m ∼ t1/8, and if h−8/15t is large
enough (t−15/8h is small enough), then it obeys m ∼ h1/15.
Figure 23(a) shows that if the finite-size effects are negligible
(Lt � 0.2) and t � 0.2h8/15 (i.e., th−8/15 is large), then the
critical behavior is m ∼ t1/8. Figure 23(b) shows that if finite-
size effects are negligible (L15/8h � 0.3) and t � 0.2h8/15

(i.e., t−15/8h is large), then the critical behavior is m ∼ h1/15.
Thus Fig. 23 clearly shows that the line t = 0.2h8/15 gives the
boundary of the two scaling regimes.

IV. CONCLUSION

We have introduced two-dimensional simulated tempering
in temperature and an external field, which we refer to
as simulated tempering and magnetizing. We applied it to
the two-dimensional Ising model. During the simulations,
two-dimensional random walks in temperature and external
field were realized. The random walk covered a wide area of
temperature and external field so that the STM simulations
enabled us to study a wide area of the phase diagram from a
single simulation run.

Even though the first-order phase transitions with the
external field change did not directly occur, the transitions
happened through high-temperature regions, or supercritical

water regions. The dimensional extension allowed us to
overcome the difficultly of the first-order phase transitions.
Thus this result suggests that the dimensional extension allows
us to overcome the difficulty of crossing the first-order phase-
transition points with the ST method. The similarity between
ST and the REM implies that the dimensional extension of the
REM will also give this property (an example is shown for
the case of a two-dimensional REM simulation in temperature
and pressure in Ref. [3]).

We also performed STM simulations with several different
parameter-updating frequencies. According to the conver-
gence and sizes of error bars, the more frequent attempts should
be the better choice. The calculated autocorrelation time also
suggested that frequents attempts are favorable.

We investigated the crossover behavior of phase transitions
by calculating the magnetization per spin m around the critical
point by the reweighting techniques. The results showed
agreement with previous theoretical studies. This supports the
validity of the two-dimensional ST method, or STM.

With the data of the present work, we can calculate
the two-dimensional density of states n(E,M) so that we
can determine the weight factor for the two-dimensional
multicanonical simulations. Therefore, we can also perform
the two-dimensional multicanonical simulations. The STM
method will be very useful for simulating spin-glass systems.
We also remark that the present methods are useful for not
only spin systems but also other complex systems with many
degrees of freedom. It is worth noting that because this method
does not modify the energy calculation, the method should be
very much compatible with existing package programs.
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APPENDIX: LATTICE GAS AND ISING MODEL

The total energy of Ising model H on a square lattice can
be converted into that of lattice gas in the following manner:

H = −J
∑
〈i,j〉

σiσj − h
∑

σi

= −J
∑
〈i,j〉

(2si − 1)(2sj − 1) − h
∑

(2si − 1), (A1)
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where σi = ±1 and si = 1,0. If σi = 1, then si = 1 and vice versa. We then have

H = −4J
∑
〈i,j〉

sisj + 2J
∑
〈i,j〉

(si + sj ) + J
∑
〈i,j〉

1 − h
∑

(2si − 1)

= −4J
∑
〈i,j〉

sisj + 8Jn + 2JN − 2hn + hN = −4J
∑
〈i,j〉

sisj − (2h − 8J )n + (h − 2J )N, (A2)

where n and N are the number of occupied sites and the total number of sites, respectively. The first term corresponds to the
attractive energy between particles of lattice gas. The second term corresponds to the chemical potential of lattice gas. The last
term is a constant. Here, we define μ ≡ (2h − 8J ) and Eg ≡ −4J

∑
〈i,j〉 sisj .

Thus, free energy per spin f is given by

exp(−βf N ) =
∑

σ0=±1;σ1=±1,...,σN =±1

exp(−βH )

=
∑

s0=1,0;s1=1,0,...,sN =1,0

exp[−β(Eg − μn)]exp[−β(h − 2J )N ] = 
 exp[−β(h − 2J )N ]

= exp(βpN )exp[−β(h − 2J )N ], (A3)

where p is pressure. Instead of V , N appears. The Greek letter 
 stands for the Grand partition function, where

 = ∑

s0=1,0;s1=1,0,...,sN =1,0 exp[−β(Eg − μn)]. The last two equations were obtained with grand canonical ensembles. Therefore,
we obtain

−f = p − (h − 2J ), (A4)

p = h − f − 2J. (A5)
Thus, we conclude that the canonical ensemble of Ising model is equivalent to the μ-T ensemble of lattice gas model with the

following correspondence:

p = h − f − 2J, (A6)

μ = (2h − 8J ), (A7)

Eg = −4J
∑
〈i,j〉

sisj . (A8)
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