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We systematically study the gauge fixing of the M6bius and the super-M6bius transformations for the N-point closed-string 
amplitudes on the disk. Using the Faddeev-Popov method, we obtain the explicit formulas for the Koba-Nielsen factors for these 
amplitudes. 

Although multi-loop string amplitudes have been 
extensively studied recently [1 ], tree string ampli- 
tudes are still important in connection with the N- 
string vertices [2 ], and the cancellations of dilaton 
tadpoles between disk and RP= [ 3-5 ]. For each tree 
string amplitude we have to specify the Koba- Nielsen 
factor in order to factorize the invariant "gauge" vol- 
ume of the MObius transformations. The Koba- 
Nielsen factor for the bosonic closed-string ampli- 
tudes on the sphere is given by [ 6 ] 

3 s ( ~ . , ~ / , , L ) = I ( ~ . - ~ , , ) ( ~ , , - ~ ) ( L - ~ . ) I  2 , ( 1 )  

while that for the bosonic mixed amplitudes (with 
closed-string and open-string external states) on the 
disk is given by [ 7 ] 

3 ( L , , y o , ) = ( 1 -  I L  Ie) IL-£ct ,  I z ,  (2) 

where 2, is one of the closed-string gauge fixing pa- 
rameters and ~,, is one of the open-string gauge fixing 
parameters. There is, however, no systematic study 
of the Koba-Nielsen factors for purely closed-string 
amplitudes on the disk, in spite of the importance of 
such amplitudes [ 3-5 ]. In this letter we thus discuss 
the Koba-Nielsen factors for N-point closed-string 
disk amplitudes for both bosonic and supersymme- 
tric theories. 

We first illustrate our method by applying it to the 
simple case of the N-point bosonic closed-string am- 
plitudes on the sphere. The amplitudes are written in 
a generic form as 

A x =  f Z d 2 z J ( z ) ,  (3) 
i = 1  

where f ( z ) -~ f (z l ,  z2 ..... zx; Pl, P2 ..... Px),  and the 
integration is performed over the whole complex 
plane. For instance, for N closed-tachyon external 
states (a 'p~ =4) ,  we have 

N 

f ( z ) =  H Izi-z,I "'''~'. (4) 
i < j  

The M6bius transformation on the sphere is given by 

A z + B  
z - ~ g ( z ) -  Cz+  D ' (5) 

whereA, B, C, and D are complex numbers satisfying 
A D - B C =  1. Since An is invariant under simultane- 
ous M6bius transformations of all the variables zi, the 
integral diverges due to the infinite gauge volume. We 
can factor out this divergence by the Faddeev-Popov 
method. The Faddeev-Popov determinant is given 
by 
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f 3 d ~ ' =  d/t(g) [ I 6 ~ 2 ) ( g ( z J ) - z J ) ,  (6) 
J= I 

where 

f dlt(g) = f d2Ad2BdZCd2Dc~¢2)(AD-BC-1) 

- V(gauge) (7) 

is the (infinite) invariant gauge volume of the M6bius 
transformation and ~ ,  ~2, and 23 are arbitrary con- 
stants. By directly performing the integration in eq. 
(6), we obtain the Koba-Nielsen factor As (Zl, z2, 23) 
ofeq. ( 1 ). Following the usual steps of the Faddeev-  
Popov method, we then have 

A.x = V(gauge) f f i  d2zif(z)ds(Zl, z2, z3) 
d i=1 

3 
xH 6~2'(z,-L), (8) 

j=  I 

where the infinity is factored out in V(gauge). In- 
stead of direct integration over the gauge parameters 
in eq. (6), we can alternatively obtain ds of eq. ( 1 ) 
as the jacobian of the change of integration variables. 
Since there are three complex degrees of freedom in 
the M6bius transformation of eq. (5), we can trade 
the integration over three z~'s for the integration over 
the gauge parameters A, B, C [with D = (BC+ 1 y/A ] 
by writing 

z, = g - '  (2~) ( i=1 ,  2, 3 ) ,  (9) 

where ~, are arbitrary constants. Eq. (3) becomes 

Ax = f d2A d-'B d2C deD c~2)(AD-BC - 1 )Jl 

I ,'V 
X ,I~_-4 d 2 z i f ( g - I ( Z l  ) '  g - '  ( -~2) ,  g -  1 ( -~3) ,  

Z4 . . . . .  ZN; P~ .... , PN) 

