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Abstract

We first present results of harmonic analysis for real Lie groups whose Lie alge-

bras are 4-dimensional Frobenius. In this context we find square-integrable unitary

representations of these groups corresponding to open coadjoint orbits. Concerning

square-integrable representations, we compute their Duflo-Moore operators which

can be described in terms of their Pfaffians.

Furthermore, we generalize the arguments for the semi-direct product group

G := V oH where V is isomorphic to Rn and H is a Lie subgroup of GL(V ). We

give necessary and sufficient conditions for the coadjoint orbits of G to be open

in g∗. When the coadjoint orbit Ωξ0 through ξ0 = ξ(p0, α0) ∈ g∗ = V ∗ ⊕ h∗ is

open in g∗, we describe the Duflo-Moore operator Cπ for a representation π of

G corresponding to the orbit Ωξ0 . In particular, for the case where the stabilizer

Hp0
is not trivial, the operator Cπ can be written using the Duflo-Moore operator

for a representation of Hp0
. We apply such general results to the similitude Lie

group Sim(n) := Rn o (R+ × SO(n)) and the real connected affine Lie group

Aff+(n) := Rn o GL+
n (R).
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Introduction

The main object of this thesis is finite dimensional real Frobenius Lie algebras

studied in terms of semi-direct products. We present harmonic analysis for real

Lie groups whose Lie algebras are Frobenius. In particular, we consider square-

integrable unitary representations of the real Lie groups corresponding to open

coadjoint orbits and their Duflo-Moore operators.

The notion of Frobenius Lie algebras appeared and was studied at the first

time in [47], [48], and [49] in the context to answer what conditions on finite

dimensional Lie algebra g in order that its universal enveloping algebra U(g) has

an exact simple module (see [48, p.488]). Frobenius Lie algebras form an important

class of Lie algebras having this property. The Lie algebra g is called Frobenius

if there exists a linear functional f0 on g such that its stabilizer gf0
is equal to

zero. Let {Xi}ni=1 be a basis for g and Mg be an n × n matrix of g-entry whose

(i, j)-component is [Xi, Xj]. We define detMg as an element of the symmetric

algebra S(g) which is identified with the polynomial algebra Pol(g∗) on g∗. Then

the Lie algebra g is Frobenius if detMg is not identically zero. It means that g

is a Frobenius Lie algebra if and only if detMg(f0) = det 〈f0, [Xi, Xj]〉1≤i,j≤n 6= 0

for a suitable f0. In other words, the Lie algebra g is Frobenius if and only if the

alternating bilinear form Bf0
: g × g → R given by Bf0

(X, Y ) = 〈f0, [X, Y ]〉 is

non-degenerate at some f0 ∈ g∗. In this case, g is even dimensional so that we

define the Pfaffian Qg ∈ S(g) as the Pfaffian of the matrix Mg. One can consult

further about Frobenius Lie algebras and their properties in [13], [18], [26], [30],

[50], [51], and [52].

Let G be a connected Lie group whose Lie algebra is g. Then G has an open

coadjoint orbit if and only if g is Frobenius. Keeping in mind the orbit method,

we study unitary representations corresponding to open coadjoint orbits. Such

representations are expected to be square-integrable. We recall here that for an

almost algebraic group G, Lipsman [40] found a one-to-one correspondence be-

tween square-integrable representations of G and open orbits in a certain G-space.

Lipsman’s results were established in a framework of a sophisticated version of

the orbit method, and the “open orbits” in [40] did not necessarily mean open

coadjoint orbits. Indeed, if G is a compact Lie group, all the irreducible unitary

representations are square-integrable, whereas G has no open coadjoint orbit.

In general, we say that an irreducible unitary representation (π,Hπ) of a locally
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compact group G is said to be square-integrable if there exist 0 6= φ ∈ Hπ such

that ∫
G

|(φ|π(g)φ)Hπ |2 dg <∞. (1)

In this case a vector φ is called admissible. Furthermore, there exists a (not

necessarily bounded, densely defined) unique operator Cπ : Hπ → Hπ, called

Duflo-Moore operator, which is positive self-adjoint and it satisfies (see [15], [27],

and [28])

1. φ is admissible if and only if φ ∈ domCπ, and

2. For φ1, φ3 ∈ Hπ and φ2, φ4 ∈ domCπ, we have∫
G

(φ1|π(g)φ2)Hπ(π(g)φ4|φ3)Hπ dg = (φ1|φ3)Hπ(Cπφ4|Cπφ2)Hπ . (2)

The Duflo-Moore operator as well as square-integrable representations are impor-

tant in the theory of continuous wavelet transform.

