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Monte Carlo simulated annealing and generalized-ensemble algorithms for protein fold-
ing problem are described in detail. Two oligopeptides, Met-enkephalin and C-peptide of
ribonuclease A were studied. Only the amino-acid sequence information was used as input
and initial conformations were randomly generated. The lowest-energy conformation ob-
tained for C-peptide has an α-helix structure in remarkable agreement with experimental
results.

§1. Introduction

In protein and other complex systems, simulations at low temperatures tend to
get trapped in a few of huge number of local-minimum-energy states. One way to
overcome this multiple-minima problem is by Monte Carlo simulated annealing, 1)

which is perhaps the most widely used optimization method. Another effective way is
to perform a simulation based on non-Boltzmann probability weight factors so that a
random walk in energy space may be realized. Random walks allow the simulation to
escape from any energy barrier and sample much wider phase space than by conven-
tional methods. Monitoring the energy in a single simulation run, one can obtain not
only the global-minimum-energy state but also any thermodynamic quantities as a
function of temperature for a wide temperature range by the reweighting techniques.
Well-known examples of such methods are multicanonical algorithm 2) and simulated
tempering. 3), 4) These methods that perform random walks in energy space due to
non-Boltzmann weight factors are now given a generic name: generalized-ensemble
algorithm. 5) (For reviews of generalized-ensemble approach in the protein folding
problem, see Refs. 6), 7).)

In this article we discuss the uses of Monte Carlo simulated annealing and
generalized-ensemble algorithms in the protein folding problem.

§2. Energy functions of protein systems

The conformational energy function EP (in kcal/mol) for the protein molecule
that we used is one of the standard ones. Namely, it is given by the sum of the
electrostatic term EC , 12-6 Lennard-Jones term ELJ, and hydrogen-bond term EHB
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for all pairs of atoms in the molecule together with the torsion term Etor for all
torsion angles.

One of the simplest ways to represent solvent effects is by the sigmoidal, distance-
dependent dielectric function. 8) The explicit form of the function we used is given
in Ref. 9). The distance-dependent dielectric function is simple and also computa-
tionally only slightly more demanding than the gas-phase case.

§3. Simulation methods

Once the appropriate energy function of the protein system is given, we have
to employ a simulation method that does not get trapped in states of energy local
minima. We have been advocating the uses of Monte Carlo simulated annealing 1)

and generalized-ensemble algorithms (for reviews, see Refs. 6), 7)).

3.1. Simulated annealing

In the regular canonical ensemble with a given inverse temperature β ≡ 1/kBT ,
the probability distribution of energy is given by

PB(T, E) ∝ n(E)WB(E) = n(E) exp (−βE) , (3.1)

where n(E) is the density of states with energy E. Since the density of states n(E)
is a rapidly increasing function of E and the Boltzmann factor WB(E) decreases
exponentially with E, the probability distribution PB(T, E) has a bell-like shape
in general. However, it is very difficult to obtain canonical distributions at low
temperatures with conventional simulation methods. This is because the thermal
fluctuations at low temperatures are small and the simulation will certainly get
trapped in states of energy local minima.

Simulated annealing 1) is based on the process of crystal making. Namely, by
starting a simulation at a sufficiently high temperature (much above the melting
temperature), one lowers the temperature gradually during the simulation until it
reaches the global-minimum-energy state (crystal). If the rate of temperature de-
crease is sufficiently slow so that thermal equilibrium may be maintained throughout
the simulation, only the state with the global energy minimum is obtained (when the
final temperature is 0 K). However, if the temperature decrease is rapid (quenching),
the simulation will get trapped in a state of energy local minimum.

Our group has been testing the effectiveness of the method mainly in oligopeptide
systems (for a review, see Ref. 6)).

3.2. Generalized-ensemble algorithms

While a regular Monte Carlo method generates states according to the canon-
ical distribution, generalized-ensemble algorithms generate states so that a one-
dimensional random walk in a pre-chosen physical quantity (for instance, the energy)
is realized. Hence, any energy barrier can be overcome, and one can avoid getting
trapped in states of energy local minima.

