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Abstract: 

In this study, we investigate the effects of two scaling exponents on the biaxial 

deformation and mass transport of swollen elastomers. Two scaling exponents are 

included in an extended version of the Flory–Rehner model (Okumura et al., J. Mech. 

Phys. Solids, 2016); two scaling exponents are used to adjust the swelling effects on the 

Young’s modulus and osmotic pressure of swollen elastomers, resulting in the ability to 

predict swelling-induced strain softening under uniaxial tensile loading. It is found that 

when biaxial tensile loading is given under stress control, strain softening is accelerated 

by increasing the biaxial stress ratio, while under strain control, the responses become 

more complicated, which can be interpreted by considering that Poisson’s ratio at 

equilibrium free swelling can take negative values depending on the two scaling 

exponents. Further, the effect of the two scaling exponents on mass transport is 

discussed by analyzing the swelling kinetics of a gel layer constrained on a rigid 

substrate. 
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1. Introduction 

 

The Flory–Rehner (F–R) model [1] is used to describe the mechanical and swelling 

behavior of elastomers [2,3]. The free energy function consists of the sum of two free 

energies associated with polymer stretching and the mixing of polymer and solvent 

molecules, which are derived from the Gaussian network theory (i.e., a neo-Hookean 

solid model) and the Flory–Huggins solution theory, respectively. When the F–R model 

is assumed, the boundary value problem of swollen elastomers is equivalent to that of a 

hyperelastic solid [4,5], so that the F–R model is easily implemented into commercial 

finite element software using user-defined material subroutines. These subroutines 

allow researchers to perform finite element analysis of the swelling-induced surface 

instability of hydrogel films [6,7] and swelling-induced pattern transformation in porous 

gel films [4,8–11]. Further, solvent migration in the transient state can also be analyzed 

by introducing a diffusion model into the governing equations [12–18]. Thus, the F–R 

model provides a basis to interpret the mechanical behavior of swollen elastomers in 

both static and transient states, but it is not free from criticism. 

 

Neo-Hookean solid models may be a poor choice to predict the stress-strain 

behavior of elastomers, especially at large strain and/or under biaxial deformation. 

When swollen elastomers are subjected to uniaxial loading, neo-Hookean solid models 

predict that E = Ed J 
–1/3

 and r = Ed / 3, where Ed and E are the Young’s moduli of the 

dry and swollen state, respectively, J is the volume swelling ratio, and r is a 

transformed stress referred to as the swelling reduced stress [19,20]. However, 

experiments show that E = Ed J 
l
 has various values of l depending on the elastomer, and 

r is not constant but a function of J, and, especially under tension, r is also affected by 

stretching in the loading direction [21–23]. To overcome these problems, a 

neo-Hookean solid model in the F–R model can be superseded by advanced solid 

models, e.g., the Moony–Rivlin, Arruda–Boyce, and Ogden models [2,3,13]. Flory and 

Erman [24] proposed the constrained chain model, in which a neo-Hookean solid model 

was modified by adding terms to describe constrained chains. Drozdov and Christiansen 

[25,26] derived an equivalent expression of this model using stretch invariants and 

developed extended models by including phenomenological parameters to correctly 
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predict the mechanical response of hydrogels under multi-axial deformation. Generally, 

advanced models involve complicated strain energy functions with a substantial number 

of phenomenological parameters. If the parameters are fitted to a particular set of 

mechanical responses, there may be no guarantee that other responses can also be 

correctly predicted using the same parameters. 

 

As an extended version of the scaling approach [27,28], Okumura et al. [29] 

extended the F–R model using two scaling exponents, m and n. The two scaling 

exponents, which are introduced into strain energy functions separated into deviatoric 

and volumetric components, are used to independently adjust volumetric and deviatoric 

elastic contributions, respectively. If m =n = 0, the extended model reduces to the 

original F–R model. In contrast, when the two exponents are adjusted based on 

experimental data, m spans a wide range of values depending on the elastomer, while n 

is a negative value that is almost independent of the elastomer. Consequently, the 

extended model successfully reproduces the effects of swelling on the Young’s modulus 

and osmotic pressure of swollen elastomers, respectively. Further, under uniaxial tensile 

loading at equilibrium swelling, the extended model is able to predict strain softening, 

which is thus related with strain localization followed by swelling-induced rupture. This 

prediction is in good agreement with the tendency observed by experiments with natural 

rubbers [30]; swelling-induced rupture can occur when a small extension is applied in 

good solvents. This means that the two scaling exponents enable the extended model to 

obtain a special ability to predict swelling-induced rupture, resulting in elucidating the 

mechanism causing swelling-induced rupture of swollen elastomers.  

