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We have examined whether a non-renormalizable field theory can have a non-trivial fixed point. 
As a simple example, SU(2) pure Yang-Mills theory in five dimensions is considered with a lattice 
regularization. Taking into account both fundamental and adjoint representations, we search for a 
non-trivial second-order phase transition by Monte Carlo techniques. Along the phase boundary for 
deconfining phase transition, energy discontinuities of hysteresis curves tend to diminish as the 
coupling constant for adjoint representation decreases to large negative values. However, in order 
to determine the order of phase transition for such values of coupling constants, more elaborate work 
will be necessary. 

§ 1. Introduction 

Renormalizability and gauge invariance of field theories have played a major role 
as guiding principles in model building. Their importance is most clearly demon­
strated by the remarkable success of the standard model of elementary particles. 
The definition of renormalizability, however, is based merely on perturbation theory, 
and we should not necessarily assume that a non-renormalizable theory is not funda­
mental. -While non-renormalizability of a theory implies that we have an ill-defined 
perturb.ation theory around the Gaussian fixed point, we may still have a non-trivial 
fixed point in the coupling constant space where we can take a sound continuum limit. 
The theory is then well-defined around this fixed point. This observation is impor­
tant since four-dimensional quantum gravity is non-renormalizable. 

A well-known example of a non-renormalizabl~ field theory which has a non­
trivial fixed point is the three-dimensional non-linear (NL) O"-model. This theory is 
renormalizable and asymptotically free in two dimensions. Considering an 6 expan­
sion l

) of the theory near two dimensions, one can deduce that there exists a non-trivial 
fixed point in greater than two dimensions. \Ve can understand why the three­
dimensional NL O"-model has a non-trivial fixed point, since the NL O"-model belongs 
to the same universality class as the (P model in dimensions 2 < d < 4 and the ¢4 theory 
is (super-)renormalizable for d ::::;4. We can therefore take 6 even close to 2 as far as 
the qualitative features of the theory are concerned. 

The case for gravity is similar to ~he above example in the sense that two­
dimensional gravity is renormalizable and asymptotically free. Recently, the 6-

expansion of the theory has been extensively studied.2
) In the limit 6=2, the exis­

tence of a non-trivial fixed point is yet to be established. More comprehensive 
numerical searches are needed.3

) 

*) Present address: Newman Laboratory, Cornell University, Ithaca, NY 14853, U.S.A. 
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A simpler case may be the Yang-Mills theory. This theory in four dimensions is 
reno~malizable and asymptotically free. An E-expansion of the theory around d =4 
was studied some time ago4

) and the existence of a non-trivial fixed point has been 
inferred for d>4. In the present work we study an SU(2) pure Yang-Mills theory in 
five dimensions on the lattice. Using Monte Carlo techniques, we search for a 
non-trivial fixed point as a second-order phase transition point. 

The paper is organized as follows. In § 2 we present the results of our Monte 
Carlo simulation for d=5 SU(2) Yang-Mills theory with the fundamental representa­
tion. In § 3 we take into account both fundamental and adjoint representations, and 
present a detailed analysis of the deconfining phase transition. A discussion is given 
in § 4. 

§ 2. SU(2) Yang-Mills theory in five 
dimensions with fundamental representation 

An SU(N) pure Yang-Mills theory in four dimensions is renormalizable and 
asymptotically free. This theory is non-renormalizable in d >4, but the E-expansion 
in d =4 + E gives the following (3 function: 

(2 '1) 

which, in turn, suggests the existence of a non-trivial fixed point at 

2_ 2- 247[2 
g -gc = lIN E. (2'2) 

As is illustrated in Fig. 1, the theory in d =4 + E is in confining phase for g > gc and in 
deconfining phase for g< gc. If E is sufficiently small, the phase transition is expected 
to be of second order, and we have a well-defined theory at g=gc. This idea was 
pursued by Peskin and the critical exponents were calculated within the framework 

p(g) 

d=4 +E 

conf. 

----~--~----~-g o 

Fig. 1. The f3 function for SU(N) Yang· Mills 
theory in d=4+€. 

of the E-expansion.4
) The question is 

then whether a well-defined Yang-Mills 
theory is indeed realized in five or higher 
dimensions. In the present work we 
have performed Monte Carlo simula-
tions on the lattice and searched for a 
second-order deconfining phase transi­
tion in SU(2) pure Yang-Mills theory in 
d=5 (i.e., E=l). 