Multicanonical algorithm, 2) which is also referred to as entropic sampling 10) and
adaptive umbrella sampling, 11) is one of the most well-known such methods. The
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Protein Folding Simulations 303

weight factor for multicanonical ensemble is given by

Wmu(E) ∝ 1
n(E)

= e−S(E) , (3.2)

where
S(E) = logn(E) (3.3)

is the microcanonical entropy. The generated configurations are in equilibrium with
respect to the multicanonical distribution, not the Boltzmann distribution, and the
simulation will lead to a uniform distribution of energy:

Pmu(E) ∝ n(E) Wmu(E) = const . (3.4)

Since all energies appear with the equal probability, a free random walk in the energy
space is enforced. Hence, the simulation can overcome any energy barrier and will
not get trapped in one of the many local minima.

Since the multicanonical weight factor Wmu(E) is not a priori known, one has to
determine it for each system by a few iterations of trial simulations. Once this weight
factor is obtained, one performs a long production simulation run. The advantage
of multicanonical algorithm lies in the fact that from this single production run, one
can obtain not only the global-minimum-energy state but also the thermodynamic
quantities for a wide range of temperatures. The latter is accomplished by the use
of the single-histogram reweighting techniques. 12) Namely, the expectation value of
a physical quantity A at temperature T = 1/kBβ can be expressed in terms of the
predetermined weight Wmu(E) and the obtained final distribution Pmu(E) as follows:

〈A〉T =

∫
dE A(E)Pmu(E) W−1

mu (E) e−βE

∫
dE ′ Pmu(E ′) W−1

mu(E
′) e−βE′

. (3.5)

Closely related to the multicanonical algorithm is 1/k sampling. 13) Here the
(microcanonical) entropy S is sampled uniformly:

P1/k(S) = const . (3.6)

To realize such an ensemble, Hesselbo and Stinchcombe 13) proposed that configura-
tions are assigned a weight

W1/k(E) =
1

k(E)
, k(E) =

∫ E

−∞
dE ′ n(E ′) . (3.7)

Since the entropy S(E) is a monotonically increasing function of energy, a random
walk in entropy implies a random walk in energy space (with more weight towards
low-energy region; compare Eqs. (3.2) and (3.7)).

Again, the weight w1/k(E) is not a priori known and its estimator has to be
calculated. Thermodynamic quantities at any temperature can be calculated by
Eq. (3.5), in which Pmu(E) and Wmu(E) are replaced by P1/k(E) and W1/k(E),
respectively.
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304 Y. Okamoto

In simulated tempering, 3), 4) which is also referred to as expanded-ensemble
method, 4) temperature itself becomes a dynamical variable. Temperature and con-
figuration are both updated with a weight:

WST(T, E) = e−E/T−g(T ) , (3.8)

where the function g(T ) is chosen so that the probability distribution of temperature
is given by

PST(T ) =
∫

dE n(E) e−E/T−g(T ) = const . (3.9)

Hence, in simulated tempering the temperature is sampled uniformly, while simula-
tions in multicanonical and 1/k ensembles respectively sample energy and entropy
uniformly. Physical quantities have to be sampled for each temperature point sepa-
rately. Their expectation values at temperature T are then calculated in the usual
way by

〈O〉T =

∫
dx O(x) e−E(x)/kBT

∫
dx e−E(x)/kBT

, (3.10)

where x labels the conformations, and only those conformations that were obtained
at temperature T are included in the integral.

As common in generalized-ensemble simulations, the weight wST(T, E) is not a
priori known (since it requires knowledge of the parameters g(T )) and their estimator
has to be calculated. They can be obtained by an iterative procedure again.

Despite their successful application to simulations of proteins and other complex
systems, the above generalized-ensemble methods suffer from the problem that the
determination of the weights can be non-trivial and tedious. We thus want to look
for ensembles where the weight can be simply obtained.