The simplest example of Frobenius Lie algebra is aff(1) := 〈X1, X2〉 whose non-

zero bracket is given by [X1, X2] = X2. This is the Lie algebra of the connected

affine group Aff+(1) over the real line. There are two open coadjoint orbits ΩX∗2

and Ω−X∗2 through X∗2 and −X∗2 respectively. In our case, we construct the unitary

representations π± of Aff+(1) corresponding to the open coadjoint orbits Ω±X∗2 by

π±(exp α0X1)f(a) = f(e−α0a),

π±(exp β0X2)f(a) = e±2πiβ0a
−1

f(a) ( f ∈ L2(R+,
da

a
), a > 0, α0, β0 ∈ R ), (3)

which are square-integrable (see Section 4.2). Moreover, since π± is square-integrable,

we can compute the Duflo-Moore operator Cπ± for (π±, L
2(R+,

da
a

)). Even though

the harmonic analysis of Aff+(1) has been already investigated as in [19], [23], [25],

[35], [36], and [54], we note that the representations π± are usually realized as sub-

representations of the quasi-regular representations on L2(R) and the Duflo-Moore

operator is given in terms of Fourier transforms (see [21], [28]). On the other hand,

we have
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Proposition (see Proposition 4.3). The Duflo-Moore operator Cπ± for the repre-

sentation (π±, L
2(R+,

da
a

)) of Aff+(1) can be written as

Cπ±f(a) = a1/2f(a) (f ∈ L2(R+,
da

a
), a ∈ R+). (4)

Let us note that the Pfaffian Qaff(1) := Pf Maff(1) ∈ S(g) equals X2. We relate the

Duflo-Moore operator Cπ± and Qaff(1) as follows.

Proposition (see Proposition 4.4). The Duflo-Moore operator Cπ± for the repre-

sentation (π±, L
2(R+,

da
a

)) of Aff+(1) corresponding to Qaff(1) is written as

Cπ± =
√

2π |idπ(Qaff(1))|−1/2. (5)

Our explanations above motivate us to study harmonic analysis for the 4-

dimensional Frobenius Lie algebras classified in [12] specially for the real case.

Here we summarize our preceding work [37], compared with what have done in

this thesis. Let g be a real Frobenius Lie algebra and G = exp(ad g) be a con-

nected Lie subgroup of GL(g). Since g is Frobenius, the adjoint representation of g

is faithful, so that we regard g as the Lie algebra of G. For f ∈ g∗, we denote by Ωf

the coadjoint orbit Ad∗(G)f ⊂ g∗ through f . We pose the following conjectures:

Conjecture. If Ωf is open in g∗, there exists a polarization p ⊂ g at f such that

πf := IndGexp pνf is a square-integrable representation, where νf is a one-dimensional

representation of the group exp p ⊂ G defined by νf (expX) := e2πi〈f,X〉 for X ∈ p.

Let s : S(g)→ U(g) be the symmetrization operator. For a unitary representation

π of G, in/2dπ(s(Qg)) is a symmetric operator.

Conjecture. Let (π,Hπ) be a square-integrable representation of G. Then in/2dπ(s(Qg))

is essentially self-adjoint, and the Duflo-Moore operator Cπ of π equals a constant

multipe of the operator |in/2dπ(s(Qg))|−1/2 on Hπ. Namely, there exists a positive

constant cπ > 0 such that Cπ = cπ|in/2dπ(s(Qg))|−1/2.

We remark here that for the case where G is exponential solvable, results similar

to both conjectures above were claimed by Duflo and Räıs [16, Théorème 5.3.8]. We

also notice that, since a Frobenius Lie algebra is not necessarily almost algebraic,

Lipsman’s work [40] does not imply our conjectures.
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We have already confirmed both Conjectures above for 4-dimensional Frobenius

Lie algebras in [37] in terms of group Fourier transforms using [31]. Here we recall

the result by Csikós and Verhóczki [12] as follows :

Theorem. ([12, p.448]). Any 4-dimensional Frobenius Lie algebra g over a field

F of characteristic 6= 2 is isomorphic to one of the following

1. gI : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −
X2

2
, [X3, X4] = −

X3

2
.

2. gII(τ), τ ∈ F : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −X3,

[X3, X4] = −X3 + τX2.

3. gIII(ε), where 0 6= ε ∈ F : [X1, X3] = [X2, X4] = −X1, [X1, X4] = εX2,

[X2, X3] = −X2,

The Frobenius Lie algebras gIII(ε) and gIII(ε
′) are isomorphic if and only if

there exists a ∈ F for which ε′ = a2ε.

Contrary to [37], in this thesis we obtain the results of harmonic analysis for the

real Lie groups whose Lie algebras are 4-dimensional Frobenius Lie algebras in

more concrete realization with more direct computations. Let GI , GII(τ), and

GIII(ε) be the Lie groups corresponding to 4-dimensional real Frobenius Lie alge-

bras gI , gII(τ), gIII(ε) respectively. We declare the results as follows.

