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We investigate phenomenological roles of possible global symmetries in a class of superstring inspired models. Such global 
symmetries may be present in the full string theory or may incidentally appear in the effective theory of the low-energy sector. We 
find that ira model has a discrete symmetry, Z,, which acts in a generation-independent way, it is naturally embedded in a U(1 ) 
symmetry of the low-energy lagrangian. Then, such global U(1 ) symmetries (through suitable redefinition in terms of the local 
U(I )'s) remain even after the spontaneous breakdown of the gauge symmetries at O(Mw). Some discussion is also presented for 
generation-dependent symmetries. 

It has recently been discovered that superstring 
theories may present a mathematically consistent 
description for the unification of all the fundamental 
particle spieces and their interactions including 
gravity [ 1-3 ]. Then, it is expected that the low-energy 
phenomenologies of the superstring theories may be 
simulated by a class of  supersymmetric models 
[2,4-9].  The gauge symmetry of such superstring 
inspired models may be given by K × K '  which results 
from the gauge group Es × E~ of the original heterotic 
string theory through the compactification of the 
extra six-dimensional space admitting a nontrivial 
Wilson loop [ 4,5,10 ]. The chiral superfields surviv- 
ing to low energies will be singlet under K'  and trans- 
form as certain representations of K in the 
decomposition of 27 or 27 of E 6. 

One of the interesting features of the string inspired 
supersymmetric models is that due to the discrete 
symmetries and/or the topology of the internal six- 
dimensional space, some couplings in the superpo- 
tential may vanish so as to reproduce successful low- 
energy phenomenology, e.g., prohibition of the fast 
proton decay mediated by the scalar quarks [ 4,11 ]. 
Then, the effective low-energy lagrangian below 
Mcompact~Mplanck including the associated soft 
supersymmetry breakings may exhibit certain global 

continuous symmetries (except for explicit break- 
ings of  order Mfi" ( n > 0) induced by integrating out 
the superheavy sector). For example, in the models 
considered in ref. [9 ], a Z9 symmetry is embedded 
in a U (1) pQ symmetry and a U ( 1 ) of  lepton number 
appears "automatically". 

I n  this letter, we would like to investigate phe- 
nomenological roles of  such global symmetries in a 
class of  low-energy supersymmetric models derived 
form the superstring. 

We begin with the consideration of a simple model 
of 

K = S U ( 3 ) c × S U ( 2 ) w  

x U ( 1 )  y x U ( 1  )i XU(1)~ ,  (1) 

with rank 6, where the U(1) ' s  are embedded in a 
maximal subgroup SU(6) × S U ( 2 )  of E6 such that 
U(1) rXW(1)r  ~ SU(6) and U(1)j  ~ SU(2),  respec- 
tively, and Y is the usual weak hypercharge. The 
chiral superfields contained in a 27 of E6 are  iden- 
tified by the K-quantum numbers (C, W, Y, I, J) as 

q ~ ( 3 ,  2, ~ , - ~ , 0 ) ,  

uC ~ (3, 1 , - - ] , -  1, 0), & ~ ( 3 ,  1, ½, ~, ½), 

D ° ~  (3, 1, 1, ~, - 1 ) ,  D ~  (3, 1, --~, -~, 0 ) ,  (2) 
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I~~ (1, 2 , - ½ ,  ~, ½), e~~(1, 1, 1, - 1 ,  0 ) ,  

H ~  (1, 2, -½, ~, -½) ,  He~ (1, 2, ½, ~, 0 ) ,  

N~(1 ,  1, 0 , - ~ ,  ½), N¢~(1,  1,0, - ~ ,  - ½ ) .  

(2cont 'd) 

The most general K-invariant superpotential is given 
by 

W=2t uCqH ~ +22 dCqH +23C~H +24NDCD 

+25NHCH +26N~H¢£ +27N~&D +28DCq£ 

+29Du~e c +210qqD+211uCdCD ~ , (3) 

which is obtained by decomposing 27.27.27 of E6. 
Here, the generation indices are suppressed for sim- 
plicity; these couplings should be regarded as, e.g., 
(21),zru~qzH~ (a ,  fl, ~ = 1-3) in the three-genera- 
tion space. 

