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Abstract

Pendellösung interferometry is one of the technique for accurate determination of the structure factors of crystals.

Observation method of Pendellösung fringes by using pulsed cold neutrons and the time-of-flight analysis were es-

tablished. We measured the nuclear scattering length of silicon by the Pendellösung fringes with pulsed neutrons as

(4.125 ± 0.003(stat.) ± 0.028(syst.)). This indicates the applicability of Pendellösung interferometry at high-intensity

pulsed neutron facilities for various precision measurements.
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1. Introduction

Pendellösung interferometry, which is based on the dynamical diffraction behavior in a perfect crystal, is one of

the most accurate technique for determination of the structure factors of the crystals. Although measurements with the

Pendellösung interference fringes require large scale of the perfect crystal, it has the advantage to extract the absolute

value of the structure factor. Pendellösung interference fringes were explained theoretically by C. G. Darwin[1] and

P. P. Ewald[2]. They were observed for the first time in 1959 by N. Kato and A. R. Lang[3]. Pendellösung fringes of

neutrons were also observed in the late 1960’s by C. G. Shull and so on [4–6].

In the case of symmetrical Laue geometry (Fig.1(a)), when a neutron beam is injected into a perfect and thick

crystal under the Bragg condition, the wave function in the crystal can be written as a superposition of the four

components by the dynamical diffraction theory[7–12] as

ψ = ψ1
0 + ψ2

0 + ψ1
g + ψ2

g, (1)

where subscripts 0 and g represent the transmitted and the reflected wave, respectively, and subscripts 1 and 2 repre-

sent two Bloch wave functions. The wavenumbers of these Bloch waves are slightly different corresponding to the

periodical nuclear potential in the crystal. In general, the four components are coherent and can interfere with each

other. The radiation density is given by

|ψ|2 ≈ |ψ1
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0|
2
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2
, (2)

as the intensity of (ψ1
0+ψ2

0)∗(ψ1
g+ψ2

g)+(ψ1
0+ψ2

0)(ψ1
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g)∗ oscillates rapidly in the space that is so much smaller than the

exit slit width to be smeared by averaging. The transmitted wave |ψ1
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0|
2 and the reflected wave |ψ1

g + ψ2
g|

2 generate
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Figure 1: (a) Neutron wave functions with symmetrical Laue geometry in a crystal can be written as a superposition

of the four components by the dynamical diffraction theory. The incident neutrons propagate through the crystal

spreading over a triangle zone (Borrmann fan) with a particular oscillating pattern due to the interference between

the two Bloch waves in the transmitted and reflected beams, respectively. The curves on the right side represent the

distributions of the emitted neutrons from the end surface of the crystal for the transmitted and reflected neutrons,

respectively. In the transmitted direction, the intensity of the beam in the edge of the Borrmann fan is very strong,

thus the central part is magnified to be visible. (b) Definition of the normalized position Γ on the end surface of the

crystal.

a periodical structure of the radiation density in the crystal. This structure is known as Pendellösung interference

fringes. Figure 1(a) shows also the intensity distribution of neutrons on the end surface of the crystal, when neutrons

is injected into the crystal through the narrow slit with the Bragg angle θ with respect to the crystallographic plane

(hkl). The normalized distance Γ ≡ x/(t tan θ) at the position x from the diffraction center along the end surface would

be introduced, where t is the thickness of the crystal (see Fig.1(b)). The intensity of the transmitted neutrons at the

position Γ can be written as[10]

I0(Γ)dΓ = u0
2∆0 tan θ

1 − Γ

(1 + Γ)
√

1 − Γ2

[
1 + cos

(
π

2
+

4tFhkldhkl

Vc

√
1 − Γ2 tan θ

)]
dΓ, (3)

where u0
2 is the neutron density on the incident surface, Fhkl and dhkl are the crystal structure factor and the spacing

of the (hkl) crystallographic plane of the crystal, respectively, and Vc is the unit cell volume of the crystal. ∆0 is the
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Figure 2: Experimental setup to demonstrate Pendellösung fringes at the MLF BL17 in J-PARC (top view). The

goniometer stage was scanned clockwise in the range of 25.0◦ − 26.5◦. The real Bragg angle was obtained from the

value of the TOF-position of the diffraction peak. The transmitted beam from the exit slit on the end surface of the

crystal was shifted 1 mm downward in this figure and detected by the 3He-gas detector. The beam divergence was

confined by the upstream two slits and entrance slit. Direct beam was cut off by the exit slit and the downstream two

slits.

