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Recently, Faustov et al. have obtained, by a renormalization group technique, the asymptotic contribution to the muon  anom- 
alous magnetic moment  arising from the eighth-order diagrams containing two electron vacuum-polarization loops, one within 
the other. Their result disagrees strongly with the value previously obtained by numerical evaluation of  exact eighth-order inte- 
grals. We have identified the cause of  this discrepancy to be an incorrect four-loop Callan-Symanzik fl-function. Using the cor- 
rected fl-function, which takes the effect of  finite electron mass into account, we find that the result of  Faustov et al. agrees very 
well with that of  numerical integration. 

I. Introduction 

Since the muon mass M is much larger than the 
electron mass m ( M / m ~  207), the contribution to 
the muon anomalous magnetic moment a ,  arising 
from virtual photons including electron vacuum-po- 
larization loops is dominated by the short-distance 
behavior of the photon propagator. Exploiting the 
close relationship between this fact and the renor- 
malization procedure, it is possible to determine the 
In (M/m) structure of  a large class of diagrams con- 
tributing to the muon anomaly [ 1,2 ]. Such informa- 
tion is very useful since it enables us to estimate the 
magnitude of higher-order contributions to a~ relia- 
bly without resorting to extensive numerical work. 

In this paper we focus our attention on the dia- 
grams of the type shown in fig. 1, generated from a 
second-order muon vertex by insertion of the elec- 
tron vacuum-polarization diagram G. As is well 
known [2 ], the large M/m structure, including the 

Fig. 1. Diagram generated by inserting an electron vacuum-po- 
larization diagram G in the second-order muon vertex. 

constant term, of the magnetic moment contribution 
of these diagrams can be determined completely by 
the asymptotic behavior of G. For the eighth-order 
contribution to au from the diagrams of fig. 2, how- 
ever, the constant term was left undetermined since 
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Fig. 2. Muon vertex diagrams containing vacuum-polarization diagrams of fig. 3. 

-~ rn  

Fig. 3. Sixth-order vacuum polarization diagrams containing two closed electron loops, one within the other, and a diagram containing 
the corresponding mass counterterm -8m. 

the corresponding constant term of  the sixth-order 
asymptot ic  photon propagator  represented by the 
diagrams of  fig. 3 was not known [2].  Recently, 
Faustov et al. [3 ] have a t tempted  to determine this 
constant term by means of  a renormalizat ion group 
technique. Unfortunately their result, which is ex- 
pected to be correct within an uncertainty of  the or- 
der of  m/M, disagrees strongly with the value previ- 
ously obtained [ 4 ] by direct numerical  evaluation of  
exact eighth-order integrals. 

In this paper  we analyze this discrepancy and show 
that it is caused by the use in ref. [ 3 ] o f  the incom- 
plete four-loop Cal lan-Symanzik  //-function ob- 
tained by Calmet  and de Rafael [ 5 ]. We have found 
a correction term to their fl-function, taking into ac- 
count the effect of  finite electron mass properly. The 
disagreement disappears when this term is included. 
The derivation of  the correct/ /-function is described 
in detail in a separate paper  [ 6 ]. 

2. Asymptotic photon propagator and the muon 
anomaly 

The general expression for the renormalized pho- 
ton propagator  has the form 

D~(q)  = - i  g~'~' a) q2 dR(q 2, m2, 

+ the q~'q~ t e r m ,  ( 1 ) 

where dR can be written as 

1 
dR(q 2, m 2, a)---- 1 + otHR(q2, m2 ' a )  (2) 

and HR is the proper  photon self-energy on the on- 
shell (OS) renormalizat ion scheme; it is defined by 

HR ( q2=O, m2, 0t ) =O . (3)  

We are interested in the asymptot ic  behavior  of  the 
photon propagator  and the corresponding muon 
anomaly.  The asymptot ic  part  of  the renormalized 
photon propagator  d~  is defined as follows: At each 
order of  perturbat ion theory drop terms that vanish 
in the limit - q 2 / m 2__, ov while keeping divergent and 
constant terms. The asymptot ic  photon propagator  
d~  satisfies the Cal lan-Symanzik  equation with the 
inhomogeneous term dropped [ 7 ]: 

(m  ~-~ .-F fl(oOot ~--~)o~d~(q2, m2, 0t)=O , (4)  
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where 

fl(ot) = Z~ 1 m dZ3 
dm ' 