The gauge group K is spontaneously broken at 
O(Mw) as K--*SU(3)c× U(1 )EM by the VEV's of H, 
H ~, N and N °. Here, it should be remarked that N c 
may develop a nonzero VEV of O(Mw) due to the 
D 2 terms in the scalar potential if  the gauge coupling 
constants and the soflt supersymmetry breaking sca- 
lar mass terms satisfy (gz/gs)2< [3(1 + 
r)/5(1 - r ) ]  < ~ and - 1 < r < 0  where r-~ (m2No/m~) 
with m~ <0. (The argument in ref. [12] to rule out 
( N  ~) ~ 0  is valid for gl=gj. However, it is possible 
in the superstring theory that gz¢g., [13].) We do 
not consider the possibility of gauge symmetry 
breaking at an intermediate scale. Some variants of 
our model, e.g., a rank-five model, Higg _s multiplets- 
coming from an incomplete set in (27 + 27), etc., will 
be discussed later. 

We first examine possible abelian symmetries, 
U(1) and Z,, in the superpotential (3) which act in 
a generation-independent way; the chiral multiplets 
with the same K-quantum numbers transform in the 
same way. (Such symmetries are also preserved in 
the effective low-energy lagrangian if certain cou- 
plings in (3) together with the associated soft super- 
symmetry breakings are vanishing.) The charge X 
associated with an abelian symmetry may be iden- 
tified by solving linear algebraic equations for non- 
vanishing couplings 2~, 

A,iXi =n'ka*--'2a ~ 0 ,  (4) 

where the/ca are certain integers without an overall 
common factor, and the Aai are non-negative inte- 
gers characterizing the relevant couplings 2~ with the 
chiral fields ~i=q, u ~, .... e.g., nonzero entries are 
Ali= 1 for Oi=u c, q, H ° in the coupling 21, etc. The 
charges Xt for the chiral fields should be determined 
modulo n as integers without an overall common 
factor. Each linearly independent solution of eq. (4) 
realizes a U(1) ( n = 0 )  or a Z, (generated by 
exp[ i( 2rc/n )X]). 

All the possible 11 equations in eq. (4) with 11 
fields cannot be linearly independent with respect to 
Xi since W obviously preserves the local U(1 )'s in 
K c E 6. In fact, we find that the 11 × 11 matrix A~ 
has rank 8. Hence, if all the 11 couplings are non- 
vanishing, there is no room for additional U(1 ) sym- 
metries in W other than the local 
U(1) r×  U(1) ,×U(1) j .  

Some couplings in W and the associated soft 
supersymmetry breaking terms, however, may van- 
ish due to the discrete symmetries and/or the topol- 
ogy of the internal manifold [4,11]. Then, the 
effective low-energy theory may incidentally exhibit 
larger global symmetries than the original ones in the 
whole sector of the superstring theory, (except for 
breaking terms of order Mb5" ( n > 0)). For example, 
suppose that a certain intemal manifold results in a 
discrete symmetry [ 14] 

p:(D,D.C, NC)~(D,D% N ~) , (5) 

so that 

26, 28--211 = 0 .  (6) 

Then, besides the local U(1 )'s, two global U(1 ) sym- 
metries appear, corresponding to NB (baryon num- 
ber) and N(o_N)C) =--ND--NDc--NNc ( D - D C - N  ¢ 
number). It is interesting to observe that the discrete 
symmetry looks "promoted" to a continuous sym- 
metry U(1)(D_NC) such tha t  P=exp(i~ZN(d_mc)). 
(See also ref. [9] for this kind of phenomenon.) 

We may proceed to find possible U(1 ) symmetries 
by considering certain phenomenological con- 
straints. Such symmetries will characterize superstr- 
ing inspired modles. 

We first note that 21--24 must be nonvanishing for 
the quark and lepton mass generation and that 25 is 
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also inevitable to obtain ( H )  # 0 and ( H ¢) # 0. The 
remaining couplings 26--21i are optional. We here 
simply assume that 

26 = 0 ,  (7) 

to avoid a Dirac neutrino mass of O(Mw). 
The number of possible global U(1) 's  is deter- 

mined by the number of independent conditions (4) 
for nonvanishing 2~. Let Fa indicate a linear com- 
bination ofX~; F,=A~sXs (LHS ofeq. (4)).  Since the 
condi t ions/"~=0 ( a =  1-5) for 2~-25 are linearly 
independent, we find 

~(global U(1 )'s) = 3 

- ~ (independent F~ = 0 for nonzero 27 -211 ) , 

(8) 

where the maximal number of global U(1) 's  is 
obtained by 3 = 11 (fields) - 5 (21-2s # 0) - 3(local 
U(1 )'s). Identity relations 

/"6 -- /"7 -----/"8 ----- --/- '9 (modulo F I - F s )  , 

/'~o - ~ - / ' ~  (modulo F ~ - F s )  , ( 9 )  

may be useful to count the number of independent 
F~ = 0 to identify possible symmetries, where Fa ~- Fb 

