
Noname manuscript No.
(will be inserted by the editor)

Hamiltonian property of the incidence graphs of quadrangles
associated with symplectic forms on finite fields

Hajime SATO · Hiroshi SUZUKI

the date of receipt and acceptance should be inserted later

Abstract We show that the incidence graphs of finite generalized quadrangles asso-
ciated with symplectic forms on finite fields are Hamiltonian. This is an extension of
Singer’s theorem [7] on generalized triangles to certain classical polygons.

Keywords Hamiltonian graph, generalized quadrangle, finite field, incidence graph.

Mathematics Subject Classification (2010) Primary 05C45; Secondary 05C38.

1 Introduction

1.1 Main results

The famous Singer’s theorem [7] asserts that the incidence graph of every finite De-
sarguesian projective plane is Hamiltonian. The graphs in that theorem are general-
ized triangles. There are more simple interesting finite incidence graphs called gen-
eralized polygons. They come from point-line incidence geometry. A finite incidence
geometry is a triple S = (P,L, I) consisting of a finite set of points P, a finite set of
lines L and a binary incidence relation I ⊆ P× L. With an incidence geometry O,
we naturally associate a bipartite graph having the points and lines of O as vertices,
which we call the incidence graph of O.

A sequence of vertices (p0, . . . , pm) of a graph G is a path of length m between p0
and pm if {pi, pi+1} is an edge for i = 1,2, . . . ,m. A distance d(p0, p1) is the length
of the shortest path between p0 and p1. The diameter of G is the largest distance in
G. A cycle is a path (p0, . . . , pm) with mutually different p0, . . . , pm−1 and p0 = pm.
The girth of G is the length of the shortest cycle in G.
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We have the ordinary n-gon as the incidence graph of an incident geometry.
By a generalized polygon, we mean the associated graph of a finite incidence

geometry S = (P,L, I) satisfying the following conditions (cf. [6] ).
i) S contains no ordinary k-gon (as a subgeometry), for 2 ≤ k < n.
ii) Any two elements x,y ∈ P ∪ L are contained in some ordinary n-gon (as a

subgeometry).
iii) There exists an ordinary (n+1)-gon (as a subgeometry) in S.
When the diameter of a generalized polygon is equal to n, we say the polygon

a generalized n-gon. A generalized 2-gon is a complete bipartite graph. A general-
ized 3-gon is equal to the projective plane. Feit and Higman [5] proved that finite
generalized n-gons can exist only the following values of n:

2, 3, 4, 6, 8.

As generalized 4-gons, we consider the following classical symplectic quadran-
gles. They seem to be related to the symplectic geometry in the field of physical
dynamics and to have some relations with the number theory.

The symplectic quadrangles are constructed as follows. We define an incidence
structure C(q) as follows. Let V = Fq4 be a finite field with q4 elements considered
as a four dimensional vector space over Fq. The points of C(q) are 1-dimensional
subspaces of V and the lines of C(q) are 2-dimensional totally isotropic subspaces.
The numbers of points and lines in C(q) are both equal to (q4 −1)/(q−1).

Let L(q) be the incidence graph of C(q). The vertices of L(q) are all points and
lines of C(q). If a point in C(q) is contained in a line in C(q), we put an edge in L(q)
between the vertices. Then it is easy to see that C(q) is a generalized quadrangle such
that each line contains exactly q+1 points and exactly q+1 lines through each point.
The symplectic group Sp(4,q) acts on the graph L(q). The 1-dimensional simplicial
complex L(q) is an example of a spherical building and is an example of (q+ 1,8)-
cage. See Wong[8] for a collection of results on cages.

A graph is called Hamiltonian if there exists a cycle containing every vertex of
the graph. Our main result in this paper is the following.

Theorem 1 The generalized quadrangle L(q) is Hamiltonian for any power q = pn

of any prime number p (n > 0).

When q= 2, we have the (3,8)-cage L(2). The cage L(2) is the unique (3,8)-cage
called the Tutte-Coxeter cage and said to be the most regular of all graphs [4]. This
L(2) is known to be Hamiltonian. Our results extend this fact to arbitrary finite fields.

The incidence graph of the incidence structure consisting of points and lines in a
finite projective plane over Fq is a (q+1,6)-cage. The minimal Hamiltonian regular
graph of girth 6 is studied in [2]. It is a classical result that if the projective plane is
Desarguesian and of order pn, the (pn +1,6)-cage is Hamiltonian (Singer[7]). Thus
our results may be considered as a symplectic analogue of Singer’s theorem (cf. [1]).

Our proof of Theorem 1 proceeds as follows. We first define a cyclic action on
L(q). The quotient is a graph with multiple edges. We investigate the structure of the
quotient. We find a Hamiltonian cycle S0 of the quotient. Next we lift the cycle to
L(q). Then we have a difference between the origin and the terminus of the lifted
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path. We arrange the lift so that the gap is equal to a generator of the cyclic group.
Concatenating the lifts, we obtain a Hamiltonian cycle of L(q). The definition of
the action and the construction of Hamiltonian cycle are done by different methods
depending on whether p is equal to 2 or odd. We treat the cases in different sections.
After fixing the definitions and the notation of graphs in this section 1, we treat the
case when p is odd in Section 2 and the case p = 2 in Section 3. At the end of both
sections, we give concrete pictures of the incidence graphs L(q) for q = 3, 5 and 2, 4.

1.2 Definition of graphs

In this section we fix the notation and describe the features of the incidence graph
L(q) for a power q = pn of a prime number p.

A simple bipartite graph X = (r(X),b(X),e(X)) consists of three sets r(X), b(X)
and e(X). An element of r(X) is called a red node of X , an element of b(X) is called
a blue node of X and an element of e(X) is called an edge of X . The disjoint union
v(X) = r(X)⊔b(X) is the set of vertices of the graph X . An edge η = {r,b} ∈ e(X) is
a pair of a red node r and a blue node b. The red node r(η) = r is called the red node
incident to the edge η and the blue node b(η) = b is called the blue node incident to
the edge η . If a red node and a blue node are incident to an edge, we call the nodes
adjacent. A simple bipartite graph contains no loop edge and no multiple edge. In
this paper, we only treat simple bipartite graphs and in the following we call a simple
bipartite graph simply a graph.

