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The QED Callan-Symanzik fl function is calculated for a certain class of higher-order photon self-energy diagrams within the 
framework of perturbative QED. It is found that the formulation of de Rafael and Rosner is valid up to the sixth order but must 
be modified from the eighth order on. Correction terms are evaluated explicitly. The result, applied to a renormalization group 
calculation of an eighth-order contribution to the muon anomalous magnetic moment, gives a good agreement with the exact 
numerical evaluation. 

Higher-order  Ca l l an -Symanz ik  fl function is not 
only impor tan t  for the unders tanding  o f  the renor- 
mal iza t ion  mechanism but  also useful for concrete 
calculat ions of  certain physical  quanti t ies.  As a first 
step toward evaluat ion o f  higher-order  QED fl func- 
t ion in the on-shell  scheme, the complete  s ixth-order  
term was obtained by de Rafael and Rosner some t ime 
ago [1] .  Applying the technique developed in ref. 
[ 1 ], Calmet  and de Rafael calculated a part  o f  the 
e ighth-order  term [ 2 ], and Coquereaux extended the 
analysis further to a class o f  higher-order  terms [ 3 ]. 

In this letter we reexamine the formula t ion  o f  ref. 
[ 1 ] and show that  the par t icular  s impl i f icat ion they 
have made  in which internal  photon  propagators  are 
replaced by their  asymptot ic  forms is val id  only up to 
the s ixth-order  term. This implies  that  the results of  
refs. [2,3 ], which go beyond the sixth order, may need 
corrections. We f ind that  their  s impl i f icat ion indeed 
causes and error  in the evaluat ion of  the overall  
counter terms o f  the proper  photon  self-energy. We 
calculate the correct ion terms explicitly. 

The renormal ized  photon propagator  can be writ- 
ten in the form 

D~(q )  = - i  ~ dR(q 2, m 2, a )  + t h e  q~'q" term,  ( 1 ) 
q 

where dR is related to the proper  photon  self-energy 
HR by 

1 
dR(q 2, m 2, o~)~ 1 +HR(q 2, m R, a)  (2)  

The asymptotic part  o f  the renormal ized  propaga- 
tor d~R is defined by dropping  terms of  dR that  vanish 
in the l imi t  -q2/m2-- .~ .  Thus, it consists only of  
those terms o f  dR that  are divergent  or finite in this 
l imit .  This d~,  defined in the on-shell renormal iza-  
t ion scheme, satisfies the homogeneous  Ca l lan-  
Symanzik  equation: 

m O ( -~--m+fl(cQo~-~-d)ad~(q2, m2 ,~ )=O.  (3)  
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In terms of the asymptotic proper photon self-energy 
/-/~, which is related to d~ ° by (2), this equation can 
be rewritten as 

0 

× [1 + H ~ ( q  2, m 2, 0/)] = 0 .  (4) 

Substituting the power series expansions 

0/ 0 / 2  0 / 3  

(5 (°)3 H ~  = a-- P~ -~ ])2+ -~ P3+... (5) 

in eq. (4), we obtain the following order-by-order re- 
lations in powers of 0//zr: 

0 n~2 
f l . = m ~ m P . +  Z ( n - l - i ) f l ,  P , _ , ,  (6) 

i ~ 1  

where the summation is empty for n=  1 and 2. By 
integrating (6) with respect to m, we obtain 

PI = a l -  ½/~tL , 

P2 =a2  - k fl2 L , 

P3 = a3 - ( ½f13 -- ½J~l a 2 ) L -  ~fl t f l2L 2 , 

P4 =a4  - ( ½ ~4 - ½ f12a2 - fll a3 ) L 

- ~fll a 2 ) L  - ~ f l l ~ 8 2 L  , 

• -., (7)  

where the a /s  are integration constants and 
L - I n ( - q 2 / m 2 ) .  I f  we write the P/s in the form 

P1 = a l  + b l L ,  

P2 =a2  + b2L  , 

P3 =a3 + b3L  + c3L 2 , 

/°4 =a4 + b4L  + c4L 2 + d4L 3 , 

• " ,  (8) 

the/~/s can be expressed in terms of the a/s  and b/s 
as  

f l l  = - - 2 b l  , 

f12 = - 2 b 2 ,  

f13 = -2b3  - 2 a z b l  , (9) 
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f14 = - 2b4 - 2a2 b2 - 4a3 bl , 

.... (9 cont 'd) 