(modulo F ~-F s) means an identity 
F a - F b  = Z~B~F~ (c= 1 -  5) with suitable integers 
B~. These relations imply, for example, that F8 = 0 
for 28 ~a 0 automatically requires F9 = 0 i f F  1-F5 = 0, 
i.e., as long as 21~25 ~ 0, the survival 0f28 and 29 does 
not give independent constraints for identifying pos- 
sible global symmetries. Furthermore, since F6 is not 
required to be zero if 26 = 0, 1"7 = 0 for 27 # 0 serves 
as an independent condition in (8) to reduce the 
number of possible U(1 )'s: 

It should be also noticed that the couplings 27--211 
may or may not vanish in accordance with the bar- 
yon number assignment for the extra D quarks. Two 
cases are available to reproduce the baryon number 
conservation for preventing rapid proton decay [ 8 ]: 

N~ ') (D) = I+-+2,o =2,, = 0 ,  (10) 

or  

N~ 2) (D) = - 2,-+27 =28 =29 ~--0. (1 1 ) 

(We cannot assign N~ 2) (N c) = 1 to admit nonzero 27 

for the second case since ( N  ~) must be nonvanish- 
ing to break the extra local U(1 )'s). 

We now find from the conditions (8)-(11 ) that 
possible models and the corresponding global U(1 ) 
charges are classified as follows, depending on the 
vanishing (denoted by " X " )  or nonvanishing ( " O " )  
of the relevant couplings: 

(27, 28,9,210,11) 

= ( O ,  O, X)--+N~ 1) 

=(O, X, X)--,N,9~ ¢No:,_~ 

=(x ,  O, x)~N~,I~ CNN~ 

---- ( X, X, O ) --+N~ 2) ~)NNc 

= ( X ,  X, X ) ~ N ~ l ) e N D ~ N r ,  rc (12) 

(The cases (O,  O, O), (O,  ×, O ) and (X, O, O) 
are excluded by (11 ).) 

One may also be interested in finding possible Z~ 
symmetries. We can, however, show that they are 
always embedded in the U(1 ) symmetries found so 
far. Suppose that there is a nontrivial solution of eq. 
(4) for a Zn. Then, we can redefine the Xi charges 
without affecting the Z~ action on the chiral fields 
such that 

X ~ - X i - n . A ,  , (13) 

where the Ai are arbitrary integers. By suitably 
arranging the Ai, eq. (4) for X~ may be rewritten as 

Aa~X}=O , (14) 

so that the X; represent a U(1 ) symmetry, i.e., Zn is 
embedded in a U(1 ). For instance, for a model (O,  
O, X) in (12) with 27~&0, and 2s and/or 29~0  for 
N~ l) (D) = l, we can take 

Auc=kl -ks ,  Ado=k2, Zle~--k3, 

3 H c = ~ ,  A D = k 4 - k  , A D c = k  , 

ANt --k7 -k2  -k4  +]¢, 

and the other Ai= 0 with 

/~ = ks for 28 ~a 0 ,  

=k, +k3 +&-~5 -k9 

(15) 

for29 # 0 .  (16) 
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These two expressions of/~ coincide when both 28 
and 29 are nonzero, since the preservation of Z~ 
requires k8 = - k9 + k~ + k3 + k4-  k5 from an identity 
F s = - F 9 + Z c B c F c  with Bc=(1, 0, 1, 1, - 1 )  
(c = 1-5 ). (If  26 ~ 0 as well as )~7-)~95 ~ 0, the identities 
(9) further require k6 -  kT- k8 = - k2-/Ca + k5. Then, 
Ant and ANt given in (15) also result in A6iX  ~ ~- 0 for 
26. ) We find similar Ai for the models with N~ 2) = - ]. 

In this way, we have found that any Z, symmetry 
which acts in a generation-independent way can be 
embedded in a suitable U(1) symmetry (as long as 
the baryon number conservation is ensured in 
accordance with (10) or (11 )). In other words, the 
discrete symmetry has been "promoted" to a con- 
tinuous symmetry in the low-energy effective theory 
[9]. 

Any global symmetry has a potential danger to 
cause phenomenological problems i f  it is sponta- 
neously broken at a low mass scale; the appearance 
of Nambus-Goldstone bosons (or axions) for a U(1 ) 
[15], or the domain wall formation for a Z,  [16]. 
The gauge symmetry K of (1) may be spontaneously 
broken at O(Mw "~ 1 TeV) by the VEV's of H, H °, N 
and N ~ induced by the effects of the soft supersym- 
merry breaking terms. Then, one may worry if the 
global symmetries found so far are also broken 
together with the gauge group K, giving rise to phe- 
nomenological difficulties. The domain wall prob- 
lem, however, does not arise if the discrete 
symmetries act in generation-independent ways, since 
they are embedded in the U(1 ) symmetries, as shown 
above. 