Theorem (see Theorem 2.4). The Duflo Moore operator CπΩ
for the representation

(πΩ, L
2(R2)) of GI as in (2.7) can be written of the form

CπΩ
f(x, y) = e−yf(x, y) ( f ∈ L2(R2) ). (6)

Let us note that the Pfaffian QgI := Pf MgI ∈ S(gI) equals X2
1 . We relate the

Duflo-Moore operator CπΩ
and QgI as follows.

Proposition (see Proposition 2.5). The Duflo-Moore operator CπΩ
for the repre-

sentation πΩ of GI as in (2.7) is written in terms of the Pfaffian QgI as

CπΩ
= 2π|dπ(QgI

)|−1/2. (7)

We can apply exactly the same argument to gII(τ) as the one for gI , and we obtain

the same result for the Duflo-Moore operator CπΩ±
of the representation πΩ± of
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GII(τ) as in (2.41). The latter result for gIII(ε) is divided into the cases ε = −1

and ε = 1. For the first case, that is for ε = −1, we have four open coadjoint orbits

Ω±X∗1 and Ω±X∗2 . We present results only for Ω±X∗1 but the ones for Ω±X∗2 are almost

same. The Duflo-Moore operator CπΩ±X∗1
for the representation (πΩ±X∗1

, L2(R2)) of

GIII(−1) can be written in the following theorem.

Theorem (see Theorem 2.13). The Duflo-Moore operator for the representation

πΩ±X∗1
of GIII(−1) as in (2.60) can be written of the form

CπΩ±X∗1
f(x, y) = e−xf(x, y) ( f ∈ L2(R2) ). (8)

The Duflo-Moore operator above can be related to the Pfaffian of gIII(−1). We

have

Proposition (see Proposition 2.14). The Duflo-Moore operator for the represen-

tation πΩ±X∗1
of GIII(−1) as in (2.60) related to the Pfaffian of gIII(−1) is of the

form

CπΩ±X∗1
= 2π|dπ(QgIII(−1))|−1/2, (9)

where QgIII(−1) := Pf(gIII(−1)) = −X2
1 +X2

2 .

Secondly, when ε = 1, we can apply exactly the same argument as the one for

gIII(−1), and we obtain the similar result for Duflo-Moore operator CπΩX∗1
(see

Theorem 2.15 and Proposition 2.16).

The results of harmonic analysis for the real Lie groups, whose Lie algebras are

4-dimensional real Frobenius Lie algebras, motivate us to generalize the arguments

further for G := V oH where V is isomorphic to the n-dimensional vector space

Rn and H is a Lie subgroup of GL(V ). Let g := V o h be the Lie algebra of G

and g∗ = V ∗ ⊕ h∗ be its dual. We shall give conditions for g to be Frobenius. Let

ξ0 := ξ(p0, α0) be an element of g∗ with p0 ∈ V ∗, α0 ∈ h∗ and Ωξ0 be the coadjoint

orbit of G through ξ0. Moreover, let hp0 be a stabilizer of h at p0 and $ be the

projection map from g∗ onto V ∗. We obtain

Theorem (see Theorem 3.3). Ωξ0 is open if and only if the following two conditions

are satisfied :

1. $(Ωξ0) is open in V ∗.
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2. hp0 = 0, or the coadjoint orbit Ad∗(Hp0)(α0|hp0 ) in h∗p0
through α0|hp0 ∈ h∗p0

is open.

Corollary. The Lie algebra g = V o h is a Frobenius Lie algebra if and only if

there exists p0 ∈ V ∗ such that h.p0 = V ∗ and the stabilizer hp0
⊂ h is zero or a

Frobenius Lie algebra.

For the case that stabilizer hp0 = {0}, we obtain the Duflo-Moore operator as

Theorem (see Theorem 3.7). The Duflo-Moore operator Cπ : L2(H)→ L2(H) for

the representation π := IndGV νp0 as in (3.13) and (3.15) is described as

Cπf2(h) = C
1/2
0 ∆G(h)−1/2f2(h) (f2 ∈ L2(H)), (10)

where C0 > 0 is a constant given by (3.11).

For the case hp0 6= {0}, let us consider some properties of representations of G =

V oH as follows.

Theorem (see Theorems 3.9 and 3.10). Let m0 ⊂ hp0
be a polarization at α0|hp0

satisfying Pukanszky condition and let π0 be the induced representation Ind
Hp0
expm0να0

of Hp0
.

1. p0 := V o m0 ⊂ g is a polarization at ξ0 = ξ(p0, α0) satisfying Pukanszky

condition.

2. π := IndGexp p0
νξ0 is irreducible if π0 is irreducible.