It is useful to express Pi as a sum ofP~ 11, p]2j  . . . .  , 

where the superscripts [ 1 ], [ 2 ] .... refer to the num- 
ber of  closed electron loops. We shall likewise decom- 
pose fli, ai, and bi. This decomposition in fact corre- 
sponds to power series in N, where N is the number 
of  fermion species (we set N =  1 at the end of the cal- 
culation) [3]. In other words, [ 1 ], [2] . . . .  corre- 
spond to terms of order N, N 2 . . . . .  The first few of 
these coefficients obtained previously are as follows: 
[1,2]: 

p , = ~ ,  ~2= 1 , 

~,~31 35 4 
= ~ + ~ ( ( 2 ) .  (10) 

Similarly, we have (see, for example, ref. [4] and 
references therein) 

l 5 b l = - ~ ,  a t = ~ ,  

b 2 = - ¼ ,  a2 = ~ 4 - ~ ( 3 ) ,  

c~11=0,  c~21=--½blb2=--h, 
b~ | ]  = ~  2 2] II 1 , b~ = ~ - ~ ( ( 3 ) ,  

~ 2 ]  29 1 19 = - ~ + ~ ( 2 ) +  ~ ( 3 )  (11) 

As is discussed below,/~31 and 8~21 given above are 
actually incorrect. Tildes are attached to distinguish 
them from the correct fl~3~ and a~ 2J. 

In this paper we concentrate on the contributions 
to the fl function which are the leading terms for large 
N, i.e., fltkl with k=  n -  1, although a similar argu- 
ment holds for other cases, too. For k = n -  1, eq. (6) 
reduces to 

0P~ ' - t !  
f l ~ " - l J = m  Om +(n--2) f l 'Pt"~--121 '  (12) 

since fll is of order N, whereas fli and Pi (i >1 2) are at 
most of order N i- 1. 

Let P~ be the expression obtained from P,, by re- 
placing all its internal photon self-energy parts by their 
asymptotic forms, where by internal self-energy parts 
we mean those which are not directly attached to the 
external momentum q. We define AP. by 

APn - P. - /~ .  • (13) 
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Let 1~ be the "fl function" that is obtained by the re- 
placement P , ~ P ,  in (12).  As is readily seen/~. and 
fin are related by 

0Ap,t"- ' ] 
flt"-'J =~t"- 'J  + m 

Om 

+ ( n -  2)ill APt"_] 21 . (14) 

Note that it was/~, and not ft. that was actually ob- 
tained in ref. [ 1 ]. The crucial message of  this letter 
is that/~, is in general different from fin, since the ex- 
ternal photon momentum q taking large values pro- 
vides no constraint at all on the values taken by the 
internal photon momenta.  

Our remaining task is to evaluate explicitly the cor- 
rection terms in ft, due to AP. In fig. 1 we show the 

2X  amp 
t o i * i c  

[a) 

2X ~ lasympfot [ C 

+ 2 X W ~  

(b) 

:exocf ~econd-order photon self-energy part 
:mass counterferm 

: o v e r a l  I c o u n t e r f e r m  

Fig. 1. Diagrams contributing to ptn-~l .  Diagrams in ( la ) con- 
sist of asymptotic (large q) limits and overall counterterms (de- 
fined at q=0). Diagrams in (lb) are those containing electron 
mass counterterms corresponding to the diagrams of ( I a). 

diagrams including counterterms that contribute to 
p~n- ~l. We have omitted the electron wavefunction 
renormalization counterterm and the vertex renor- 
malization counterterm, since they cancel each other 
by the Ward identity. There are n - 2  internal elec- 
tron loops in each diagram. The corresponding dia- 
grams for/~tn- ~ l are likewise shown in fig. 2. Accord- 
ing to the Weinberg theorem [5] the difference 
A p ~ - I I  comes only from the overall counterterms 
shown in fig. 3. Furthermore it is a finite constant 
independent o f  m or q. Its derivative with respect to 
m therefore vanishes, and we have 

f l [ - - , l  =/~[-- t  I + (n--2)f l ,  AP.["_~ 21 . (15) 

Since P~ and P2 have no internal photon self-energy 
part, we have 

AP,  = A P e = 0  , (16) 

while higher order AP/s are nonvanishing. Thus the 

t o t l c  

[°) 

q ~ q 

a s y m p f o t  I ¢  

+ 2 x ~  

(b) 
:asympfotic second-order phofon self-energy part 

Fig. 2. Diagrams contributing to /~ t - -  ~ 1, which are obtained from 
the diagrams of fig. l by replacing the exact second-order photon 
self-energy parts by their asymptotic forms. 
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@@4- 
(o) 

(b) 

- - . . f g : 7 ~ - - - . - . - ( g ) - - . . ( g ~  . . . . .  ~ . . . .  

n - 2  n - 2  

Fig. 3. Diagrams representing AP t"- ~ 1. 

formulation of  ref. [ 1] gives correct results up to 
n = 3, whereas correction terms are needed for n >i 4. 