A mapping j = ( jr, jb, je) : X −→Y from a graph X to a graph Y consists of three
mappings jr : r(X)−→ r(Y ), jb : b(X)−→ b(Y ) and je : e(X)−→ e(Y ) which satisfy
jr ◦ r = r ◦ je and jb ◦ b = b ◦ je. The composition j′ ◦ j = ( j′r ◦ jr, j′b ◦ jb, j′e ◦ je) is
defined for two mappings j : X −→ Y and j′ : Y −→ Z of graphs. An injection j of
graphs is a mapping of graphs such that jr, jb and je are injective. An isomorphism j
of graphs is a mapping of graphs such that jr, jb and je are bijective. An isomorphism
from X to X is called an automorphism of X . A homomorphism from a group G to the
automorphism group of X is called an action of G on X . Namely we say that a group
G acts on X when G acts on the sets r(X), b(X), e(X) and the mappings r and b are
G-mappings. The quotient graph X/G of X by G consists of quotient sets r(X/G) =
r(X)/G, b(X/G) = b(X)/G and e(X/G) = {{rG,bG}|r ∈ r(X),b ∈ b(X),{r,b} ∈
e(X)}. We have the projection mapping pG = (pG,r , pG,b , pG,e) : X −→ X/G of graphs
which consists of the canonical projections of red nodes, blue nodes and edges. The
inverse image pG,e

−1(η) of an edge η of X/G is a union of some G-orbits of edges of
X . When the inverse image is a union of m G-orbits, we call the edge of the quotient
graph m-edge. We call an action of a group G on a graph X to be free if any nontrivial
element of G does not have any fixed element in r(X), b(X) and e(X).

For a subset R of r(X) and a subset B of b(X), put E = r−1(R)∩b−1(B). Then E
is the set of edges incident to a red node in R and a blue node in B. We have the graph
X [R,B] = (R,B,E). We call X [R,B] the subgraph of X induced by R and B. If a set
V of red and blue nodes are given, we have the graph X \V = X [r(X)\V,b(X)\V ].
This is the graph obtained from X by removing the nodes in V and the edges incident
to them.
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Let Fq be the finite field of order q. The finite field Fqm of order qm is the extension
of Fq of degree m. We denote the multiplicative group of a field K by K×.

Recall the trace mapping TrFqm/Fq : Fqm → Fq and the norm mapping NFqm/Fq :
F×

qm → F×
q . For an element x of Fqm , the trace of x is the sum of all the conjugates x,

xq, xq2
, . . ., xqm−1

over Fq;

TrFqm/Fq(x) = x+ xq + xq2
+ · · ·+ xqm−1

.

The norm of an element x of F×
qm is the product of all the conjugates;

NFqm/Fq(x) = xxqxq2 · · ·xqm−1
= x1+q+q2+···+qm−1

.

We write simply Tr = TrFq4/Fq2 and N = NFq4/Fq2 .
A non-degenerate alternating Fq-bilinear form over 2k-dimensional Fq-linear space

is unique up to isomorphism. In the following, we fix a non-degenerate alternating
Fq-bilinear form (∗,∗) over the 4-dimensional Fq-linear space Fq4 .

In the following, by incidence structure, we mean a set of points and a set of
distinguished subsets of points called lines satisfying the following conditions:

i) Every line has the same number of points.
ii) Every point is contained in the same number of lines.
Let us define an incidence structure C(q) from Fq4 with an alternating form (∗,∗).

A 2-dimensional Fq-linear subspace V of Fq4 is called totally isotropic if (x,y) = 0
for all x, y ∈V . The points of C(q) are 1-dimensional Fq-linear subspaces of Fq4 and
the lines of C(q) are totally isotropic 2-dimensional Fq-linear subspaces of Fq4 .

We denote by ⟨x,y⟩ the Fq-linear subspace of Fq4 generated by x and y. The set
of points in C(q) corresponds bijectively to the set of points of the 3-dimensional
projective space P3(Fq) = F×

q4/F×
q . Two points xF×

q ̸= yF×
q lie on a line if and only if

(x,y) = 0.
A line in C(q) is isomorphic to the projective line P1(Fq) and consists of q+ 1

points. Let x be an element of F×
q4 . Then x⊥ = {y ∈ Fq4 |(x,y) = 0} is a 3-dimensional

Fq-linear subspace containing x. A totally isotropic plane containing x is a 2-dimensional
Fq-linear subspace of x⊥. There exist q+ 1 distinct totally isotropic planes contain-
ing x. Consequently for any point in C(q) there are q+1 distinct lines containing the
point. In total there are q3 +q2 +q+1 points and q3 +q2 +q+1 lines in C(q).

Let L(q) be the incidence graph of the incidence structure C(q). Then L(q) is
the graph consisting of q3 + q2 + q+ 1 red nodes corresponding to points of C(q),
q3+q2+q+1 blue nodes corresponding to lines in C(q) and (q+1)(q3+q2+q+1)
edges. An edge exists between a red node and a blue node if and only if the point
corresponding to the red node is contained in the line corresponding to the blue node
in C(q).

2 Odd characteristic

In this section we assume the characteristic of the field Fq is an odd prime number

p and we put q = pn. We will define cyclic group actions of order q2 +1 and
q2 +1

2
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on L(q). Let Q(q) and Q̃(q) be their quotient graphs. We will show that Q(q) has a
Hamiltonian path and Q̃(q) has a Hamiltonian cycle. Then we can get a cyclic lift in
L(q) of the Hamiltonian cycle of Q̃(q). By arranging the lift and concatenating them,
we get a Hamiltonian cycle of L(q).

2.1 Proof of Theorem 1 for odd q.

An odd number q satisfies either q ≡ 1 mod 4 or q ≡ 3 mod 4.
If q ≡ 1 mod 4, then we can write q = 2mq′+ 1 with m ≥ 2 and an odd integer

q′. Let a0 be a primitive 2m-th root of 1 in Fq. Then the field Fq(
√

a0) is equal to Fq2

and the field Fq( 4
√

a0) is equal to Fq4 . Put a =
√

a0 ∈ Fq2 .
If q ≡ 3 mod 4, then let a0 =−1. Then the field Fq(

√
a0) is equal to Fq2 . We can

write q2 = 2mq′+1 with m ≥ 2 and an odd integer q′. Let a be a primitive 2m-th root
of 1 in Fq2 . Then the field Fq2(

√
a) is equal to Fq4 .

In both cases we have

Fq4 = Fq2(
√

a)⊃ Fq2 = Fq(
√

a0)⊃ Fq.

In the following we fix these elements a0 ∈ Fq and a ∈ Fq2 in both cases.

Lemma 1 Let q = pn. The form (∗,∗) : Fq4 ×Fq4 → Fq defined by

(x,y) = TrFq4/Fq(xyq2√
a) for x,y ∈ Fq4

is a non-degenerate alternating Fq-bilinear form.

Proof The mapping y 7→ yq2
is the nontrivial element of Gal(Fq4/Fq2) and it is Fq2 -

linear. Since TrFq4/Fq is Fq-linear, the form (∗,∗) is Fq-bilinear. For an element x ∈
Fq4 , we have

(x,x) = TrFq2/Fq(Tr(N(x)
√

a)) = TrFq2/Fq(N(x)Tr(
√

a)) = 0.

Since TrFq4/Fq is surjective, for each y ̸= 0, we can take an element x such that (x,y) ̸=
0. Thus (∗,∗) is a non-degenerate alternating Fq-bilinear form.