The action is given by 

(2'3) 

(2'4) 

where UF is an ordered product of the 
four group elements in fundamental 
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Fig. 2. Thermal cycles of <SOF) with lattice sizes 65 (a) and 85 (b). 

representation around a plaquette D, 
and ::ED indicates the summations over 
plaquettes. Throughout the present 
work, periodic boundary conditions are 
imposed. The coupling constant fJF and 
the ordinary coupling constant g are 
related by 

4 -2=fJF. g 
(2-5) 

0.4 LI....'-'-'--'--'~L....L..JL....L..J~-'-'-'-"....L...L-'-'-............ 

o 1000 2000 3000 4000 

ITERATIONS 

Fig. 3. Time history of <SOF) at .8F=1.64 with 
lattice size 45

• The upper curve is the evolu-

As an order parameter, <50F > is calcu­
lated. The heat bath algorithm has 
been adopted here. One Monte Carlo 
iteration consists of applying this algor­
ithm five times to each link. In Figs. 
2(a) and (b) we show respectively a ther­
mal cycle in fJF for lattice sizes 65 and 85

• 

tion of a random configuration, and the lower is 
that of an ordered configuration. 

150 iterations. 
Each point represents an average over 

They both exhibit clear hysteresis curves around 

(2,6) 

and the transition appears of first order. To confirm this, we made long runs of 5000 
iterations on a 45 lattice with both random and ordered initial configurations at fJt 
= 1.64. The time history is displayed in Fig. 3. The two states are sep?rated 
throughout the runs, and the transition is indeed of first order. All these results 
confirm Creutz' simulation with 40 iterations on a 45 lattice.5

) 
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§ 3. Addition of adjoint representation 

3.1. Phase diagram 

In the previous section we examined the phase transition of SU(2) Yang-Mills 
theory with fundamental representation in five dimensions. The transition, however, 
turned out to be of first order and we cannot take a well-defined continuum limit there. 
We now add the adjoint representation to the theory and search for a second-order 
doconfining phase transition in the two-parameter space (/3F, /3A) where /3A is the 
coupling constant for adjoint representation. The action is given by 

S= 2.:, (/3FSd + /3ASd) , 
o 

(3·1) 

where SOF is taken from Eq. (2.4) and Sd is defined by 

Sd=l- ~TrUA. (3'2) 

Here, UA is an ordered product of four link variables in adjoint representation around 
a plaquette O. The ordinary coupling constant g is now written in terms of /3F and 
/3A as*) 

(3·3) 

For numerical work it is convenient to rewrite the trace of adjoint representation as 

(3'4) 

The Metropolis algorithm has been employed here. In Fig. 4 we show a phase 
diagram of the theory in /3F-/3A space which was obtained from simulations on a 45 
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Fig. 4. Phase diagram of SU(2) Yang-Mills theory 
in five dimensions. 

lattice. The phase space is divided into 
three regions, I, II and III. One of the 
distinct features of this diagram compar­
ed with the one for d =4 case6

) is that the 
boundary curve between regions II and 
III extends without any sign of termina­
tion, while the corresponding curve for d 
=4 ends at (/3F, /3A)=(1.48, 0.9) before 
reaching the /3Faxis. This difference 
presumably arises from the fact that 
there is only confining phase in d =4 but 
there are confining and deconfining 
phases for d >4, according to the E­

expansion (see Fig. 1). Hence, the 

*) When /3A< -(3/S)/3F, II is negative, indicating that the positivity is violated at the classical level. 
Therefore, one has to check the positivity in the continuum limit, if a second-order phase transition is found 
around this region. 
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Fig. 5. Thermal cycle (a) and time history (b) of (1- Uo> for Z2 gauge theory in five dimensions. In 
(a) each point represents an average over 100 iterations. In (b) the upper curve is the evolution 
of a random configuration, and the lower is that of an ordered configuration. 

boundary between regions II and III in Fig. 4 marks the deconfining phase transition. 
This transition is investigated further in the next subsection. We also remark that 
at fJF=O, there is a clear first-order phase transition around fJA =2.1 (see Fig. 6(a) 
below) in agreement with the results for d=5 50(3) Yang-Mills theory.7) 

The phase boundaries between regions I and II and between regions II and III are 
clearly observed. However, the boundary between land III turned out not as clear 
due to slow thermalization in the region with large positive fJA. An exception is the 
case where we take the limit fJr->oo, in which the theory approaches Z2 gauge theory. 
The action for Z2 gauge theory is given by 

5= tjfJ(l- Uo) , 

where Uo is an ordered product of the four link variables with value + 1 or-1 around 
a plaquette O. Our simulation of this theory' with Metropolis algorithm on a 45 

lattice has exhibited a clear first-order phase transition around 

fJ=0.35. (3·6) 