 

Recently, Okumura and Mizutani [31] analyzed swelling-induced strain softening 

under equibiaxial and planar extensions using the two scaling exponents. They showed 

that under equibiaxial extension, the tensile stress in a lateral direction enables 

swelling-induced strain softening to occur in relatively poor solvents and accelerates the 

onset point. Under planar extension, a compressive stress in the constrained direction 

can occur in good solvents, preventing the elastomer from causing swelling-induced 

strain softening. The effects of two scaling exponents are fairly complicated under 

biaxial deformation. In addition, when a diffusion model is introduced to analyze mass 
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transport in the transient state, the evolution of the volume swelling ratio is affected not 

only by a diffusion coefficient but also by geometric and elastic contributions. The two 

scaling exponents also may have a considerable effect on mass transport in swollen 

elastomers. Thus, to accomplish a deeper understanding of this extended model with the 

two scaling exponents, it is necessary to investigate the effects on the biaxial 

deformation and mass transport of swollen elastomers. 

 

In this study, we analyze the effects of the two scaling exponents on the biaxial 

deformation and mass transport of swollen elastomers. Section 2 presents the basic 

equations included in the extended model with the two scaling exponents and a 

diffusion model. In Section 3, mechanical responses under biaxial deformation are 

analyzed under stress and strain controls. Complicated behavior under strain control is 

interpreted by deriving and estimating Poisson’s ratio at equilibrium free swelling. In 

Section 4, the effect of the two scaling exponents on mass transport is discussed by 

analyzing the swelling kinetics of a gel film constrained on a rigid substrate. Parametric 

studies are conducted in Sections 3 and 4. Finally, conclusions are presented in Section 

5. 

 

 

2. Basic equations 

 

First, by extending the F–R model using the two scaling exponent [29], the free 

energy function is written as  

2/3 2/3d d( 3 ) (3 3 log )
6 6

1
log 1

1

m nE E
W J I J J J a J

kT
C

C C




  

    

         

 .   (1) 

Here, the first and second terms on the right hand side are the elastic strain energy, and 

the third term is the mixing energy. Two scaling exponents, m and n, scale the deviatoric 

and volumetric parts of the elastic strain energy in the F–R model, respectively. Here, I 

and J are invariants, I=FijFij and J =det F with the deformation gradient Fij= /i jx X  , 

which maps the reference frame Xj to the current frame xi. The employment of the 

principal stretches ( 1, 2,3)i i   leads to 2 2 2

1 2 3I       and 
1 2 3J    . In Eq.(1), 
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Ed is the Young’s modulus of the undeformed, unswollen state at 1=2=3=1, and a is 

simply considered one of the fitting parameters. Moreover, C is the nominal 

concentration of solvent molecules, kT is the absolute temperature expressed as a 

thermal energy,  is the volume per solvent molecule, and  is the Flory–Huggins 

interaction parameter. It is noted that if m=n=0 and a=2, Eq.(1) is reduced to the original 

F–R model. 

 

   Assuming that the network of polymer and liquid solvent is incompressible, the 

volume of swollen elastomers is expressed as the sum of the volume of the dry network 

and that of the solvent [3]. The volume swelling ratio of swollen elastomers is equal to J, 

so that  

1J C  .        (2)   

When a Lagrange multiplier is used to impose the constraint of Eq.(2), Eq.(1) can be 

rewritten as  

2/3 2/3d d( 3 ) (3 3 log )
6 6

1
log 1 (1 )

1

m nE E
W J I J J J a J

kT
C C J

C C


 

  

    

            

,    (3) 

where  is the Lagrange multiplier, and refers to the osmotic pressure in this study 

[5,29].  

 

   Eq.(3) gives the nominal stress in each direction of the principal stretches (i =1,2,3),  

2 2/3 2/3d

2/3 2/3d

( 3 )
3 2

(3 3 log )
3 2 2

m

i i

i i

n

i i

EW J m
s J I J

E J a n J
J J a J
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 

 

       
  

       
 

,   (4) 

while Eq.(4) is transformed into the true stress,  

1 2 2/3 2/3d

1 2/3 2/3d

( 3 )
3 2

(3 3 log )
3 2 2

mi i
i i

n

s E m
J J I J

J

E a n
J J J a J


 



      
 

       
 

.   (5) 

When  represents the chemical potential in swollen elastomers, Eqs.(2) and (3) give  

2

1 1
log

W J
kT

C J J J


 

             
.    (6) 
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The state of chemical equilibrium with respect to the external solvent is expressed as 

 =0. Eq.(6) means that at equilibrium swelling ( =0), the elastic component is 

balanced with the mixing component in swollen elastomers, so that  refers to the 

osmotic pressure. In contrast, when = , C =0 and i=J =1 in the underformed, 

unswollen state, so that this state is referred to as the underformed, unswollen state; 

equilibrium swelling can be reproduced by increasing  from   to 0. Eqs.(4)–(6) are 

analyzed to investigate the effects of the two scaling exponents on the mechanical 

properties of swollen elastomers. Okumura et al. [29] demonstrated that this extended 

model satisfactorily reproduces the swelling effects on the Young’s modulus and 

osmotic pressure of swollen elastomers at equilibrium swelling and also predicts 

swelling-induced strain softening.  