As for the possible U(1) symmetries in (12) in 
connection with the problem of Nambu-Goldstone 
bosons, we will show that they actually remain 
unbroken. Note that ~ charges either for U (1) or Z~ 
in eq. (4) (or X's in eq. (14)) can be further rede- 
fined by taking a gauge transformation generated by 
Y, I and aT.. 

X" = X + a Y + b I + c J .  (17) 

If we choose 

a= 2Xn + ~ ( 3XN -- 2XNO , 

b=~(X~+X~o), c--X~+XN~, (18) 

we find 

X'I=0 (modulon)  for ¢i = H, H% N, N ° . (19) 

This is possible due to the fact that 
XH+XHo+XN=O (modulo n), derived from the 
term 2sNHCH in W. Therefore, the possible gener- 
ation-independent global U(1 ) symmetries (n = 0) 
(and Z, also) actually remain unbroken, and the 
Nambu-Goldstone bosons do not appear. 

We now consider some variants of our model. 
The gauge group K may be of rank five. Consider, 

for example, a model of K = S U ( 3 ) c × S U ( 2 ) w  
× U ( 1 ) y × U ( 1 ) /  [8]. Then, the third U(1) j  in E6, 
which is no longer a local symmetry, still remains as 
a global symmetry in the superpotential. As long as 
the possibility of global symmetries is concerned, 
there is no essential difference between the rank-five 
model and the rank-six model except that in the rank- 
five model, ( N  c) must be zero to avoid the 
Nambu-Goldstone boson associated with the global 
U (1) j. (The U ( 1 ) s charges of H, H °, N and N c can- 
not be simultaneously absorbed into those of Y and 
I, as in eq. (17).) 

The Higgs doublets, H and He_z_, may come rather 
from an incomplete set in (27+27)  [14]. Then, the 
multiplets contained in the complete 27's which have 
the same quantum numbers as the Higgs doublets 
must be regarded as heavy leptons, say L. They aquLre 
masses through the coupling NL~L. The couplings 
such as NHCL, however, must be absent so that we 
can distinguish the heavy leptons from the Higgs 
doublets by the L-number conservation. The same 
arguments for the possible global symmetries as in 
the first model also apply to this case. 

Therefore, our conclusions concerning the possi- 
bility of generation-independent global symmetries 
will be valid in a variety of superstring inspired 
models through the E6 unification without inter- 
mediate gauge symmetry breaking scale: 

(i) Phenomenologically acceptable models are 
singled out in accordance with the baryon number 
assignment to prevent rapid proton decay. 

(ii) If such a model has a discrete symmetry, Zn, 
(which would originate from the string theory), it is 
naturally embedded in a U(1 ) symmetry (except for 
tiny breaking terms suppressed by Mp1). 

(iii) Then, the global U(1 ) symmetries (through 
suitable redefinition in terms of the local U(1) 's)  
remain unbroken even after the spontaneous break- 
down of the gauge symmetries at O(Mw). 
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We finally present some comments on global sym- 
metries which act in generation-dependent ways. 
Generally, the problems of Nambu-Goldston boson, 
visible axion and/or domain wall will arise. This is 
due to the fact that some Higgs multiplets with the 
same K-quantum numbers may transform differ- 
ently under a generation-dependent symmetry. Then, 
Zn symmetries may not be embedded in U(1)'s, or 
the transformations of the Higgs mulfiplets under a 
U(1) (or Zn) symmetry may not be all rotated out 
(modulo n) in terms of the local gauge symmetries, 
as has been done in the case of generation-indepen- 
dent symmetries. (These difficulties might be evaded 
in some models [ 9 ].) 

We examine several cases in the concrete. Let the 
chiral multiplets transform under a generation- 
dependent symmetry as 

q~( i) ~exp[ i( 2n/n)X.(  i) ] .q)~( i) , (20) 

where ~ . ( i )  =q . ,  u .  ° , d.,,c etc., and a =  1-3 is a gen- 
eration index. Then, the global symmetry under con- 
sideration requires the following conditions, in 
particular, for the nonvanishing elements of the cou- 
pling matrices (2~).p~ and (22)~,8~,: 
X. (q)+Xa(uc)+Xr(Hc)=o modulo n ,  (21) 

X. (q)  +Xa(d ~) +Xr (H)  =0  modulo n .  (22) 

(a) The Higgs multiplets, H, H ~, N and N ~, may 
still transform in a generation-independent way, 
while the quarks and leptons transform in a gener- 
ation-dependent way: 

Xr(i) =X(i )  ( i=H ,  H ¢, N, N~; 7= 1 -3 ) .  (23) 

Then, the phenomenological problems are avoided 
since the charges of the Higgs multiplets can be 
rotated out, as in (17)-(19).  