In Figs~ 5(a) and (b) we show a thermal cycle of <1- Uo> in fJ and a time history of 
10000 iterations at fJ=0.35, respectively. Hence, in Fig. 4 we have the Z2limit for fJA 
-; 00 at 

(3·7) 

By analogy with the results for d=4,6) we expect that the point where the three 
boundary curves meet lies near (fJF; fJA)=(1.0, 1.0). We did not find the exact location 
of this point. However, phase transitions are clearly of first order in this region with 
fJA > O. As is discussed in the next subsection, our search of second-order phase 
transition was therefore focused on the area with large negative values of fJA along the 
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Fig. 6. Thermal cycles in fJA (a) and fJF (the rest) on a 45 lattice. The upper hyst~resis curves 
represent <SOA> and the lower <SOF). In (a) only <SOA) is plotted. 
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Fig. 7, Discontinuity LlE of <fJFSOF + fJASd> at 
phase transition points as a function of - fJA' 

deconfining-phase boundary curve between 
regions II and III. 

3.2. Deconfining phase transition 

In this subsection we give the details 
of our search of a second-order phase 
transition along the phase boundary 
between regions II and III in Fig. 4. In 
Fig. 6 we show thermal cycles inj3A and /3F 
on a 45 lattIce. Each point represents an 
average over 150 iterations. Conspicuous 
hysteresis curves mark this phase bound­
ary and indicate that the phase transition 
is of first order. As we can see from Fig. 

6, however, the discontinuities at phase transition points tend to decrease as /3A is 
decreased. This is more explicitiy shown in Fig. 7 where we plot discontinuities L1E 
of ,</3FSd + /3ASd> at phase transition points as a function of - /3A. Each point is an 
average over 3000 iterations on a 45 lattice. It should be noted thatwe may have a 
second-order phase transition for large negative values ,of /3A along this phase bound­
ary of first-order phase transition. 

If the phase transition between regions II and III in Fig. 4 corresponds to the one 
which is suggested by the €-expansion, it has to be a deconfining phase transition. 
Around phase transition points we thus calculated Creutz ratios 

x(I, J)= -In( ~~~: j~~~iVc}! LiD, 
where W(I, J) stands for an average of I by J Wilson loop. 
Polyakov lines 
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Fig. 8, Creutz ratio xU, 1) as a function of fJF at fJA=O (a) and -3.0 (b). 
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Fig. 9. Polyakov line .Q as a function of /3F at /3A=O (a) and -3.0 (b). 
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Fig. 10. Time history of </3FSOF + /3ASOA) at (/3F, /3A)=(4.25, -3.0) (a) and (7.25, -6.0) (b). 

(3'10) 

Here, L is the lattice size in one dir:ection. The results on a 65 lattice around two 
points on the boundary curve, (/3F, /3A)=(1.64, 0) and (4.25, -3.0), are displayed in 
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Figs. 8 and 9. Each point represents an average over 1000 iterations. The figures 
clearly indicate that the transition is indeed a deconfining one. In fact, Drouffe has 
suggested in a mean field approximation that the order of this deconfining transition 
turns from first order to second order as /3A decreases.8

) Hence, we made long runs 
of 40000 iterations on a 45 lattice at (/3F, /3A)=(4.25, -3.0) and (7.25, -6.0) where we 
observe very small hysteresis effects (see Fig. 7). The results are shown in Fig. 10. 
The results for (/3F, /3A)=(4.25, -3.0) show a flip-flop behavior, suggesting that the 
transition is still of first order. On the other hand, the results for (/3F, /3A)=(7.25, 
-6.0) do not show any clear flip-flop. We have applied the finite-size scaling9

) at the 
transition points (/3F, /3A)=(7.25, -6.0) and (10.0, -8.0) to see whether the specific heat 
scales with lattice size as in a second-order phase transition. However, we could not 
find any clear sign of divergence in specific heat. This is because not only the latent 
heat but also the energy fluctuation is vanishingly small in this region. More elabo­
rate work with more iterations and larger lattice is necessary in order to determine 
conclusively whether or not the order of the deconfining phase transition changes 
from first order to second order. 

§ 4. Discussion 

In the present work we have searched for a second-order phase transition in a 
non-renormalizable field theory. Unlike the NL 6-model in three dimensions which 
has a corresponding (super-)renormalizable "partner" (¢4 model) in the same univer­
sality class, Yang-Mills theory in five dimensions is a simple but non-trivial example 
without any apparent renormalizable counterpart in the same universality class. 
Even though it turned out difficult to find a second-order phase transition in five­
dimensional SU(2) Yang-Mills theory, it is certainly worthwhile to explore other 
possibilities, such as introducing another coupling, considering an SU(N) model with 
larger N, and so forth. 
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