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Equilibrium and non-equilibrium molecular dynamics simulations are performed on liquid hexane
in order to clarify the origin of the Cox-Merz rule of liquids composed of chain-like molecules.
The relation between the frequency-dependent complex shear viscosity and the shear-rate dependent
nonlinear viscosity follows the Cox-Merz rule as expected. The slowest viscoelastic relaxation mode is
explained by the translation-orientation coupling mechanism, and the saturation of the shear-induced
orientational order is observed in the non-equilibrium simulation at the onset of the shear thinning. The
origin of the Cox-Merz rule is discussed in terms of the translation-orientation coupling. Published
by AIP Publishing. https://doi.org/10.1063/1.5051680

I. INTRODUCTION

Shear viscosity is defined as the ratio of shear stress to
the applied shear rate. When the applied shear rate is suffi-
ciently small, many fluids exhibit the Newtonian regime of
viscosity in which the shear viscosity is independent of the
shear rate. However, nonlinear behavior is sometimes observed
under strong shear flow, and the description of the nonlinear
shear rheology is important in many scientific and engineering
fields.1

The Cox-Merz rule is one of the empirical rules that
describe the nonlinear shear viscosity.2,3 It states that the
shear-rate dependent nonlinear viscosity, η(γ̇), is equal to the
amplitude of the frequency-dependent linear complex viscos-
ity, η∗(ω), at γ̇ = ω, where γ̇ and ω stand for the shear
rate and the angular frequency, respectively. It is well-known
empirically that the Cox-Merz rule holds well on polymer
systems although its detailed mechanism is still an open
question.

We have experimentally investigated the validity of the
Cox-Merz rule on three lubrication oils composed of small
molecules.4 The Cox-Merz rule applies to squalene, a chain-
like hydrocarbon, while it does not hold on other two oils.
We tentatively ascribed the success of the Cox-Merz rule in
squalene to its chain-like shape.

Very recently, we studied computationally the shear thin-
ning of the Lennard-Jones (LJ) liquid, which is a representative
simple liquid composed of spherical molecules.5 The slowest
viscoelastic relaxation was assigned to the anisotropic shift of
the main peak of the structure factor. Due to the narrow width
of the main peak, a small amount of the peak shift leads to
the deviation of the liquid structure from the equilibrium one,
which is the reason for the onset of the shear thinning several
times faster than the prediction of the Cox-Merz rule. We con-
sider that the mechanism revealed on the LJ liquid explains

a)E-mail: yamaguchi.tsuyoshi@material.nagoya-u.ac.jp

the breakdown of the Cox-Merz rule in two lubrication
oils.

The next question is the reason why the Cox-Merz rule
holds on liquids composed of chain-like molecules. Since
polymer is regarded as the elongated limit of the chain-like
molecules, this question is of some importance also in polymer
physics.

There have been many molecular dynamics (MD) simu-
lation studies on the nonlinear rheology of linear alkanes.6–13

The shear thinning was reproduced well by non-equilibrium
MD simulation. The correspondence between the onset of
the shear thinning and the reorientational relaxation time was
suggested, and the shear-induced orientational order was also
analyzed.

The rank-2 orientational order possesses the same rota-
tional symmetry as the shear stress tensor in liquids com-
posed of anisotropic molecules, and there can be static and
dynamic cross correlation between them. The cross correlation
between the shear stress and the orientational order is called
“translation-orientation coupling.”14–16 There are many exper-
imental methods to analyze the translation-orientation cou-
pling. The first one is the depolarized light scattering, where the
coupling is probed through the dynamics of the orientational
order.14,17,18 The second one is the flow birefringence, which
measures the collective anisotropy induced by shear flow.3,19

The ultrasonically induced birefringence can be regarded as
the high-frequency version of the flow birefringence.20,21 The
third one is the measurement of the frequency-dependent
shear viscosity.18,21 Due to the translation-orientation cou-
pling, the reorientational relaxation appears in the com-
plex shear viscosity spectrum, and its relaxation amplitude
reflects the coupling strength. We have shown in our pre-
vious work that the slowest viscoelastic relaxation mode
of liquid alkanes is assigned to the translation-orientation
coupling.22