    

Swollen elastomers need sufficient time to reach equilibrium swelling because 

swelling starts from the surface contacting the external solvent, and the gradient of the 

chemical potential is assumed to drive solvent migration. The transient state at time t 

can be analyzed by applying a diffusion model [12,15,17,32]. When a diffusion model is 

applied to solvent migration, the flux and concentration of solvent molecules can be 

written based on the reference and current flames, Xj and xi, respectively. The nominal 

flux of solvent, Jk, is expressed as [32] 

k kl

l

J M
X


 


,       (7) 

1 1( 1)kl ki li

D
M J F F

kT
   ,      (8) 

where D is a diffusion coefficient. Eq.(8) shows that the diffusion rate depends on Mkl, 

which includes D but is extended by the deformation gradient, Fij, and J=det F. Using 

Eqs.(7) and (8), the continuity equation for the nominal concentration of solvent 

molecules is written as  

i
il

i i l

JC
M

t X X X

   
        

,      (9) 

where  consists of mixing and elastic contributions (see Eq.(6)) so that the transient 

state depends on the state of stresses via . This means that solvent migration is also 
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affected by the two scaling exponents. 

 

   The extended model has 8 material parameters, Ed, , , m, n, a, D, and kT, in 

Eqs.(1)–(9). When  is normalized by kT (i.e,  /kT), Ed is normalized as Ed  /(3kT) 

(see Section 3). Further, t is normalized using D (see Section 4). In this case, the set of 5 

material parameters, Ed  /(3kT), , m, n, and a, have to be given before starting 

analysis. To eliminate redundancy, according to Okumura et al. [29], three 

representative sets of Ed  /(3kT), m, n, and a, are primarily used in this study; first, Ed  

/(3kT)=0.01, 0.05, and 0.1 are considered as representative values, and Ed  /(3kT)=0.01 

is used with m = 0.3, n = 0.4, and a = 2, Ed  /(3kT)=0.05 with m = , n = 0.4, and 

a = 2, and Ed  /(3kT)=0.1 with m = , n = 0.4, and a = 4. Here, if the original F–R 

model is assumed, m = , n =  and a = 2 regardless of Ed  /(3kT). In addition,  is just 

parameterized in the range from 0 to 1. For  < 0.5, these values are regarded as good 

solvents, while for  > 0.5, poor solvents [3].  

 

 

3. Biaxial responses 

 

   Fig. 1 shows schematic illustrations of biaxial tensile loading of an elastomer in a 

solvent. Biaxial tensile loading in the x1 and x2 directions are given while retaining 

equilibrium swelling ( =0). The stress in the x3 direction is always zero, i.e., s3 =3 =0. 

Using 1 =1 3, 2 =2 3,  vanishes from the true stress components of i =1 and 2 

in Eq.(5), that is  

2
1 2 2 1 2d d

1 1 3 1 2 2

1 2

( )
3 3

m mE E J
J J   

 
   

    
 

,    (10) 

2
1 2 2 1 2d d

2 2 3 2 2 2

1 2

( )
3 3

m mE E J
J J   

 
   

    
 

.     (11) 

Here, the relation 1 1

3 1 2J     is used to express them as a function of 1, 2, and J. 

When Eqs.(10) and (11) are transformed to the nominal stress (see Eq.(5)),  

2

d
1 1 3 2

1 23

mE J
s J 

 
 

  
 

,      (12) 
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2

d
2 2 2 3

1 23

mE J
s J 

 
 

  
 

.      (13) 

Further, when 3 =0 is applied to the component of i =3 in Eq.(5),  is also given as a 

function of 1, 2, and J. Eq.(6) leads to the following equation at equilibrium swelling 

( =0)  

2

2 2
1 2/3 2 2 2/3d

1 22 2 2 2

1 2 1 2

1 2/3 2/3d

1 1
log

3
3 2

(3 3 log ) 0
3 2 2

m

n

J

kT J J J

E J m J
J J J

kT

E a n
J J J a J

kT

 


 

   







       
  

   
       

   

       
 

.   (14) 

 

 
Fig. 1.  Schematic illustration of biaxial tensile loading of an elastomer in a solvent; 

(a) initial state, (b) equilibrium free swelling, (c) stress control, and (d) strain 

control.  