= d#(g)  d2z, f (z)J ,~I  612)(zj-g- '(2,))  , 
i=1  / = l  

(10) 

where 

J, = 10(zl, z2, z3)/O(A, B, C)I D=(UC+t)/.* I 2 
(11) 

We also have 

3 3 
H 6~2)(z,-g - '  (z , ) )=J2  H ~ ( 2 ) ( g ( z / ) - - Z J )  , 

j= I .1= 1 (12) 

where 

1 
J2= 1-[3=, ig_,,(_~j) 12. (13) 

By substituting eq. (12) into eq. (10) and compar- 
ing the result with eq. (6), we find that 

JIJ2 =ds(2 l ,  z2, z3) 

= I (~, -~2)  (~2 - z3 )  (z3 -Zl  ) 1 2 .  ( 1 4 )  

Note that since 21, 22, and 23 are completely arbitrary, 
Ax in eq. (8) still possesses the full M6bius invari- 
ance even after the gauge fixing. 

We now consider the Koba-Nielsen factor the N- 
point bosonic closed-string amplitudes on the disk. 
The amplitudes are again formally given by eq. (3), 
but the integration domain is now the unit disk. The 
M6bius transformation in this case is given by 

Az+B 
z~g(z )=  Bz+A'  (15) 

where A and B are complex numbers satisfying 
IAI 2-  IBI2= 1. Since there are three real gauge de- 
grees of freedom in the transformation, we can fix 
three real degrees of freedom of zi, say, z~ and "half"  
of z2. The integration over the other "half"  of z2 can 
be expressed as a line integral on the unit disk. We 
now follow the steps from eq. (9) to eq. (14). 
Namely, we change the integration variables from zj 
and z2 to the gauge parameters A, B (with IAI 2 
- [ B I 2 = 1 ), and z2 by using the following relation: 

z i=g-~(~i )  ( i = 1 , 2 ) ,  (16) 

where ~1 is an arbitrary constant and ~2 is the remain- 
ing degree of freedom after the "half"  of z2 is fixed. 
We take the special case in which ~ is real and the 
imaginary part of z2 is fixed to be zero, i.e., ~2 is real. 
We then have 

f d2zl d2z2 
I:~1 <~ 1 

I 

= f d2Ad2B6(2'(IAI2-1B[2-1) f d~2J,. 

(17) 
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(For  the 22 integration we can alternatively integrate 
from - 1 to 21.) The above choice of  the integration 
range for 22 guarantees the one-to-one correspond- 
ence of  the integration variables between both sides 
of  eq. (17).  Simple calculations give the following 
Koba-Nie lsen  factor: 

AD(21 , 22) =JiJ2 

= (1 --I~,  12) I (~, --22)(1 -~, ~2) I • (18) 

(See also ref. [ 8 ]. ) Note that the dependence on the 
gauge parameters  A and B is cancelled out between Jl 
and J2 as it should be. In order to check the gauge 
invariance ofA D under the M6bius t ransformation of  
z~ and z2, we must express 22 in ZJ D in  terms of zl, z2, 
and an arbitrary real constant 2~ by using eq. (16) .  
We have 

(1 _£~)3 Iz, - z2  1/11 - z ,  S21 
AD= ( 1 + 2 ,  I z , - z 2 l / I  1--Z,  g2 I ) 2 '  (19) 

where the _+ sign corresponds to the two possible 22 
integration ranges: from 21 to 1 and from - 1 to 21. 
Since I Zl - z 2 ] / ]  1 - z ~ & l  is M6bius invariant,  so is 
Ao. The N-point bosonic closed-string ampli tudes on 
the disk are therefore given by, after dividing out 
V(gauge), 