Given that the reorientational relaxation appears in the
frequency-dependent complex shear viscosity, the Cox-Merz
rule of liquids composed of chain-like molecules may be
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ascribed to the translation-orientation coupling when the onset
of the shear thinning corresponds to the reorientational relax-
ation time as was reported in previous studies. The idea is
also akin to the stress-optic rule of polymer systems in which
nonlinear rheology is related to the nonlinearity of the shear-
induced orientation of the bond orientation.3,23 Therefore, the
Cox-Merz rule of liquid alkane is better analyzed in terms of
the translation-orientation coupling, which is what we shall
undertake in this work.

This paper is composed of five sections. This introduc-
tory section, Sec. I, is followed by the theoretical one, Sec. II,
which describes the translation-orientation coupling mech-
anism based on the equilibrium time correlation functions.
The conditions of MD simulations are given in Sec. III,
and the results are shown in Sec. IV. In Sec. IV, the equi-
librium translation-orientation coupling is exhibited first,
and the shear thinning is analyzed based on the devia-
tion of the orientational order under shear from the linear
response (LR) prediction. The conclusion remarks are given in
Sec. V.

II. THEORY

According to the Kubo-Green formula, the frequency-
dependent complex shear viscosity, η∗(ω), is given by the
Fourier-transformed time correlation function of the shear
stress tensor, P(s), as24

η∗(ω) =
∫ ∞

0
e−iωtG(t)dt, (1)

G(t) ≡
V

kBT

〈
P(s)

xy (0)P(s)
xy (t)

〉
, (2)

where V, kB, and T stand for the volume of the system, the
Boltzmann constant, and the absolute temperature, respec-
tively, and 〈. . .〉 means the statistical average under the equi-
librium ensemble. The steady state shear viscosity, η0, is given
by the low-frequency limit of η∗(ω) as

η0 = lim
ω→0

η∗(ω). (3)

The collective rank-2 orientational tensor, denoted as D, is
usually defined as the sum of the single molecular counterpart
as

D ≡
1
N

∑
i
D(s)

i , (4)

where D(s)
i indicates the single-molecular rank-2 orientational

tensor of molecule i and N stands for the number of molecules
in the system. In this work, D(s)

i was defined in terms of the
end-to-end vector (the vector between two terminal methyl
groups), ree,i, as

D(s)
i ≡

ree,i ⊗ ree,i

��ree,i��2
−

1
3

1. (5)

The tensor product of two vectors is denoted as ⊗ here. It
is to be noted here that the discussion in this work does not
depend on the details of the definition of the orientational
tensor, D.

The collective reorientational dynamics is described by
the autocorrelation function of D as

CR(t) ≡
N2〈D(0) : D(t)〉∑

i

〈���D
(s)
i

���
2
〉 , (6)

where the colon stands for the scalar product of two tensors.
The initial value of CR(t),

g2 ≡ CR(0) =
N2

〈
|D|2

〉
∑

i

〈���D
(s)
i

���
2
〉 , (7)

describes the strength of the static orientational correlation
between different molecules.25 The value of g2 = 1 indicates
the absence of the correlation, and the larger value of g2 means
the larger positive correlation. The reorientational relaxation
time, τR, is defined by the integral of CR(t) as

τR ≡
1

CR(0)

∫ ∞
0

CR(t)dt. (8)

The strength of the translation-orientation coupling is
described in terms of the translation-orientation coupling
constant, denoted as R. The definition of R in terms of
time-correlation functions is given by15

R ≡

���∫
∞

0

〈
P(s)

xy (0)Dxy(t)
〉
dt���

2

∫
∞

0

〈
P(s)

xy (0)P(s)
xy (t)

〉
dt ∫

∞
0

〈
Dxy(0)Dxy(t)

〉
dt

. (9)

In the diffusive limit, the decay of CR(t) is proportional to
exp(−t/τR), and the slowest mode of the viscoelastic relax-
ation is related to the reorientational relaxation through the
translation-orientation coupling as