We use this Fq-bilinear form in the construction of C(q) and L(q).

Lemma 2 i) If x ∈ F×
q4 , then the plane xFq2 is totally isotropic.

ii) N−1(F×
q )∩F×

q2 = F×
q ∪√

a0 F×
q , N−1(F×

q )∩
√

a F×
q2 = /0.

iii) Let h ∈ N−1(F×
q ) \ F×

q2 and z ∈ F×
q4 . The Fq-linear subspace ⟨z,zh⟩ is totally

isotropic if and only if N(z)F×
q =

√
a0

Tr(h
√

a)
F×

q .

iv) If h∈N−1(F×
q )\F×

q2 and α ∈F×
q , then h+α ̸∈N−1(F×

q ) and
h+α

h+
N(h)

α

∈N−1(F×
q ).

Moreover the following holds;
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a) (h+α)F×
q = (h+

N(h)
α

)F×
q if and only if α = ±

√
N(h). This occurs if h ∈

KerN ·F×
q .

b)
h+α

h+
N(h)

α

∈ KerN ·F×
q if and only if h ∈ KerN ·F×

q .

v) Let h ∈ (KerN ·F×
q )\F×

q and z ∈ F×
q4 . Suppose that the Fq-linear subspace ⟨z,zh⟩

is totally isotropic as in iii). Then

N(z(h+
√

N(h)))N(z(h−
√

N(h)))F×
q =

1
a
F×

q .

vi) For x, y ∈ F×
q4 , the plane ⟨x,y⟩ is totally isotropic and N(x)N(y)F×

q =
1
a
F×

q if and

only if y ∈
√

a0

a
x−q2F×

q .

Proof i) Since

(x,x
√

a0) = TrFq2/Fq(Tr(N(x)
√

a0
√

a)) = TrFq2/Fq(N(x)
√

a0 Tr(
√

a)) = 0,

the Fq-linear subspace xFq2 = ⟨x,x√a0⟩ is isotropic.
ii) The restriction of the norm mapping N to Fq2 is equal to the square mapping

x 7→ x2. From the equation F×
q ∩F×

q2
2
= F×

q = F×
q

2∪a0F×
q

2, we get the first assertion.

Since
√
−1 ∈ Fq2 , we have N(

√
a F×

q2) = −aF×
q2

2
= aF×

q2
2. By the choice of a, we

have aF×
q2

2 ∩F×
q2

2
= /0. From the relation F×

q ⊂ F×
q2

2, we get the second assertion.
iii) For x1, x2 ∈ Fq2 , Tr(x1 + x2

√
a) = 2x1. From h /∈ Fq2 , we have Tr(h

√
a) ̸= 0.

For y1, y2 ∈ Fq, we have TrFq2/Fq(y1 + y2
√

a0) = 2y1. Thus the equation (zh,z) =

TrFq2/Fq(N(z)Tr(h
√

a)) = 0 holds if and only if N(z)Tr(h
√

a) ∈√
a0Fq.

iv) If N(h+α) = N(h)+Tr(h)α +α2 ∈ Fq, then Tr(h) ∈ Fq. The root h of quadratic
polynomial X2 −Tr(h)X +N(h) ∈ Fq[X ] must belong to the unique quadratic exten-
sion Fq2 of Fq. This contradicts the assumption of h. Thus h+α /∈ N−1(F×

q ). Since

h+
N(h)

α
=

h
α
(α + hq2

), we have N(h+
N(h)

α
) =

N(h)
α2 N(h+α) and

h+α

h+
N(h)

α

∈

N−1(F×
q ).

iv-a) Since h /∈ Fq2 and 1 are linearly independent over Fq, the equation (h+α)F×
q =

(h+
N(h)

α
)F×

q holds if and only if α =
N(h)

α
. Such an element α exists when N(h)∈

F×
q

2
= N(F×

q ).

iv-b) From the equation N(
h+α

h+
N(h)

α

) =
α2

N(h)
, we get iv-b).

v) If h ∈ F×
q2 , we have N(h) = h2 ∈ F×

q
2 and h ∈ F×

q . This contradicts the assump-

tion of h. Hence h ∈ N−1(F×
q )\F×

q2 . From iii), we get N(z)F×
q =

√
a0

Tr(h
√

a)
F×

q . Since
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Tr(h
√

a) = (h−hq2
)
√

a, we have Tr(h
√

a)2 = (Tr(h)2−4N(h))a. From the equation
N(h±

√
N(h)) = 2N(h)±Tr(h)

√
N(h), we get v).

vi) Since (y,x) = TrFq2/Fq(Tr(yxq2√
a)) = 0, we have Tr(yxq2√

a) ∈ √
a0 Fq. Thus

Tr(yxq2
√

a
a0

) ∈ Fq. Since N(yxq2
√

a
a0

) =
N(x)N(y)a

a0
∈ Fq, yxq2

√
a
a0

must belong

to F×
q2 . Then we have Tr(yxq2

√
a
a0

) = 2yxq2
√

a
a0

and 2yxq2
√

a
a0

∈ Fq. The converse

is evident.

We simply denote by Zq2+1 the subgroup N−1(F×
q )/F×

q ⊂ F×
q4/F×

q of order q2 +

1 and by Z2 ⊂ Zq2+1 the subgroup of order 2 generated by the element
√

a0 F×
q .

Similarly we denote by Z q2+1
2

the subgroup (KerN ·F×
q )/F×

q ⊂ F×
q4/F×

q . Then we

have an isomorphism Zq2+1
∼= Z q2+1

2
×Z2. The group Zq2+1 acts on L(q). Let Q(q)

and Q̃(q) be the quotient graphs L(q)/Zq2+1 and L(q)/Z q2+1
2

respectively.

Now we have a property of the quotient graph Q(q) = L(q)/Zq2+1.

Lemma 3 The graph Q(q) consists of the following sets of red nodes r(Q(q)), blue
nodes b(Q(q)) and edges e(Q(q));

r(Q(q)) = {x1, . . . ,x q+1
2
,y1, . . . ,y q+1

2
},

b(Q(q)) = {b,b′,b1, . . . ,b q−1
2
,B1, . . . ,B q+1

2
},

such that

i) b= z0Fq2Zq2+1 and b′ = z′0Fq2 Zq2+1 (z0,z′0 ∈ F×
q4) are the orbits of Z2–invariant

totally isotropic planes z0Fq2 and z′0Fq2 ,

ii) bi = ⟨zi,zihi⟩Zq2+1 for some zi ∈ F×
q4 , hi ∈ N−1(F×

q ) \ ((KerN ·F×
q )∪F×

q2) (i =

1, . . . , q−1
2 ),

iii) Bi = ⟨z′i,z′ih′i⟩Zq2+1 for some z′i ∈ F×
q4 , h′i ∈ KerN ·F×

q (i = 1, . . . , q+1
2 ) such that

h′1F×
q generates Z q2+1

2
and x2 = z′1F×

q Zq2+1.

