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1 Introduction

Mitchell indicated that most of homological ring theory generalizes to additive category theory

[Mit]. In this thesis, we are interested in such functorial generalizations. Especially, a functorial

generalization for Auslander algebras contributed to the discovery of Auslander-Reiten theory,

which is one of the most important tool in the representation theory of algebra. Auslander

showed that the Yoneda embedding Y : modΛ ↪→ mod(modΛ) of the module category into the

functor category admits an exact left adjoint functor. Hence it induces an equivalence

mod(modΛ)

{F | F (Λ) = 0}
∼−→ modΛ,

sometimes called Auslander’s formula [Aus]. This formula enables us to understand many

concepts in the module categories in terms of the functor categories. The notion of almost split

sequence plays an essential role in the theory, which is an exact sequence inmodΛ satisfying some

properties. The Yoneda functor sends almost split sequences to the minimal projective resolution

of simple functors in mod(modΛ). Moreover, there exists a one-to-one correspondence between

the class of almost split sequences and the class of simple functors of projective dimension two.

In this thesis, we report the author’s recent results, which generalize classical results for rings

and provide some applications.

Part I: The notion of recollements is a fundamental tool to study abelian categories and

triangulated categories, introduced in [BBD]. It is a pair of full subcategories with some orthog-

onality conditions, and hence deconstructs a given category to its full subcategories. We should

mention that the above Auslander’s formula is an ingredient of a recollement of mod(modΛ). A

typical example of recollements is obtained from a finite dimensional k-algebra Λ and its idem-

potent e, that is, modΛ is decomposed into the pair (modΛ/ΛeΛ,mod eΛe). We generalize the

above recollement by replacing the pair with (modA/[B],modB) according to a sequence B ⊆ A
of dualizing k-varieties. As applications, first we mention that Auslander-Bridger sequence is

obtained from our recollement. Second application is a contribution to higher Auslander-Reiten

theory [Iya07a, Iya07b]. Applying our recollements to n-cluster tilting subcategories of modΛ,

we get higher version of the classical Auslander’s formula.

Part II: Buchweitz introduced the singularity category of Iwanaga-Gorenstein rings. He

proved that the singularity category is triangle equivalent to the stable category of Cohen-

Macaulay modules. We say that two additive categories are singularly equivalent if their sin-

gularity categories are triangle equivalent. Xiao-Wu Chen provided a sufficient condition for a

Noetherian ring Λ and its idempotent subalgebra eΛe so that they are singularly equivalent.

Our first result is a functor category version of Chen’s theorem. As an application of the result,

we consturuct many examples of singularly equivalent categories, where the key is the notion of

Auslander-Buchweitz approximation [ABu, Has]. For example, our application provides a singu-

lar equivalence arising from a cotilting module T in modΛ, precisely, (⊥T )/[T ] and (modΛ)/[T ]

are singularly equivalent. In particular, the canonical module ω over a commutative Noetherian

ring R induces a singular equivalence between (CMR)/[ω] and (modR)/[ω], which generalizes

Matsui-Takahashi’s equivalence.
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Auslander’s formulas via Recollements for dualizing k-varieties

The notion of recollements was introduced in [BBD] to get information about quasi-coherent

sheaves over a topological space, first in the level of triangulated categories. Recollements of

abelian categories also appeared in loc. cit. in the context of gluing t-structures. Afterwards, in

the representation theory, Happel provided an application of recollements to the tilting theory

[Hap92, Hap93], and then there are various approaches to tilting theory which stem from Hap-

pel’s work [AKL, Psa]. Moreover, Cline, Parshall and Scott initiated the use of recollements of

derived categories to reveal close relation between highest weight categories and quasi-hereditary

algebras [CPS].

A recollement of abelian categories is a sequence of abelian categories

B e // A q // C,

where the functor e represents B as a Serre subcategory of A and the functor q represents C as

the quotient A/B, satisfying the additional properties: e admits both a right adjoint eρ and a

left adjoint eλ; q admits both a right adjoint qρ and a left adjoint qλ. Throughout the thesis,

such a recollement is denoted by a diagram of the form below (see Definition 3.7 for details)

B e // A q //

eρ

``

eλ

}}
C,

qρ

``

qλ

||

or (B,A, C), for short. It is a benefit of recollements to deconstruct the middle category A into

smaller ones B and C which inherit some homological properties of A. One of the most studied

example comes from an associative ring (with unit) Λ together with its idempotent e. They

induce a recollement

ModΛ/ΛeΛ // ModΛ //
hh

vv
Mod eΛe,ff

ww
(1.0.1)

where ModΛ denotes the category of right Λ-modules. If Λ is Noetherian, it restricts to a

recollement consisting of the categories of finitely presented modules. It is called an idempotent

recollement. In fact, idempotent recollements appeared in many contexts in the representation

theory, e.g. [CS, Eir, FP, Kra17].

Our first aim is to extend idempotent recollements to functor categories over dualizing k-

varieties. A dualizing k-variety is an analog of the category of finitely generated projective

modules over a finite dimensional algebra, but with possibly infinitely many indecomposable

objects up to isomorphism [AR74]. It is a Krull-Schmidt Hom-finite k-linear category A where

the standard k-duality D := Homk(−, k) induces the duality between modA and mod(Aop).

A typical example of dualizing k-variety is the module category modΛ of a finite dimensional

k-algebra Λ.
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Theorem 1.1 (Theorem 4.5). Let (A,B) be the pair of a dualizing k-variety A and its functori-

ally finite subcategory B. Then the canonical inclusion B ↪→ A induces the following recollement

mod(A/[B]) // modA //
hh

vv
modB.ee

xx

Our second result shows that in the functor category of a suitable dualizing k-variety,

Auslander-Bridger sequences are nothing other than right-defining exact sequences of recolle-

ments (Theorem 5.2).

Our third aim is to approach to higher Auslander-Reiten theory from a viewpoint of functor

categories. The theory can be regarded as Auslander-Reiten theory over n-cluster tilting sub-

categories B of modA, where A is a dualizing k-variety. Using our recollement, we show that

there exists a higher analog of Auslander’s formula.

Theorem 1.2 (Corollary 4.11). Suppose B is an n-cluster tilting subcategory of modΛ. Then

the composition functor modΛ −→ mod(modΛ) → modB admits an exact right adjoint functor.

Here the the first one is the Yoneda embedding and the second one is the natural restriction.

Moreover it induces an equivalence

modB
modB

∼−→ modΛ,

where the fraction denotes the Serre quotient.

Our recollement enables us to construct an equivalence σn : B ∼−→ B and bifunctorial isomor-

phisms

B(σ−n Y,X) ∼= DExtnA(X,Y ) ∼= B(Y, σnX). (1.2.1)

In particular, σn coincides with the n-Auslander-Reiten translation τn and (1.2.1) gives an n-

Auslander-Reiten duality (Theorem 6.12). Moreover, we construct one-to-one correspondence

between the isomorphism class of n-almost split sequences and the isomorphism class of simple

B-modules of projective dimension n+ 1 (Corollary 6.14).

We should remark that a similar approach to higher Auslander-Reiten theory was given by

Jasso and Kvamme [JK] independently, but our approach is slightly different since we do not

use an explicit form of τn.

Singular equivalences via Auslander-Buchweitz approximations

Let A be an additive category with weak-kernels. Then the functor category modA, the category

of finitely presented contravariant functors from A to the category of abelian groups, is abelian.

The notion of singularity category of A is defined to be the Verdier quotient

Dsg(A) :=
Db(modA)

Kb(projA)
,

where we denote by Db(modA) the bounded derived category, and by Kb(projA) the homotopy

category of bounded complexes whose terms are projective. This concept was introduced as a
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homological invariant of rings by Buchweitz [Buc86]. Recently it was applied by Orlov to study

Landau-Ginzburg models [Orl04]. A lot of studies on singularity categories has been done in

various approaches (e.g. [Iya18, KV, Orl09, Ric, Zim]).

For additive categories A and A′ with weak-kernels, we say that A is singularly equivalent

to A′ if there exists a triangle equivalence Dsg(A) ≃ Dsg(A′) [ZZ]. If Λ is an Iwanaga-Gorenstein

ring, then the singularity category of Λ is triangle equivalent to the stable category of Cohen-

Macaulay Λ-modules. Thus the singular equivalence is a generalization of the stable equivalence

for Iwanaga-Gorenstein rings.

It is a basic problem to compare homological propeties of a ring Λ with its subalgebra

eΛe given by an idempotent e ∈ Λ (e.g. [APT, CPS, DR]). In this context, Xiao-Wu Chen

investigated a sufficient condition for a ring Λ and its idempotent subalgebra eΛe so that they

induce a triangle equivalence Dsg(Λ)
∼−→ Dsg(eΛe) [Che, Thm. 1.3]. The first aim of this article is

to provide its functor category version by using the following observations on Serre and Verdier

quotients: Let X be a contravariantly finite subcategory of an additive category A with weak-

kernels. Then X also admits weak-kernels, hence the canonical functor Q : modA → modX
induces an equivalence

modA
mod(A/[X ])

∼−→ modX , (1.2.2)

where the fraction denotes the Serre quotient (e.g. [Buc97, Prop. 3.9]). Moreover, the equiva-

lence (1.2.2) induces a triangle equivalence

Db(modA)

Db
A/[X ](modA)

∼−→ Db(modX ), (1.2.3)

where Db
A/[X ](modA) is a thick subcategory consisting of objects whose cohomologies belong

to mod(A/[X ]) (see [Miy, Thm. 3.2] and [CPS, Thm. 2.3]). The equivalence (1.2.3) gives the

following first result of this paper.

Theorem 1.3 (Lemma 7.1, Theorem 7.2). Let A be an additive category with weak-kernels and

X its contravariantly finite full subcategory. Suppose that pdX (A(−,M)|X ) <∞ for any M ∈ A
and pdA(F ) < ∞ for any F ∈ mod(A/[X ]). Then the canonical inclusion X ↪→ A induces a

triangle equivalence Q̄ : Dsg(A) → Dsg(X ).

Our second result is an application of Theorem 1.3, which provides examples of singularly

equivalent categories. We denote by X̂ the full subcategory of C consisting of objects M which

admit an exact sequence

0 → Xn → Xn−1 → · · · → X0 →M → 0

with Xn, . . . , X0 ∈ X for some n ∈ Z≥0. Our result will be stated under the following condition

which is a generalization of the setting appearing in Auslander-Buchweitz theory (see Condition

9.3 for details). A map f : N → M in C is called an X -epimorphism if the induced map

C(−, N)|X
f◦−−−→ C(−,M)|X is surjective.

6



Condition 1.4. Let C be an abelian category with enough projectives and let A ⊇ X ⊇ ω be

a sequence of full subcategories in C such that X and ω are contravariantly finite in A. We

consider the following conditions:

(AB1) If a morphism f : N →M in A is an ω-epimorphism, then the kernel of f belongs to A.

(AB2) ExtiC(X, I) = 0 for any X ∈ X , I ∈ ω and i > 0.

(AB3) For any M ∈ A, there exists an exact sequence 0 → YM → XM
f−→M in A such that f is

a right X -approximation of M and YM ∈ ω̂.

For example, the classical Auslander-Buchweitz theory (Condition 9.3) provides us with the

triple (C = A,X ,ω) satisfies the Condition 1.4. Note that, in contrary to Condition 9.3, they are

not required that: ω is a cogenerator of X ; each morphism f appearing in 0 → YM → XM
f−→M

of (AB3) is surjective.

Since X/[ω] can be regarded as an analog of the costable category, we denote by

A := A/[ω] and X := X/[ω].

Our main result is the following:

Theorem 1.5 (Theorem 8.2). Under Condition 1.4, the canonical inclusion X ↪→ A induces a

triangle equivalence Dsg(A)
∼−→ Dsg(X ).

Typical examples satisfying Condition 1.4 come from cotilting theory. Let us recall the

notion of cotilting subcategories of C. For a subcategory X of C, we denote by ⊥X the full

subcategory of C of objects M with ExtiC(M,X) = 0 for any i > 0 and X ∈ X .