η∗(ω) = η0

[
(1 − R) +

R
1 + iωτR

]
. (10)

The real time version of Eq. (10) is described as∫ t

0
G(τ)dτ = η0

[
1 − Re−t/τR

]
. (11)

The linear response theory states that the non-equilibrium
average under an external field is described in terms of
time-correlation functions. The shear-rate dependent nonlinear
viscosity, η(γ̇), is defined as

η(γ̇) ≡ −

〈
P(s)

xy

〉
γ̇

γ̇
, (12)

where 〈. . .〉γ̇ means the average under the steady simple shear
flow in the xy-direction (the direction of the flow velocity is
in the x-direction, and its gradient is in the y-direction). The
γ̇ → 0 limit of η(γ̇), η0, is given by the time correlation func-
tion of P(s)

xy through Eq. (1), which is an example of the linear
response theory. The simple shear induces collective orienta-
tion in the xy-direction in the linear response regime, and its
magnitude is given by

〈
Dxyγ̇

〉
= ±

√
η0g2τRR
15ρkBT

γ̇, (13)
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where ρ = N /V stands for the number density of the
molecules and the sign in the rhs is the same as that of
− ∫
∞

0

〈
P(s)

xy (0)Dxy(t)
〉
dt. The derivation of Eq. (13) is described

in the Appendix.
It is to be noted here that since R is defined in terms of

equilibrium correlation functions, it is applicable solely to sys-
tems under weak shear where the linear response theory holds.
The nonlinearity in the coupling between the shear stress and
the orientational order will be examined numerically in this
work using non-equilibrium MD simulation.

The Cox-Merz rule is the empirical relation between the
linear viscoelasticity and the nonlinear rheology. When the
translation-orientation coupling mechanism is dominant, the
former is governed by the relaxation of Dxy. It is thus natural
to consider that the latter is also determined by the nonlinear-
ity of the response of Dxy when the Cox-Merz rule and the
translation-orientation coupling mechanism hold. The nonlin-
earity of

〈
Dxy

〉
γ̇
, which is described as the deviation from

Eq. (13), is thus analyzed in this work by means of MD
simulation.

III. MD SIMULATION

The equilibrium and non-equilibrium MD simulation runs
were performed on liquid hexane composed of 512 molecules.
The TraPPE-UA united atom model was employed to describe
the intra- and intermolecular interactions of hexane.26 All the
simulation runs were performed under NVT ensemble, and the
temperature of the system was controlled to be 298.15 K with
the Nosé-Hoover thermostat.27 The molecules were filled into
a cubic cell with the periodic boundary condition. The size
of the simulation cell was 4.818 65 nm, which reproduces the
density of liquid hexane under the ambient condition.28 In
addition to an equilibrium MD run, the non-equilibrium runs
under simple shear were performed with the shear rates of
0.001, 0.003, 0.01, 0.03, 0.1, 0.3, and 1 ps−1. The equation
of motion was integrated using the leap-frog algorithm with
the time step of 1 fs. For each shear rate, a run of 10 ns was
performed first to achieve the equilibrium or steady state, and
the subsequent production run of 100 ns length was analyzed.
All the sites of hexane are neutral in the TraPPE-UA model,
and the intermolecular LJ potential was cut off at 1.4 nm. All
the simulation runs were performed using GROMACS 5.1.2
package.29

IV. RESULTS AND DISCUSSION

Figure 1 shows the running integral of the equilibrium
time correlation function of the shear stress, G(t). After the
short-time oscillation, which is ascribed to the intramolecular
vibration, the running integral monotonically increases in the
ps time regime. The converged value gives η0 = 0.206 mPa s,
which is consistent with experiments and previous simulation
studies.10,22

The equilibrium reorientational correlation function,
CR(t), is shown in Fig. 2. It decays almost exponentially, and
it should be noticed that the time scale of the decay is sim-
ilar to that of G(t) exhibited in Fig. 1. The initial value is
g2 = CR(0) = 1.28, which suggests the presence of the weak

FIG. 1. The running integral of the equilibrium time correlation function
of the shear stress, G(t) defined by Eq. (2), is plotted with the black curve
and compared with the prediction of the translation-orientation coupling
mechanism, Eq. (11) (red curve).