The set of edges e(Q(q)) consists of the following edges. For each j, b is adjacent
to x j by a 1-edge and b′ is adjacent to y j by a 1-edge. For each j, B j is adjacent to x j
and y j by 1-edges. For each j and k, b j is adjacent to either xk or yk by a 2-edge. For
each j ̸= k, B j is adjacent to either xk or yk by a 2-edge. Any red node is incident to

two 1-edges and
q−1

2
2-edges.

Proof Since the Z2–invariant totally isotropic planes zFq2 forms two Zq2+1–orbits by
Lemma 2 i) and ii), we denote them by b and b′. They are distinct two blue nodes
of Q(q). For h ∈ N−1(F×

q ) \ ((KerN ·F×
q )∪F×

q2), by Lemma 2 iii), we can take an

element z ∈ F×
q4 such that ⟨z,zh⟩ is totally isotropic. Let ⟨z,zh⟩Zq2+1 be the orbit.

By Lemma 2 iv) and iv-b), (q+ 1)(q− 1) h’s correspond to the same orbit. Hence
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there are
|N−1(F×

q )\ ((KerN ·F×
q )∪F×

q2)|
q2 −1

=
q−1

2
distinct orbits of this kind. We

denote them by b1, . . ., b q−1
2

. For h ∈ (KerN ·F×
q ) \ F×

q , by Lemma 2 iii), we can

take an element z ∈ F×
q4 such that ⟨z,zh⟩ is totally isotropic and we consider the orbit

⟨z,zh⟩Zq2+1. By Lemma 2 iv), iv-a) and iv-b), (q−1)2 h’s correspond to the same or-

bit. Hence there are
|(KerN ·F×

q )\F×
q |

(q−1)2 =
q+1

2
distinct orbits of this kind. We denote

them by B1, . . ., B q+1
2

. If ⟨z,zh⟩Zq2+1 =B j, then the two orbits z(h+
√

N(h))F×
q Zq2+1

and z(h−
√

N(h))F×
q Zq2+1 are adjacent to B j by 1-edges. The other edges incident

to B j, and all the edges incident to bk are 2-edges by Lemma 2 iv), iv-a), iv-b). By
Lemma 2 v), one of the two orbits is adjacent to b and the other adjacent to b′. We
denote the one adjacent to b by x j and the one adjacent to b′ by y j. By Lemma 2 vi),
x1, . . ., x q+1

2
, y1, . . ., y q+1

2
are distinct. By Lemma 2 vi), b j is adjacent to at most one

of xk and yk for each k and B j is adjacent to at most one of xk and yk for each k ̸= j.
Comparing the number of edges incident to a blue node, we see that b j is adjacent to
either xk or yk for each k and B j is adjacent to either xk or yk for each k ̸= j. We can
renumber {b0,b′0,xi,yi,bi,Bi} if necessary so that h′1F×

q generates Z q2+1
2

.

In order to take a Hamiltonian path of Q(q), we need the following Chvátal’s
theorem ([3, Corollary 1.4]).

Lemma 4 Let G be a bipartite graph with
1
2

m points in each part. If the non-
decreasing sequence d1, . . ., dm consisting of all valencies of G satisfies

dk ≦ k ≦ 1
4

m =⇒ d m
2
≧ 1

2
m− k+1,

then G is Hamiltonian.

Proof (Proof of Theorem 1) Firstly we show that the induced graph Q0 = Q(q) \
{x1,y1,B1,b,b

′} has a Hamiltonian path P0 which starts at x2. Since this statement
is evident if Q0 has a Hamiltonian cycle, we assume that Q0 has no Hamiltonian

cycle. By Lemma 3, the valencies of half of the red nodes of Q0 are
q−1

2
and the

valencies of the other half are
q+1

2
. This holds also for blue nodes of Q0. Hence the

non-decreasing sequence di of all valencies of Q0 satisfies

di =
q−1

2
for 1 ≦ i ≦ q−1, di =

q+1
2

for q ≦ i ≦ 2(q−1).

Since x2 is adjacent to B1, the valency of x2 in Q0 is
q−1

2
. Append Q0 an edge from

x2 to a blue node which is not adjacent to x2. The new graph satisfies the assumption
of Lemma 4 and has a Hamiltonian cycle. Since Q0 itself does not have any Hamil-
tonian cycle by our assumption, Q0 has a Hamiltonian path P0 which begins at x2. In
any case, we get a Hamiltonian path P0 which starts at x2. We write the terminal blue
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node of P0 by b; P0 = (x2, · · · ,b). Secondly we show that Q(q) has a Hamiltonian
path between b and b′ which contains the path (B1,x2). By Lemma 3, b is adjacent to
either x1 or y1, b is adjacent to x1, b

′ is adjacent to y1, and x2 is adjacent to B1 which
is adjacent to x1 and y1. Hence either (b′,y1,B1,P0,x1,b) or (b,x1,B1,P0,y1,b

′) is a
Hamiltonian path of Q(q). Let PQ be this Hamiltonian path in Q(q). Finally we show
that L(q) is Hamiltonian which proves Theorem 1. Take a path P in L(q) which is a
lift of PQ. The path P has the form

P = (w1Fq2 ,w1F×
q ,⟨z′1,h′1z′1⟩,z′1F×

q ,P1,w2Fq2)

where P1 is a path in L(q), z′1 ∈ F×
q4 satisfies ⟨z′1,h′1z′1⟩Zq2+1 = B1, z′1F×

q Zq2+1 = x2

and w1,w2 ∈ F×
q4 are such that either w1Fq2 Zq2+1 or w2Fq2 Zq2+1 is equal to b and the

other is equal to b′. The action of the generator
√

a0 F×
q of Z2 maps the path P to the

path
√

a0P = (
√

a0w1Fq2 ,
√

a0w1F×
q ,

√
a0⟨z′1,h′1z′1⟩,

√
a0z′1F×

q ,
√

a0P1,
√

a0w2Fq2).

By Lemma 2 ii) and iv), the blue nodes of L(q) of the form wFq2 (w ∈ Fq2) are Z2–
stable and the other blue nodes and all the red nodes are not Z2–stable. The origins
of paths P and

√
a0P are the same point and so are the termini. Denote by (

√
a0P)−1

the inverse path of
√

a0P. The concatenated path P · (√a0P)−1 in L(q) is a lift of a
Hamiltonian cycle of the graph Q̃(q) = L(q)/Z q2+1

2
. Express the path P · (√a0P)−1

simply as

P · (
√

a0P)−1 = (w1Fq2 ,w1F×
q ,⟨z′1,h′1z′1⟩,z′1F×

q ,P3,w1Fq2),

where P3 is a path in L(q). Let S be a path in L(q) defined by

S = (w1Fq2 ,w1F×
q ,⟨z′1,h′1z′1⟩,h′1z′1F×

q ,h
′
1P3,h′1w1Fq2).