 

At equilibrium free swelling, J =J0, 
1/3

1 2 3 0J     . In this case, Eqs.(12) and 

(13) show s1 =s2 =0, while Eq.(14) represents  
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0

2

0 0 0

1 2/3 2/3d
0 0 0 0

1 1
log

(3 3 log ) 0
3 2 2

n

J

J J J

E a n
J J J a J

kT



 

   
   

   

       
 

 ,   (15) 

where the second term in Eq.(14) vanishes in Eq.(15) because this term including m 

results from deviatoric deformation [29]. Eq.(15) is solved to obtain the volume 

swelling ratio J0 at equilibrium free swelling. In the same manner, Eqs.(12)–(14) are 

solved to obtain the stress-stretch response under biaxial deformation at equilibrium 

swelling. Results under stress and strain controls are shown in Sections 3.1 and 3.2, 

respectively. 

 

3.1. Under stress control 

 

When s1 and s2 are given for Eqs.(12)–(14) (i.e., stress control), a set of 1, 2, and J 

is simultaneously solved. Analysis under stress control is performed with the biaxial 

stress ratio ;  

2 1s s ,         (16) 

where  =0 and 1 mean uniaxial tensile loading in the x1 direction and equibiaxial 

tensile loading in the x1 and x2 directions. The biaxial stress ratio is parameterized in 

the range from 0 to 1.  

 

Fig.2 shows the nominal stress-stretch responses in the x1 direction for =0 (i.e., 

uniaxial), 0.5 (i.e., biaxial with a specific ratio) and 1 (i.e., equibiaxial). In the graphs, 

the combination of Ed  /(3kT)=0.01 and 0.1 with =0.2 and 0.6 is used to compare the 

responses of the extended model and the F–R model. First, the F–R model simply 

predicts a monotonic increase in s1 as 1 increases and a relatively small influence of  

regardless of the set of Ed  /(3kT) and . Next, the extended model predicts 

considerably different responses depending on as well as Ed  /(3kT) and . Here, in 

Fig.2, the symbol �  represents the onset point at which strain softening starts. In the 

small case of Ed  /(3kT)=0.01, strain softening occurs with =0.2 and 0.6. The critical 

stresses normalized by Ed are in the wide range from sc / Ed =0.1~0.6, and the critical 
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stretches are also in the wide range from c=2.5~10 (Fig.2a,b). In contrast, when the 

large case of Ed  /(3kT)=0.1 is focused on, =0.6 predicts a monotonic increase in s1 

without inducing strain softening (Fig.2c), but =0.2 predicts the onset of strain 

softening, especially at small values of c (Fig.2d). As reported in Okumura et al. [29], 

this tendency is consistent with Gee’s experiments with natural rubbers [30], stating that 

“with good swelling agents, only very small extensions can be applied without breaking 

the specimen.” Fig.2 shows that the onset points of strain softening are considerably 

affected not only by the interaction parameter  but also by the biaxial stress ratio . 

 

     
 (a)  (b)  

     
 (c)  (d) 

Fig. 2.  Stress-stretch responses at equilibrium swelling under uniaxial loading (s2 = 0), 

biaxial loading (s2 = 0.5 s1) and equibiaxial loading (s2 = s1); (a) Ed/(3kT) = 0.01 

and  =0.6, (b) Ed/(3kT) = 0.01 and  =0.2, (c) Ed/(3kT) = 0.1 and  =0.6, and 

(d) Ed/(3kT) = 0.1 and  =0.2. 

 

   To make clear the effect of biaxial deformation (i.e., the effect of  in this section), 

on the onset of strain softening, Fig.3 shows the critical stress as a function of the 

interaction parameter  for Ed  /(3kT)=0.01 (Fig.3a) and 0.1 (Fig.3b). It is found that 

the biaxial stress ratio ( =0, 0.5 and 1) affects critical stresses, but the overall profiles 
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depend on the set of Ed  /(3kT), m, n, and a. The increase in the tensile stress in the 

lateral direction (i.e., the increase in ) enables strain softening to occur not only in the 

earlier stage of deformation but also in relatively poor solvents (cf.[31]). This 

quantitative relation seems to be nonlinear as a function of  (Fig.3). When s1 and s2 at 

the critical point are plotted as a function of in the range from 0 to 1, the critical stress 

surface is obtained (Fig.4). In the case of  =0.4 for the parameter set including Ed  

/(3kT)=0.1 (Fig.4b), strain softening does not occur under uniaxial extension but does 

occur under biaxial loading, and the stress surface becomes nonconvex. This feature can 

be understood also from Figs.3b.  