FIG. 2. The equilibrium reorientational correlation function, CR(t), defined
by Eq. (6).

intermolecular orientational correlation. The integrated reori-
entational relaxation time, τR defined by Eq. (8), is equal to
3.23 ps.

Figure 3 shows the equilibrium cross correlation function
between P(s)

xy and Dxy defined as

Cc(t) ≡
〈
P(s)

xy (0)Dxy(t)
〉
. (14)

The cross correlation function is negative at all the time, indi-
cating that the chains are aligned along the elongation axis
under weak shear. The decay rate of Cc(t) is again close to that
of CR(t), as is expected from the translation-orientation cou-
pling mechanism. The translation-orientation coupling con-
stant is determined to be R = 0.36 from the time integral of
Cc(t) using Eq. (9).

Given the parameters η0 = 0.206 mPa s, τR = 3.23 ps,
and R = 0.36, we can evaluate the running integral of G(t)
predicted by the translation-orientation coupling mechanism
given by Eq. (11). The result is plotted in Fig. 1 with the red
curve and compared with the full-simulation one, black curve.

FIG. 3. The equilibrium cross correlation function between the shear stress
and the collective orientation.
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FIG. 4. The amplitude of the linear frequency-dependent complex shear vis-
cosity, |η∗(ω) |, is shown with the solid curve and compared with the nonlinear
shear-rate dependent viscosity, η(γ̇), plotted with filled circles.

The translation-orientation coupling mechanism describes the
slowest mode of the viscoelastic relaxation well.

The time correlation function G(t) is Fourier-transformed
to calculate the frequency-dependent shear viscosity, η∗(ω),
whose amplitude is shown in Fig. 4 as the solid curve. A vis-
coelastic relaxation mode is observed at ω = 0.3 ps−1, which
corresponds to the reorientational relaxation with τR = 3.23 ps.
Another relaxation mode is observed at the higher frequency,
ω ∼ 10 ps−1, which is ascribed to microscopic structural
relaxation.

The non-equilibrium shear viscosity, η(γ̇), is indepen-
dent of the shear rate at the shear rate lower than 0.03 ps−1,
which corresponds to the Newtonian regime of the viscosity.
Its low-shear limiting value agrees well with the low-frequency
limiting value of η∗(ω) as expected. The nonequilibrium shear
viscosity exhibits the shear thinning at higher shear rate, that
is, the value of η(γ̇) decreases with increasing the shear rate at
γ̇ > 0.03 ps−1. The onset shear rate of the shear thinning of η(γ̇)
is close to the onset angular frequency of the viscoelasticity of
η∗(ω), and these two functions are close to each other at least
the shear rate or the angular frequency below 1 ps−1. It can
thus be said that Fig. 4 indicates the success of the Cox-Merz
rule in liquid hexane.

Since the slowest mode of the linear viscoelastic relax-
ation is assigned to the orientational relaxation, we consider
it natural to analyze the nonlinearity of the response of the
orientational order to clarify the origin of the Cox-Merz rule.
Figure 5 shows

〈
Dxy

〉
γ̇

and 〈Dxx〉γ̇ as the functions of the shear

rate. The former describes the orientation along the extension
axis of the shear deformation, while the latter does that along

FIG. 5. The average values of Dxy (red) and Dxx (blue) under shear are plotted
against the shear rate. The green dotted line indicates the linear-response
prediction of

〈
Dxy

〉
γ̇

given by Eq. (13).

the flow velocity. The linear-response prediction of the for-
mer, Eq. (13), is also plotted together to test the linearity of
the orientational response.