One example is the ensemble 14) that is based on Tsallis generalized statistical
mechanics, 15) where the problem is reduced to that of finding an estimator for a
single quantity. We are interested in an ensemble where not only the low-energy
region can be sampled efficiently but also the high-energy states can be visited with
finite probability. In this way the simulation can overcome energy barriers and escape
from local minima. The probability distribution of energy should resemble that of
an ideal low-temperature Boltzmann distribution, but with a tail to higher energies.
To obtain such an ensemble we proposed to update configurations according to the
following probability weight: 14)

w(E) =
(
1 +

β(E − E0)
nF

)−nF

, (3.11)

where E0 is an estimator for the ground-state energy, nF is the number of degrees
of freedom of the system, and β = 1/kBT is the inverse temperature with a low
temperature T . The weight reduces in the low-energy region to the canonical Boltz-
mann weight exp(−βE) for β(E−E0)

nF
� 1. On the other hand, high-energy regions

are no longer exponentially suppressed but only according to a power law, which en-
hances excursions to high-energy regions. In contrast to other generalized-ensemble
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Protein Folding Simulations 305

techniques the weight of the new ensemble is explicitly given by Eq. (3.11). One
only needs to find an estimator for the ground-state energy E0 which can be done
by a procedure described in Ref. 14) and is much easier than the determination of
weights for other generalized ensembles.

Another promising method to circumvent the need for determination of estima-
tors for the weight is the replica-exchange method 16)− 20) (the method is also referred
to as replica Monte Carlo method, 17) multiple Markov chain method, 19) and parallel
tempering 20)). The Monte Carlo (and molecular dynamics algorithms in dihedral
space) in this generalized ensemble has been applied to an oligopeptide system. 21)

The details for the molecular dynamics algorithm (in Cartesian coordinates) have
yet to be worked out, and it is the purpose of the present section to do so. 22)

The generalized ensemble for replica-exchange method consists of M non-inter-
acting replicas of the original system in the canonical ensemble at M different tem-
peratures Tm (m = 1, · · · , M). We arrange the replicas so that there is always exactly
one replica at each temperature. Then there is a one-to-one correspondence between
replicas and temperatures; the label i (i = 1, · · · , M) for replicas is a permutation of
the label m (m = 1, · · · , M) for temperatures, and vice versa.

Let X =
(
x

[i(1)]
1 , · · · , x[i(M )]

M

)
=

(
x

[1]
m(1), · · · , x

[M ]
m(M )

)
stand for a “state” in this

generalized ensemble. Here, the superscript and the subscript in x
[i]
m label the replica

and the temperature, respectively.
Because the replicas are non-interacting, the weight factor for the state X in this

generalized ensemble is given by the product of Boltzmann factors for each replica
(or at each temperature):

WREM(X) = exp

{
−

M∑
i=1

βm(i)H
(
q[i], p[i]

)}
= exp

{
−

M∑
m=1

βmH
(
q[i(m)], p[i(m)]

)}
,

(3.12)
where i(m) and m(i) are the permutation functions.

We now consider exchanging a pair of replicas in the generalized ensemble. Sup-
pose we exchange replicas i and j which are at temperatures Tm and Tn, respectively:


x

[i]
m ≡

(
q[i], p[i]

)
m

−→ x
[j]′
m ≡

(
q[j], p[j]′

)
m

,

x
[j]
n ≡

(
q[j], p[j]

)
n

−→ x
[i]′
n ≡

(
q[i], p[i]′

)
n

,
(3.13)

where p[i]′ and p[j]′ are given by 22)


p[i]′ ≡
√

Tn

Tm
p[i] ,

p[j]′ ≡
√

Tm

Tn
p[j] .

(3.14)

This assignment of momenta means that we just rescale uniformly the velocities of
all the atoms in the replicas by the square root of the ratio of the two temperatures.