Then S is a lift of the Hamiltonian cycle of the graph Q̃(q). The path h′1
jS ( j =

1,2, . . .) are also lifts of the Hamiltonian cycle of the graph Q̃(q). Since h′1F×
q gener-

ates Z q2+1
2

, the concatenated path S = S ·h′1S ·h′1
2S · · · · ·h′1

(q2−1)/2S is a Hamiltonian

cycle of L(q).

2.2 Examples

Example 1 When q= 3, we have F81 =F9(
√

a)⊃F9 =F3(
√

a0)⊃F3 with a0 =−1

and a = 1−
√
−1. Put h =

1−a
√

a
1+a

√
a

and take a path

S = (F9,
√
−1F×

3 ,
√
−1⟨1,

√
−1+a

√
a⟩,

√
−1(

√
−1+a

√
a)F×

3 ,

⟨a
√

a,1−
√
−1a

√
a⟩,(1+

√
a)F×

3 ,h
2√−1⟨1,a

√
a⟩,h2√−1a

√
a F×

3 ,

h2√a F9,h2a
√

a F×
3 ,h

2⟨1,a
√

a⟩,h
√
−1(1+

√
a)F×

3 ,

h
√
−1⟨a

√
a,1−

√
−1a

√
a⟩,h(

√
−1+a

√
a)F×

3 ,h⟨1,
√
−1+a

√
a⟩,hF×

3 ,hF9)

Then S = S ·hS ·h2S ·h3S ·h4S is a Hamiltonian cycle of L(3) (Fig. 1).
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Fig. 1 L(3)

Example 2 When q= 5, we have F625 =F25(
4√2)⊃F25 =F5(

√
2)⊃F5 with a0 = 2

and a =
√

2. Put h =
1− 4√2
1+ 4√2

and take a path

S = (F25,F×
5 ,⟨1,

4√2⟩,(1− 4√2)F×
5 ,h

12
√

2⟨1,
√

2+ 4√2⟩,h12
√

2(1−2
√

2−2 4√2)F×
5 ,

h11
√

2⟨ 4√2,1+
√

2 4√2⟩,h11
√

2(1+(1+
√

2) 4√2)F×
5 ,h

5
√

2⟨1,2
√

2+ 4√2⟩,
h5
√

2(1+2
√

2+ 4√2)F×
5 ,

√
2⟨ 4√2,2+

√
2 4√2⟩,

√
2 4√2 F×

5 ,
4√2 F25,

4√2 F×
5 ,

⟨ 4√2,2+
√

2 4√2⟩,h5(1+2
√

2+ 4√2)F×
5 ,h

5⟨1,2
√

2+ 4√2⟩,
h11(1+(1+

√
2) 4√2)F×

5 ,h
11⟨ 4√2,1+

√
2 4√2⟩,h12(1−2

√
2−2 4√2)F×

5 ,

h12⟨1,
√

2+ 4√2⟩,h
√

2(1+ 4√2)F×
5 ,h

√
2⟨1, 4√2⟩,h

√
2F×

5 ,hF25)

Then S = S ·hS ·h2S · · ·h11S ·h12S is a Hamiltonian cycle of L(5) (Fig. 2).



Title Suppressed Due to Excessive Length 11

Fig. 2 L(5)

3 Even characteristic

In this section we assume the characteristic of the field Fq is 2 and we put q = 2n. We
define a free action on L(q) of a cyclic group of order q2 +1. We denote the quotient
graph by Q(q). We will show that the quotient Q(q) has a Hamiltonian cycle. We lift
the cycle to L(q). Then we have a difference between the origin and the terminus of
the lifted path. We want to arrange the lift so that the gap is equal to a generator of
the cyclic group. We give a numerical condition such that this arrangement works by
using the Gal(Fq4/F2)-action. A calculation shows that this condition is satisfied for
all q = 2n (n > 0). Concatenating the lifts, we obtain a Hamiltonian cycle of L(q).
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3.1 Proof of Theorem 1 for even q

Let ℘ : Fq4 −→ Fq4 be the polynomial mapping defined by ℘(X) = X2 +X . By the
Artin-Schreier theory, we can choose three elements u, t, s of Fq4 as follows. We first
choose an element u in Fq \℘(Fq). Let t be an element of Fq2 such that t2 + t = u.
Then Fq2 = Fq(t). Since℘(at+b) =℘(a)t+a2u+℘(b)∈℘(Fq)t+Fq for all a and
b ∈ Fq, we have ut ∈ Fq2 \℘(Fq2). Let s be an element of Fq4 such that s2 + s = ut.
Then Fq4 = Fq2(s). Hence we have Tr(s) = 1 and TrFq2/Fq(t) = 1. In the following
we fix these three elements u, t and s.

We have the Galois groups G2 = Gal(Fq4/Fq2), G4 = Gal(Fq4/Fq) and G4n =

Gal(Fq4/F2) which are cyclic groups of order 2, 4 and 4n respectively. Put G2 =

G4/G2 = Gal(Fq2/Fq) and G2n = G4n/G2 = Gal(Fq2/F2) which are cyclic groups
of order 2 and 2n. The Galois group G2 (resp. G4, G4n, G2, G2n) is generated by the
Frobenius mapping x 7→ xq2

(resp. xq, x2, xq, x2).

Lemma 5 Let q = 2n. The form (∗,∗) : Fq4 ×Fq4 → Fq defined by

(x,y) = TrFq4/Fq(xyq2
) (x,y ∈ Fq4)

is a non-degenerate alternating Fq-bilinear form.

Proof The mapping y 7→ yq2
is the nontrivial element of Gal(Fq4/Fq2) and it is Fq2 -

linear. Since TrFq4/Fq is Fq-linear, the form (∗,∗) is Fq-bilinear. For an element x ∈
Fq4 , we have

(x,x) = TrFq2/Fq(Tr(N(x))) = TrFq2/Fq(N(x)Tr(1)) = 0.

Since TrFq4/Fq is surjective, for each y ̸= 0, we can take an element x such that (x,y) ̸=
0. Thus (∗,∗) is a non-degenerate alternating Fq-bilinear form.

We use this form in the construction of C(q) and L(q). Since (x2,y2) = (x,y)2, the
Galois group G4n acts on L(q). Let η be an edge of L(q) incident to a red node x and
a blue node ℓ. We denote by η2m

the edge of L(q) incident to the red node x2m
and

the blue node ℓ2m
. Denote by Zq2+1 the subgroup N−1(F×

q )/F×
q of F×

q4/F×
q of order

q2 +1.