Definition 1.6. Let C be an abelian category with enough projectives. A full subcategory T
of C is called a cotilting subcategory of C, if it satisfies the following conditions:

• There exists an integer n ∈ Z≥0 such that idI ≤ n for any I ∈ T ;

• ExtiC(I, J) = 0 for any I, J ∈ T and i > 0;

• For each M ∈ ⊥T , there exists an exact sequence

0 →M → I →M ′ → 0

with I ∈ T and M ′ ∈ ⊥T .

We call an object T ∈ C a cotilting object if addT is a cotilting subcategory of C.

The following result is immediate from Theorem 1.5.

Corollary 1.7 (Corollary 8.10). Let A be an abelian category with enough projectives and T
its contravariantly finite cotilting subcategory. Then the canonical inclusion ⊥T ↪→ A induces a

triangle equivalence Dsg(A)
∼−→ Dsg(⊥T ).
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As examples of Corollary 1.7, we have the followings:

Example 1.8. (a) Let Λ be a finite dimensional k-algebra over a field k and T a cotilting

Λ-module. Then the canonical inclusion ⊥T ↪→ modΛ induces a triangle equivalence

Dsg(modΛ)
∼−→ Dsg(⊥T ).

(b) Let R be a commutative Cohen-Macaulay ring with a canonical R-module ω and CMR the

full subcategory of maximal Cohen-Macaulay R-modules. Then the canonical inclusion

CMR ↪→ modR induces a triangle equivalence Dsg(modR)
∼−→ Dsg(CMR).

Theorem 1.5 also provides an alternative proof for Matsui-Takahashi’s theorem [MT, Thm.

5.4(3)] (Corollary 8.12): For an Iwanaga-Gorenstein ring Λ, the canonical inclusion CMΛ ↪→
modΛ induces a triangle equivalence Dsg(modΛ)

∼−→ Dsg(CMΛ).
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Notation and convention

The symbols A,B and C always denote additive categories, and the set of morphisms A → B

in A is denoted by A(A,B). We consider only additive functors between additive categories;

that is functors F which satisfy F (f + g) = F (f) +F (g) whenever f + g is defined. For a given

category A, we denote its opposite category by Aop. For a functor F : A → C, its image and

kernel are defined as the full subcategories of A

ImF := {C ∈ C | ∃A ∈ A, F (A) ∼= C} and KerF := {A ∈ A | F (A) = 0},

respectively. Let B be a subcategory of A. We denote by A/[B] the ideal quotient category

of A modulo the (two-sided) ideal [B] in A consisting of all morphisms having a factorization

through an object in B. If there exists a fully faithful functor B ↪→ A, we often regard B as a

full subcategory of A. For each B ∈ A, we denote by addB the full subcategory consisting of

direct summands of finite direct sums of B and we abbreviate A/[B] to indicate A/[addB].

Throughout k always denotes a field. The additive category is said to be k-linear if each

morphism-space A(A,B) is a k-module and the composition A(B,C) × A(A,B) → A(A,C)

is k-bilinear. The additive functor is said to be k-linear if it gives a k-linear maps between

morphism-spaces. In the case that given categories are k-linear, we consider only additive k-

linear functors.

The word ring and algebra always mean ring with a unit and finite dimensional algebra over

a field k, respectively. Throughout Λ denotes a ring. The category of finitely presented right

Λ-modules and its full subcategory of projective (resp. injective) Λ-modules will be denoted by

modΛ and projΛ (resp. injΛ), respectively. The stable (resp. costable) category of modΛ will

be denoted by modΛ := modΛ/[projΛ] (resp. modΛ := modΛ/[injΛ]).
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Part I

Auslander’s formulas via Recollements for
dualizing k-varieties

This part is based on the paper [Oga17].

3 Preliminaries

This thesis is concerned with replacing theorems about rings by theorems about additive cat-

egories. So we firstly recall some basic facts on functor categories of additive categories. We

denote by Ab the category of abelian groups. For an essentially small category A, a (right)

A-module is defined to be a contravariant functor A → Ab and a morphism X → Y is a natural

transformation. Thus we define an abelian category ModA of A-modules, where we call this

the functor category of A. In the functor category ModA, the morphism-space (ModA)(X,Y )

is denoted by HomA(X,Y ). In the case that a given category A is k-linear, it is natural to

consider, instead of ModA; the equivalent category of k-linear functors from A to Mod k, which

is denoted by the same symbol.

An A-module X is finitely generated if there exists an epimorphism A(−, A) ↠ X for some

A ∈ A. An A-module X is said to be finitely presented if there exists an exact sequence

A(−, B) → A(−, A) → X → 0

for some A,B ∈ A. We denote by modA the full subcategory of finitely presented A-modules.

The subcategory modA is closed under cokernels and extensions in ModA. However it is not

always abelian since it is not necessarily closed under kernels. Let f : B → A be a morphism in

A. We call a morphism g : C → B a weak-kernel for f if the induced sequence

A(−, C) g◦−−−→ A(−, B)
f◦−−−→ A(−, A)

is exact. We say A admits weak-kernels if every morphism in A has a weak-kernel. The notion

of weak-cokernel is defined dually. We recall the following well-known fact.

Lemma 3.1. [Fre, Thm. 1.4] The following are equivalent for a category A.

(i) The category A admits weak-kernels.

(ii) The full subcategory modA is an exact abelian subcategory in ModA, that is, it is abelian

and the canonical inclusion modA ↪→ ModA is exact.

The functor category modA over an additive category A with weak-kernels is a generalization

of the module category modΛ over a Noetherian ring Λ in the following sense.

Lemma 3.2. Let Λ be a Noetherian ring. Then we have an equivalence mod(projΛ)
∼−→ modΛ

which evaluates the functor X ∈ mod(projΛ) on Λ.
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Like the case for module categories, projA (resp. injA) denotes the full subcategory of

projective (resp. injective) A-modules in modA, and the stable (resp. costable) category will be

denoted by modA := (modA)/[projA] (resp. modA := (modA)/[injA]). For a full subcategory

B ⊆ modA which contains projA (resp. injA), we also use the symbol B := B/[projA] (resp.

B := B/[injA]).

3.1 Dualizing k-varieties

In this subsection we recall from [AR74] the notion of dualizing k-varieties. Let A be a Krull-

Schmidt k-linear category, that is, each object A ∈ A admits a decomposition A ∼=
⨿n
i=1Ai

with A(Ai, Ai) a local k-algebra for any i ∈ {1, . . . , n}. We also assume that A is Hom-finite,

that is, each morphism-space A(A,B) is a finite dimensional k-module. We denote by D :=

Homk(−, k) : mod k → mod k the standard k-duality.

Definition 3.3. [AR74, Section 2] A Krull-Schmidt Hom-finite k-linear category A is a dualizing

k-variety if the standard k-duality D : ModA → Mod(Aop), X 7→ D ◦ X induces a duality

D : modA ∼−→ mod(Aop).

It is obvious that A is a dualizing k-variety if and only if so is Aop. If A is a dualizing

k-variety, due to the duality between modA and mod(Aop), modA is closed under kernels in

ModA. Thus modA is an exact abelian subcategory in ModA. By Lemma 3.1, A admits

weak-kernels and weak-cokernels. The following proposition gives us basic examples of dualizing

k-varieties.

Proposition 3.4. [AR74, Prop. 2.6, Prop. 3.4] Suppose A is a dualizing k-variety. Then

modA is a dualizing k-variety. Moreover, modA admits injective hulls and projective covers.

Next we recall the definition of functorially finite subcategories. The symbol X|B denotes the

restricted functor of an A-module X onto a subcategory B. Especially, for a functor category

modA and its full subcategory B we also write ExtiA(B, X) := ExtiA(−, X)|B, where X ∈ modA
and i ∈ Z≥0.

Definition 3.5. Let A be an arbitrary category and B a full subcategory in A.

(a) The full subcategory B is contravariantly finite if the functor A(−, A)|B is a finitely gen-

erated B-module for each A ∈ A.

(b) The full subcategory B is covariantly finite if the functor A(A,−)|B is a finitely generated

Bop-module for each A ∈ A.

(c) We call B a functorially finite subcategory if it is contravariantly finite and covariantly

finite.

If a B-module A(−, A)|B is finitely generated, then there exists an epimorphism

B(−, B)
α◦−−−→ A(−, A)|B → 0

12



in ModB for some B ∈ B. Then we call the induced morphism α : B → A a right B-
approximation of A. Dually we define the notion of left B-approximation.

It is basic that the subcategories projA and injA are functorially finite in modA if A is

a dualizing k-variety. The following result gives a criterion for a given subcategory to be a

dualizing k-variety.

Proposition 3.6. [AS, Thm. 2.3][Iya07a, Prop. 1.2] Let B be a functorially finite subcategory

in a dualizing k-variety A. Then B is a dualizing k-variety.

3.2 Recollements of abelian categories

In this subsection we recall the definition of recollements of abelian categories, as well as some

basic properties which are needed in this paper. Let us start with introducing basic terminology.

Throughout this subsection, A,B and C are assumed to be abelian. A pair of functors L : A →
B and R : B → A is said to be an adjoint pair if there exists a bifunctorial isomorphism

A(A,RB) ∼= B(LA,B) in A ∈ A and B ∈ B. We simply denote this adjoint pair by (L ⊣ R).

For a functor Φ : A → B, we often denote its right (resp. left) adjoint by Φρ (resp. Φλ). If Φ

admits a right adjoint Φρ as well as a left adjoint Φλ, we denote this situation by A Φ // B.

Φρ

``

Φλ

||

We recall the definition of recollement, following [FP, Psa] (see also [Pop, Ch. 4]).

Definition 3.7. Let A,B and C be abelian categories. A recollement of A relative to B and C
is given by six functors

B e // A q //

eρ

``

eλ

}}
C

qρ

``

qλ

||

such that

(R1) They form four adjoint pairs (eλ ⊣ e), (e ⊣ eρ), (qλ ⊣ q) and (q ⊣ qρ).

(R2) The functors qλ, qρ and e are fully faithful.

(R3) Im e = Ker q.

We denote this recollement by (B,A, C) for short.

Notice that the functors q and e are exact, since each of them admits a right adjoint and

a left adjoint. The following proposition shows that a recollement is a special case of Serre

quotients.

Proposition 3.8. [Pop, Thm. 4.9] Let q : A → C be an exact functor. If it admits a fully

faithful right adjoint qρ (resp. left adjoint qλ), the functor q induces an equivalence between C
and the Serre quotient A/Ker q of A with respect to the Serre subcategory Ker q.
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Thus, given a recollement (B,A, C), we have an equivalence A/B ∼−→ C, since Ker q = B. The
following notions play a central role in Section 5.

Proposition 3.9. [Psa, Prop. 2.6] For a given recollement (B,A, C) and an object A ∈ A,

(a) we have an exact sequence 0 → eeρ(A)
η−→ A

ε−→ qρq(A) → B → 0, where η and ε are the

counit and the unit of the adjoint pairs, respectively. We call it the right-defining exact

sequence of A.

(b) we have an exact sequence 0 → B′ → qλq(A)
η′−→ A

ε′−→ eeλ(A) → 0, where η′ and ε′ are

the counit and unit of the adjoint pairs, respectively. We call it the left-defining exact

sequence of A.

Moreover, if there exists an exact sequence 0 → A′ → A → A′′ → A′′′ → 0 with A′, A′′′ ∈ Im e

and A′′ ∈ Im qρ, then it is isomorphic to the right-defining exact sequence of A. The dual

statement holds for the left-defining exact sequences.

Proof. We only prove the latter statement, that is, an exact sequence 0 → A′ f−→ A
g−→ A′′ →

A′′′ → 0 with A′, A′′′ ∈ Im e and A′′ ∈ Im qρ is isomorphic to the right-defining exact sequence

of A. By considering the right-defining exact sequences of A and A′, we show that a given

morphism A′ f−→ A induces the following commutative diagram:

0 // eeρ(A)
η // A // qρq(A) // B // 0

0 // eeρ(A
′)

eeρ(f)

OO

// A′

f

OO

// qρq(A
′) //

qρq(f)

OO

B′

OO

// 0.