 

      
 (a)  (b)  

Fig. 3.  Critical stress in the x1 direction, sc, at which strain softening begins as a 

function of ; (a) Ed/(3kT) = 0.01 and (b) Ed/(3kT) = 0.1. 

 

      
 (a)  (b)  

Fig. 4.  Critical stress surface in s1 and s2 predicted by biaxial tensile loading; (a) 

Ed/(3kT) = 0.01 and (b) Ed/(3kT) = 0.1. 
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 (a)  (b)  

      
 (c)  (d)  

Fig. 5.  Effects on critical stress surface in s1 and s2 obtained by parametrizing (a) 

Ed/(3kT) = 0.01, 0.05, and 0.1, (b) m = 0.3, 0, and 0.3, (c) n = 0.6, 0.4, and 

0.2 and (d) a = 4, 2, and 0.  

 

Fig.5 depicts the critical stress surface under biaxial deformation obtained by 

parametrizing one of Ed  /(3kT), m, n, and a, when the parameter set of Ed  

/(3kT)=0.05, m = , n = 0.4 and a = 2 is considered as a base elastomer. Although in 

the case of uniaxial tensile loading, the parametric studies were conducted in Okumura 

et al. [29], the effect of the tensile stress in the lateral direction can be investigated in 

Fig.5. First, the contributions of these parameters become larger as the solvent becomes 

poorer. However, the scaling factor n is dominant both in poor and good solvents 
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(Fig.5c). Next, the contributions of Ed  /(3kT), n, and a do not yield different 

tendencies in the presence of  (Fig.5a,c,d), while the effect of m changes as  increases 

from 1 to 0 (Fig.5b). It is noted that if m increases from 0 to a positive value, this 

increase acts to prevent strain softening from occurring under uniaxial tensile loading. 

Thus, if m decreases from 0 to a negative value, this decrease acts to accelerate strain 

softening under uniaxial tensile loading. The different tendency in Fig.4a,b is caused by 

m =0.3 or 0.3 in the parameter sets including Ed  /(3kT)=0.01 or 0.1, respectively. 

Fig.5 shows that the scaling factor m can cause the difference between uniaxial and 

biaxial extensions (cf. Ed  /(3kT), n, and a) and that this effect appears strongly under 

uniaxial loading because m is the scaling factor introduced into the deviatoric 

component of the elastic strain energy and n and a are only included in the volumetric 

component.  

 

3.2. Under strain control 

 

When 1 and 2 are given for Eqs.(12)–(14) (i.e., strain control), a set of s1, s2, and J 

is solved; Eq.(14) is first solved to obtain J, and then Eqs.(12) and (13) give s1 and s2, 

respectively. Analysis under strain control is performed with the biaxial strain ratio . 

When strains 1 and 2 are connected with 1 and 2 as follows  

1/3

1 0 1

1/3

2 0 2

(1 )

(1 )

J

J

 
 

  


 
,        (17) 

the biaxial strain ratio  is defined as  

2 1  ,        (18) 

where  =0 expresses planar extension in the x1 direction with the constraint in the x2 

direction (i.e., 1/3

2 0J   is constrained), while  =1 expresses equibiaxial tensile 

loading, which is equivalent to  =1 under stress control. Eqs.(17) and (18) allow 2 to 

be an explicit function of 1 and , that is, 

1/3

2 0 1(1 )J     .       (19) 
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The biaxial strain ratio is also parameterized in the range from 0 to 1. In this case, a 

biaxial extension is imposed to the elastomer because as 1 increases, 1 and 2 increase 

from zero to positive values. 

 

      
 (a)  (b)  

 
 (c)  

Fig. 6.  Comparison of stress trajectory under strain control for Ed/(3kT) = 0.05, m = 

0, n = 0.4, and a = 2; (a)  = 0.2, (b)  = 0.4, and (c)  = 0.6. 

 

   Fig.6 shows the stress trajectory under biaxial loading when the biaxial strain ratio 

is controlled as  =0, 0.25, 0.5, and 0.75. The result of  =1 is equivalent to  =1 under 

stress control because both cases express equibiaxial loading. The parameter set of a 

base elastomer (i.e., Ed  /(3kT)=0.05, m = , n = 0.4, and a = 2) is used for =0.2, 

0.4, and 0.6. In Fig.6, the critical stress surface, which was analyzed under stress control 
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in Section 3.1, is plotted to understand the responses under strain control. When a poor 

solvent is considered (Fig.6c), biaxial extension caused by 1 and 2 yields a biaxial 

tensile state of s1 > 0 and s2 > 0. The biaxial tensile state arrives at the critical stress 

surface early or late, so that strain softening can occur under strain control. After the 

onset of strain softening, the responses become complicated to preserve the value of . 