Pendellösung length, which is given by

∆0 =
Vcπ cos θ
λFhkl

, (4)

where λ is the wavelength of the neutron. The neutron intensity through the exit slit for the transmitted beam, P0 , can

be obtained by integration of Eq.3 as

P0 =

∫ Γs

−Γs

I0(Γ)dΓ. (5)

In the case of the symmetric and narrow slit with the width of 2Γs and Γs � 1, Eq.5 can be expressed as

P0 ' 2u0
2∆0Γs tan θ

[
1 + cos

(
π

2
+

4tFhkldhkl

Vc
tan θ

)]
. (6)

This periodic structure can be observed by varying θ[13]. This can also be measured by varying the thickness of the

crystal[6, 14]. The measurements of Pendellösung fringes enable the accurate determination of the crystal structure

factor, and then it can be used to obtain the value of the coherent scattering length of the atom. Using this method,

Shull and Oberteuffer obtained a nuclear scattering length of bnuclear = (4.1491 ± 0.0010) fm for silicon[13]. These
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Figure 3: Wavelength spectrum of the incident neutrons.

Figure 4: Wavelength spectrum of the diffracted neutrons

for the symmetrical Laue geometry of the (111) plane of a

single silicon crystal for the set angle ω = 25.0◦.

previous experiments were performed by using neutrons from reactors, therefore, monochromatic neutrons with the

narrow energy-band was needed in order to satisfy the Bragg condition for a particular crystallographic plane. In this

paper, we report the methodology of the observation of the Pendellösung fringes by using pulsed neutrons and the

applicability of pulsed neutron beam to study foundamental physics by treating several crystallographic planes at the

same time by using the time-of-flight analysis.

2. Experiment

We used a single silicon crystal with a width of 50 mm, height of 50 mm, and thickness of 2.8 mm, which

was cut out from a float-zone ingot. The crystallographic plane (111) was used for demonstration. The surfaces of

the crystal were mechanically polished and finally finished by chemical wet etching in order to remove the mosaic

surface layer. The X-ray rocking curve exhibited a sharp peak with the width of less than 3 arcsec. The experiment

using pulsed neutrons was performed at the beam line BL17 in the Materials and Life Science Experimental Facility

(MLF) in J-PARC (Japan Proton Accelerator Research Complex). Figure 2 shows the experimental setup. The crystal

was sandwiched between the entrance cadmium slit and the exit cadmium slit which are 1.0 mm thick and have a

45◦tapering. The width of both the entrance and exit apertures was 0.2 mm. The neutron beam divergence was

0.039◦. The transmitted neutrons were measured by a 3He-gas detector with a gas pressure of 7 atm. The incident

angle to the crystal was scanned by a goniometer from ω = 25.0◦ to ω = 26.5◦ with steps of 0.1◦, where ω was the

set angle of the goniometer stage. The measuring time of each step was two hours. Figure 3 shows the wavelength

spectrum of the incident neutron beam.

3. Results

Figure 4 shows the wavelength spectrum of the diffracted neutrons for ω = 25.0◦. Four diffraction peaks were
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Figure 5: Diffraction peak of the (111) plane for ω = 25.0◦

and the result of a fitting by the extreme function (Eq.7).

The profile of the peak is fitted well.