We now calculate the correction term AP~ " -  ~l in 
( 15 ). We first consider the "direct"  contribution of  
fig. 3a. Following the notation of  ref. [ 1 ], we write 
this contribution as 

n 

( ~ )  ~ d ' ~ - l l ( f i g .  3a) 

f d4k 
= j (-T~) 4 (_i) (o~t : -~]  _ a y t . - ~ l )  

1 02HUVpa 
;,( ~g,,,go~ ~a-fa~ ~a~ , (17)  

q,~ q# q=o 

where 

~c2101 __Ooo[01 g a a  
ao - ' - p o  - k 2 + i e ,  

( k p k ~  l ol 
12tp~]= - g,,, k z j ~ n to'  (18) 

~'~ [ n -  21 
pa 

= ( _ l ) , - 2 ( g p  - - -  

n--2 

( 18 cont 'd )  

with 

o j = a , + b l ( 1 - 2 m 2 " ~ N /  
_ k 2 j  1+ - -  

X/1 + 4 m 2 / ( - k  z) + 1 

× l n x / l + 4 m 2 / ( _ k 2 ) _  1 -- - - -  

4 m  2 

_ k  2 

4 m 2 

3 - k  2' (19) 

al and bt being given by ( 11 ). ~ is obtained f rom 
g2po by replacing ~ with N ~  where N ~  is identical 
with Pl defined in (5) and can be written as 

k 2 

g0~=Pl  = a l  +b l  In -- m-- 5 . (20) 

H u"p° (q, k, m 2) 
scattering amplitude. Introducing ~ by 

--V 

02HU"P°(q, k, m 2) q=O 

- ~g~"gP~g~'P Oq~, Oq~ ' 

is the lowest-order light-by-light 

(21) 

we can rewrite ( 17 ) as 

zxp~ n- ,l (fig. 3 a ) = ( _ l )  n - '  

1 

f 1 + 8  X ~  d 8 [ N n - 2 - - ( N ~ )  n - 2 1 8 ( 1 _ 8 ~ - ~ ( 8 ) ,  (22) 
0 

where the integration variable 8 is related to - k  2 by 
- k 2 = [ ( 1 - 0)2/01 m 2. In terms of  0 we have [ 3 ] 

4 8 ( 1 _ 8 ) -  ( 1 - 4 8 + 8 2 )  (1 + 8 )  l n 8  
~ = a l  +b l  ( 1 _ 8 ) 3  , 

( 1 - -8 )  2 
t~°~=a~ +bl l n ~ ,  

02 (1+02)  In 0 1+1082+04  
.~(8) = - 4 8  - 4  ( 1 + 8 ) 5 ( 1 - 8 )  ( 1 + 8 )  4 

(23) 

Let us next consider the contribution to AP~ tn-~l 
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from the electron mass counterterm (see fig. 3b). 
Since the mass derivative of the second-order photon 
self-energy is given by 

1 

0/-I (2) OZ f dx 4mx( 1 - x )  
(24) Om - -  ~Z J m2--x(1- -x )q  2' 

0 

we have 

\ n /  

= - - A m  In-21 0/-/(2)0m q~=o-- 23 a~z Am [n-2l--m ' (25) 

where Am l,-2l is the difference of the electron self- 
mass arising from the diagram of fig. 4. Am l,-21 can 
be calculated as follows: Since the second-order mass 
counterterm with photon mass squared t is given by 
8mtt 2) =X}2)Qk=m), we have 

AmEn-21=----  dt dO ( 2 - 0 )  
n 2  

0 0 

X l n [ m 2 ( 1 - 0 ) e + 0 t ]  R(t)  , (26) 

where the spectral function R(t)  is defined by [see 
(18)] 

0o 

f d t R ( t )  ( _  1)._ 2 1 
d k 2 - t  - k2+i  e 
0 

By writing 

i dt p(t) k2_t  
0 

~(-1)n-2{[OT(k2)]n-2-[Ul~(k2)]n-2},  (28) 

we can express R(t)  in terms ofp( t )  as 

r" '1 

I I 

- IAm I I 

~ - I I 
L. d 

Fig. 4. Diagrams representing ~m In-2]. See fig. 3 to find the 
meaning of the symbols. 

R ( t ) =  - 6 ( 0  f Tp(t . 
0 

Substituting (29) into (26), we find 
n - - I  1 

Amid-21= ~- dO ( 2 - 0 )  
0 

oo 

× ; d t P ( f )  ln(l+m2(~t-.__O)2) • 
0 

(29) 

(30) 

Note that the limit at t=0  is unambiguous in (30), 
although it is not properly exhibited in (27) - (29  ) to 
avoid excessive notation. 