The xy-component of the orientational order,
〈
Dxy

〉
γ̇, fol-

lows the linear response prediction in the Newtonian regime
of the shear viscosity, while its increase with the shear rate
appears to saturate in the shear-thinning regime. The appar-
ent saturation of the orientational order is thus considered to
be related to that of the shear stress. The xx-component is
far smaller than the xy-component in the Newtonian regime,
while it exceeds at the highest shear rate in this work, 1 ps−1.
The alignment along the extension axis thus dominates in
the Newtonian regime, and that along the flow direction
dominates in the shear-thinning one. The presence of the
maximum of

〈
Dxy

〉
γ̇ and its decrease under high shear rate

were reported by a MD simulation study on model poly-
mers.30 We expect that the decrease in 〈Dxy〉γ̇ with γ̇ will be
also observed in our system at a higher shear rate because
the alignment along the flow direction is incompatible with
large Dxy.

The apparent saturation of 〈Dxy〉γ̇ is natural in a sense
because it possesses the upper limit of 0.5. The fluctuation of

the single-molecule orientational order, defined as
√
〈
���D

(s)
xy

���
2
〉,

is equal to 1/
√

15 = 0.258. Looking at Fig. 5, it is noticed
that the deviation of 〈Dxy〉γ̇ from the linearity occurs when
it becomes close to the spontaneous orientational fluctuation,√
〈
���D

(s)
xy

���
2
〉, and the shear thinning begins there. In short, the

shear-thinning of liquid hexane sets in when the shear-induced
orientational order is comparable to the thermal fluctuation of
the orientation.

The stress-optic rule for polymeric liquids states that
the nonlinearity of the shear stress against the shear rate is
described by that of the orientational order if we equate the
bond orientation tensor of polymer with the orientational order
of whole molecules. Figure 6 shows the correlation between
−〈Pxy〉γ̇ and 〈Dxy〉γ̇. Their linearity appears to hold at the onset
of the shear thinning, γ̇ = 0.1 ps−1 and 〈Dxy〉γ̇ � 0.1, and the

FIG. 6. The average shear stress under shear, −
〈
Pxy

〉
γ̇

, is correlated with〈
Dxy

〉
γ̇

. The results of non-equilibrium MD simulation are plotted with solid

circles, while the linear response relation predicted by the equilibrium MD
simulation is indicated with the dotted curve.
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upward deviation is observed at the higher shear rate. The vio-
lation of the stress-optic rule in high shear region was also
reported by a MD simulation of polymer liquids.30

In Fig. 7, we calculate the distribution of the single-
molecule orientation under shear in order to analyze the shear-
induced orientational order in detail. Figure 7(a) shows the
distribution of D(s)

xy at various values of the shear rate. It
should be noted here that P(D(s)

xy) diverges theoretically at
D(s)

xy = 0 in proportional to ln(|D(s)
xy|), while the divergence

is not observed in Fig. 7(a) due to the finite width of the
sampling grid. As is observed in Fig. 7(a), the equilibrium dis-
tribution of D(s)

xy is broad, and the deviation of P(D(s)
xy) from

the equilibrium one is small at γ̇ ≤ 0.01 ps−1 where the shear
stress and 〈Dxy〉γ̇ behave in linear ways. The deviation then
becomes significant in the non-Newtonian regime of the shear
viscosity.

The distribution of the xx-component, D(s)
xx, is shown

in Fig. 7(b). In the case of P(D(s)
xx), its divergence at −1/3

is proportional to 1/(D(s)
xx + 1/3). The deviation of P(D(s)

xx)
from the equilibrium one is small in the low-shear regime, as
is expected from small 〈Dxx〉γ̇ in Fig. 5. The deviation is not
so large even at the shear rate of 0.1 ps−1, which is within the
shear-thinning regime, and the strong alignment is observed
under the strongly sheared condition, γ̇ = 1 ps−1.