Since A′ ∈ Im e, the counit eeρ(A
′)

∼−→ A′ is an isomorphism. Since A′′ ∈ Im qρ and eρ is left

exact, the induced morphism eρ(f) : eρ(A
′)

∼−→ eρ(A) is an isomorphism. Thus we deduce the

commutative diagram below:

eeρ(A)
η // A

eeρ(A
′) ∼=

//

eeρ(f) ∼=

OO

A′

f

OO

Hence the morphism A′ f−→ A is isomorphic to the counit eeρ(A)
η−→ A.

Similarly we show that a given morphism A
g−→ A′′ is isomorphic to the unit A

ϵ−→ qρq(A) under

isomorphisms A′′ ∼−→ qρq(A
′′) and qρq(g) : qρq(A)

∼−→ qρq(A
′′). A natural isomorphism B → A′′′

is induced from the universality of cokernels. We have thus obtained desired isomorphisms.

4 Recollements over dualizing k-varieties

We start with introducing basic terminology. Let us recall the notion of the tensor product

B ⊗ A of two additive categories. The objects of B ⊗ A are the pairs (B,A) with B ∈ B
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and A ∈ A and the morphisms from (B,A) to (B′, A′) is the tensor product of abelian groups

B(B,B′)⊗A(A,A′). In the case that given categories A and B are k-linear, the morphism space

(B⊗A)((B,A), (B′, A′)) is defined to be the tensor product of k-modules B(B,B′)⊗kA(A,A′).

We define B-A-bimodule to be a contravariant additive functor from Bop ⊗ A to Ab. Given

a B-A-bimodule X, we regard it as a contravariant functor from A to Mod(Bop) as follows:

For each A ∈ A, we define a covariant functor X(−, A) : B → Mod k by setting X(gop, A) :=

X(gop ⊗ 1A) : X(B′op, A) → X(Bop, A) for a morphism g : B′ → B in B. Let f : A → A′ be a

morphism in A. We define a natural transformation X(−, f) : X(−, A′) → X(−, A) by setting

X(Bop, f) := X(1Bop⊗f) for each B ∈ B. These assignments give rise to a contravariant functor

from A to Mod(Bop). Similarly, we regard a B-A-bimodule X as a covariant functor from B to

ModA.

For later use, we recall in Proposition 4.2 that a B-A-bimodule X induces a Hom-tensor

adjunctions: Given a B-A-bimodule X, we define a covariant functor HomA(X,−) : ModA →
ModB which sends Y ∈ ModA to the functor HomA(X,Y ) : B → Mod k given by B 7→
HomA(X(Bop,−), Y ) for B ∈ B. In the next lemma, we define a covariant functor − ⊗B X :

ModB → ModA.

Lemma 4.1. Let X be a B-A-bimodule. Then, there exists a unique right-exact functor X̃ :

ModB → ModA up to isomorphism which preserves coproducts and makes the following diagram

commutative up to isomorphism

B X //

Y
��

ModA

ModB
X̃

99ssssssssss

where we regard X as a covariant functor from B to ModA and Y denotes the Yoneda functor

sending B ∈ B to B(−, B) ∈ ModB. We write −⊗B X instead of X̃.

Proof. This is well-known for experts but we recall a construction of X̃ for the convenience of the

reader (e.g. [Kra00, Section 2] for details). Any B-module M admits a projective presentation⊕
j∈J

B(−, Bj) →
⊕
i∈I

B(−, Bi) →M → 0.

Thanks to the Yoneda Lemma, we obtain a set of morphisms {βji : Bj → Bi}j∈J,i∈I in B.
The induced set of morphisms {X(βopji ,−) : X(Bop

j ,−) → X(Bop
i ,−)}j∈J,i∈I in ModA gives a

canonical morphism f :
⊕

j∈J X(Bop
j ,−) →

⊕
i∈I X(Bop

i ,−). Put X̃(M) := Cok f . We omit a

remaining part of the proof.

Proposition 4.2. Let X be a B-A-bimodule. Then, the induced functors HomA(X,−) : ModA →
ModB and −⊗B X : ModB → ModA form an adjoint pair (−⊗B X ⊣ HomA(X,−)).

Proof. We shall show the bifunctorial isomorphism HomA(M⊗BX,Y ) ∼= HomB(M,HomA(X,Y ))

in M ∈ ModB and Y ∈ ModA. Take a projective presentation⊕
j∈J

B(−, Bj) →
⊕
i∈I

B(−, Bi) →M → 0 (4.2.1)
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of M ∈ ModB. By Lemma 4.1, applying −⊗B X to the above yields an exact sequence⊕
j∈J

X(Bop
j ,−) →

⊕
i∈I

X(Bop
i ,−) →M ⊗B X → 0

in ModA. Since HomA(−, Y ) is left-exact and sends coproducts to products, we have an exact

sequence

0 → HomA(M ⊗B X,Y ) →
∏
i∈I

HomA(X(Bop
i ,−), Y ) →

∏
j∈J

HomA(X(Bop
j ,−), Y ) (4.2.2)

inMod k. On the other hand, applying HomB(−,HomA(X,Y )) to the above presentation (4.2.1),

we have an exact sequence

0 → HomB(M,HomA(X,Y )) →
∏
i∈I

HomA(X(Bop
i ,−), Y ) →

∏
j∈J

HomA(X(Bop
j ,−), Y ) (4.2.3)

in Mod k. By comparing (4.2.2) and (4.2.3), we have a desired isomorphism.

We often regard A as an A-A-bimodule by the following way

AAA := A(−,+) : Aop ⊗A → Ab, (Aop, A′) 7→ A(A′, A).

Consider a full subcategory B in A. The canonical inclusion i : B ↪→ A gives a natural A-B-
bimodule structure on A by

AAB := A(i(−),+) : Aop ⊗ B → Ab, (Aop, B) 7→ A(i(B), A) = A(B,A).

Similarly, we define a B-A-bimodule BAA := A(−, i(+)).

The first step is to show the following elementary proposition, which is a categorical ana-

log of the recollement (1.0.1) and well-known for experts. We denote by i∗ : ModA →
ModB, X 7→ X|B the natural restriction functor induced from i : B → A and also denote

by p∗ : Mod(A/[B]) → ModA, X 7→ X ◦ p the natural restriction functor induced from

p : A → A/[B].

Proposition 4.3. [Psa, Example 2.13] Let (A,B) be the pair of an additive category A and its

full subcategory B. Then we have the following recollement:

Mod(A/[B]) p∗ // ModA i∗ //

p∗ρ

hh

p∗λ
vv

ModB.

i∗ρ

ee

i∗λ
xx

(4.3.1)

Proof. (i) We shall construct the adjoint pairs on the right side in (4.3.1). Note that there

exist isomorphisms i∗ ∼= HomA(BAA,−) ∼= − ⊗A (AAB). Thus it admits a left adjoint i∗λ :=
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−⊗B (BAA) and a right adjoint i∗ρ := HomB(AAB,−). By easy calculation, we show that i∗λ and

i∗ρ are fully faithful. In fact, we have the following isomorphisms:

i∗ ◦ i∗λ ∼= −⊗B (BAA)⊗A (AAB) ∼= −⊗B B ∼= idModB,

i∗ ◦ i∗ρ ∼= HomA(BAA,HomB(AAB,−))

∼= HomB((BAA)⊗A (AAB),−)

∼= HomB(B,−) ∼= idModB.

Thus we have constructed the right side of (4.3.1).

(ii) We shall construct the adjoint pairs on the left side in (4.3.1). By a similar argument to

the above, the restriction functor p∗ is a fully faithful exact functor which admits a left adjoint

p∗λ and a right adjoint p∗ρ. Thus we have obtained the left side of (4.3.1).

(iii) It remains to show that Im p∗ = Ker i∗. This follows from the following obvious lemma.

Lemma 4.4. Let X be an object in ModA. Then X belongs to Im p∗ if and only if X vanishes

on objects in B. In particular, we have Im p∗ = Ker i∗.

We have thus proved Proposition 4.3.

Now we state our main theorem.

Theorem 4.5. Let (A,B) be the pair of a dualizing k-variety A and its functorially finite

subcategory B. Then the recollement (4.3.1) restricts to the following one:

mod(A/[B]) e // modA q //

eρ

hh

eλ
vv

modB.
qρ

ee

qλ
xx

(4.5.1)

In particular, we have an equivalence
modA

mod(A/[B])
≃ modB.

We call this the recollement arising from the pair (A,B) of a dualizing k-variety A and a

functorially finite subcategory B in A.

In the rest of this section, we give a proof of Theorem 4.5. Assume that A and B are

Krull-Schmidt Hom-finite k-linear categories. First we consider the right part of the recollement

(4.3.1). The functor i∗λ preserves indecomposable projectives because i∗λ(B(−, B)) = B(−, B)⊗B
(BAA) ∼= A(−, B). Since i∗λ is right-exact, we have the restricted functor i∗λ : modB → modA,

which is denoted by the same symbol. In general i∗ and i∗ρ do not restrict to the subcategories

of finitely presented functors. However, if (A,B) is a pair of a dualizing k-variety A and its

functorially finite subcategory B, i∗ and i∗ρ restrict to the subcategories.

Second we consider the left part of the recollement (4.3.1). Like the case for the canonical

inclusion i, although the left adjoint p∗λ preserves finitely presented functors, p∗ and p∗ρ do not

necessarily preserve finitely presented functors.

The next lemma shows a necessary and sufficient condition so that i∗ and p∗ preserves finitely

presented functors, see [Buc97, Prop. 3.9] for the equivalence (i) and (iii) below.
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Lemma 4.6. Let A be a category with weak-kernels and B a full subcategory in A. Then the

following are equivalent for the recollement (4.3.1).

(i) The category B is contravariantly finite.

(ii) The functor i∗ restricts to the functor i∗ : modA → modB.

(iii) The functor p∗ restricts to the functor p∗ : mod(A/[B]) → modA.

Proof. (i) ⇒ (ii): Since i∗ is exact, we have only to show that i∗(A(−, A)) is finitely presented for

any A ∈ A. Since B is contravariantly finite, there exists a right B-approximation α0 : B0 → A.

The morphism α0 induces an epimorphism B(−, B0)
α0◦−−−−→ A(−, A)|B → 0, that is, the B-

module A(−, A)|B is finitely generated. Since modA is abelian, we have the kernel-sequence

0 → X → A(−, B0)
α0◦−−−−→ A(−, A) in modA induced from the morphism α0. Since X ∈ modA,

there exists an epimorphism A(−, A′) → X → 0 and thus we have an exact sequence

A(−, A′)|B → B(−, B0) → A(−, A)|B → 0

in modB. The fact that A(−, A′)|B is finitely generated shows that A(−, A)|B is finitely pre-

sented.

(ii) ⇒ (i): For any A ∈ A, the functor i∗(A(−, A)) = A(−, A)|B is finitely presented. This

shows that B is contravariantly finite by definition.

In the rest, we assume that B is contravariantly finite in A. In this case, we have the

following lemma which is a “finitely presented” version of Lemma 4.4.

Lemma 4.7. Assume that B is contravariantly finite in A. Then a finitely presented A-module

X belongs to mod(A/[B]) if and only if X vanishes on objects in B. In particular, we have

mod(A/[B]) = Ker q.

Combining Lemmas 4.6 and 4.7, we have the following proposition, which gives a part of

recollement (4.5.1) without the right adjoints qρ and eρ.

Lemma 4.8. Let B be a contravariantly finite full subcategory of A. Then the functors i∗, p∗, i∗λ
and p∗λ in the recollement (4.3.1) restrict to the following diagram

mod(A/[B]) p∗ // modA i∗ //

p∗λ
vv

modB,

i∗λ
xx

with Ker i∗ = Im p∗.