Integrating by parts in 0 and using (28) with 
k2--- - [(1-O)2/O]m 2, we can write Am [n-2l as a 
single integral over 0. Substituting this in (25), we 
finally have 

AP,t"- II (fig. 3b )=  ( -  1)" - '  
t 

x~d0 [~"-2- (t~)"-2l (1+0)(3-0)0 
0 

(31) 
where ~ a n d  ~oo are given by (23). 

From (22) and (31) we have calculated zkP~ 2] 
analytically: 

AP~2] (fig. 3a) = ~ - 7 ~ ( 3 ) ,  

Ap~21(fig. 3b) = ½ - ( ( 2 ) .  (32) 

Using (15), (32), and/~ 31 given in (10), we have 

f l ~ 3 ] ~ .  901  _ 8 r / ' " ) ~  ~8((3) (33) 
6 4 8  - -  9 ~  ~. ~ ! - -  

We list in table 1 the values of fltn-ll  for n~< 10 
[ see ( 15 ) ], which were obtained by numerically in- 
tegrating/~ n-tl  (eqs. (5.6) and (5.7) ofref.  [3]) ,  
(22), and (31). Note that the magnitudes of these 
values stay within order 1, although the n = 10 result 
shows a sign of eventual growth. (Our calculation for 
n > 10 suffers from roundoff errors and is not accu- 
rate enough to show clearly the onset of exponential 
growth of perturbation series. ) This result is in sharp 
contrast to the behavior of/7~ n-l] found in ref. [3] 
which grows much more rapidly with increasing n 
(see table I of ref. [ 3 ] ). 

In order to understand the cause of this difference, 

197 



Volume 260, number 1,2 PHYSICS LETTERS B 9 May 1991 

Table 1 
Numerical values for/~,~"- i I. 

n flt,,-~ (fig. la) //t,, ,1 (fig. lb) 

2 -0.5 1.0 
3 -0.0555... -0.7222... 
4 -0.000916... -0.2461... 
5 0.018 -0.21 
6 0.038 -0.27 
7 0.076 -0.44 
8 0.17 -0.87 
9 0.41 -2.0 

10 1.1 -5.4 

it is useful to examine the large n behavior  of  the con- 
tr ibution to ]7~ ~- 11 from fig. 2b, which is given by [ 3 ] 

j ~ n [ n - I  ] ( f i g .  2b ) 

= n ! [ ( _  1)n(2)  "+'  e S / 6 + 4 ( ~ )  ' ,+' e -S/3]  

× { l + O ( n - ' ) ) .  (34)  

The first and second terms within the brackets reflect 
the singularit ies o f ~  °~ at 0=  1 (or  k 2 = 0 )  and 0 = 0  
(or  k 2 = ~ ) ,  respectively [ see (23)  ]. The first term 
dominates  the second in magni tude and is the main 
cause of  rapid  growth of/~t~- ~ 7. On the other  hand,  
the large n formula  fo r /~ tn - , l ( f ig ,  l b )  has only the 
second term of  (34)  since the exact photon  propa-  
gator ~ has no singularity at 0---1. This is why 
/~t , -  ~ in table 1 has not s tarted growing yet. Clearly, 
the rapid  growth of/~ tn-  l j is nothing but  an art ifact  
of  the unphysical  singularity of  the asymptot ic  pho- 
ton propagator  ~r ~. 

It is amusing to note that, for posit ive o~Dr, the per- 
turbat ion series 

(35) 
n = O  

is eventually domina ted  by the second term of  (34)  
since the first term is Borel-summable while the sec- 

ond is not. Of  course, the series obta ined  by replacing 
/ ~ n - l l  with f l tn - , l  in (35)  is also non-Borel-sum- 
mable  for posit ive ot/n. 

Finally,  by adding the correct ion terms (32)  to the 
value ~2 ]  in ( 11 ), which was recently obta ined in 
ref. [4] ,  we arrive at 

a~2l = 307 2 545 - 8 ~ z -  ~ ( 2 )  +3~-~ (3 ) .  (36)  

As is well known [6,7],  a large class of  diagrams 
contr ibut ing to the muon anomalous  magnetic mo- 
ment  can be evaluated analytical ly by the renormali-  
zat ion group technique within an accuracy of  order  
re~M, where M is the muon  mass. Our  result (36)  
enables us to extend this feature to an addi t ional  set 
of  muon vertex diagrams. The analytic value follow- 
ing from (36)  is found to be in excellent agreement 
[ 8 ] with the exact numerical  evaluat ion [ 9 ] 
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