It is interesting to see whether this kind of sym- 
metry reproduces the quark mass matrices of 
Fritzsch-type [ 17 ]: 

Mf~f~ 0 [ f=u,  d], (24) 

where " . "  denotes a nonzero entry. It is, however, 
immediately found that the symmetry conditions 

(21) and (22) for the nonzero elements in (24)  
require that for all the a, 1~ = 1-3, 

X,~(i) =Xp(i) modulo n ( i=q ,  u °, d c) , (25) 

which cannot ensure the vanishing of the relevant 
elements in (24). Therefore, Fritzsch-type mass 
matrices are not  obtained in this case. 

What kind of mass matrices are obtainable due to 
this sort of symmetry? We here present an example 
of Z5 (n=5) :  

X. (q)  = (3, 2, 2), X.(uC) =(2 ,  3, 3 ) ,  

X~(dC) = (3, 2, 3), X(H) =X(HC) = 0 .  (26) 

This results in the following quark mass matrices: 

Mu~ * , Md~ 0 . (27) 

The Z5 may or may not be embedded in U(1),  
depending on the other couplings (25).arN~HCaHr, 
etc., such that XL(q) = ( - 2 ,  2, 2), XL(u °) = (2, - 2 ,  
- 2 )  and X L ( & ) = ( - 2 ,  2, - 2 ) .  

(b) The Higgs multiplets may also transform in a 
generation-dependent way. Consider an example of  
U(1): 

X~(i) =(1,  2, - 2 )  ( i=q ,  u~, d~), 

X,( j )  = (4, 0, - 3 )  ( j=H,  He) ,  (28) 

which constrain the elements of the coupling matri- 
ces 21 and 22 so as to reproduce the Fritzsch-type mass 
matrices. We may assign the charges of N~, for 
example, as 

X . (N)  = ( - 1, 3, " 4 ) ,  (29) 

so that some couplings among (25).p~N~HCaH7 are 
also invariant under U(1).  Furthermore, if  (23)333 
is nonzero as well as (23)312 and (25)32i, U(1) is 
reduced to Zlo. This case with Z~o could be accept- 
able if the domain wall problem is solved by infla- 
tion [18], while if (23)333=0, it is ruled out by 
particle experiments such as lx~ e + G where G is the 
Nambu-Goldstone boson (or an axion) associated 
with U(1) [15]. 

In conclusion, we have investigated the phenom- 
enological roles of possible global symmetries in a 
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class o f  low-energy supers t r ing  insp i red  supersym-  
met r ic  models .  Such global  symmet r i e s  m a y  be  pres- 

ent  in  the full string theory or  may  inc identa l ly  appear  
in  the effective theory  o f  the low-energy sector 
(except  for explicit  b reakings  o c M ~ n ) .  P h e n o m e -  

nological ly acceptable  mode l s  are s ingled out  in  
accordance  wi th  the b a r y o n  n u m b e r  a s s ignemen t  to 
p reven t  r ap id  p ro ton  decay. I f  a mode l  has a discrete 
symmetry ,  Zn, which  acts in  a gene ra t i on - indepen -  
den t  way, it  is na tura l ly  e m b e d d e d  in  a U ( 1 )  sym- 
metry.  Then ,  such global  U(1 ) symmet r i e s  ( th rough  
sui table  r ede f in i t ion  in  te rms  o f  the  local U ( 1 ) ' s )  
r e m a i n  u n b r o k e n  even  after the  s p o n t a n eo u s  break-  
d o w n  o f  the gauge symmet r i e s  at O ( M w ) .  O n  the 
o ther  hand ,  gene ra t i on -dependen t  symmet r i e s  m a y  
reproduce  in teres t ing  qua rk  a n d  lep ton  mass  mat r i -  
ces. They  will, however ,  general ly  suffer f rom the 
phenomeno log ica l  diff icult ies associated wi th  the i r  

spon taneous  b reakdown.  

We would  like to t h a n k  Q. Shaft for i n f o r m i n g  us 
abou t  their  articles, ref. [ 9],  which  deal t  wi th  some 

topics re la ted to ours. 
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