In the rest, we assume that A is a dualizing k-variety and B is functorially finite in A.

Note that, in this case, A/[B] is also a dualizing k-variety. In fact, for any X ∈ mod(A/[B]),
DX is Aop-module which vanishes on B, hence DX ∈ mod(A/[B])op. Dually we have that

DX ′ ∈ mod(A/[B]) for any X ′ ∈ mod(A/[B])op.
To show Theorem 4.5, it remains to show that the functors i∗ and p∗ admit right adjoints,

respectively. The following proposition is our key observation.
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Proposition 4.9. There exist the following adjoint pairs for the pair (A,B) of a dualizing

k-variety A and its functorially finite full subcategory B:

modA q // modB,
qρ

ee

qλ
xx

where q := i∗ is the restriction functor induced by the canonical inclusion i : B ↪→ A. Moreover,

we have isomorphisms qρ ∼= HomB(AAB,−) and qλ ∼= −⊗B (BAA).

Proof. Recall that every dualizing k-variety admits weak-kernels and weak-cokernels. As we

have seen in Lemma 4.6, there exists an adjoint pair (qλ ⊣ q) between modA and modB. Since
Aop is also a dualizing k-variety and Bop is functorially finite in Aop, by Lemma 4.6, we have

an adjoint pair (q′λ ⊣ q′) between mod(Aop) and mod(Bop), where q′ is the restriction functor

induced by the inclusion Bop ↪→ Aop. Since A and B are dualizing k-varieties, we have the

following functors:

modA q //
OO

D
��

modB

qλ
vv

OO

D
��

mod(Aop) q′ // mod(Bop).

q′λ
vv

First we notice that q ∼= Dq′D holds by definition. Put qρ := Dq′λD : modB → modA. It is

easy to check that q and qρ form an adjoint pair (q ⊣ qρ).
In the remaining part of the proof, we shall verify the latter statement, namely, an isomor-

phism qρ ∼= HomB(AAB,−). This can be verified by the following calculations. Since qρ is

left-exact and preserves injective objects, we have only to check the values of qρ on injective

B-modules. Due to the duality D : modB → mod(Bop), each injective B-module is isomorphic

to DB(B,−) for some B ∈ B.

qρ(DB(B,−)) = Dq′λD(DB(B,−))

∼= D((AAB)⊗B B(B,−))

∼= HomBop(B(B,−), D(AAB))

∼= HomB(AAB, DB(B,−)).

Therefore qρ ∼= HomB(AAB,−) on modB, and hence it is fully faithful.

By a similar argument in the proof of Proposition 4.9, we obtain the following.

Proposition 4.10. There exist the following adjoint pairs for the pair (A,B) of a dualizing

k-variety A and its functorially finite full subcategory B:

mod(A/[B]) e // modA,
eρ

hh

eλ
vv
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where e := p∗ is the restriction functor induced by the canonical projection p : A → A/[B].
Moreover, we have isomorphisms eρ ∼= HomA(A/[B](A/[B])A,−) and eλ ∼= −⊗A (A(A/[B])A/[B]).

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. By Proposition 4.9 and Proposition 4.10, we have four adjoint pairs (qλ ⊣
q), (q ⊣ qρ), (eλ ⊣ e) and (e ⊣ eρ) with qρ, qλ and e fully faithful. By definition, Ker q is a full

subcategory in modA consisting of functors which vanishes on B. Due to Lemma 4.7, we have

Ker q = mod(A/[B]). Hence they form a recollement.

We end this section with applying Theorem 4.5 to the following special setting. Let Λ be

a finite dimensional k-algebra and B a functorially finite subcategory of modΛ containing Λ.

Applying Theorem 4.5 to the pair (B, projΛ) yields the following recollement

modB e // modB q //

eρ

ff

eλ
xx

modΛ,

qρ

ee

qλ
xx

where we identifymod(projΛ) withmodΛ via the equivalencemod(projΛ)
∼−→ modΛ, X 7→ X(Λ).

By Proposition 3.8, this recollement induces the following.

Corollary 4.11. The functor qρ is one composed the Yoneda embedding modΛ −→ mod(modΛ)

with the natural restriction mod(modΛ) → modB and admits an exact right adjoint functor q.

Moreover it induces an equivalence

modB
modB

∼−→ modΛ.

We call this generalized Auslander’s formula.

By setting B = modΛ, we recover classical Auslander’s formula (see [Aus, p. 205] and [Len,

p. 1] for definition).

Corollary 4.12. The Yoneda embedding modΛ −→ mod(modΛ) admits an exact right adjoint

functor. Moreover it induces an equivalence
mod(modΛ)

mod(modΛ)
∼−→ modΛ.

5 Application to Auslander-Bridger sequences

The aim of this section is to show a close relationship between recollements and Auslander-

Bridger sequences. Throughout this section, we fix a dualizing k-variety A. Let B be a functo-

rially finite subcategory in modA which contains projA and injA.

Firstly, we recall the definition of Auslander-Bridger sequence, following [IJ, Prop. 2.7].

For the category B, we denote the B-duality by (−)∗ := HomB(−,B). Note that the B-duality
yields a duality (−)∗ : projB ∼−→ proj(Bop), B(−, B) 7→ B(B,−). Let X ∈ modB with a minimal

projective presentation B(−, B1)
α−→ B(−, B0) → X → 0 and set

TrX := Cokα∗
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in mod(Bop), see [ABr].

Definition-Proposition 5.1. For each object X ∈ modB, there exists an exact sequence

0 → Ext1Bop(TrX,Bop) → X
ϵ−→ X∗∗ → Ext2Bop(TrX,Bop) → 0,

which is called the Auslander-Bridger sequence of X.

For the convenience of the reader, we recall from [Aus, Prop. 6.3] and [IJ, Prop. 2.7] the

construction of the Auslander-Bridger sequence of X. Take a minimal projective presentation

B(−, B0) → B(−, B1) → X → 0 of X. Taking a left B-approximation of a cokernel of B0 → B1

yields an exact sequence B0 → B1 → B2. Again, by taking a left B-approximation of a cokernel

of B1 −→ B2, we get an exact sequence

B0 → B1 → B2 → B3 (5.1.1)

in modA. By the construction, the sequence (5.1.1) induces the exact sequence

B(B3,−)
h−→ B(B2,−)

g−→ B(B1,−)
f−→ B(B0,−) (5.1.2)

in mod(Bop). Note that X∗ = Ker f and TrX = Cok f . Taking the Bop-duality of (5.1.2) yields

the following sequence

0 → HomBop(TrX,Bop) → B(−, B0)
f∗−→ B(−, B1)

g∗−→ B(−, B2)
h∗−→ B(−, B3) (5.1.3)

Note that Cok f∗ ∼= X and Kerh∗ = X∗∗. Since (5.1.3) is a complex, we have a canonical

inclusion i : Im g∗ ↪→ Kerh∗ and a unique canonical epimorphism ϵ′ : X ↠ Im g∗. It is readily

verified that there exists a commutative diagram with exact rows.

0 // Im f∗� _

��

// B(−, B1) // X

ϵ′����

// 0

0 // Ker g∗ // B(−, B1) // Im g∗ //
� _

i��

0

X∗∗

We set ϵ := i ◦ ϵ′. By the Snake Lemma, we have Ker ϵ ∼= Ker ϵ′ ∼= Ker g∗/ Im f∗. It is

easy to verify that Cok ϵ ∼= Cok i = Kerh∗/ Im g∗. Since (5.1.3) is the Bop-duality of the

projective resolution of TrX, we have the isomorphisms Ker g∗/ Im f∗ ∼= Ext1Bop(TrX,Bop) and

Kerh∗/ Im g∗ ∼= Ext2Bop(TrX,Bop). We have thus obtained the Auslander-Bridger sequence

0 → Ext1Bop(TrX,Bop) → X
ϵ−→ X∗∗ → Ext2Bop(TrX,Bop) → 0.

We give an interpretation of the Auslander-Bridger sequences via the recollement appearing

below. Due to Theorem 4.5, the pair (B, projA) induces the following recollement:

modB e // modB q //

eρ

ff

eλ
xx

modA,
qρ

ee

qλ
xx

(5.1.4)

where we identify mod(projA) with modA via the equivalence mod(projA)
∼−→ modA.
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Theorem 5.2. Let (modB,modB,modA) be a recollement (5.1.4). Then the right-defining

exact sequence

0 → (eeρ)X → X → (qρq)X → X ′ → 0

of X ∈ modB is isomorphic to the Auslander-Bridger sequence of X.

In the rest, we give a proof of Theorem 5.2. By Lemma 4.7, modB is a full subcategory in

modB consisting of objects X which admits a projective presentation

B(−, B1) → B(−, B0) → X → 0

with B1 → B0 an epimorphism in B. Proposition 4.9 gives an explicit description of the functor

qρ.

Lemma 5.3. The functor qρ : modA → modB sends A to HomA(B, A).

We define the 2nd syzygy category Ω2(modB) of modB to be the full subcategory of modB
consisting of objects X which admits an exact sequence 0 → X → B(−, B0) → B(−, B1) for

some B0, B1 ∈ B.

Lemma 5.4. We have the equality Im qρ = Ω2(modB).

Proof. We show that Im qρ ⊆ Ω2(modB). Let M ∈ modA. Due to injA ⊆ B, there exists an

exact sequence 0 → M → B0 → B1 in modA with B0, B1 ∈ B. Applying qρ to the above

exact sequence gives an exact sequence 0 → qρM → qρB0 → qρB1. Since qρ(Bi) ∼= B(−, Bi) for
i = 0, 1, we have qρM ∈ Ω2(modB).

To show the converse, take an object X ∈ Ω2(modB) with an exact sequence 0 → X →
B(−, B0)

f◦−−−→ B(−, B1). Then X ∼= qρ(Ker f) ∈ Im qρ follows. This finishes the proof.

Now we are ready to prove Theorem 5.2.

Proof. Due to Proposition 3.9, it is enough to show that X∗∗ ∈ Im qρ and q(ϵ) is an isomorphism.

(i) Since we get an exact sequence 0 → X∗∗ → B(−, B2)
h∗−→ B(−, B3) from (5.1.3), X∗∗ ∈

Ω2(modB) holds.
(ii) Since q is a restriction functor with respect to the subcategory projA, we evaluate the

sequence (5.1.3) on P ∈ projA. Since the sequence B0 → B1 → B2 → B3 is exact, we have the

following commutative diagram

B(P,B0)
f∗(P ) // B(P,B1)

��

g∗(P ) // B(P,B2)
h∗(P ) // B(P,B3)

X(P )
ϵ(P ) // Im g∗(P ),

?�

OO

with the first row exact. Since Cok f∗ ∼= X, ϵ(P ) = q(ϵ) is an isomorphism.
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6 Application to Auslander-Reiten theory

Throughout this section let A be a dualizing k-variety and n a positive integer. We recall

the notion of n-cluster tilting subcategory in modA. Let B be a subcategory of modA. For

convenience, we define the full subcategories B⊥n and ⊥nB by

B⊥n := {M ∈ modA | i ∈ {1, . . . , n}ExtiA(B,M) = 0},
⊥nB := {M ∈ modA | i ∈ {1, . . . , n}ExtiA(M,B) = 0}.

Definition 6.1. [Iya07b, Def. 2.2] A functorially finite subcategory B in modA together with

n ∈ N is said to be n-cluster-tilting if the equalities B = ⊥n−1B = B⊥n−1 hold.

Note that 1-cluster tilting subcategory is nothing other than modA. It is obvious that every

n-cluster tilting subcategory contains projA and injA, since ExtiA(projA,−) and ExtiA(−, injA)

is zero for any i > 0. This fact forces each right B-approximation B →M ofM to be an epimor-

phism in modA, for every M ∈ modA. Dually each left B-approximation is a monomorphism.

In this section we always assume that B denotes an n-cluster-tilting subcategory in modA.

We collect some facts for later use. The following notion is instrumental in this section.