1 

A,,(~l)=fd22 f [ Id%f(z)~o(z , , z2)  
i=1 

21 Iz, I ~ 1 

Xl~(2) (Zl - -Z  I )6(2) (Z2 - -22 )  , (20) 

where At) (Zl, z2 ) is given by eq. ( 18 ), For the N-point 
closed-tachyon amplitudes, for instance, we have 

1 

A x =  f d 2 2  ; (i=~d2zill-zirS, I 2) 
51 Izi[ <~ 1 

N 

x l ]  I(z,-zj) (1 -z ,~)I  '~'p'p' 
i<l" 

× ( 1 - 1 2 ~ 1 2 ) [ ( z , - z 2 ) ( 1 - z l ~ x  I 

X(~(2) (ZI - -Z  I )~(2) (Z 2 - -22)  • (21) 

Note that even after our special gauge fixing (both 2, 
and 22 are real), AN(2~ ) in eq. (20)  still has a resid- 
ual gauge invariance under the t ransformation of  eq. 
( 15 ) with real A and B. We shall now check the gauge 

fixing independence OfAN(-~ l ) in eq. (20) ,  using this 
residual gauge invariance. For two arbitrary real 
numbers  2~ and ~'~ we can always find a M6bius 
t ransformation Go such that 

Aozl +Bo 
2rl = G o ( 2 1 ) - -  - -  (22) 

Bo21 +Ao ' 

where Ao and B0 are real. We can then show that 

AN(2', ) =AN(Go(2, ) ) =AN(2, ) ,  (23) 

by using the M6bius invariance of the original ampli- 
tude, eq. (3) ,  and the following identity: 

I 

f d22dD(Zl  ' Z2)~(2) (ZI - -Go(21  ) )~(2) (Z2 - -22)  
(;(1(--'1) 

1 

= f dZ2AD(G6-1 (Z l ) ,  G o - J ( z 2 ) )  
21 

X ~ ( 2 ) ( G o l ( Z l ) - 2 1 ) ( ~ ( 2 ) ( G a l ( z 2 ) - 2 2 )  , (24) 

Note that the AD given in ref. [8 ] leads to the same 
AN(2t ) as ours only when 2j =0 .  

We now extend our discussion to superstring am- 
plitudes. Let us first consider the case for the N-point  
closed-string ampli tudes on the sphere. The ampli-  
tudes are formally written as 

AN= f fi d2z, dZOf(z, 0), 
i=1 

(25) 

where f ( z ,  0) - f ( z ~  ..... ZN; 0j ..... ON; P~, --., PX), Zi are 
bosonic variables ranging over the whole complex 
plane, and 0, are complex Grassmann variables. This 
./l N is invariant  under the super-M~3bius 
transformation,  

A z + B  O(Tz+~) 
z-~g(z, O)= - -  + 

Cz+D (Cz+D)  2 ' 

7z+~ O(l+½ay) 
O--,h(z,O)= C z + ~  + Cz+D ' (26) 

where A, B, C, and D are the complex bosonic param- 
eters, and 6 and 7 are complex Grassmann parame-  
ters. Note that we have in the super-M~bius 
t ransformation three complex bosonic degrees of  
freedom, A, B, C [with D = ( B C + I ) / A ]  and two 
complex fermionic degrees of  freedom, 6 and 7. We 
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can thus fix three z~, say, z~, z2, and 23, and two 0~, say 
0t and 02, to arbitrary constants. The Koba-Nielsen 
factor is extracted as before. Namely, we change the 
integration variables from z~, z2, z3, 0~, 02, and 03 to 
A, B, C [with D= (BC+ 1 ) /A] 8, 7, and ~73 by using 
the following relation: 

z ,=g(2, , f f , ) ,  O,=h(2,,ff,) ( i = 1 , 2 , 3 ) ,  (27) 

where 2~, 22, 23, ~1, and 0"2 are arbitrary constants, but 
t73 is an integration variable. The super jacobians J] 
and J2 are defined in analogy with the bosonic case. 
For simplicity, we fix 0~ and 02 to be zero. After a 
tedious but straightforward calculation, we obtain 

J~J2 = 1(22-23-0203)(23 - 2 ,  -030t)12 

x I1-87121~7,=<~=o. (28) 