Figure 6: Dependence of the width parameter w on the go-

niometer angle ω. The width of the diffraction peak tends

to be broader as the wavelength is longer due to the char-

acteristics of the cold

observed for the (111) , (022) , (113) , (131) planes. The diffraction peak of the (111) plane, which was in a symmet-

rical Laue geometry condition, was analyzed for the demonstration of the Pendellösung fringes. For evaluating the

intensity of diffracted neutrons on the specified crystallographic plane, it is necessary for its peak position and width

in time-of flight spectrum to be determined exactly. In order to determine the peak position and width, the peak of

diffracted neutrons was fitted by a combination of the linear function for the background and the exponential function

for the diffraction peak as:

y = A + Bx + C exp
[
− exp

(
−

x − xc

w

)
−

x − xc

w
+ 1

]
, (7)

where A, B,C are constants (Fig.5). The exponential part of this function is known as the extreme function, where xc

is the maximum point corresponding to the peak position and w represents the width of the peak. The width of the

peak in TOF spectrum depends on the wavelength of the neutron due to the characteristics of the cold neutron source.

The width parameter w was corrected by using the fitting of its dependency on the goniometer angle (see Fig.6). The

intensity of the diffraction peak at each scanning angle was defined as neutron counts in the full width of 2% of the

maximum after the subtraction of the background. The Bragg angle θ was determined by the TOF of the peak position

using the relation;

TOF =
mnLdhkl sin θ

π~
, (8)

where mn is the mass of the neutron and L=18 m is the distance from the cold neutron source to the detector. The

intensity of the diffraction peak was corrected for the glancing width of the cadmium slits and the spreading of the

Borrmann fan at each incident angle. The intensity was also corrected for the incident beam spectrum and the energy

width for the diffraction. The Pendellösung fringes were clearly observed with a contrast of (16 ± 2)% as shown in

Fig.7. The coherent scattering length was obtained by the fitting with Eq.6 of the Pendellösung fringes. Silicon has a
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Figure 7: Pendellösung fringes of the (111) crystallographic plane of a single silicon

crystal. The plots were fitted by Eq.7. The contrast was obtained at (16 ± 2) %.

diamond structure, thus its Fhkl for the (111) plane is given by

F111 =
√

32bce−W , (9)

where bc is the coherent scattering length of a silicon and e−W is the Debye -Waller factor. We obtained

bce−W = (4.178 ± 0.003) (fm). (10)

The Debye -Waller factor e−W of the (111) plane of the silicon was (0.98842 ± 0.00012)[13]. The coherent scat-

tering length bc in Eq.11 can be written as bcharge + bnuclear, where bchargeis the neutron-charge scattering length of

(+0.0043± 0.0002) fm for the (111) plane of the silicon[13] and bnuclear is the nuclear scattering length for the silicon.

Consequently, we obtain

bnuclear =
(
4.125 ± 0.003(stat.) ± 0.028(syst.)

)
(fm). (11)

The systematic uncertainties and the statistical uncertainty are summarized on Tab.1. This value was consistent

with the value of (4.1507 ± 0.0002) fm that is present most precise value obtained with the neutron interferometry

technique[15] . The origin of the largest systematic uncertainty is the Bragg angle θ, which was derived from the

accuracy of the wavelength of the incident neutron.

4. Conclusion

Pendellösung interference fringes using pulsed cold neutrons were observed for the first time. The observed

fringes can be explained with the dynamical diffraction theory for the crystal. The coherent scattering length was

accurately measured by using the period of the fringes. The time-of-flight analysis for a pulsed neutron beam enables

the use of polychromatic neutrons for the observations of Pendellösung fringes and another physical observables with
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Table 1: Systematic and statistical uncertainties

* Calculated from the lattice constant a0 = 0.5431020504(89) fm from NIST.

** Referenced from [13]

Item Symbol Unit Value Uncertainty Uncertainty of bnuclear

Systematic uncertainty

Bragg angle θ radian 0.4006 0.00241 0.02755

Thickness of crystal t mm 2.795 0.003 0.0045

Cell volume Vc nm3 ∗0.1602 0.0009 0.000023

Spacing of (111)-plane dhkl nm ∗0.3135601 0.000006 0.000008

Debye-Waller factor e−W - ∗∗0.98842 0.00012 0.00051

Total 0.028

Statistical uncertainty 0.003

respect to several crystallographic planes at the same time. We expect that the simultaneous measurements on the

planes would introduce an improved accuracy of physical observables that can be determined in their ratio.
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