3. π is square integrable if π0 is square integrable.

4. The representation π is isomorphic to IndGGp0 (νp0⊗π0), where Gp0 := RnoHp0

and νp0 ⊗ π0 is defined by

νp0 ⊗ π0(u, h) := νp0(u)π0(h) ( (u, h) ∈ Gp0
).

We also obtain the Duflo-Moore operator when the stabilizer hp0 6= {0}. In this

case, Cπ is described by using Cπ0 based on the assertion 4 above.
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Theorem (see Theorem 3.14). The Duflo-Moore operator for the representation

(π,Hπ) as in (3.33) can be described as

C̃πφ(l) = C
1/2
0 ∆

−1/2
G (l)Cπ0φ̃(l) (φ̃(l) ∈ Hπ0) (11)

for almost all l ∈ H.

Furthermore, as an application from our results above, we declare some results

for concrete groups as follows.

Theorem (see Thorem 4.1). The Lie algebra g := Rno(R⊕so(n)) of the similitude

Lie group Sim(n) := Rn o (R+ × SO(n)) is not a Frobenius Lie algebra for n ≥ 3.

Theorem (see Theorem 4.6). The Lie algebra aff(n) = Rn o gln(R) of the con-

nected affine automorphism group Aff+(n) is Frobenius.

The fact that aff(n) is Frobenius was mentioned by Ooms (see [48, p.497]), but

we give an alternative proof in this thesis. In more detail, we have criteria for the

openness of the coadjoint orbit of Aff+(n) as follows. Let Ωξ1 be a coadjoint orbit

of Aff+(n) through ξ1 := ξ(p1, α1) ∈ g∗ := aff(n)∗. We denote the centralizer of α1

in Matn(R) by Cent (α1) and image of the map ad (α1) : Matn(R)→ Matn(R) by

Im ad (α1).

Proposition (see Proposition 4.9). The orbit Ωξ1 is open in g∗ if and only if the

following three conditions are satisfied

1. dim Cent (α1) = n.

2. Im ad (α1) ∩ {vp1 ; v ∈ Rn} = {0}.

3. If A ∈ Cent (α1) \ {0}, then −p1A 6= 0.

We also investigate the representations of Aff+(n) corresponding to open coad-

joint orbits and their Duflo-Moore operators. For simplicity, let Gn := Aff+(n) =

Rn oHn with Hn := GL+
n (R), and gn := aff(n) = Rn o hn with hn := gln(R). Let

ξ±1 = (±1, 0) be an element of (g1)∗ and ξ±n := ξ(pn, α
±
n ) be an element of (gn)∗ for
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n = 2 with

pn = (0, 0, . . . , 1), α±n =



0 0 . . . 0 0 0

±1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 1 0


. (12)

We observe that Ω
ξ±n
⊂ (gn)∗ are open coadjoint orbits [see Section 4.3]. Moreover,

let ιn : gn−1 ↪→ hnpn be a Lie algebra isomorphism defined by

ιn(X(v, A)) =

(
A v

0 0

)
(A ∈ gln−1(R), v ∈ Rn−1),

and let pn = Rn o mn be defined inductively by mn := ιn(pn−1) starting from

p1 = RX2 ⊂ g1 = aff(1). In this case, mn is a polarization of hnpn satisfying

Pukanszky condition and ξ±n−1 = α±n ◦ ιn. We obtain

Theorem (see Theorem 4.10). Let ξ±n = (pn, α
±
n ) be the element of (gn)∗ = aff(n)∗

as above.

1. pn is a polarization of gn at ξ±n satisfying Pukanszky condition.

2. πΩ
ξ±n

= IndG
n

exp pnνξ±n is irreducible and square-integrable.

3. Under the identification Hn
pn ' Gn−1 = Aff+(n− 1), the representation πΩ

ξ±n

is isomorphic to IndGnRnoGn−1 (νpn ⊗ πΩ
ξ±n−1

).

Proposition (see Proposition 4.11). The Duflo-Moore operator of (πΩξn
, L2(Hn/Hn

pn)

of Gn = Aff+(n) (n ≥ 2) can be described as

C̃πΩξn
φ(a) = C

1/2
0 |det a|1/2CπΩξn−1

φ̃(a) (13)

for almost all a ∈ Hn.

The general formula for the Pfaffian of aff(n) can described as follows.
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Proposition (see Proposition 4.12). Let ξ := ξ(p, α) be an element of (gn)∗ as in

(4.31) and Φn be a map given by

Φn : (gn)∗ 3 ξ 7−→ Φ(ξ) = Ad∗(g(a))ξ ◦ ιn ∈ (gn−1)∗

with

a =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

β1/βn β2/βn β3/βn . . . βn−1/βn 1


.