Lemma 6 i) If x ∈ F×
q4 , then the plane xFq2 is totally isotropic.

ii) N−1(F×
q )∩F×

q2 = F×
q .

iii) Let h∈N−1(F×
q )\F×

q . Then Tr(h) ̸∈Fq. For z∈F×
q4 , the Fq-linear subspace ⟨z,zh⟩

is totally isotropic if and only if N(z)F×
q = Tr(h)−1F×

q .

iv) If h∈N−1(F×
q )\F×

q and α ∈F×
q , then h+α ̸∈N−1(F×

q ) and
h+α

h+
N(h)

α

∈N−1(F×
q ).

Moreover we have (h+α)F×
q = (h+

N(h)
α

)F×
q if and only if α =

√
N(h).
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v) Let h ∈ N−1(F×
q )\F×

q and z ∈ F×
q4 . Suppose that the Fq-linear subspace ⟨z,zh⟩ is

totally isotropic as in iii). Then N(z(h+
√

N(h)))F×
q = F×

q .
vi) For x ∈ F×

q4 \N−1(F×
q ) and β ∈ N−1(F×

q ), the plane ⟨x,xqβ ⟩ is totally isotropic if

and only if β ∈ x−q(1+q)F×
q . In such a case, ⟨x,xqβ ⟩= xFq2 .

vii) There exist elements h ∈ N−1(F×
q ) and z ∈ F×

q4 which satisfy the following condi-
tions a) and b):

a) hF×
q generates Zq2+1.

b) The plane ℓ = ⟨z,zh⟩ is totally isotropic, 2n orbits ℓZq2+1, ℓ2Zq2+1, ℓ22
Zq2+1,

. . ., ℓ22n−1
Zq2+1 of blue nodes are mutually distinct and 2n orbits zF×

q Zq2+1, (zF×
q )

2Zq2+1,

(zF×
q )

22
Zq2+1, . . ., (zF×

q )
22n−1

Zq2+1 of red nodes are mutually distinct.

Proof i) Since

(xt,x) = TrFq2/Fq(Tr(N(x)t)) = TrFq2/Fq(N(x)t Tr(1)) = 0,

the Fq-linear subspace xFq2 = ⟨x,xt⟩ is isotropic.
ii) The restriction of the norm mapping N to Fq2 is equal to the square mapping x 7→
x2. Since the orders |F×

q2 | and |F×
q | are odd, the square mapping are automorphisms

on F×
q2 and F×

q . Thus we have ii).
iii) If both N(h) and Tr(h) belong to Fq, h must belong to Fq2 . This contradicts ii).
Hence Tr(h) /∈Fq. For x1, x2 ∈Fq, we have TrFq2/Fq(x1+x2t) = x2. Thus the equation
(zh,z) = TrFq2/Fq(N(z)Tr(h)) = 0 holds if and only if N(z)Tr(h) ∈ Fq.

iv) If N(h+α) = N(h)+Tr(h)α +α2 ∈ Fq, then Tr(h) ∈ Fq. This contradicts iii).

Hence h+α /∈ N−1(F×
q ). Since h+

N(h)
α

=
h
α
(α + hq2

), we have N(h+
N(h)

α
) =

N(h)
α2 N(h+α) and

h+α

h+
N(h)

α

∈ N−1(F×
q ). Since h /∈ Fq2 and 1 are linearly indepen-

dent over Fq, the equation (h+α)F×
q = (h+

N(h)
α

)F×
q holds if and only if α =

N(h)
α

.

This condition is equivalent to α =
√

N(h) because the order |F×
q | is odd.

v) From iii), we get N(z)F×
q =

1
Tr(h)

F×
q . Since N(h+

√
N(h)) = Tr(h)

√
N(h), we

have v).
vi) Since (xqβ ,x)=TrFq2/Fq(Tr(βxqxq2

))= 0, we have Tr(βxqxq2
)∈Fq. Since N(βxqxq2

)=

N(β )NFq4/Fq(x) ∈ Fq, βxqxq2
must belong to F×

q2 . From ii), we have βxqxq2 ∈ Fq. In

such a case,
βxq

x
=

βxqxq2

N(x)
∈ Fq2 \Fq. The converse is evident.

We prepare Lemma 7 to prove vii). Let φ be Euler’s totient function. We define a
function ψ by

ψ(q) = ♯{x ∈ (F×
q2/F×

q )\{F×
q }|x2k ̸= x for k = 0, 1, . . ., 2n−1}
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for q = 2n.
Put r= F×

q Zq2+1 and b= Fq2 Zq2+1.

Lemma 7 i) There are G2n-bijections

f1 : b(Q(q))\{b} −→ (F×
q2/F×

q )\{F×
q }, f2 : r(Q(q))\{r} −→ (F×

q2/F×
q )\{F×

q }.

ii) ψ(q)2 +φ(q2 +1)> q2 for all q = 2n.

Proof i) The norm mapping N induces a G2n–bijection f2 : r(Q(q))\{r}−→ (F×
q2/F×

q )\
{F×

q }. Namely, for x ∈ F×
q4 \N−1(F×

q ), we define f2 by f2(xF×
q Zq2+1) = N(x)F×

q . For

β ∈ Fq, (t + β )F×
q ∈ (F×

q2/F×
q ) \ {F×

q }, y = s+ β t ∈ Tr−1(1) and ⟨1,y⟩Zq2+1 is an
element of b(Q(q))\{b}. By Lemma 6 iii), we see that this correspondence induces
a bijection (F×

q2/F×
q ) \ {F×

q } → Tr−1(1)/Fq → b(Q(q)) \ {b}. Let f1 be the inverse
of this mapping. Namely we define f1 by f1(⟨1,s+β t⟩Zq2+1) = (t + β )F×

q for all
β ∈ Fq. Since y2 = s+(u+β 2)t +β 2u and (t +β )2 = t +(u+β 2), this bijection is
a G2n-bijection. Hence we have i).
ii) For q = 2n, define an integer v by n = 2vn′ where n′ ∈ N is an odd number. Let t ′

be an element of F22v+1 \F22v . Let x be an element of (F×
q2/F×

q ) \ {F×
q }. Then there

exists a unique a ∈ Fq such that x = (t ′+a)F×
q . It is easy to see that x is contained in

{x ∈ (F×
q2/F×

q )\{F×
q }|x2k ̸= x for k = 0, 1, . . ., 2n−1} if and only if a is contained

in an intermediate field K such that F22v ⫅ K ⫋ Fq.
In fact, assume that x2k

= x for some 1 ≦ k ≦ 2n− 1 and x2m ̸= x for 1 ≦ m < k.