Definition 6.2. [Jas, Def. 2.4] Let B be an n-cluster-tilting subcategory in modA. A complex

δ : 0 → Bn+1 → Bn → · · · → B0 → 0 in B is said to be

(b) right n-exact if the induced sequence

0 → B(B0,−) → · · · → B(Bn,−) → B(Bn+1,−)

are exact in mod(Bop);

(a) left n-exact if the induced sequence

0 → B(−, Bn+1) → B(−, Bn) → · · · → B(−, B0)

are exact in modB;

(c) n-exact if it is right n-exact and left n-exact.

Recall the following basic properties of n-cluster tilting subcategory B.

Lemma 6.3. [Jas, Thm. 3.16] The following hold for an n-cluster-tilting subcategory B.

(a) Each morphism Bn+1 → Bn in B can be embedded in a right n-exact sequence δ : Bn+1 →
Bn → · · · → B0 → 0.

(b) Each monomorphism Bn+1 → Bn in B can be embedded in an n-exact sequence δ : 0 →
Bn+1 → Bn → · · · → B0 → 0.

(a’) Each morphism B1 → B0 in B can be embedded in a left n-exact sequence δ : 0 → Bn+1 →
· · · → B1 → B0.
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(b’) Each epimorphism B1 → B0 in B can be embedded in an n-exact sequence δ : 0 → Bn+1 →
· · · → B1 → B0 → 0.

Moreover, δ is uniquely determined up to homotopy in every case.

As an immediate consequence, we have the following lemma.

Lemma 6.4. Let B be an n-cluster-tilting subcategory in modA. Then we have pdB(X) ≤ n+1

for any X ∈ modB.

Proof. Let X be an object in modB with a projective presentation B(−, B1)
β◦−−−→ B(−, B0) →

X → 0. By Lemma 6.3, there exists a left n-exact sequence 0 → Bn+1 → · · · → B1
β−→ B0. This

gives rise to a projective resolution of X which shows that pdB(X) ≤ n+ 1.

As a generalization of Auslander’s defect introduced in [Aus] (see also Section IV. 4 in [ARS]),

we define the following concepts, which were introduced by Jasso and Kvamme independently.

Definition 6.5. [JK] Let δ : 0 → Bn+1 → Bn → · · · → B0 → 0 be an n-exact sequence in B.
The contravariant n-defect δ∗n and the covariant n-defect δ∗n are defined by the exactness of

the following sequences:

0 → B(−, Bn+1) → B(−, Bn) → · · · → B(−, B0) → δ∗n → 0,

0 → B(B0,−) → · · · → B(Bn,−) → B(Bn+1,−) → δ∗n → 0.

We give the following characterization of n-defects.

Proposition 6.6. The full subcategory of contravariant n-defects equals to modB in modB.
Dually the full subcategory of covariant n-defects equals to mod(Bop

) in mod(Bop).

Proof. We only prove the former assertion. Consider X ∈ modB with a projective presentation

B(−, B1)
B(−,f0)−−−−−→ B(−, B0) → X → 0. Assume that X belongs to modB. Since X vanishes

on P ∈ projA, the map f0 is an epimorphism in modA. By Lemma 6.3, the map f0 can be

embedded in an n-exact sequence δ : 0 → Bn+1 → · · · → B1
f0−→ B0 → 0. Hence δ∗n ∼= X.

Conversely, we shall show that contravariant n-defect δ∗n belongs to modB. The correspond-
ing n-exact sequence δ : 0 → Bn+1 → · · · → B1 → B0 → 0 induces an exact sequence

HomA(P,B1) → HomA(P,B0) → δ∗n(P ) → 0

for any P ∈ projA. This concludes that δ∗n(P ) = 0, hence δ∗n ∈ modB.

6.1 Auslander-Reiten duality

We shall construct the n-Auslander-Reiten duality from a viewpoint of functor category. First we

shall show that there exists a duality betweenmodB andmod(Bop
). We denote C(B) the category

of complexes in B. For convenience, we consider the homotopy category K(B) of C(B) and its full

subcategory Kn-ex(B) consisting of n-exact sequences δ : 0 → Bn+1 → · · · → B1 → b0 → 0 with

the degree of b0 being zero. The following proposition is a key to construct n-Auslander-Reiten

dualiy.
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Proposition 6.7. For n-exact sequences δ : 0 → Bn+1 → · · · → B1 → B0 → 0 and δ′ : 0 →
B′
n+1 → · · · → B′

1 → B′
0 → 0, the following are equivalent.

(i) The sequence δ is homotopy equivalent to δ′.

(ii) There exists an isomorphism δ∗n ∼= δ′∗n.

(iii) There exists an isomorphism δ∗n ∼= δ′∗n.

Moreover, we have a duality Φ : mod(Bop
) ≃ modB sending δ∗n to δ∗n.

Proof. (i)⇔(ii): We assume that δ is homotopy equivalent to δ′, that is, there exists chain maps

ϕ : δ → δ′ and ψ : δ′ → δ:

0 // Bn+1
βn+1 //

ϕn+1

��

· · · // B1
β1 //

ϕ1
��

B0
//

ϕ0
��

0

0 // B′
n+1

//

ψn+1

��

· · · // B′
1

//

ψ1

��

B′
0

//

ψ0

��

0

0 // Bn+1
// · · · // B1

// B0
// 0

with 1 − ψϕ and 1 − ϕψ null-homotopic. By a standard argument on the above diagram, we

have an isomorphism δ∗n ∼= δ′∗n. The converse is obvious. The implications (i)⇔(iii) can be

proved by a dual argument of the above.

We shall show the later assertion. By Proposition 6.6, the functor Cok : Kn-ex(B) → modB
sending δ to CokHomB(−, β1) = δ∗n is full and dense. To show it is faithful, we take a morphism

ϕ : δ → δ′ in Kn-ex(B) such that Cokϕ = 0. The condition Cokϕ = 0 forces that ϕ is null-

homotopic as follows: Via the Yoneda embedding B → modB the morphism ϕ induces a chain

map HomB(−, ϕ) : HomB(−, δ) → HomB(−, δ′) of complexes in modB. Since CokHomB(−, ϕ) =
0, it follows that HomB(−, ϕ) is zero in homology. Since HomB(−, δ) and HomB(−, δ′) are

complexes with projective components, we get that HomB(−, ϕ) must be null-homotopic. Hence,

since the Yoneda embedding B → modB is full and faithful, it follows that ϕ is null-homotopic.

Therefore Cok gives an equivalence. Dually we have a duality Kn-ex(B) → mod(Bop
) sending δ

to CokHomB(βn+1,−) = δ∗n. It is obvious that the composed functor

Φ : mod(Bop
)

∼−→ Kn-ex(B) ∼−→ modB, δ∗n 7→ δ 7→ δ∗n

gives a desired duality.

As we have seen in Section 4, the category B is a dualizing k-variety and thus we have the

duality D : modB ∼−→ mod(Bop). By composing the duality Φ in Proposition 6.7 with the duality

D, we have the following equivalence.
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Proposition 6.8. There exists an equivalence σn : B ∼−→ B which makes the following diagram

commutative up to isomorphism:

modB

D
��

mod(Bop
)

Φoo

−◦σnxxqqq
qqq

qqq
qq

mod(Bop)

Proof. It is clear that D ◦ Φ gives the equivalence from mod(Bop
) to mod(Bop). We restrict

this onto their projective objects, that is, proj(Bop
) ≃ proj(Bop). Thus we have the equivalence

σn : B ∼−→ B which makes the above diagram commutative up to isomorphisms.

By the dual argument, we have the equivalence σ−n : B → B which makes the following

diagram commutative up to isomorphisms:

modB

−◦σ−
n %%KK
KKK

KKK
KK

mod(Bop
)//Φ−1

D
��

modB

As an immediate consequence of the above diagrams, we have the higher defect formula.

Moreover, as a special case of the higher defect formula we obtain the higher Auslander-Reiten

duality by using a modification of Krause’s proof of the classical formula (see [Kra03]).

Theorem 6.9. There exist the following formulas.

(a) (Higher defect formula) functorial isomorphisms Dδ∗n ∼= δ∗n ◦ σn and Dδ∗n ∼= δ∗n ◦ σ−n .

(b) (Higher Auslander-Reiten duality) bifunctorial isomorphisms B(σ−n y, x) ∼= DExtnA(x, y)
∼=

B(y, σnx) in x, y ∈ B.

Proof. (a) It directly follows from Proposition 6.8 the fact that the duality Φ : mod(Bop
) →

modB sends δ∗n to δ∗n (Proposition 6.7).

(b) We only prove the second isomorphism. Fix an object C ∈ B. Let C ↪→ I(C) be an

injective hull of C in modA. Complete the n-exact sequence δ : 0 → C ↪→ I(C) → Bn−1 →
· · · → B0 → 0. By Proposition 6.8, we have the isomorphisms Dδ∗n ∼= DΦ(δ∗n) ∼= δ∗n ◦ σn. By

[Iya11, Lem. 3.5], we have the exact sequence

0 → B(−, C) → B(−, I(C)) → B(−, Bn−1) → · · · → B(−, B0) → ExtnA(−, C) → ExtnA(−, I(C))

on B. Since ExtnA(−, I(C)) = 0, we conclude δ∗n ∼= ExtnA(−, C). Since C ↪→ I(C) is an injective

hull, the exact sequence

0 → B(B0,−) → · · · → B(Bn−1,−) → B(I(C),−) → B(C,−) → δ∗n → 0

shows the isomorphism δ∗n ∼= B(C,−). Therefore we obtain the desired isomorphismDExtnA(−, C) ∼=
B(C, σn(−)).
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The isomorphisms in Theorem 6.9(b) are nothing other than n-Auslander-Reiten duality. In

particular, the functor σn (resp. σn) coincides with the n-Auslander-Reiten translation τn (resp.

τn).

We recall the notion of the n-Auslander-Reiten duality. Let

τ : modA → modA and τ− : modA → modA

be the Auslander-Reiten translations. As a higher version of the Auslander-Reiten translation,

the notion of n-Auslander-Reiten translation is defined as follows. We denote the n-th syzygy

(resp. n-th cosyzygy) functor by Ωn : modA → modA (resp. Ω−n : modA → modA).

Definition-Theorem 6.10. [Iya07b, Thm. 1.4.1] The n-Auslander-Reiten translations are

defined to be the functors

τn := τΩn−1 : modA Ωn−1

−−−→ modA τ−→ modA,

τ−n := τ−Ω−(n−1) : modA Ω−(n−1)

−−−−−→ modA τ−−−→ modA.

These functors induce mutually quasi-inverse equivalences

τn : B → B and τ−n : B → B.

We have the following analog of Theorem 6.9(ii).

Proposition 6.11. [Iya07b, Thm. 1.5] There exist bifunctorial isomorphisms B(τ−n C,B) ∼=
DExtnA(B,C)

∼= B(C, τnB) in B,C ∈ B.

Combining results above, we obtain the following explicit form of σn and σ−n .

Theorem 6.12. The functor σn and σ−n are isomorphic to the n-Auslander-Reiten translations

τn and τ−n , respectively.

Proof. Theorem 6.9 and Theorem 6.11 gives an isomorphism B(C, σnB) ∼= B(C, τnB). By

Yoneda Lemma, we have an isomorphism σn ∼= τn.

Note that Theorem 6.9 is independently obtained by Jasso and Kvamme in [JK, Theorem

3.7, Corollary 3.8]. The proof is different since we proved the higher defect formula in Theorem

6.9 without using the explicit form of τn.

6.2 Almost split sequences

As an application of the duality Φ : modB ∼−→ mod(Bop
), we give a characterization fo almost

split sequences. Recall that a morphism f : M → L in B is said to be right almost split if it

is a non-split epimorphism and each non-split epimorphism g : N → L factors through f . The

notion of left almost split is defined dually. We firstly show the following well-known lemma,

e.g. [Iya08, Prop. 2.10].
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Lemma 6.13. Let

δ : 0 → N
βn+1−−−→ Bn → · · · → B1

β1−→ L→ 0 (6.13.1)

be an n-exact sequence in B with morphisms βi lying in the Jacobson radical of modA for all

1 ≤ i ≤ n+ 1. Then the following are equivalent:

(i) β1 is right almost split;

(ii) βn+1 is left almost split.