Then the Pfaffian of gn = aff(n) is of the form

Qgn(ξ) = βnn Qgn−1(Φn(ξ)). (14)

Furthermore, we see from Proposition 4.13 and Proposition 4.14 that Aff+(n) has

exactly two open coadjoint orbits Ωξ+
n

and Ωξ−n
.

Finally, we explain the organization of this thesis as follows. In Chapter 1,

we review the notion of coadjoint orbits which is the main object of the orbit

method, Haar measure, and notion of the induced representations based on the

Mackey model and the Blattner model. Furthermore, we also review the notion

of a Frobenius Lie algebra, whose Lie group has open coadjoint orbits, and the

notions of square-integrable representations. Concerning square-integrable repre-

sentations, we review the notion of Duflo-Moore operator [15]. In Chapter 2, we

present the results of harmonic analysis for 4-dimensional real Frobenius Lie alge-

bras. We compute coadjoint orbits of each Lie group of 4-dimensional Frobenius

Lie algebras, and we apply the orbits to construction of unitary irreducible repre-

sentations using the orbit method. In case of 4-dimensional Frobenius Lie algebras,

each irreducible unitary representation corresponding to the open coadjoint orbit

is square-integrable and we give the formulas of Duflo-Moore operators as in (6) -

(9) in Introduction. Differing from [37], our results in Chapter 2 are obtained in

more concrete realizations with more direct computations. Chapter 3 consists of

three parts. Firstly, we obtain the conditions for the Lie algebra g := V o h of Lie

group G := V oH (V ' Rn, H ⊂ GL(V )) to be Frobenius. Secondly, we assume
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that the stabilizer hp0 = {0} and we compute the Duflo-Moore operator formula in

this case. Thirdly, for the case of hp0 6= {0}, we obtain the Duflo-Moore operator

for (π,Hπ) of G using Duflo-Moore operator for (π0,Hπ0) of the stabilizer Hp0
.

In Chapter 4, we apply the results to prove that the Lie algebra of similitude Lie

group Sim(n) := Rn o (R ⊕ SO(n)) is not Frobenius for n ≥ 3. Furthermore, we

prove that the Lie algebra aff(n) = Rn o gln(R) of the connected affine automor-

phism group Aff+(n) is Frobenius. This means that Aff+(n) has open coadjoint

orbits. In addition, we get in more detail the necessary and sufficient conditions

for the coadjoint orbits of Aff+(n) to be open in aff(n)∗ besides the general condi-

tions in Chapter 3. Moreover, these open coadjoint orbits yield square-integrable

unitary representations of Aff+(n) for which we obtain their Duflo-Moore opera-

tors formula. We should mention here that Lipsman and Wolf (see [42]) discussed

the Plancherel formulas of parabolic subgroups, while Aff+(n) is isomorphic to a

maximal parabolic subgroup of SLn+1(R). But our results are more direct than

Lipsman and Wolf’s work in [42].

Lastly, we compute the general formula for the Pfaffian of aff(n) and we show

that Aff+(n) has exactly two open coadjoint orbits. We want to find a formula

connecting the Duflo-Moore operator and the Pfaffian of aff(n), but it remains for

future study.
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Chapter 1

Preliminaries

In this chapter we introduce some notions contributing in our study. We start

from introducing the notion of coadjoint orbits which is the main object of the or-

bit method, Haar measure, and the notion of induced representation based on the

Mackey model and the Blatter model. Furthermore, we also introduce the notion of

a Frobenius Lie algebra which has open coadjoint orbits, and square-integrable rep-

resentations corresponding to open coadjoint orbits. Concerning square-integrable

representations, we review the Duflo-Moore operator.

1.1 The orbit method

First of all, let us introduce the notion of adjoint representation as follows.

Definition 1.1. ([38, p. 211]). Let G be a Lie group with Lie algebra g. For any

g ∈ G, the conjugation map given by Cg : G 3 x 7→ gxg−1 ∈ G is a Lie group

homomorphism whose differential is denoted by Ad(g). The group homomorphism

Ad : G→ GL(g) is called the adjoint representation of G.

Furthermore, the adjoint representation ad : g 3 X 7→ ad (X) ∈ gl(g) is defined by

ad(X)Y = [X, Y ] (X, Y ∈ g). We shall see in the following theorem that both

representations are related.