In order for this exchange process to converge towards an equilibrium distri-
bution, it is sufficient to impose the detailed balance condition on the transition
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306 Y. Okamoto

probability w(X → X ′):

WREM(X) w(X → X ′) = WREM(X ′) w(X ′ → X) . (3.15)

From Eqs. (3.12), (3.14) and (3.15), we have 22)

w(X → X ′)
w(X ′ → X)

= exp
{
−βm

[
K

(
p[j]′

)
+ E

(
q[j]

)]
− βn

[
K

(
p[i]′

)
+E

(
q[i]

)]
+βm

[
K

(
p[i]

)
+ E

(
q[i]

)]
+ βn

[
K

(
p[j]

)
+ E

(
q[j]

)]}
,

= exp
{
−βm

Tm

Tn
K

(
p[j]

)
− βn

Tn

Tm
K

(
p[i]

)
+ βmK

(
p[i]

)
+ βnK

(
p[j]

)
−βm

[
E

(
q[j]

)
− E

(
q[i]

)]
− βn

[
E

(
q[i]

)
− E

(
q[j]

)]}
,

= exp (−∆) ,
(3.16)

where K(p) and E(q) are, respectively, kinetic energy and potential energy, and

∆ ≡ (βn − βm)
(
E

(
q[i]

)
− E

(
q[j]

))
. (3.17)

This can be satisfied, for instance, by the usual Metropolis criterion:

w(X → X ′) ≡ w
(
x[i]

m

∣∣∣ x[j]
n

)
=

{
1 , for ∆ ≤ 0 ,
exp (−∆) , for ∆ > 0 .

(3.18)

Note that this is exactly the same criterion that was originally derived for Monte
Carlo algorithm. 16)− 20)

Without loss of generality we can assume β1 < β2 < · · · < βM . A simulation of
the replica-exchange method 16)− 20) is then realized by alternately performing the
following two steps:
1. Each replica in canonical ensemble of the fixed temperature is simulated simul-

taneously and independently for a certain MC or MD steps.
2. A pair of replicas at neighboring temperatures, say x

[i]
m and x

[j]
m+1, are exchanged

with the probability w
(
x

[i]
m

∣∣∣ x
[j]
m+1

)
in Eq. (3.18).

In the present approach, we employ molecular dynamics algorithm for Step 1.
The canonical expectation value of a physical quantity A at temperature Tm

(m = 1, · · · , M) can be calculated by the usual arithmetic mean. For the expectation
value at any intermediate temperature, we use the multiple-histogram reweighting
techniques. 23)

We are currently working on the further development of the replica-exchange
method and applying the method to the protein folding (see the article by Y. Sugita
in this volume) and the argon fluid (see the article by T. Nishikawa in this volume).

We remark that the exchanged quantity does not have to be temperature as long
as it is in one-to-one correspondence with the replica (for instance, we can simulate
a spin system of M replicas with M different magnetic field values). This is why
we prefer the name replica-exchange method 16) to parallel tempering 20) (likewise,
we prefer the term replica-exchange method to multiple Markov chain method, 19)

because molecular dynamics algorithm is also possible as described above).
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Protein Folding Simulations 307

§4. Results

We now present the results of our simulations based on simulated annealing and
generalized-ensemble algorithms. All the simulations were started from randomly-
generated conformations.

The first example is Met-enkephalin. This peptide consists of 5 amino acids with
the amino-acid sequence: Tyr-Gly-Gly-Phe-Met. Because it is one of the smallest
peptides, it has served as a bench mark for testing a new simulation method.

In Fig. 1 we display the time series of energy obtained by a Monte Carlo simu-
lated annealing simulation. This run reaches the global minimum region (EP ≤ −11
kcal/mol), as the temperature is decreased during the simulation from 1000 K to 50
K. We also show the time series from a multicanonical Monte Carlo run in Fig. 2.
It indeed exhibits a random walk in energy space between the lowest-energy region
and very high energy region, escaping from states of energy local minima. Other
generalized-ensemble algorithms exhibit similar random walks in energy space. 5), 14)

With generalized-ensemble algorithms, one can calculate various thermodynamic
quantities as a function of temperature from a single simulation run by the reweight-
ing techniques of Eq. (3.5). The results for average total conformational energy
〈EP 〉T and specific heat C from a production run of 1,000,000 MC sweeps are shown
in Fig. 3. The results from the four generalized-ensemble algorithms discussed above
(multicanonical, 1/k sampling, simulated tempering, and Tsallis) are superimposed
in the figure. 5), 14) They agree with each other almost completely.