Proof. (i) ⇒(ii): Since β1 is right almost split, we get that L is indecomposable. Again, since

β1 is right almost split, the morphism β1 : B1 → L induces an epimorphism B(−, B1)
β1◦−−−−→

radB(−, L) → 0, where the symbol radB(M,M ′) denotes the subspace of B(M,M ′) consisting

of morphisms lying in the Jacobson radical of modA for any M,M ′ ∈ B. Thus we get an

isomorphism δ∗n ∼= B(−, L)/ radB(−, L). In particular, the contravariantly n-defect δ∗n is a

simple B-module.

Due to the duality Φ : modB → mod(Bop
), the covariant n-defect δ∗n is a simple Bop-module.

The induced projective resolution

0 → B(L,−) → B(B1,−) → · · · → B(Bn,−)
−◦βn+1−−−−−→ B(N,−) → δ∗n → 0

of the Bop-module δ∗n guarantees δ∗n(N) ̸= 0. Since δ∗n is simple and βn+1 lies in radB(N,Bn),

we have that N is indecomposable. Thus δ∗n is isomorphic to B(N,−)/ radB(N,−), which shows

that βn+1 is left almost split.

The converse can be proved dually.

When the equivalent conditions in Lemma 6.13 are satisfied, we call the sequence (6.13.1)

an n-almost split sequence. As a corollary, we have the following one-to-one correspondence.

Corollary 6.14. Let δ : 0 → N
βn+1−−−→ Bn → · · · → B1

β1−→ L −→ 0 be an n-exact sequence in

B. Then the assignment δ 7→ δ∗n gives a one-to-one correspondence between the isomorphism

class of n-almost split sequences and the isomorphism class of simple B-modules of projective

dimension n+ 1.

Proof. By the proof of Lemma 6.13, the n-almost split sequence δ corresponds to the simple

B-module δ∗n. Since each βi belongs to the Jacobson radical of modA, the induced projective

resolution of δ∗n is minimal. This guarantees that the assignment is injective.

To show the assignment is surjective, let S be a simple B-module of projective dimension

n+1. There uniquely exists an indecomposable A-module L such that S ∼= B(−, L)/ radB(−, L).
Hence, on the minimal projective presentation B(−, B1)

β1◦−−−−→ B(−, L) → S → 0, β1 is right

almost split. We shall show that the morphism β1 : B1 → L is an epimorphism in modA. It

suffices to show that β1 ◦− : B(L,B) → B(B1, B) is a monomorphism for any B in B. Applying

HomB(−,B(−, B)) to the projective presentation of S provides an exact sequence

0 → HomB(S,B(−, B)) → B(L,B)
−◦β1−−−→ B(B1, B).
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We have HomB(S,B(−, B)) = 0, indeed otherwise S is a submodule of B(−, B). By Lemma 6.4,

this implies pdS ≤ n which contradicts to the assumption pdS = n+ 1. Thus we conclude that

β1 is an epimorphism. Due to Lemma 6.3, there exists an n-almost split sequence

δ : 0 → N → Bn → · · · → B1 → L→ 0

such that δ∗n ∼= S.
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Part II

Singular equivalences via
Auslander-Buchweitz approximations

This part is based on the paper [Oga18].

7 A functor category version of Chen’s theorem

The aim of this section to provide a sufficient condition for an additive category A and its

subcategory X so that the canonical inclusion X ↪→ A induces a triangle equivalence Dsg(A) ≃
Dsg(X ), which generalizes Xiao-Wu Chen’s theorem.

The category modA is not necessarily abelian, however, if every morphism in A has weak-

kernels, then modA is abelian (Lemma 3.1). Since we are interested in the case that modA is

abelian, throughout this section, let A be an additive category with weak-kernels and X its con-

travariantly finite full subcategory. Due to Proposition 4.8, the canonical functor Q : modA →
modX induces an equivalence

modA
mod(A/[X ])

∼−→ modX . (7.0.1)

Moreover, by [Miy, Thm. 3.2], it induces a triangle equivalence

Db(modA)

Db
A/[X ](modA)

∼−→ Db(modX ).

Then we have the following commutative diagram

mod(A/[X ])� _

��

� � // modA� _

��

Q // modX

��
Db
A/[X ](modA) �

� // Db(modA)
Q′

// Db(modX )

where the arrows of the shape ↪→ denote canonical inclusions, and Q′ is the functor induced from

Q. Note that Db
A/[X ](modA) is the thick subcategory of Db(modA) containing mod(A/[X ]). The

following lemma gives a natural sufficient condition so that the canonical functor Db(modA) →
Db(modX ) induces a triangle functor Dsg(A) → Dsg(X ).

Lemma 7.1. The following conditions are equivalent:

(i) pdX (A(−,M)|X ) <∞ for any M ∈ A;

(ii) The canonical functor Q′ : Db(modA) → Db(modX ) restricts to Q′ : Kb(projA) →
Kb(projX ).

If this is the case, we have an induced triangle functor Q̄ : Dsg(A) → Dsg(X ).
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Proof. (i) ⇔ (ii): Since the functor Q′ : Db(modA) → Db(modX ) restricts to Q′|modA = Q :

modA → modX , the condition (i) holds if and only if Q′(projA) ⊆ Kb(projX ) if and only if the

condition (ii) holds.

The latter statement follows from the universality of the Verdier quotient.

Since our aim is to compare the singularity categories Dsg(A) and Dsg(X ), it is natural to

assume that the equivalent conditions in Lemma 7.1 are satisfied. Our main result gives a

necessary and sufficient condition so that the canonical inclusion X ↪→ A induces a triangle

equivalence Dsg(A)
∼−→ Dsg(X ).

Theorem 7.2. We assume that pdX (A(−,M)|X ) < ∞ for any M ∈ A. Then the following

conditions are equivalent:

(i) pdA(F ) <∞ for any F ∈ mod(A/[X ]);

(ii) The induced functor Q̄ : Dsg(A) → Dsg(X ) is a triangle equivalence.

To prove Theorem 7.2, we firstly show Proposition 7.3 in a more general framework: Let T
be a triangulated category with a translation [1]. For a class S of objects in T , we denote by triS
the smallest triangulated full subcategory of T containing S. For two classes U and V of objects

in T , we denote by U ∗ V the class of objects X occurring in a triangle U → X → V → U [1]

with U ∈ U and V ∈ V . Note that the operation ∗ is associative by the octahedral axiom.

Proposition 7.3. Let U and V be triangulated full subcategories of T and consider the Verdier

quotients with respect to them:

U → T Q1−−→ T /U and V → T Q2−−→ T /V.

Then, there exist natural triangle equivalences

T /U
tri(Q1V)

≃ T
tri(U ,V)

≃ T /V
tri(Q2U)

,

where Q1V is the full subcategory of T /U consisting of objects isomorphic to Q1V for some

V ∈ V, and the symbol Q2U is used in a similar meaning.

Proof. We shall show an equality tri(Q1V) = tri(U ,V)/U , where tri(U ,V) denotes the smallest

triangulated full subcategory of T containing U and V. We set S := U ∪ V. Obviously we have

Q1S = Q1V. Since tri(U ,V) =
∪
n≥0 S∗n, we have the following equalities:

tri(U ,V)/U = Q1

( ∪
n≥0

S∗n

)
=
∪
n≥0

(Q1S)∗n =
∪
n≥0

(Q1V)∗n = tri(Q1V).

Hence we have a desired triangle equivalence
T /U

tri(Q1V)
=

T /U
tri(U ,V)/U

∼−→ T
tri(U ,V)

.

Now we are ready to prove Theorem 7.2.
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Proof of Theorem 7.2. Apply Proposition 7.3 for T = Db(modA),U = Db
mod(A/[X ])(modA)

and V = Kb(projA). Then T /U = Db(modX ) and T /V = Dsg(A). The assumption gives

Q1V = Kb(projX ). Hence T /U
Q1V = Dsg(X ). Thus we have a triangle equivalence Dsg(X ) ≃ Dsg(A)

tri(Q2U) .

This shows the condition (i) is equivalent to Q2U = 0, namely U ⊂ V, which is nothing but the

condition (ii).

We end this section with recovering the following Chen’s theorem as a special case of Theorem

7.2 and Lemma 7.1.

Example 7.4. [Che, Thm. 1.3] (see also [PSS, Thm. 5.2], [KY, Prop. 3.3]) Let Λ be a

Noetherian ring and e its idempotent. Assume that pdeΛe(Λe) < ∞. Then the canonical

inclusion eΛe ↪→ Λ induces a triangle functor Q̄ : Dsg(Λ) → Dsg(eΛe), and the following are

equivalent:

(i) pdΛ(M) <∞ for any M ∈ mod(Λ/ΛeΛ);

(ii) The induced functor Q̄ : Dsg(Λ)
∼−→ Dsg(eΛe) is a triangle equivalence.

8 Sufficient conditions for singular equivalence

The aim of this section is to construct a singular equivalence from our generalized Auslander-

Buchweitz condition (Condition 1.4). First we introduce some terminology. Let C denote an

abelian category and let C ⊇ A ⊇ B be a sequence of full subcategories of C. We call the kernel of

a B-epimorphism the B-epikernel, for short. We assume that A is closed under B-epikernels and
B is contravariantly finite in A. Then the ideal-quotient category A/[B] admits weak-kernels.

In fact, for a morphism α : M → L of A, we obtain its weak-kernel as follows: We take a right

B-approximation β : BL → L of L, and consider an induced exact sequence

0 → N
(γ δ)−−−→M ⊕BL

(
α
β

)
−−→ L

in C. Since A is closed under B-epikernels and the morphism
(
α
β

)
is an B-epimorphism, we have

N ∈ A. It is basic that the morphism γ is a weak-kernel of α in A/[B].

8.1 Singular equivalences from Auslander-Buchweitz approximation

In this subsection we give a proof of the following main theorem. First we recall our set-up:

Condition 8.1. Let A ⊇ X ⊇ ω be a sequence of full subcategories in C such that X and ω

are contravariantly finite in A. We consider the following conditions:

(AB1) A is closed under ω-epikernels.

(AB2) X ⊆ ⊥ω.

(AB3) For any M ∈ A, there exists an exact sequence 0 → YM → XM
f−→M in A such that f is

a right X -approximation of M and YM ∈ ω̂.
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Theorem 8.2. Under Condition 8.1, the canonical inclusion X ↪→ A induces a triangle equiv-

alence Dsg(A)
∼−→ Dsg(X ).

Let C be an abelian category with enough projectives and consider a sequence A ⊇ X ⊇ ω

of full subcategories in C such that X and ω are contravariantly finite in A. We always assume

(AB1) in Condition 8.1.

Proposition 8.3. The ideal-quotient A admits weak-kernels and X is its contravariantly finite

full subcategory. Moreover, the canonical inclusion X ↪→ A induces the following equivalence

modA
mod(A/[X ])

∼−→ modX .

Proof. Since A is closed under ω-epikernels, A admits weak-kernels. Since X is contravariantly

finite in A, so is X in A. Note that there exists an equivalence A/[X ] ≃ A/[X ]. By (7.0.1), we

have a desired equivalence.

To prove that the inclusion X ↪→ A induces a triangle functor Dsg(A) → Dsg(X ), we shall

check a sufficient condition given in Lemma 7.1.

Lemma 8.4. Assume (AB2) and (AB3). Let X ∈ X be given. Then,

(a) One has ExtiC(X, I) = 0 for any I ∈ ω̂ and i > 0.

(b) Every morphism f : X → I with I ∈ ω̂ factors through an object in ω.

Proof. We only show the assertion (b). Since I ∈ ω̂, there exists an exact sequence 0 → I ′ →
W → I → 0 with W ∈ ω and I ′ ∈ ω̂. Applying C(X,−), by (a), we conclude that f factors

through W .