We would like to propose here an idea to understand the
shear thinning and the Cox-Merz rule of liquid hexane and the
LJ liquid in a unified and consistent way. The slowest mode of
the viscoelastic relaxation occurs through the coupling with a
microscopic mode of slow dynamics. The microscopic mode
is the collective orientation in the case of liquid hexane, and

FIG. 7. The distribution of the single-molecule orientational order, (a) D(s)
xy

and (b) D(s)
xx , at the shear rates of 0 (equilibrium, black circles), 0.001 ps−1

(red squares), 0.01 ps−1 (blue diamonds), 0.1 ps−1 (green crosses), and 1 ps−1

(purple pluses). It should be noted that the divergence of P(D(s)
xy) at 0 and that

of P(D(s)
xx) at −1/3 are suppressed due to the finite widths of the sampling

grid. The red curve in panel (a) and the red and the blue curves in panel (b)
are difficult to distinguish because they are almost overlapped with the black
ones.

it is the peak shift of the structure factor in the LJ case. In
the Newtonian regime of viscosity where weak shear flow
is applied, the microscopic mode is distorted linearly as is
expected from the linear response theory. With increasing the
shear rate, the distortion of the microscopic mode becomes
large, and the microscopic liquid structure deviates from the
equilibrium one, which leads to the nonlinear response of the
shear stress to the shear flow.

The difference between the liquid hexane and the LJ liquid
is ascribed to that in the natures of the microscopic modes that
are coupled to the slowest viscoelastic relaxation. Since the
width of the main peak of the static structure factor is narrow,
a small amount of the peak shift leads to the deviation of the
liquid structure from the equilibrium one, which explains the
stronger shear thinning of the LJ liquid than the prediction of
the Cox-Merz rule. On the other hand, the distribution of the
orientation is broad as is exhibited in Fig. 7(a), which may
explain the wide linear-response regime of the orientational
order and the shear stress.

We shall hereafter examine whether the Cox-Merz rule
of liquid hexane is elucidated by the idea described above.
According to the idea, the shear thinning occurs when
the shear-induced orientational order is comparable to the
spontaneous orientational fluctuation, which is described
as 〈

Dxy

〉
γ̇0,LR

�

√〈���Dj,xy
���
2
〉
=

1
√

15
. (15)

Here, “LR” stands for the linear response. The substitution of
Eq. (13) into the left-hand-side of Eq. (15) gives

τRγ̇0 �

√
ρkBT
g2Gp

, (16)

where Gp = η0R/τR stands for the plateau modulus associated
with the slowest mode of the viscoelastic relaxation. Accord-
ing to Eq. (16), the Cox-Merz rule holds when Gp is given
by

Gp �
ρkBT

g2
. (17)

From our equilibrium MD simulation on liquid hexane, the
values of Gp, ρkBT, and g2 are 23 MPa, 18.8 MPa, and 1.28,
respectively. The condition Eq. (17) thus holds approximately,
which explains the Cox-Merz rule in terms of the translation-
orientation coupling.

The simple structure of Eq. (17) makes us suspect that
there can be a simple logic to derive Eq. (17) for various chain-
like liquids in general. We first consider the dependence of Gp

on g2. Although g2 is usually close to unity in isotropic liq-
uids, it behaves divergently in the isotropic phase of nematogen
liquids near the pseudo-critical temperature of the isotropic-
nematic transition. As a result, the collective reorientational
relaxation time, τR, also diverges in proportional to g2. On the
other hand, the temperature dependence of η0 is rather small,
and that of R is also small in the temperature region above
15 K from the pseudo-critical temperature.17,21 Therefore,
the plateau modulus decreases with approaching the pseudo-
critical temperature approximately in proportional to 1/τR, as
is described in Eq. (17).
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A possible validation of Eq. (17) may be built on the
Stokes-Einstein-Debye (SED) relation, which is a hydrody-
namic model on the reorientational relaxation in liquids. The
SED relation is given by17

τR �
g2Vmη0

kBT
, (18)

where Vm stands for the hydrodynamic volume of the
molecule. The factor g2 in the numerator converts the single-
molecular relaxation time to the collective one.17,25 The hydro-
dynamic volume, Vm, is approximated by the van der Waals
volume of the molecule as

Vm �
ξ

ρ
, (19)

where ξ stands for the packing fraction. From Eqs. (18) and
(19), Gp is described as

Gp =
ηR
τR
�
ρkBT

g2
·

R
ξ

. (20)

The typical values of R and ξ of liquids are 0.4 and 0.5, respec-
tively.15,17,21,22,31 The last factor R/ξ in Eq. (20) is thus close
to unity, and Eq. (17) is obtained.