We have also studied the C-peptide, residues 1–13 of ribonuclease A. The amino-
acid sequence is: Lys+-Glu−-Thr-Ala-Ala-Ala-Lys+-Phe-Glu-Arg+-Gln-His+-Met.
It is known from the X-ray diffraction data of the whole enzyme that the segment
from Ala-4 to Gln-11 exhibits a nearly 3-turn α-helix. 24) It was also found by CD 25)

and NMR 26) experiments that the isolated C-peptide also has significant α-helix
formation in aqueous solution at temperatures near 0 ◦C. The NMR experiment 26)

of the isolated C-peptide further observed the formation of the characteristic salt
bridge between Glu-2− and Arg-10+ that exists in the native structure determined

Fig. 1. Time series of energy EP (kcal/mol) of

Met-enkephalin from a Monte Carlo simu-

lated annealing run.

Fig. 2. Time series of energy EP (kcal/mol)

of Met-enkephalin from a multicanonical

Monte Carlo run.
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308 Y. Okamoto

Fig. 3. Average total conformational energy 〈EP 〉T (kcal/mol) (a) and specific heat C (b) of Met-

enkephalin as a function of temperature T (K). The results from four different generalized-

ensemble Monte Carlo simulations are superimposed.

by the X-ray experiments of the whole protein. 24)

In order to test whether our simulations can reproduce these experimental re-
sults, we first made 20 MC simulated annealing runs of 10,000 MC sweeps in gas
phase. 27) The temperature was decreased exponentially from 1000 K to 250 K for
each run.

Fig. 4. Average potential energies 〈E〉T (kcal

/mol) of C-peptide as a function of temper-

ature T (K).

The lowest-energy conformation
obtained exhibits an α-helix from
Ala-5 to Gln-11, while the struc-
ture from the X-ray data has an α-
helix from Ala-4 to Gln-11. 27) The
agreement of the backbone structures
is conspicuous, but the side-chain
structures are not quite similar. In
particular, while the X-ray 24) and
NMR 26) experiments imply the for-
mation of the salt bridge between the
side chains of Glu-2− and Arg-10+,
the lowest-energy conformation ob-
tained from the simulation does not
have this salt bridge.

The disagreement is presumably caused by the lack of solvent in our simulations.
We have therefore made multicanonical simulations of 1,000,000 MC sweeps for C-
peptide with the inclusion of solvent effects by the distance-dependent dielectric
function. 28)

As emphasized above, the results from a single simulation run in multicanonical
ensemble can be used to calculate various thermodynamic quantities as functions of
temperature for a wide range of temperatures (see Eq. (3.5)). In Fig. 4 we plot the
average total potential energy and each component as a function of temperature.
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Protein Folding Simulations 309

Among the component terms both electrostatic and Lennard-Jones terms vary most
with the temperature. This is contrasted with our previous works on peptides with
only electrically neutral side chains (Met-enkephalin 29) and homo-oligomers 30),31)),
where the changes of the Lennard-Jones term dominate that of the total potential
energy. Hence, we understand that when some of the side chains are charged in the
peptide, the contributions from the electrostatic interactions become a key factor in
studying the peptide conformations (together with the Lennard-Jones term that is
common in any peptide).

The lowest-energy conformation obtained has an α-helix from Ala-4 to Gln-11
and does have the characteristic salt bridge between Glu-2− and Arg-10+. This
conformation and the corresponding X-ray structure are compared in Fig. 5. The
figures were created with Molscript 32) and Raster3D. 33) The positions of the α-helix
are identical for the two structures.

Fig. 5. X-ray structure of C-peptide (a) and the lowest-energy conformation of C-peptide ob-

tained from a multicanonical Monte Carlo run in aqueous solution represented by the distance-

dependent dielectric function (b).

§5. Conclusions

In this article, I have described the simulated annealing and generalized-ensemble
algorithms for protein folding problem. The results of such simulations for C-peptide
of ribonuclease A were in good agreement with various implications of experiments.
I would like to emphasize again that the simulations were performed from randomly-
generated initial conformations and that no structural information from experiments
was used as input.
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