Absorbing the factor I 1 - 8712 in eq. (28) into the in- 
variant gauge volume, 

V(gauge) = f d2A d2B d2C deD 8(2) ( A D - B C  - 1 ) 

X f  d28 d271 1-8712 , (29) 

we have the following Koba-Nielsen factor: 

~S(21 , 22, 23, 01, 02, 03) 

= 1(22 -23 -02 03)(23 - z  I --0301 ) 121 o , = ~ 2 = o ,  

(30) 

where we have renamed 03 as 03. (See also ref. [ 91. ) 
The amplitude is then written as, after dividing out 
V(gauge), 

Ax(2,, 22, 23, 01, 02) 

= d-z,d O,f(z, 0)~s 
i=1 

X 8  (2) (_71 --21 )8  (2) (_72 - - 2 2 ) 8  (2) (2' 3 - -23 )  

X 8 ( 2 ) ( 0 1 -  [9"1 )8  (2) (02 -- 02) ] 6l =42=0 . ( 3 1 )  

Note that since the numbers of fixed z~ and 0, are dif- 
ferent here (three and two, respectively), AN in eq. 
(31 ) is invariant only under the following residual 
M6bius transformation: 

A z + B  0 
z-~G(z, O ) -  - -  0 ~ H ( z ,  O)= - -  

C z + D '  Cz+D" (32) 

We now consider the case for the N-point closed 
superstring amplitudes on the disk. The amplitudes 
are again formally given by eq. (25), but the z, inte- 
gration is performed over the unit disk here. The 
super-M/Sbius transformation in this case is given by 

A z + B  0(yz+f )  
z - , g ( z ,  O )  - - - + 

Bz+A (/~z +A) 2 ' 

O--,h(z,O) yz_+~ + 0(1 +½fy) 
- B - z + ~  / ~ z + A  ' ( 3 3 )  

where the + sign conforms to that in the involution 
of 0 [5]: 

(z, 0 ) -~(1 / f ,  + 0 / f ) .  (34) 

Following the same steps as before, we change the in- 
tegration variables from z~, z2, 01, and 02 to A, B (with 
IAI 2 -  I BI 2= 1 ),22, y, and 02 by using the following 
relation: 

z , = g ( 2 , , ~ ) ,  0 ,=h (2 , ,~ )  ( i = 1 , 2 ) ,  (35) 

where 2j and ~7~ are arbitrary constants, while 22 and 
02 are integration variables. We assume 2j and 22 to 
be real for simplicity. We then get, by setting tT~ = 0, 

JiJ2 = 12, -22 --01 021 I1 --5j22 _+0~ 021 

× (1--+~)I0,=o, (36) 

where we have renamed 02 as 02. Absorbing the fac- 
tor 1 _+ 7y in eq. (36) into the invariant gauge vol- 
ume, V(gauge), we have the following Koba-Nielsen 
factor: 

~D(2,, 22,01, 02) 

= ~ 12,-22-tTj02 1 I 1 - 2 , ~  ±0~02 110,=o. 
(37) 

The +sign conforms to that in eq. (34). Thus, the 
amplitude is written as, after dividing out V(gauge), 

I 

f AN(2,, tT~) = dz2 I~dZzid20J(z,O)~.@D 
i=1 21 Izil ~ 1 

xS~2~(Zl - 2 ,  )8~2~(z2 -22)8<2~ (0, -tT~ ) I ~,=0, 

163 



Volume 213, number 2 PHYSICS LETTERS B 20 October 1988 

where 2 ~ and  ~2 are real. Note  that  even after our  par- 
t icular  gauge fixing (e~ an d  e2 are real an d  8~ = 0 ) ,  
the ampl i t ude  is still i n v a r i an t  u n d e r  the residual  
M6b ius  t r ans fo rma t ion  of  eq. (32)  with C=B a n d  
D=A. (A and  B are real. ) The  gauge fixing i n d ep en d -  
ence o f A N ( e u  8j)  in  eq. (38)  can be shown in the 
same way as in  the bosonic  case. For  two sets o f  ar- 
b i t ra ry  n u m b e r s  (2~, 8~ ) and  (e'~, 8'~ ), where el a n d  
e'~ are real, we can always f ind  t r ans fo rma t ions  Go 
and  Ho such that  

In  this let ter  we have ob ta ined  the K o b a - N i e l s e n  
factors for closed-str ing ampl i tudes  on  the disk. This  
essent ial ly comple tes  the list o f  all the K o b a - N i e l s e n  
factors for bo th  boson ic  and  supersymmet r i c  s tr ing 
theories  ~1. 