Theorem 1.1. ([38, p. 529]). Let G be a Lie group with Lie algebra g and Ad :

G → GL(g) be the adjoint representation of G. Then the adjoint representation

Ad∗ : g→ gl(g) is given by Ad∗ = ad.
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Moreover, we define a dual representation of Ad, called the coadjoint represen-

tation, by Ad∗(g) := Ad(g−1)∗. Namely, we have

〈Ad∗(g)f,X〉 =
〈
f,Ad(g−1)X

〉
(X ∈ g, f ∈ g∗). (1.1)

Then the above formula implies〈
Ad∗(eX)f, Y

〉
=
〈
f, ead(−X)Y

〉
(X, Y ∈ g). (1.2)

We also review the formula for an infinitesimal of coadjoint actions. Namely, for

the corresponding representation ad∗ of g in g∗ we have

〈ad∗(X)f, Y 〉 = 〈f,−ad(X)Y 〉 = 〈f, [Y,X]〉 (X, Y ∈ g). (1.3)

Next, we review a coadjoint orbit. One can find the detailed reading of the prop-

erties of the coadjoint orbit for instance in [34],[36], and [46]. The coadjoint orbit

of f ∈ g∗ is the set Ωf = {Ad∗(g)f ; g ∈ G} ⊂ g∗. First of all, the coadjoint orbit

Ωf has a differential two-form ωΩ given by ωΩ(f)(ad∗(X)f, ad∗(Y )f) = 〈f, [X, Y ]〉.
The form ωΩ is non-degenerate and closed, and this fact implies that the dimension

of the coajoint orbit Ωf is always even. In fact, we know that Ωf is a symplectic

manifold. Secondly, for any f ∈ g∗ we define the group stabilizer as

Gf = {g ∈ G ; Ad∗(g)(f) = f} ⊂ G, (1.4)

and its Lie algebra is denoted by gf and it is given by

gf = {X ∈ g ; ad∗(X)f = 0} ⊂ g. (1.5)

One of the important things in our discussion is the orbit method that shall be

explained as follows. Let G be a connected Lie group, and g the Lie algebra of G.

A subalgebra p of g is called a polarization at f ∈ g∗ if p is a Lagrangian subspace

with respect to the alternating form Bf : g × g 3 (X, Y ) 7−→ 〈f, [X, Y ]〉 ∈ R. To

be more precise we have

Definition 1.2. ([36, p.26]). A subalgebra p of g is called a polarization at f ∈ g∗

if f |[p,p] = 0 and codimg p = 1
2

dim Ωf .

Let us assume that the coadjoint orbit Ωf of G is integral, that is, the form ωΩ
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belongs to an integer cohomology class [34, p. 239]. This is known to be equivalent

to that there exists a one-dimensional unitary representation νf : exp p → C
such that νf (expX) := e2πi〈f,X〉 for X ∈ p. Now we introduce the notion of the

Pukanszky condition for a polarization p at f .

Definition 1.3. ([3, p. 281 - 286]). A polarization p ⊂ g satisfies the Pukanszky

condition if

p−1(p(f)) = f + p⊥ ⊂ Ωf , (1.6)

where p : g∗ → p∗ is the natural projection map.

The representation πf of G corresponding to the coadjoint orbit Ωf is defined

by πf = IndGexp pνf . The irreducibility of the representation πf is given by the

following theorem.

Theorem 1.2. ([36, p.111]). Let G be an exponential solvable Lie group. The rep-

resentation πf is irreducible if only if the polarization p ⊂ g satisfies the condition

(1.6).

We recall that a Lie group G is said to be exponential if the exponential map

exp : g → G is diffeomorphism. It is known that an exponential Lie group is

necessarily solvable. On the other hand, a Lie algebra g is said to be exponential if

the corresponding connected and simply connected Lie group is exponential. The

following is known.

Proposition 1.3. (see [36, p. 110]) A Lie algebra g is exponential if and only if

ad(X) has no non-zero pure imaginary eigenvalues for any X ∈ g.

It was shown in [5] that, if G is exponential, then for each f ∈ g∗ there exists a

polarization p satisfying the Pukanszky condition at f , and the unitary representa-

tion πf := IndGexp pνf of G is irreducible. Moreover, the equivalence class [πf ] does

not depend on the choice of such polarization p, and the map f 7→ [πf ] induces a

one-to-one correspondence from the orbit space g∗/Ad∗(G) onto the unitary dual

Ĝ.

Although a Frobenius Lie algebra g is not necessarily exponential solvable, we

shall consider a unitary representation IndGexp pνf defined from a polarization p at

f ∈ g∗ satisfying the Pukanszky condition when Ωf is an open coadjoint orbit.
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1.2 Frobenius Lie algebras

In the history, a Frobenius Lie algebra was found at first time in [47], [48], and

[49] to give conditions for a finite dimensional Lie algebra in order its universal

enveloping algebra U(g) has an exact simple module. Frobenius Lie algebra is very

important in this thesis. Therefore, let us introduce this notion as follows.

Definition 1.4. ([12, p.427]). A Lie algebra g over an arbitrary field F is said to

be Frobenius if there exists a linear functional f0 ∈ g∗ such that gf0
= 0.