Z3 = 1 -otH(A2; O, m 2, a )  . (5) 

As is shown in ref. [2], the contribution to the 
muon anomaly from the diagrams of fig. 1 can be ex- 
pressed in terms of dR as 

a~,(M/m, a) 
1 

c~ d x ( 1 - x )  dR l _ x r n 2  a --1 (6) 
7~ 

0 

The asymptotic muon anomaly a~,  which is ob- 
tained by dropping terms o fa ,  that vanish in the limit 
M / m ~ o e ,  is a polynomial in l n (M/m)  in any finite 
order in a, satisfies a Callan-Symanzik equation of 
the form (4), and can be expressed in terms of d~ as 

a~(M/m,  or) 
1 

a o) 1] _ ( 7 )  

0 

The error caused by this approximation is O (m/M)  
(see ref. [2] ). 

The function d~ is related to the asymptotic proper 
photon self-energy H~ ° as 

d~ = ( 1 + a H ~ )  -~ (8) 

H~ can be written as a power series in or/re as 
2 3 

a H ~ - = P  a+_zr P 2 ( a )  + ' 3 ( a )  + ' ' ' '  (9) 

where the coefficients are of the form 

P~=a, +b~L, P2=a2+b2L, 

P3 =a3 + b3L + c3 L2 , 

P4 -----a4 +b4Z-l-c4LZ+d4 L3 . . . .  , (10) 

with 

q2 
L - I n  - m~. (11) 

P~ and P2 receive contributions from only one elec- 
tron loop and need no further indices. For i~> 3 it is 
useful to express Pi as a sum ofP~ 'j , p~21, etc., where 
[ 1 ], [ 2 ], etc. refer to the number of closed electron 

loops. We shall decompose ai, bi, ... similarly. The first 
few coefficients of (10) are known (see (4.14)-  
(4.19) ofref. [2]) :  

a l = ~ ,  b , = - ~ ,  

a2 = ~ 4 - ( ( 3 ) ,  b 2 = - ~ ,  

1 ~[21 11 / ~ ( 3 )  b l] :3"~ , ~3 = ~ - -  

~ ' (12) C 1 ] = 0 ,  ¢ 2l ~-~----24, 

where ( (n)  is the Riemann (-function of argument n. 
In this paper we concentrate on the diagrams of fig. 

3, which have two closed electron loops, one within 
the other, and thus contribute to P3 ~21, or equiva- 
lently to a~ 21 , b3 I2~ , c~ 21 . It is seen from (8) and (9) 
that their contribution to d~ is 

( - a ~  2' - b  t2' L - c  t2' L 2'{a'~3 (13) 
3 3 • 

Inserting ( 13 ) in (7) we find the contribution of the 
diagrams of fig. 2 to the eighth-order muon anomaly 
robe [21 

4 

a°~[fig. 2]=(~)(--a~2'lo--b~21Ii--c~2112 

-- (2b~2Jlo +ac~2JI~) In M _4c~21Ioln2M),  
m m/  

(14) 

where 
! 

x2 
I m -  d x ( 1 - x )  lnml_----~, m = 0 , 1 , 2  . . . . .  

0 

Io=½, I i = - ~ ,  I 2 = ~ + 2 ( ( 2 ) ,  etc. (15) 

Since b~ 2j and c3 t2j are known, the evaluation o f a ~  
[fig. 21 is reduced to that ofa~ 21 . 

- 121 3. Sketch of derivation o t a  3 in ref. [3] 

In ref. [3] the coefficient a~2] is obtained, not di- 
rectly, but by a roundabout way applying the renor- 
malization scheme independence of the invariant 
charge a -  or~ ( 1 + odI). Specifically they compare 
in the MOM scheme and the on-shell scheme. 

In the MOM scheme, one has 

//MOM ( q  2, 2 2, aMOM) = 0  at q2= _22 .  (16) 
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Thus 

a(q2= __/]2) = OLMOM (~.) • (17) 

From the invariance of a and the asymptotic limit of 
( 17 ) one finds 

aos (18) 
OdMOM (/~) = 1 + O~os/'/~ ( --2 2, m E, Otos ) ' 

where the left-hand side is the value for the massless 
QED in the MOM scheme, aMOM and ¢Xos are related 
by 

00~MOM 
~/(OgMOM) --  - -  f los (OLos)  , ( 1 9 )  

0aos 

~t and flos being the Gell-Mann-Low and Callan- 
Symanzik functions, respectively. 