In contrast, the responses in good solvents (Fig.6a,b) do not yield the same behavior as 

in poor solvents (Fig.6c). In Fig.6a,b, strain softening does not occur clearly for =0.2 

and 0.4, excluding the combination of  =0.5 and 0.75, and  =0.4. This unexpected 

behavior is explained by considering the change in the stress in the lateral direction. In 

particular, for  =0 and 0.25 for  =0.2 and  =0 for  =0.4, the stress in the lateral 

direction does not take a positive value but starts to take a negative value at an early 

stage of biaxial deformation. As shown in Section 3.1, the tensile stress in the lateral 

direction accelerates the onset of strain softening, so that the negative stress is expected 

to prevent strain softening from occurring. The results show that under strain control, a 

compressive stress can be generated in the lateral direction, which has the tendency to 

appear in good solvents and in the case of small . Incidentally, this behavior was first 

discussed by analysis under planar extension [31].  

 

In general, biaxial extension under strain control (1 > 0 and 2 > 0) causes a biaxial 

tensile stress state when Poisson’s ratio is assumed to be positive. Thus, Fig.6 implies 

that the extended model can predict that swollen elastomers at equilibrium free swelling 

have a negative Poisson’s ratio. Bouklus and Huang [32] derived a closed form 

expression of Poisson’s ratio, which are derived from the F–R model. Further, Okumura 

et al. [29] successfully extended it in the case of an extended model with two scaling 

exponents. According to [29], when Eqs.(5) and (6) are linearized under uniaxial 

loading without a change in the chemical potential, Poisson’s ratio, , can be expressed 

as the closed form expression  

1

1/3d d
0 2

0 0 0

1 1 1 1 2

2 2 3 1 3

mE E
J X

kT J J J kT

 




  
     

 
,    (20) 
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.  (21) 

If m =0, n =0, and a =2, Eqs.(20) and (21) reduce to that derived by Bouklus and Huang 

[32]. It is noted that Eqs.(20) and (21) are the closed form expression to estimate 

Poisson’s ratio with a volume swelling ratio J0. In this study, the volume swelling ratio 

at equilibrium free swelling is denoted as J0, so that J0 is analyzed by solving Eq.(15).  

 

 
Fig. 7.  Poisson’s ratio at equilibrium free swelling as a function of interaction 

parameter  for Ed/(3kT) = 0.01, 0.05, and 0.1. 

 

   Fig.7 shows Poisson’s ratio as a function of the interaction parameter  for the three 

representative sets of Ed  /(3kT), m, n, and a (see Section 2). If swollen elastomers are 

incompressible,  =0.5, but they are compressible depending on the increase in J during 

swelling when the change in the chemical potential in swollen elastomers is not allowed. 

Thus, as  increases more than about approximately 1 (i.e., poor solvents), Poisson’s 

ratio approaches 0.5 regardless of Ed  /(3kT), m, n, and a. As  decreases from 1, 

Poisson’s ratio is affected by the increase in J; Poisson’s ratio takes a smaller value 

compared with 0.5. When good solvents are assumed in the F–R model (i.e.,  <0.5), 

Poisson’s ratio is approximately 0.25. This value is not sensitive to Ed  /(3kT) in good 

solvents. In contrast, in the extended model, the profiles depend considerably on the set 

of parameters. In good solvents, the extended model predicts the negativity of Poisson’s 

ratio. In the case of a base elastomer (i.e., Ed  /(3kT)=0.05, m = , n = 0.4, and a = 2), 

Poisson’s ratio is smaller than zero as  decreases from approximately 0.4. This feature 
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causes a compressive stress in the lateral direction under biaxial deformation (see 

Fig.6).  

 

      
 (a)  (b)  

      
 (c)  (d)  

Fig. 8.  Effects on Poisson’s ratio at equilibrium free swelling obtained by 

parametrizing (a) Ed/(3kT) = 0.01, 0.05, and 0.1, (b) m = 0.3, 0, and 0.3, (c) n 

= 0.6, 0.5, 0.4, 0.3, and 0.2 and (d) a = 4, 2, and 0. 

 

Fig.8 depicts the dependence of Poisson’s ratio on  obtained by parametrizing one 

of Ed  /(3kT), m, n, and a. Although the F–R model predicts almost no dependence of 

Ed  /(3kT) in good solvents (see Fig.7), the extended model shows a considerable 

dependence of m and n as well as Ed  /(3kT), while a has a small effect (Fig.8d). As Ed 

 /(3kT) decreases with n =0.4 (Fig.8a), Poisson’s ratio decreases from a positive value 

to a negative value. In the same manner, the changes in m and n cause dramatic changes 

in Poisson’s ratio. Incidentally, it may be interesting to discuss the reason that Poisson’s 

ratio tends to be saturated to 1 if n is assumed to be smaller than approximately 0.6 in 

good solvents (Fig.8c). In this extreme case, when a stretch is imposed in a direction, 

this stretch is provided by the change in J, (i.e.,  = J
1/3

), so that the stretches in other 

directions are also identical, i.e.,  = 1. As a result of the combination of Ed  /(3kT), m, 
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n, and a, the negativity of Poisson’s ratio can appear when the extended model is 

assumed in good solvents. The complicated responses under strain control can be 

interpreted by considering this feature. 