Proposition 8.5. Assume (AB2) and (AB3). Then the canonical inclusion inc : X ↪→ A admits

a right adjoint R. Moreover, we have pdX (A(−,M)|X ) = 0 for any M ∈ A.

Proof. The proof is similar to one given in [BR, Ch. V Prop. 1.2], but our situation is slightly

different from that in loc. cit. So we include a detailed proof. By (AB3), for each M ∈ A, there

exists an exact sequence in A
0 → YM → XM

α−→M

with α a right X -approximation of M and YM ∈ ω̂. We shall show that the morphism

X (X,XM )
α◦−−−→ A(X,M) is a functorial isomorphism in X ∈ X . Its surjectivity is clear,

since α is a right X -approximation. To show its injectivity, take a morphism h ∈ X (X,XM )

such that α ◦ h factors through an object I of ω. Thus we have the following commutative

diagram:

X

h
��

h′ // I

h′′��
0 // YM // XM

α //M
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Since α is a right X -approximation, there exists a morphism α′ : I → XM such that αα′ = h′′.

The morphism h − α′h′ factors through YM ∈ ω̂. By Lemma 8.4(ii), this implies that h − α′h′

factors through ω. Hence h factors through ω. By the Yoneda lemma, the assignmentM 7→ XM

gives rise to a functor R : A → X . The bifunctorial isomorphism X (X,R(M))
α◦−−−→ A(X,M)

says the pair of functors (inc, R) forms an adjoint pair.

The latter statement is obvious.

Proposition 8.6. Let B be a contravariantly finite full subcategory of A and assume that A is

closed under B-epikernels. Let F ∈ mod(A/[B]) be given. Then there exists an exact sequence

0 → N
g−→M

f−→ L (8.6.1)

in A which satisfies the following conditions:

(a) The morphism f is a B-epimorphism;

(b) The induces sequence

0 → A(−, N)
g◦−−−→ A(−,M)

f◦−−−→ A(−, L) → F → 0

is exact.

In particular, pdA(F ) ≤ 2.

Proof. First F is a finitely presented A-module. Indeed, a right B-approximation BY → Y of

any Y ∈ A induces a projective presentation

A(−, BY ) → A(−, Y ) → A/[B](−, Y ) → 0

of the A-module A/[B](−, Y ). This shows that A/[B](−, Y ) belongs to modA, hence so does F .

Thus we have a projective presentation A(−,M)
f◦−−−→ A(−, L) → F → 0 of the A-module

F . Since F vanishes on B, the induced morphism f is a B-epimorphism. Thus we have an

exact sequence 0 → N
g−→M

f−→ L in A. Applying the Yoneda embedding, we have a projective

resolution 0 → A(−, N) → A(−,M) → A(−, L) → F → 0 of the A-module F .

Let M ∈ A and f : BM → M be a right B-approximation of M . Then we write ΩB(M) :=

Ker f . We define ΩnB(M) inductively for n ≥ 1. We prove the following key-proposition which

generalizes the well-known result given in [AR74, Prop. 4.1, 4.2] and [AR96, Prop. 1.2]. The

proof is similar but a bit different from the original ones.

Proposition 8.7. For F ∈ mod(A/[B]), the exact sequence (8.6.1) in Proposition 8.6 induces

a projective resolution

· · · // A/[B](−,Ω2
B(N))

Ω2
Bg◦−// // A/[B](−,Ω2

B(M))
Ω2

Bf◦−// A/[B](−,Ω2
B(L))

// A/[B](−,ΩB(N))
ΩBg◦−// // A/[B](−,ΩB(M))

ΩBf◦−// A/[B](−,ΩB(L))

// A/[B](−, N)
g◦− // A/[B](−,M)

f◦− // A/[B](−, L) // F // 0

(8.7.1)

of the A/[B]-module F .
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Proof. For the sequence (8.6.1), we take right B-approximations αL : BL → L and αN : BN →
N . Since the morphism f is B-epimorphism, we have a morphism β : BL → M such that

αL = f ◦ β. The induced morphism αM :=
(

β
gαN

)
: BM := BL ⊕ BN → M is a right B-

approximation of M . Since A is closed under B-epikernels, we have the following commutative

diagram in A:

0

��

0

��

0

��
0 // ΩB(N)

ΩBg //

��

ΩB(M)
ΩBf //

��

ΩB(L)

��
0 // BN

αN��

// BM
αM��

// BL
αL��

// 0

0 // N
g //M

f // L

where all columns and rows are exact, and the middle row splits. Applying the Yoneda embed-

ding and the Snake Lemma, we have the following commutative diagram in modA.

0

��

0

��

0

��
0 // A(−,ΩB(N))

��

// A(−,ΩB(M))

��

// A(−,ΩB(L))

��
0 // A(−, BN )

αN◦−��

// A(−, BM )

αM◦−��

// A(−, BL)
αL◦−��

// 0

0 // A(−, N)

��

g◦− // A(−,M)

��

f◦− // A(−, L)

��

// F // 0

A/[B](−, N)

��

// A/[B](−,M)

��

// A/[B](−, L)

��

// F // 0

0 0 0

In particular, we have an exact sequence

0 // A(−,ΩB(N)) // A(−,ΩB(M)) // A(−,ΩB(L))

δ // A/[B](−, N) // A/[B](−,M) // A/[B](−, L) // F // 0

in modA. We have an exact sequence 0 → ΩB(N) → ΩB(M)
ΩBf−−−→ ΩB(L) such that ΩBf is an

B-epimorphism. Inductively, we have a desired projective resolution of the A/[B]-module F .

Lemma 8.8. Under Condition 8.1,

(a) For any L ∈ A, there exists n ≥ 0 such that ΩnX (L) ∈ X .

(b) For each F ∈ mod(A/[X ]), we have pdA/[X ](F ) <∞.

Proof. (a) For an object L ∈ A, due to (AB3), we get an exact sequence

0 → Y → X0
f0−→ L
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such that f0 is a right X -approximation of L and Y ∈ ω̂. Since Y ∈ ω̂, we get an exact sequence

0 → In → In−1
fn−1−−−→ · · · → I1

f1−→ X0
f0−→ L

with Ii ∈ ω for 1 ≤ i ≤ n. By Lemma 8.4, each morphism fi : Ii → Im fi is a right X -

approximation of Im fi for each 1 ≤ i ≤ n hence In = ΩnX (L) ∈ X .

(b) We consider the projective resolution (8.7.1) of the A/[X ]-module F given in Proposition

8.7 by setting B := X . Then the assertion follows from (a), since A/[X ](−,ΩnX (L)) = 0.

Proposition 8.9. Under Condition 8.1, for each F ∈ mod(A/[X ]), one has pdA(F ) <∞.

Proof. Since pdA/[X ](F ) < ∞ by Lemma 8.8 and the canonical inclusion ι : mod(A/[X ]) ↪→
mod(A) is exact, it is enough to check the case of F = A/[X ](−,M) for someM ∈ A. By (AB3),

there exists an exact sequence 0 → YM
g−→ XM

f−→ M in A with f a right X -approximation of

M and YM ∈ ω̂. Applying the Yoneda embedding yields a projective resolution

0 → A(−, YM )
g◦−−−→ A(−, XM )

f◦−−−→ A(−,M) → A/[X ](−,M) → 0

of the A-module A/[X ](−,M). Applying Proposition 8.7 to B := ω, we have a projective

resolution of the A-module A/[X ](−,M):

· · · // A(−,Ωω(YM ))
Ωωg◦−// A(−,Ωω(XM ))

Ωωf◦− // A(−,Ωω(M))

// A(−, YM )
g◦− // A(−, XM )

f◦− // A(−,M) // A/[X ](−,M) // 0.

Since YM ∈ ω̂, one has Ωnω(YM ) ∈ ω for some n ≥ 0. Thus A(−,ΩnX (YM )) = 0 and hence

pdA(A/[X ](−,M)) <∞.

We are ready to prove Theorem 8.2.

Proof of Theorem 8.2. By Lemma 7.1 and Proposition 8.5, the canonical inclusion X ↪→ A
induces a triangle functor Q̄ : Dsg(A) → Dsg(X ). By Theorem 7.2 and Proposition 8.9, the

triangle functor Q̄ is an equivalence.

8.2 Singular equivalences from cotilting objects

In this subsection we construct a singular equivalence from a given cotilting subcategory, using

Theorem 8.2. We denote by P(C) (resp. GP(C)) the full subcategory of C consisting of projective

(resp. Gorenstein projective) objects. We abbreviate ΩM := ΩP(C)M for eachM ∈ C and denote

by ΩnA the full subcategory of C consisting of objects isomorphic to ΩnM for some M ∈ A.

Moreover we define Ω−M to be the kernel of a left P(C)-approximation of M . Inductively we

define Ω−nM for any n ≥ 1.

Corollary 8.10. Let A be an abelian category with enough projectives and T its contravariantly

finite cotilting subcategory. Then the canonical inclusion ⊥T ↪→ A induces a triangle equivalence

Dsg(A)
∼−→ Dsg(⊥T ).
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Proof. Setting X := ⊥T and ω := T , we shall show that the sequence A ⊇ X ⊇ ω satisfies

conditions (AB1)-(AB3). The condition (AB1) is obvious, because A = C. The condition (AB2)

holds by definition.

(AB3): By [ABu, Thm. 1.1], for any M ∈ X̂ , there exists an exact sequence

0 → YM → XM →M → 0

with YM ∈ ω̂ and XM ∈ X . It remains to show X̂ = A. Since there exists an integer n ≥ 0 such

that idI ≤ n for all I ∈ ω, it follows that ΩnM ∈ X holds for all M ∈ A. This shows X̂ = A.

Thanks to Theorem 8.2, we have a desired triangle equivalence.

8.3 Matsui-Takahashi’s Singular equivalence

We provide an alternative proof for Matsui-Takahashi’s singular equivalence.

Definition 8.11. Let C be an abelian category with enough projectives. A full subcategory

A of C is called quasi-resolving if it is closed under kernels of epimorphisms and contains all

projectives. A quasi-resolving subcategory is called resolving if it is closed under extensions and

direct summands.

Corollary 8.12. [MT, Thm. 5.4(3)] Let A be a quasi-resolving subcategory of an abelian cat-

egory C with enough projectives. Assume that A together with an integer n ∈ Z≥0 satisfies the

condition

ΩnA is contained in GP(C) and closed under cosyzygies (∗)

and set X := ΩnA. Then the canonical inclusion X ↪→ A induces a triangle equivalence

Dsg(A)
∼−→ Dsg(X ).

Proof. Setting X := ΩnA and ω := P(C), we shall show that the sequence A ⊇ X ⊇ ω

of subcategories in C satisfies the conditions (AB1)-(AB3). (AB1): Since P(C)-epikernels are

epimorphisms, the condition (AB1) follows from the definition of quasi-resolving subcategories.

(AB2): Since X ⊆ GP(C), we have X ⊆ ⊥ω.

(AB3): Let M ∈ A. By the condition (∗), we have an exact sequence

0 → G→ Pn−1 → · · ·P0 →M → 0

with G ∈ X and Pn−1, · · · , P0 ∈ P(C). Since G ∈ GP(C), we have an exact sequence

0 → G
gn−→ Qn−1

gn−1−−−→ · · · → Q0
g0−→ Ω−n(G) → 0

with the canonical morphisms Im gi → Qi being left P(C)-approximations for each 1 ≤ i ≤ n.

Thus we have the following chain map, where Ω−n(G) ∈ ΩnA = X by the condition (∗).

0 // G // Qn−1

��

// · · · // Q0

��

// Ω−n(G) //

��

0

0 // G // Pn−1
// · · · // P0

//M // 0
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By taking the mapping cone of the above chain map, we have an exact sequence

0 → G→ Qn−1 ⊕G→ Qn−2 ⊕ Pn−1 → · · · → Q0 ⊕ P1 → Ω−n(G)⊕ P0 −→M → 0.