We introduce the index of Lie algebra g (see for example in [14] and [52]) given

by

ind g = min {dim gf ; f ∈ g∗}. (1.7)

We can say that a Lie algebra g is Frobenius if ind g = 0. Let {Xi}ni=1 be a basis for

g and Mg be an n×n matrix of g-entry whose (i, j)- component is [Xi, Xj]. We de-

fine detMg as an element of the symmetric algebra S(g) which is identified with the

polynomial algebra Pol(g∗) on g∗ and detMg(f0) = det 〈f0, [Xi, Xj]〉1≤i,j≤n, f0 ∈
g∗. In other words, detMg(f0) is equal to the determinant of the alternating bilin-

ear form

Bf0
: g× g 3 (X, Y ) 7→ 〈f0, [X, Y ]〉 ∈ F.

Proposition 1.4. ([12, p.428-430], [50, p. 20]). The Lie algebra g is Frobenius

if one of the following equivalent conditions is satisfied :

1. There exists f0 ∈ g∗ so that the stabilizer gf0
= 0.

2. ind g = 0.

3. detMg 6= 0.

4. detMg(f0) 6= 0 for a suitable f0 ∈ g∗.

We observe that detMg(f0) 6= 0 if and only if Bf0
is non-degenerate. Therefore,

the Frobenius Lie algebra has even dimension. Then we define the Pfaffian of g

in S(g) as the Pfaffian of the matrix Mg and we denote it by Qg. Let us recall

the notion of Pfaffian for a square alternating matrix. Let A = (Aij)1≤i,j≤2n be a

square alternating matrix. The Pfaffian of A is defined as follows :

Pf(A) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
i=1

Aσ(2i−1)σ(2i). (1.8)
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For example, we see that

Pf


0 a b c

−a 0 d e

−b −d 0 f

−c −e −f 0

 = af − be+ cd.

Remark 1. We have detA = Pf(A)2.

We go back to the Pfaffian Qg = Pf Mg of a Frobenius Lie algebra g. We know

that Qg 6= 0. Note that the Pfaffian Qg is defined for a fixed basis {Xi} of g, but

it is unique up to a constant multiple. Let {Yr}nr=1 be another basis for g. Then

we write Yr =
∑n

i=1 pirXr with pir ∈ F. We put P = (pij) ∈ GLn(F). Let M ′
g

be an n × n matrix of g-entry whose (r, s)-component is [Yr, Ys]. Then we have

Mg′ = tPMgP , so that

Pf M ′
g = (detP ) Pf Mg. (1.9)

Therefore, we get

Proposition 1.5. [50, p.28]. If g is a Frobenius Lie algebra with a basis {Xi}ni=1,

then Qg := Pf Mg ∈ S(g) is non-zero and it is determined by g up to non-zero

scalar multiple.

Let ψ : g → g be a Lie algebra automorphism which is naturally extended to

an algebra automorphism ψ : S(g)→ S(g). Then we obtain

ψ(Qg) = (detψ)Qg. (1.10)

To prove (1.10), we take Aψ = (aij) as the matrix expression of ψ with re-

spect to the basis {Xi}ni=1. We get another basis {ψ(Xj)}nj=1 of g with ψ(Xj) =∑n
i=1 aijXj, j = 1, . . . , n. By extension ψ to an algebra automorphism of S(g) and

using (1.9) we obtain

ψ(Qg) = Pf (ψ[Xi, Xj]) = Pf ([ψ(Xi), ψ(Xj)])

= (detAψ)Qg = (detψ)Qg.

Moreover, we obtain
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Proposition 1.6. [12, p.430]). Let g be n-dimensional Frobenius Lie algebra and

let S(g) be its symmetric algebra of g. Then we have

• Dad(X)Qg = (tr ad X)Qg where

Dad(X) : S(g)→ S(g)

is an algebra derivation extended from ad(X) : g→ g.

• If g is non-zero with charF = 0 then g is non-unimodular.

We shall consider the case F = R. Namely, let g be a real Frobenius Lie algebra

and G be a real Lie group whose Lie algebra is g. We see that the Lie algebra

g is Frobenius if and only if G has open coadjoint orbits. Moreover, substituting

ψ = Ad(g) (g ∈ G) to (1.10) we get

Proposition 1.7.

Qg(Ad∗(g)−1ξ) = (det Ad(g)) Qg(ξ) (g ∈ G, ξ ∈ g∗). (1.11)

We shall apply the proposition above later, particularly in Section 4.5 to derive

the general formula for the Pfaffian of aff(n).

1.3 Haar measure

In this subsection we shall introduce the notion of an invariant measure over a

locally compact topological group G.