Let G be the maximal subgroup of G2n which fixes x. Then G is of order
2n
k

. Since
q−1 is odd and all Galois cohomology groups of multiplicative groups of finite fields
are trivial, we see that the G–invariant part (F×

q2/F×
q )

G is equal to (F×
q2)

GF×
q /F×

q =

F×
2kF×

q /F×
q . If k divides n, then F×

2k ⊂ F×
q and there is no such x. Hence it follows that

k = 2m with m < n, 2v|m and m|n. Since F×
2kF×

q /F×
q
∼= F×

2k/(F×
2k ∩F×

q ) = F×
2k/F×

2m and
t ′ ∈ F×

2k \F×
2m , we have x = (t ′+a)F×

q for some a ∈ F×
2m . Conversely if x = (t ′+a)F×

q

for some a ∈ F×
2m with m < n, 2v|m and m|n, we have x2k

= x with k = 2m. Thus
x2k

= x holds for some 1 ≦ k ≦ 2n−1 if and only if a belongs to F2m for some m < n
such that 2v|m and m|n. Hence we have the equation ψ(q) = ♯(Fq \

∪
K), where K

runs through the intermediate fields F22v ⫅ K ⫋ Fq.
We have ψ(q)2 ≧ (q2 + 1)− 3(q2 + 1)2/3. Indeed, write n = 2v pv1

1 · · · pvm
m with odd

primes p1 < · · · < pm and positive numbers v1, . . ., vm. The set of maximal fields K
such that F22v ⫅ K ⫋ Fq is equal to {F2n/p1 , F2n/p2 , . . . ,F2n/pm}. Since p j and p j+1

are odd primes, we have
n
p j

− n
p j+1

=
(p j+1 − p j)n

p j p j+1
≧ 2. Hence we have

♯(
∪

K) ≦ 2n/p1 +
m

∑
j=2

2n/p j ≦ 2n/p1 +
n/p1

∑
j=2

2(n/p1)− j

< 2n/p1 +2(n/p1)−1 =
3
2

2n/p1 .
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Consequently we have ψ(q)≧ 2n − 3
2

2n/p1 ≧ 2n − 3
2

2n/3 and

ψ(q)2 ≧ (2n − 3
2

2n/3)2 = 22n −3 ·24n/3 +
9
4

22n/3

≧ (q2 +1)−3(q2 +1)2/3.

A prime number a ≥ 5 such that a ≡ 1 mod 4 appears as a divisor of a number of
the form q2 + 1. But a prime number b ≥ 3 such that b ≡ 3 mod 4 does not divide

any q2 + 1. Note that the function
x−1
x2/3 = x1/3 − x−2/3 is monotonically increasing

for x > 0. Write q2 + 1 = pv1
1 pv2

2 · · · pvm
m with distinct primes p1, . . ., pm and positive

numbers v1, . . ., vm. Put α j =
p j −1

p2/3
j

for j = 1, 2, . . ., m. Then we have

φ(q2 +1) = φ(pv1
1 )φ(pv2

2 ) · · ·φ(pvm
m )

= (p1 −1)pv1−1
1 (p2 −1)pv2−1

2 · · ·(pm −1)pvm−1
m

= α1 p(v1−1)/3
1 · · ·αm p(vm−1)/3

m (pv1
1 pv2

2 · · · pvm
m )2/3

= α1 p(v1−1)/3
1 · · ·αm p(vm−1)/3

m (q2 +1)2/3.

By an elementary numerical estimate, we see the inequality φ(q2+1)≧ 3(q2+1)2/3

holds if one of the following conditions are satisfied: (1) q2 + 1 is divisible by a
prime p ≧ 31; (2) q2 + 1 is divisible by pp′ with primes p, p′ ≧ 13; (3) q2 + 1 is
divisible by 5p with a prime p ≧ 17; (4) q2 + 1 is divisible by 52 p with a prime
p ≧ 5. Consequently we obtain

ψ(q)2 +φ(q2 +1)> q2

except when q2 + 1 = 5, 13, 17, 19, 23, 29, 25, 65. Since q = 2n, it is sufficient to
consider the three cases q2 +1 = 5, 17 and 65. For these three cases a direct calcula-
tion shows the following: For q = 2, ψ(2) = 2 and φ(5) = 4. For q = 4, ψ(4) = 4 and
φ(17) = 16. For q = 8, ψ(8) = 6 and φ(65) = 48. Hence these three cases satisfy the
inequality.
Thus the inequality

ψ(q)2 +φ(q2 +1)> q2

holds for all q = 2n with n > 0.

Proof (Proof of Lemma 6 vii).) For h ∈ N−1(F×
q ) \ F×

q , we can take an element
z ∈ F×

q4 such that ⟨z,zh⟩ is totally isotropic. By Lemma 6 i)-vi), the mapping (Zq2+1 \
{1})/G2 −→ (b(Q(q))\{b})×(r(Q(q))\{r})/G2 which maps (hF×

q )G2 to (⟨z,zh⟩Zq2+1,(zF×
q Zq2+1)G2)

is bijective. Hence by Lemma 7 i), the number of hF×
q ’s which satisfy Lemma 6 vii-b)

is equal to ψ(q)2. Since the number of hF×
q ’s which satisfy Lemma 6 vii-a) is equal

to φ(q2 +1), Lemma 7 ii) shows that the sum of the number of hF×
q ’s which satisfy

Lemma 6 vii-b) and the number of hF×
q ’s which satisfy Lemma 6 vii-a) is greater

than q2 , which is equal to the number of all hF×
q ’s in Zq2+1 \{1}. Hence there exists

an h which satisfies both Lemma 6 vii-b) and vii-a).
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Now we study properties of the quotient graph Q(q) = L(q)/Zq2+1. By definition,
Gal(Fq4/F2) acts on Q(q).

Lemma 8 The graph Q(q) consists of the following sets of red nodes r(Q(q)), blue
nodes b(Q(q)) and edges e(Q(q));

r(Q(q)) = {r,x1, . . . ,x q
2
,y1, . . . ,y q

2
},

b(Q(q)) = {b,b1, . . . ,b q
2
,B1, . . . ,B q

2
},

where bi = ⟨zi,zihi⟩Zq2+1 for some zi ∈ F×
q4 , hi ∈ KerN ·F×

q (i = 1, . . . , q
2 ) such that

h1F×
q generates Zq2+1, b1 = ⟨z1,z1h1⟩, x1 = z1F×

q , b2 = b2
1, x2 = x2

1, . . ., bn = b2n−1

1 ,

xn = x2n−1

1 , and B j = bq
j , y j = xq

j for j = 1, . . ., q
2 . The set of edges e(Q(q)) consists

of the following edges. The blue node b is adjacent to every red node by a 1-edge.
The red node r is adjacent to every blue node by a 1-edge. For each j, b j is adjacent
to x j by a 2-edge. For each j, B j is adjacent to y j by a 2-edge. For each j ̸= k, b j is
adjacent to one of xk and yk by a 2-edge and B j is adjacent the other by a 2-edge.