We are grateful to T, K u b o t a  for his co l labora t ion  
in the early stage of  the present  work. We also t hank  
H. Kawai ,  N. Kawamoto ,  K. N i sh imura ,  N. Ohta ,  J. 
Schwarz and  Y. Tan i i  for useful  discussions.  

e', = G o ( e , ,  8, ) = 
Aoel +Bo 

Boel +Ao ' 

0 ;  = S 0 ( e l '  01 ) - -  BoffT+Ao (7,=o = 0 .  (39)  

We then  get 

A "' 7~, , . . ( z , ,  0, )1 at =o =AN( Go(el ,  01 ) '  H o ( e l  , 81 ) )1 . o = o  

=A,,(2~, 8~ ) Io,_o, (40)  

by using the super -M6bius  i nva r i ance  of  the or iginal  
ampl i tude ,  eq. (25) ,  an d  the fol lowing ident i ty:  

1 
2~ 6, f dz2; d 025jD(ZI,Z2,01,02) 

¢/11(5t ,(71 ) 

X 6  ~2' (Zl -- Go(e ,  , & ) ) 6 ( 2 ) ( z  2 - e 2 )  

Xa(2)(01 -- Ho(7, I , 8, ) )(~(2) (02 --82)I ~ =o 

I 

= f d22 f 6282 C..~D(GffI(zI,OI) , G~-I(z2,02), 
£t 

H o l ( z l ,  01), H o t  (22, 02)) 

X~(2) (G~- t (ZI ,  01 ) __~j )~(2)(G~-I(z2,  0 2 ) - e 2 )  

X d~2)(H6 -~ (Zl, 0, ) - &  ) 

x 6~2) (H0  - '  (z2, 0 = ) - # 2 ) I ~ , = 0  • (41)  

~ One should note that there is a difficulty in defining supersym- 
metry on RP> (See ref. [ 5 ]. ) 

References 

[ 1 ] E. Verlinde and H. Verlinde, Nucl. Phys. B 288 (1987) 357; 
J. Atick, G. Moore and A. Sen, IAS and SLAC preprint 
IASSNS-HEP-87/61: SLAC-PUB-4463 and references 
therein. 

[2] P. Di Vecchia et al., Nucl. Phys. B 282 (1987) 103; 
J.L. Petersen and J.R. Sidenius, Niels Bohr Institute preprint 
NBI-HE-87-35: 
P. Di Vecchia el al., preprint Nordita-87/36 P; 
A. Neveu and P. West, Phys. Lett. B 179 (1986) 235; B 180 
(1986) 34;B 193 (1987) 187; 
A. LeClair et al., SLAC reports SLAC-PUB-4306, 4307, and 
4464 (1987). 

[3] M.B. Green and J.H. Schwarz, Phys. Lett. B 151 (1985) 21. 
[4] M.R. Douglas and B. Grinstein, Phys. Lett. B 183 (1987) 

52. 
[5] H. Itoyama and P.Moxhay, Nucl. Phys. B 293 (1987) 685; 

N. Ohta, Phys. Rev. Lett. 59 (1987) 176. 
[6] Z. Koba and H.B. Nielsen, Nucl. Phys. B 12 (1969) 517. 
[7] L. Clavelli, Phys. Rev. D 9 (1974) 3449; 

M. Ademollo et al., Nucl. Phys. B 77 (1974) 189. 
[ 8 ] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, 

Vol. 2 (Cambridge U.P., Cambridge, 1987) p. 63. 
[ 9 ] K. Hornfeck, Nucl. Phys. B 293 ( 1987 ) 189. 

164 