Although the explanation based on the SED relation
sounds plausible, it has a weakness in that it is not applicable
to polymer systems. The Cox-Merz rule has originally been
proposed on polymer systems, and it is well known to hold
on these systems although the reason for the Cox-Merz rule
is not clarified yet. The slow viscoelastic relaxation of poly-
mer systems is almost exclusively assigned to the coupling
with the bond-orientation tensor.23 The identification of the
bond-orientation order of polymer systems with the orienta-
tion of the whole molecule in liquids composed of chain-like
molecules leads to the idea that the Cox-Merz rule of polymer
systems and liquid hexane should be explained in a consistent
way. Therefore, we suspect that there must be a more general
validation of Eq. (17) based on, for example, the orientational
entropy.

Our present analysis suggests that the validity of the Cox-
Merz rule strongly depends on the nature of the microscopic
dynamic mode that governs the slowest mode of the vis-
coelastic relaxation. The shift of the narrow peak of the static
structure factor breaks the Cox-Merz rule, while the
translation-orientation coupling tends to support the Cox-Merz
rule. There can be many other microscopic modes that are cou-
pled to slow viscoelastic relaxation. For example, the shift of
the charge-alternation mode is important in ionic liquids,32 and
the roles of the prepeak dynamics are suggested on higher alco-
hols.22,33 It would thus be interesting to investigate the Cox-
Merz rule on these liquids from the view of the microscopic
modes of viscoelastic relaxation.

V. CONCLUSION

The frequency-dependent linear complex viscosity and
the shear-rate dependent nonlinear viscosity of liquid hexane
were calculated by means of equilibrium and non-equilibrium
MD simulation, respectively. The comparison between these
two quantities indicates that the Cox-Merz rule holds well,
which is in harmony with our previous experimental study that

the Cox-Merz rule applies to liquids composed of chain-like
molecules.

The cross correlation function between the shear stress
and the collective orientational order was evaluated based on
the translation-orientation coupling mechanism. The slowest
mode of the viscoelastic relaxation was described well by
the translation-orientation coupling mechanism, which indi-
cates that the slowest viscoelastic relaxation is assigned to the
collective reorientational relaxation.

The response of the orientational order to the shear flow
was calculated in order to analyze the nonlinear response of
the shear stress. The xy-component of the orientational order
followed the linear response prediction within the Newtonian
regime of shear viscosity, and the saturation of the orientational
order was observed in the shear-thinning regime. The deviation
of the orientational response from the linear one occurs when
the degree of the shear-induced orientation is comparable to
the spontaneous fluctuation of the single-molecular orienta-
tion. The Cox-Merz rule of liquid hexane was then explained
from the view of the translation-orientation coupling mecha-
nism, introducing the SED relation to the orientational plateau
modulus.
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APPENDIX: DERIVATION OF EQ. (13)

The first factor of the denominator of Eq. (9) is given from
Eqs. (1)–(3) as∫ ∞

0

〈
P(s)

xy (0)P(s)
xy (t)

〉
dt =

kBTη0

V
. (A1)

The second factor can be calculated from Eqs. (6)–(8) as∫ ∞
0

〈
Dxy(0)Dxy(t)

〉
dt =

g2τR

15N
. (A2)

The substitution of Eqs. (A1) and (A2) into Eq. (9) gives

�����

∫ ∞
o

〈
P(s)

xy (0)Dxy(t)
〉
dt

�����

2

=
kBTη0g2τRR

15ρV2
. (A3)

The orientational order under steady shear flow is described
by the linear response theory as〈

Dxy

〉
γ̇
= −

V γ̇
kBT

∫ ∞
0

〈
P(s)

xy (0)Dxy(t)
〉
dt. (A4)

The substitution of Eq. (A3) into Eq. (A4) yields

〈
Dxy

〉
γ̇
= ±

√
η0g2τRR
15ρkBT

γ̇, (A5)

where the sign in the rhs is the same as that of
− ∫
∞

0 P(s)
xy (0)Dxy(t)dt.
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