Proof Since F×
q4/N−1(F×

q ) = q+1 and q2 ≡ 1 mod (q+1), each red node of Q(q)
is Gal(Fq4/Fq2)-invariant and r = F×

q Zq2+1 is the unique Gal(Fq4/Fq)-invariant red
node. Denote these red nodes except r by x1, . . ., x q

2
, y1 = xq

1, . . . , y q
2
= xq

q
2
. The blue

node b= Fq2Zq2+1 is also Gal(Fq4/Fq)-invariant and is adjacent to all the red nodes
by 1-edges. For h ∈ N−1(F×

q )\F×
q , we can take an element z ∈ F×

q4 such that ⟨z,zh⟩ is
totally isotropic by Lemma 6 iii), and we consider the orbit ⟨z,zh⟩Zq2+1. By Lemma

6 iv), q(q−1) h’s determine one orbit. Hence there are
|N−1(F×

q )\F×
q |

q(q−1)
= q distinct

orbits of this kind. Since z⟨1,h⟩ = zh⟨1,h−1⟩ = zh⟨1,hq2⟩, each orbit of this kind is
Gal(Fq4/Fq2)-invariant. In the inverse image of each 2-edge of Q(q), the nontrivial
element of Gal(Fq4/Fq2) induces the transposition of two Zq2+1-orbits of edges. By
Lemma 6 vi), each orbit ⟨z,zh⟩Zq2+1 of this kind is not Gal(Fq4/Fq)-invariant. We
denotes these orbits by b1, . . ., b q

2
, B1 = bq

1, . . ., B q
2
= bq

q
2
. Comparing the numbers

of blue nodes, we see that b(Q(q)) consists of b and these q orbits. By Lemma 6 v),
every blue node is adjacent to r by a 1-edge. By Lemma 2 vi), b j is adjacent to at
most one of xk and yk for each k. Comparing the number of edges incident to a blue
node, we see that b j is adjacent to either xk or yk for each k and B j is adjacent to the
other. Changing x j and y j, we may assume b j is adjacent to x j. By Lemma 6 vii), we
can arrange so that the additional conditions are satisfied.

Proof (Proof of Theorem 1) By Lemma 8, we have a Hamiltonian cycle S of Q(q)
containing (bi,xi) or (xi,bi) for all 1 ≦ i ≦ q

2
and (Bi,yi) or (yi,Bi) for all 1 ≦ i ≦ q

2
.

Take a path S in L(q) which begins at F×
q and is a lift of the Hamiltonian cycle S as

follows: If S contains (bi,xi) with 1 ≦ i ≦ n, its lift in S has the form (⟨z,zh2i

1 ⟩,gzF×
q ).

If S contains (xi,bi) with 1 ≦ i ≦ n, its lift in S has the form (h2i

1 zF×
q ,⟨z,zh2i

1 ⟩). We
denote this edge by ηi. If S contains (Bi,yi) with 1 ≦ i ≦ n, its lift in S has the
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form (⟨z,zh2n+i

1 ⟩,zF×
q ). If S contains (yi,Bi) with 1 ≦ i ≦ n, its lift in S has the form

(zh2n+i

1 F×
q ,⟨z,zh2n+i

1 ⟩). We denote this edge by ηn+i. Denote the terminus of S by
h0F×

q . By Lemma 8, there are two edges incident to bi and xi. If we arrange S at ηi
by choosing the other edge incident to bi and xi, we can take another lift Si in L(q) of
S. This another lift Si is expressed as

Si = (F×
q , · · · ,⟨z,zh2i

1 ⟩,zh2i

1 F×
q , · · · ,h0h2i

1 F×
q )

or
Si = (F×

q , · · · ,h2i

1 zF×
q ,h

2i

1 ⟨z,zh2i

1 ⟩, · · · ,h0h2i

1 F×
q )

which terminates at h0h2i

1 F×
q . Similarly, if we arrange S at ηn+i, we have the other lift

Sn+i = (F×
q , · · · ,⟨z,zh2n+i

1 ⟩,zh2n+i

1 F×
q , · · · ,h0h2n+i

1 F×
q )

or
Sn+i = (F×

q , · · · ,h2n+i

1 zF×
q ,h

2n+i

1 ⟨z,zh2n+i

1 ⟩, · · · ,h0h2n+i

1 F×
q )

which terminates at h0h2n+i

1 F×
q . If we arrange S at η j1 , . . ., η js , we have a lift of S

from F×
q to h0h2 j1+···+2 js

1 F×
q . The sum 2 j1 + · · ·+2 js for distinct numbers 1 ≤ j1, . . .,

js ≤ 2n with 0 ≤ s ≤ 2n takes all the values from 0 to 22n − 1. Since h1 generates
Zq2+1, the element h0h2 j1+···+2 js

1 F×
q runs all the element of Zq2+1 except h0h−1

1 F×
q .

Hence there exists a lift S̃ from F×
q to h′F×

q such that h′F×
q generates Zq2+1. Thus we

have a Hamiltonian cycle S = S̃ ·h′S̃ · (h′)2S̃ · · · · · (h′)q2
S̃ of L(q).

3.2 Examples

Example 3 When q = 2, the element u is equal to 1. We have F16 = F4(s) ⊃ F4 =

F2(t)⊃ F2 with s2 + s = t and t2 + t = 1. Put h =
s+1

s
, then h = (t +1)s+ t ̸= 1 and

hF×
2 is a generator which satisfies the conditions of Lemma 6 vii). Take a path

S = (F×
2 ,⟨1,s⟩,sF

×
2 ,h

2F4,h2tF×
2 ,h⟨1,s+ t⟩,hF×

2 ).

The equations sF×
2 = h2(t +1)F×

2 and h2tF×
2 = h(s+ t +1)F×

2 show that S is a path.
Then S = S ·hS ·h2S ·h3S ·h4S is a Hamiltonian cycle of L(2) (Fig. 3).

This graph is the Tutte-Coxeter cage.

Example 4 When q = 4 we have F256 = F16(s) ⊃ F16 = F4(t) ⊃ F4 = F2(u) ⊃ F2

with s2 + s = ut, t2 + t = u and u2 +u = 1. Put h =
s+1

s
, then h = u(t +1)s+ut +

u+1 ̸= 1 and hF×
4 is a generator which satisfies the condition of Lemma 6 vii). Take

a path

S′ = (F×
4 ,⟨1,s⟩,sF

×
4 ,h

3⟨1,s+ut⟩,h3(s+ut)F×
4 ,h

2F16,h2(t +1)F×
4 ,

h6⟨1,s+(u+1)t⟩,h6(s+(u+1)t)F×
4 ,h⟨1,s+ t⟩,hF×

4 ).

The equations sF×
4 = h3(s+ut +u)F×

4 , h3(s+ut)F×
4 = h2tF×

4 , h2(t +1)F×
4 = h6(s+

(u+ 1)t + u+ 1)F×
4 , h6(s+(u+ 1)t)F×

4 = h(s+ t)F×
4 show that S′ is a path. Hence

S = S′ ·hS′ ·h2S′ · · ·h16S′ is a Hamiltonian cycle of L(4) (Fig. 4).
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Fig. 3 Tutte-Coxeter Cage L(2)

Fig. 4 L(4)
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