These equations enable us to set up relations among 
the expansion coefficients o f a H ~  of (9), ~', andflos, 
where 

Z " Z  "2 " Z  "3  
q / ( z , = z [ q / , ~ + ~ u 2 ( ~ )  + q z 3 ( ~ ) + . . . ] ,  (20, 

2 3 

Substituting these expansions in (18) and (19) one 
finds 

~,4 t~ =8~4 ~3~ + 16~2~a, + 8~2a~ 

- 16fl, (a~ 21 + a ,  a2 ) ,  (22)  

which was first obtained in ref. [ 3 ]. The coefficients 
known from previous works are [ 8,9 ] 

~ = ~ ,  q/2 = 1, ~/~l] : _ _ 1  , (23) 

~,~21 2 3 8  ~ , t31 = - v + 3 ( ( 3 ) ,  = 8 - ~ ( ( 3 ) ,  (23cont'd) 

and [5,10] 

/~1 = 2 ,  f 1 2 = / ,  ]~1] = _ 1  , 

= 7 #4t~i 35 4 fl~2j - ~ ,  = ~ + ~ ( 2 ) ,  (24) 

where ~u t31 and f14 t3J are the parts of ~u4 and f14 corre- 
sponding to the diagrams shown in fig. 4. 

Making use of (23) and (24) one finds from (22) 
that 

a~2] 29 1 19 = ) + ~ ( ( 3 ) - ~  0.743 075 (25) - ~ + ~ ( 2  .... 

which unfortunately disagrees with the value 

a~ 21 _~ -0 .293  , (26) 

obtained from (12), (14), and the numerical evalu- 
ation of the exact formula for a,  [fig. 2] reported in 
ref. [4] [see (41) below]. 

We have carefully examined the derivation of (22) 
and convinced ourselves that (22) contains no error. 
We have noted, however, that ref. [3 ] makes use of 
f14 t3~ obtained in ref. [ 5 ] and listed in (24), in which 
an additional term required by the finiteness of the 
electron mass is overlooked. We shall show in the next 
section that the correct flt3l indeed differs by a finite 
amount from that of ref. [ 5 ]. 

4. Correction to ff~l of ref. [5] 

In order to examine how the coefficients fl, of (21 ) 
are determined, let us rewrite (4) as 

3 + f l ( c ~ ) ( c x ~  1)]c~//~ (27) fl(o~) = [ m  ~m m - . 

k 

k e 

Fig. 4. Eighth-order vacuum-polarization diagrams containing two internal closed electron loops in the same photon line. Corresponding 
counterterm diagrams are not shown. 
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Substituting (9) and (21) in (27), one finds 

f l l = m ~ m P i ,  f12 =m P2, 

0 

/~4 = m  ~m P4 +2ill P3 +f12P2, 

f l ,=m-~mPs+3fl,  P4+2~2P3+P3P2 . . . . .  (28) 

These equations can be decomposed further into 
component equations by expressing P~ and fl~ as sums 
of terms classified according to the number of closed 
electron loops. (This decomposition can be mecha- 
nized by introducing N fermions [ I 1 ]. We shall not 
bother to do so here.) In particular, P3 ~21 is a part of 
P3 represented by the diagrams of fig. 3. Similarly, 
P4 TM is represented by the diagrams of fig. 4. With 
fl~21 and ,-4RI3~ defined correspondingly, we obtain 
from (28) the equations 

fll21_m 0 p~2i +fliP2 
3 -- ~m 

flt431=m o~ Pt431+ 2fllP~ 21, .... (29) 

It is convenient to introduce here the concept of 
internal electron mass mi and external electron mass 
me. Let us call a photon self-energy subdiagram inter- 
nal if it is not attached to photon lines carrying the 
external momentum q. The mass in any electron loop 
which is left after all internal photon self-energy parts 
in a vacuum-polarization diagram are shrunk down 
to points will be called external. All other electron 
masses, in the initial Feynman diagrams, will be called 
internal. 