 

 

4. Transient responses of constrained gel layer 

 

To investigate the effect of two scaling exponents on mass transport, the swelling 

kinetics of a gel layer constrained on a rigid substrate is analyzed. Fig.9 shows 

schematic illustrations of an elastomer layer constrained on a rigid substrate at the 

bottom face (X3 = 0) and exposed to a solvent on the top face (X3 = H). When the top 

face is assumed to remain flat during swelling, the gradient of the chemical potential 

appears only in the X3 direction (i.e., 1 2/ / 0X X        and 3/ 0X   ). The 

lateral dimensions are fixed by the substrate constraint so that deformation is allowed 

only in the X3 direction. This constraint results in increasing the compressive stresses in 

the X1 and X2 directions during swelling, while the stress in the X3 direction always 

remains zero (s3=0). These assumptions mean that surface instability is not considered 

in the present study. 

 

 
Fig. 9.  Schematic illustration and boundary conditions of a gel layer constrained on a 

rigid substrate at the bottom face (X3 = 0) and exposed to a solvent on the top 

face (X3 = H).  

 

When X1, X2, and X3 are assigned to the principal directions of i =1,2,3, respectively, 

the deformation gradient is explicitly expressed as  

1/3
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,     (22) 
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where J00 is the initial value of the volume swelling ratio in the reference state (t =0), 

and J is the current value and is a function of t. The reference state is given as J00 under 

free swelling, i.e., 
1/3

1 2 3 00J      with si =0 but <0 so that 00 01 J J   (cf. 

Section 3). In the current state, J =123 results in 
2/3

3 00JJ  . Using Eq.(22), Eq.(8) 

gives  
4/3

00
33 2

( 1)J JD
M

kT J


 ,       (23) 

where M11 and M22 can also be derived with nonzero values, but they are not effective in 

this analysis because 1 2/ / 0X X        (see Eq.(7)). Further, Eq.(14) gives   
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,    (24) 

resulting in  

d

2 3

3 3

1 1 2
( )

( 1) 3

E J
Y Z

kT X J J J kT X

   
    

   
,     (25) 
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004/3
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2 2/3(3 2)(3 1) 2 1 ( 1)
(3 log )

6 2 2

n n n n n n
Z J J a a J         

 
.  (27) 

 

Eqs.(2),(9),(23),(25)–(27) give the evolution equation for the volume swelling ratio 

as a function of t and X3. When t and X3 are normalized by H
2
/D and H, respectively, the 

evolution equation is expressed as  

J J

t X X


        
,        (28) 

4/3

00 d
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( 1) 1 2
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( 1) 3

J J E
Y Z

J J J J kT




 
    

 
,     (29) 

where 
2/ 0t tD H  , 3 /X X H  with 0 1X  . Here,  is defined as a mobility 

factor in the present study. This factor is a function of J and depends on J00, , Ed  
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/(3kT), m, n, and a. In the kinetic responses of this problem, the effects of the two 

scaling exponents are introduced in Eq.(29) via two terms of Eqs.(26) and (27). 

 

   Eq.(28) needs initial and boundary conditions (Fig.9). At t =0, J =J00 everywhere 

except for the top face ( 1X  ). At 1X  ,  =0 results in J =J0 at any time. Here, J0 is 

calculated by solving Eq.(24) with  =0. At the bottom face ( 0X  ), J3 =0 results in 

3/ 0J X    at any time. Eq.(28) is finally solved by a finite differential method [32]. 

It is noted here that the evolution equation was solved in [32] as a function of the stretch 

in the thickness direction, while in the present study, the volume swelling ratio is solved 

using Eq.(29), but the translation from J to 3 is easy because 2/3

3 00JJ   (Eq.(22)). 

 

      
 (a)  (b)  

Fig. 10.  Evolution of volume swelling ratio, J, as a function of normalized time, t 

D/H
2
, for X3/H =0, 0.5, 0.75, and 1 with  = 0.2 and J00 = 1.33; (a) Ed/(3kT) = 

0.01 and (b) Ed/(3kT) = 0.1. 