Since the left-most morphism G → Qn−1 ⊕ G is a split-monomorphism, we have the following

exact sequence

0 → Qn−1 → Qn−2 ⊕ Pn−1 → · · · → Q0 ⊕ P1 → Ω−n(G)⊕ P0
f−→M → 0. (8.12.1)

Obviously Ker f ∈ ω̂ holds. The exact sequence 0 → Ker f → Ω−n(G) ⊕ P0
f−→ M → 0 is a

desired one. Indeed, f is a right X -approximation by Lemma 8.4.

Recall that an additive category A with weak-kernels is said to be Iwanaga-Gorenstein if

idA(A(−,M)), idAop(A(M,−)) < ∞ for any M ∈ A. Typical examples of Iwanaga-Gorenstein

rings are finite dimensional selfinjective algebras over a field k and commutative Gorenstein rings

of finite Krull dimension. As an obvious consequence of Corollary 8.10 or 8.12, we have:

Example 8.13. Let Λ be an Iwanaga-Gorenstein ring with idΛ(Λ) = n and CMΛ := ⊥Λ. Then

the canonical inclusion CMΛ ↪→ modΛ induces a triangle equivalence Dsg(modΛ)
∼−→ Dsg(CMΛ).

9 More Results and Examples

In this section, we provide further investigations on Condition 8.1. First we give sufficient

conditions so that X/[ω] is Iwanaga-Gorenstein and of finite global dimension, respectively.

Theorem 9.1. Let Λ be a finite dimensional algebra and T ∈ modΛ a cotilting module. We set
⊥T := ⊥T/[Λ] and ⊥T := ⊥T/[T ]. Then the followings hold:

(a) If Λ is Iwanaga-Gorenstein, then so is ⊥T . Moreover, one has id
(⊥T )

F ≤ 3max{pdΛT, idΛΛ}
for any projective (⊥T )-module F .

(b) If gl.dimΛ = n, then we have gl.dim(⊥T ) ≤ 3n− 1.

The assertion (b) can be found in [Kim, Thm. 6.1]. Let us recall from [INP, Thm. 3.4] (see

also [Eno, Jia]), there exist Auslander-Reiten translations on ⊥T , that is, mutually equivalences

τ : ⊥T
∼−→ ⊥T and τ− : ⊥T

∼−→ ⊥T .

Moreover, they induce functorial isomorphisms

DExt1A(M,N) ∼= ⊥T (τ−N,M) ∼= ⊥T (N, τM)

in M,N ∈ ⊥T which are known as Auslander-Reiten dualities, where D := Homk(−.k).
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Proof of Theorem 9.1. (a) Since there exists an equivalence ⊥T
∼−→ ⊥T , we shall show that ⊥T

is Iwanaga-Gorenstein. Thanks to Auslander-Reiten duality, every injective (⊥T )-module is of

the form Ext1Λ(−,M) for someM ∈ ⊥T . Since T is a cotilting module, we get an exact sequence

0 →M → T ′ → N → 0 with T ′ ∈ addT and N ∈ ⊥T . The induced sequence

0 → HomΛ(−,M) → HomΛ(−, T ′) → HomΛ(−, N) → Ext1Λ(−,M) → 0

gives a projective resolution of (⊥T )-module Ext1Λ(−,M). By Proposition 8.7, we have a pro-

jective resolution

· · · // ⊥T (−,ΩΛ(M)) // ⊥T (−,ΩΛ(T
′)) // ⊥T (−,ΩΛ(N))

δ // ⊥T (−,M) // ⊥T (−, T ′) // ⊥T (−, N) // Ext1Λ(−,M) // 0

(9.1.1)

of the (⊥T )-module Ext1Λ(−,M). Since Λ is Iwanaga-Gorenstein, T is a tilting module, in

particular pdΛ(T ) < ∞. Thus there exists an integer n ≥ 0 such that ΩnΛ(T
′) ∈ projΛ. Hence

every injective (⊥T )-module Ext1Λ(−,M) is of finite projective dimension. Next we shall show

that every projective (⊥T )-module ⊥T (−,M) is of finite injective dimension. Considering the

first syzygy of M , namely an exact sequence 0 → ΩΛM → P →M → 0 with P ∈ projΛ, we get

an injective resolution

0 → ⊥T (−,M) → Ext1Λ(−,ΩΛM) → Ext1Λ(−, P ) → Ext1Λ(−,M) → · · · (9.1.2)

of the (⊥T )-module ⊥T (−,M). Since Λ is Iwanaga-Gorenstein, we have idΛP < ∞. We have

thus concluded that ⊥T is Iwanaga-Gorenstein. The latter formula follows from the sequence

(9.1.1) and (9.1.2).

(b) We shall show that gl.dim(⊥T ) ≤ 3n−1. Let F ∈ mod(⊥T ) with a projective presentation
⊥T (−,M) → ⊥T (−, L) → F → 0. Since F vanishes on projΛ, the corresponding morphism

f : M → L is an epimorphism in modΛ. Since ⊥T is closed under epimorphisms, we have an

exact sequence 0 → N →M → L→ 0 in ⊥T which induces a projective resolution

· · · // ⊥T (−,ΩΛ(N)) // ⊥T (−,ΩΛ(M)) // ⊥T (−,ΩΛ(L))

// ⊥T (−, N) // ⊥T (−,M) // ⊥T (−, L) // F // 0

of the (⊥T )-module F . The assumption gl.dimΛ = n implies ΩnΛ(L) ∈ projΛ. Hence pd(⊥T )F ≤
3n− 1.

Theorem 9.1 contains the following well-known result.

Example 9.2. [AR74, Prop. 10.2] Let Λ be a finite dimensional algebra with gl.dimΛ = n.

Then we have gl.dim(modΛ) ≤ 3n− 1.

Next we explain that (AB1)-(AB3) in Condition 8.1 are satisfied in the classical Auslander-

Buchweitz theory: Let C be an abelian category with enough projectives and X ⊇ ω a sequence

of full subcategories in C. We say that ω is a cogenerator of X if, for each X ∈ X , there exists

an exact sequence 0 → X → I → X ′ → 0 with I ∈ ω, X ′ ∈ X .
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Condition 9.3. [ABu, p. 9, 17] For a sequence X ⊇ ω of full subcategories in C, we consider

the following conditions:

• X̂ = C;

• X is closed under direct summands and extension;

• ExtiC(X, I) = 0 for any X ∈ X , I ∈ ω and i > 0;

• ω is a cogenerator of X which is closed under direct summands.

Under these conditions, it is known that, for each M ∈ C, there exists an exact sequence

0 → YM → XM −→M → 0 (9.3.1)

with XM ∈ X , YM ∈ ω̂ [ABu, Thm. 1.1]. The sequence (9.3.1) is called the Auslander-Buchweitz

approximation of M . As a benefit of our generalized Auslander-Buchweitz approximation in

(AB3), we shall show Proposition 9.4. Notice that, in the proposition, the subcategory ω is not

necessarily a cogenerator of X , and right X -approximations of objects of A appearing in (AB3)

are not necessarily surjective.

Proposition 9.4. Let A be an abelian category with enough projectives and X ⊇ ω a sequence

of full subcategories of A. Suppose that X is a torsion class of A and ω is contravariantly

finite in A and satisfies ExtiA(X, I) = 0 for any X ∈ X , I ∈ ω and i > 0. Then the sequence

A ⊇ X ⊇ ω satisfies (AB1)-(AB3).

Proof. The conditions (AB1) and (AB2) are obvious. Since X is a torsion class, for any M ∈ A
there exists an exact sequence 0 → X →M with X ∈ X , hence (AB3) holds.

We end this section by giving examples of singularly equivalent categories using Corollary

8.10.

Example 9.5. Fix an integer n ∈ Z>0. Let Λ be the algebra defined by the following quiver

with relations.

1

α
""
2,

β

`` ⟨(αβ)nα⟩

We describe the Auslander-Reiten quiver of Λ. Since Λ is a Nakayama algebra, an indecompos-

able module is determined by the pair (m, l) of the socle l and the Loewy length l. We shall

denote the module by [m]l.

_______________________________ [2]2

''OO
OOO

O
wwooo

ooo
[1]4

wwooo
ooo

[1]2n
''OO

OO

[1]1

''OO
OOO

O [2]2

''OO
OOO

O
wwooo

ooo
· · · [1]2n+1

''OO
O

wwoooo

[1]2

''OO
OOO

O
wwooo

ooo
[2]4

wwooo
ooo

[2]2n
''OO

OO
[1]2n+2

wwooo

[2]1

''OO
OOO

O [1]3

''OO
OOO

O
wwooo

ooo
· · · [2]2n+1

wwoooo
_______________________________ [2]2 [1]4 [1]2n
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We can easily check that the module T := [1]1 ⊕ [1]2n+2 is a cotilting module of idΛ(T ) = 1.

Due to Corollary 8.10, we conclude that modΛ := (modΛ)/[T ] is singularly equivalent to ⊥T :=

(⊥T )/[T ]. Their Auslander-Reiten quivers are described as follows:

_______________________________ [2]2

''OO
OOO

O [1]4

wwooo
ooo

[1]2n
wwooo

o
''OO

OO

[2]2

''OO
OOO

O
wwooo

ooo
· · · [2]2n−1

''OO
OO

[1]2n+1

wwooo
o

modA [1]2

''OO
OOO

O
wwooo

ooo
[2]4

wwooo
ooo

[2]2n
wwooo

o
''OO

OO

[2]1

''OO
OOO

O [1]3

''OO
OOO

O
wwooo

ooo
· · · [1]2n−1

''OO
OO

[2]2n+1

wwoooo
_______________________________ [2]2 [1]4 [1]2n

_______________________________ [1]4

''OO
OOO

O
wwooo

ooo
[1]7

wwooo
ooo

[1]2n
wwooo

o
''OO

OO

⊥T [1]2

''OO
OOO

O [1]5

''OO
OOO

O
wwooo

ooo
· · · [1]2n−2

''OO
OO

[1]2n+1

wwoooo

[1]3

''OO
OOO

O [1]6

wwooo
ooo

[1]2n−1

''OO
OOwwooo
______________________________ [1]4 · · · [1]2n−3 [1]2n

where the dotted lines stand for natural mesh relations.

Claim. If n = 1, both modΛ and ⊥T are of finite global dimension, otherwise they are non

Iwanaga-Gorenstein.

Proof. We only check the case of n ≥ 2. By calculations, the injective (⊥T )-moduleD⊥T ([1]3,−)

has the following projective resolution:

· · · → P5 → P3 → P2n+1 → P2n−1 → P2n+1 → P3 → P4 → P2n+1 → I3 → 0,

where we set I3 := D⊥T ([1]3,−) and Pl := ⊥T (−, [1]l) for each 1 ≤ l ≤ 2n+ 1. We notice that

Ω2I3 ∼= Ω8I3. Hence ⊥T is non Iwanaga-Gorenstein. It remains to check the assertion for modΛ.

We denote by Q : mod(modΛ) → mod(⊥T ) the canonical functor. There exists an injective

object J ∈ inj(modΛ) such that QJ ∼= I3. If modΛ is Iwanaga-Gorenstein, then J is of finite

projective dimension. Moreover, since Q is exact and preserves projectives, it turns out that I3
is of finite projective dimension. This is a contradiction.
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[Eir] Ö. Eiŕıksson, From Submodule Categories to the Stable Auslander Algebra. J. Algebra 486

(2017), 98–118.

[Eno] H. Enomoto, Classifications of exact structures and Cohen-Macaulay-finite algebras. Adv.

Math. 335 (2018), 838-877.

[FP] V. Franjou, T. Pirashvili, Comparison of abelian categories recollements. Doc. Math. 9

(2004), 41–56 (electronic).

[Fre] P. Freyd, Representations in abelian categories. 1966 Proc. Conf. Categorical Algebra (La

Jolla, Calif., 1965) pp. 95–120 Springer, New York.
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