Let/~ be the expression obtained from Pz by replac- 
ing all its internal photon self-energy parts by their 
asymptotic forms. Let 

APt = P , - /3 , .  (30) 

With the help of the Weinberg theorem it is seen that 
AP~ 21 and AP4t3J are finite constants in the limit 
_q2 _,~. Thus we obtain 

m O Ap[21 = 0  m x~--0 AP4 t3] =0 (31 
Om 3 ' om 

Referring back to (10), AP3 t21 and AP4 t3l contribute 
only to a~ 21 and a 4131 , respectively. 

It is important to note that the determination of fit 
worked out in ref. [ 10 ] applies to Pt but not to Pt. For 
instance, the equation (which corresponds to (4.17 ) 
ofref. [ 10] ) 

m i ~ 0  P TM +2fll/5~ 2] =0  (32) 
0mi 4 

where mi is the internal mass, holds for P~ but not for 
/'/. Let us denote the fl-function obtained in ref. [ 5 ] 
as ff4 t3 J which satisfies the relation (eq. (5.3) of ref. 
[10]) 

0 /34t31 ffI31 =me (33) t~4 ~ m  e ' 

me being the external mass. Now, rewriting fin t31 of 
(29) as 

0 ig[3]+mi~mi/3413 l n4"l----me m --, 

+ 2]~IP~ 2] +2~1 ~e~ 2] + m  ~-~n ~d~[3] , (34) 

and making use of (31), (32), and (33), we obtain 

fin t31 =fin t'l +2fl~ AP~ 21 . (35) 

Thus ff4 TM calculated in ref. [5 ] requires a correction 
term. The appearance of the AP~ 2l term in (3 5 ) can 
be traced to the fact that the cancellation ofln ( - q Z /  
m 2) between the O/Om and O/Oc~ terms in (27), of 
which (32) is an example, does not extend to the 
constant term: O/Om drops the constant term while 
O/Oo~ does not. 

In order to understand why AP~ 21 ¢ 0 for massive 
QED, note that, while we are interested in the large q 
behavior of the photon propagator, internal photon 
momentum k is not constrained at all by q and free 
to take any value. (See fig. 3 for the notation.) For 
I k l >> m the presence of internal photon self-energy 
part can be ignored and the contribution of this re- 
gion to P3 t21 and/~21 are identical. On the other hand, 
the internal photon self-energy part has quite differ- 
ent effects on p~21 and/~21 in the Ikl = O ( m )  re- 
gion. This leads to non-vanishing AP~ 2~ . Note that 
the second region is absent in massless QED. In other 
words, the large q behavior and m = 0 behavior of a 
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photon  propagator  are different  when internal  pho- 
ton self-energy parts  are included.  

To conf i rm AP~ 2] # 0, we have evaluated it direct ly 

by analytic means  [ 6 ]: 

z~do~2 ] 23 = ~ - ( ( 2 ) - 7 ( ( 3 ) .  (36)  

Adding this to the result of  ref. [3] ,  we find a~ 21 for 

massive QED to be 

a~2] 307 2 545 = - 8-~- gff(2) + ~ ( 3 )  

= -0 .3145839 . . . ,  (37) 

which agrees with (26) obtained from numerical 
means. F rom (35) ,  (36) ,  and  the value of]~4 [31 re- 
por ted  in ref. [ 5 ], we also obta in  

]~[3] 901 8 7 = ~ - ~ ( 2 ) - ~ ( 3 )  

= -0 .247031  481 .... (38) 

a~[fig. 2] = 1.441 6 (18 )  ( ~ )  4 

within the uncer ta inty  of  0 ( m / M ) .  

(41)  
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5. Asymptotic contribution of diagrams of fig. 2 to a~ 

Now that  we have a~2] that  takes care of  non-van-  
ishing electron mass, it is easy to evaluate  (14) .  We 
find 

aT[f ig .  2 ] = ( ~ 2  1 n 2 M  + [ ~ ( 3 ) - ~ ]  In ~M 
\ m m 

153' -t- ~2~( 2 ) - Ti3~( 3 ) + 1728 

4 

= 1 . 4 5 2 5 7 0 . . . ( ~ )  , (39)  

where we used the value [ 12 ] 

M / m  = 206.768 262 ( 30 ) .  (40)  

The value (39)  is in agreement  with the numerica l  
result ( (2.14 ) of  ref. [ 4 ] ) 
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