 

   Fig.10 shows the results with the volume swelling ratio, J, as a function of the 

normalized time, tD/H
2
, for X3/H=0, 0.5, 0.75, and 1. Fig.10 is obtained using J00=1.33 

and  =0.2. As X3 decreases from the top face to the bottom face, the increase in J 

becomes slow because of the delay of solvent migration. Fig.10a,b show the difference 

between the two parameter sets. In Fig.10a, the parameter set allows a larger volume 

swelling ratio (J5) compared with that in Fig.10b (J2). This feature is directly 

related to the difference in the time at which the volume swelling ratio at the bottom 

face approaches equilibrium swelling. Fig.10 simply shows that the time needed to 

obtain equilibrium swelling everywhere depends on the increasing amount of the 
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volume swelling ratio from J00 to J0. It is not clear if the two scaling exponents play an 

important role in causing the remarkable difference in the transient state.  

 

      
 (a)  (b)  

Fig. 11.  Comparison of evolution of mass transport; (a) volume swelling ratio, J, at 

the bottom face (X3/H=0), as a function of normalized time, tD/H
2
, and (b) 

mobility factor,  (Eq.(29)), as a function of volume swelling ratio, J. 

 

   When the volume swelling ratio at the bottom face is focused on, Fig.11 shows the 

results obtained by the F–R and extended models. Fig.11a shows the dependence of the 

volume swelling ratio at equilibrium swelling on Ed  /(3kT), m, n, and a, while Fig.11b 

shows the dependence of the mobility factor on Ed  /(3kT), m, n, and a. This graph 

demonstrates that the mobility factor predicted by the extended model is slightly smaller 

than that predicted by the F–R model when Ed  /(3kT) is identical (Fig.11b). These 

results show that the extended model predicts a slightly slow diffusion process when m, 

n, and a are adjusted by experiments [29]. Fig.12 depicts the dependence of  on J 

obtained by parametrizing one of Ed  /(3kT), m, n, and a. Unexpectedly, the effect of n 

as well as Ed  /(3kT) is negligible in this profile, although they affect the volume 

swelling ratio at equilibrium swelling (Fig.12a,c). Fig.12b,d show that the mobility 

factor tends to decrease as m and a decrease to a negative value. This tendency yields 

the difference between the F–R and extended models in Fig.11. However, these 

differences also may be negligible. The results obtained in this section demonstrate that 

the extended model modifies the mobility factor  using the two scaling exponents, but 

the contributions to the swelling kinetics are not considerably large.  
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 (a)  (b)  

      
 (c)  (d)  

Fig. 12.  Effects on mobility factor,  (Eq.(29)), with  = 0.2 and J00 = 1.33, obtained 

by parametrizing (a) Ed/(3kT) = 0.01, 0.05, and 0.1, (b) m = 0.3, 0, and 0.3, (c) 

n = 0.6, 0.4, and 0.2 and (d) a = 4, 2, and 0.  

 

5. Concluding remarks 

 

   In the present study, the effects of two scaling exponents on the biaxial deformation 

and mass transport of swollen elastomers were investigated. The two scaling exponents 

are included in an extended version of the Flory–Rehner model [29]. When biaxial 

tensile loading was given under stress control, the increase in the biaxial stress ratio 

enabled strain softening to occur not only in the earlier stage of deformation, but also in 

relatively poor solvents. In contrast, under strain control, strain softening was prevented 

by a compressive stress in the lateral direction, which can be generated in good solvents 

and in the case of small biaxial strain ratio (e.g., planar extension). This complicated 

behavior was interpreted by considering that Poisson’s ratio at equilibrium free swelling 

can take negative values depending on the two scaling exponents. Further, in the 

analysis of the swelling kinetics of a constrained gel layer, the two scaling exponents act 

via the mobility factor of Eq.(29). Although the two scaling exponents had a remarkable 
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influence on the volume swelling ratio at equilibrium swelling, their effects on solvent 

migration during swelling were not as dramatic. However, the mobility factor has a 

tendency to decrease to a greater or lesser extent as m and a decrease to a negative 

value.  

 

In the present study, the neo-Hookean solid model extended by two scaling 

exponents [29] was used to investigate the effects of the biaxial deformation and mass 

transport of swollen elastomers. The swelling effects were adjusted well using the two 

scaling exponents, but this extended model may not have the ability to predict the 

mechanical responses at large strain and/or under biaxial deformation. It will be 

possible to extend more advanced solid models using the two scaling exponents. To 

perform this extension, more elaborate studies of the swelling effects at large strain 

under biaxial deformation should be conducted. The dependence of the swelling kinetics 

of elastomers on internal stresses should be further investigated. These future studies 

will achieve more comprehensive understanding and modeling of swollen elastomers in 

static and transient states. 
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