Definition 1.5. (see [4, p. 67-70] & [23, p. 29-34]). Let Cc(G) be the space of all

continuous functions on G with a compact support. A norm on Cc(G) is defined

by

||f ||∞ := sup
g∈G
|f(g)|.

The support of f ∈ Cc(G) is denoted by supp(f) and defined as the closure of

{g ∈ G ; f(g) 6= 0}.

Definition 1.6. (see [4, p. 67-70] & [23, p. 29-34]). A linear functional µ on

Cc(G) is said to be a Borel measure if for each compact subset M ⊂ G, there
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exists a constant CM such that

|µ(f)| 5 CM ||f ||∞ (f ∈ Cc(G), supp(f) ⊂M).

Moreover, a linear functional µ is said to be positive if µ(f) = 0 for any non-

negative function f ∈ Cc(G).

For f ∈ Cc(G) and a ∈ G, we define a left translation Laf and a right translation

Raf in Cc(G) by Laf(g) := f(a−1g) and Raf(g) := f(ga) respectively.

A positive Borel measure µl is called a left Haar measure if µl is left-invariant,

that is,

µl(Laf) = µl(f) (f ∈ Cc(G), a ∈ G).

We also define a right Haar measure µr by

µr(Raf) = µr(f) (f ∈ Cc(G), a ∈ G).

Theorem 1.8. (see [4, p. 67]). Every locally compact group G has a unique left

Haar measure µl up to multiplication by a positive number.

For each a ∈ G, let us define µl,a(f) = µl(Raf). Since Lx ◦Ra = Ra ◦ Lx we have

µl,a(Lxf) = µl(RaLxf) = µl(LxRaf) = µl,a(f).

Therefore, µl,a(f) is a left Haar measure. By Theorem 1.8, there exists a positive

number denoted by ∆G(a) such that

µl,a = ∆G(a)−1µl. (1.12)

The function ∆G : G 3 a 7→ ∆G(a) ∈ R+ is called the modular function of

G which is continuous homomorphism. We note that some authors denote the

modular function of G by ∆G and others denote it by ∆−1
G . Furthermore, we shall

use the left Haar measure in the Blattner model in Chapter 3.

Let µ′ be a measure on G given by∫
G

f(g) dµ′(g) :=

∫
G

f(g)∆G(g)−1 dµl(g).
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Then we have∫
G

Raf(g) dµ′(g) =

∫
G

f(ga)∆G(g)−1 dµl(g)

= ∆G(a)

∫
G

f(ga)∆G((ga)−1) dµl(g)

= ∆G(a)

∫
G

f(g′)∆G(g′)−1 dµl(g
′a−1) (g′ = ga)

= ∆G(a)

∫
G

f(g′)∆G(g′)−1 dµl,a(g
′)

= ∆G(a)

∫
G

f(g′)∆G(g′)−1∆G(a)−1 dµl(g
′)

=

∫
G

f(g′)∆G(g′)−1 dµl(g
′) =

∫
G

f(g′) dµ′(g′).

Therefore, µ′ is a right Haar measure and we can write

µr = ∆−1
G µl. (1.13)

By Theorem 1.8 and (1.13), we can obtain

µr,a = ∆G(a)µr. (1.14)

We shall use the right Haar measure in the Mackey model in Chapter 2. In this

thesis, we usually write dg (g ∈ G) for the left Haar measure dµl(g).

1.4 Induced representation

We now review briefly the notion of induced representations of Lie groups as

an essential summary of [6], [8], [11], [17], [23], [24], [33], [34], [36], [39], and [41].

Our setting devides into two parts. The first is the Mackey model as in [36] which

is applied to Chapter 2, and the second is the Blattner model as devoted in [8],

[9], and [23] which is applied to Chapter 3.

For the first setting, let H be a closed subgroup of a Lie group G, and let L2(X),

where X := H\G = {Hg ; g ∈ G}, dimX = n, be what so-called natural Hilbert

space consisting of square integrable sections of line bundle L of half-densities on

X. Although the Mackey model can be considered for locally compact groups, we
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discuss it in the Lie groups category following [36]. For a given coordinate chart U

on X with the component (x1, x2, . . . , xn), we can write the section f by f(x)
√
dnx

and the the inner product on L2(X) is given by

(f1|f2)L2(X) =

∫
X

f1(x)f2(x) dnx (f1, f2 ∈ L2(X)). (1.15)

Let ρ be a unitary representation of H in a Hilbert space Hρ. We shall define a

unitary representation π of G through an extension of (ρ,Hρ). This representation

is called the induced representation and is denoted by IndGHρ.

Let s : U → G be a section of natural projection p : g 7→ Hg. We assume that

almost all g ∈ G can be written as g = hs(x) ( h ∈ H, x ∈ U ). We emphasize

here that in general the fiber bundle H → G → X is non-trivial, so that there is

no smooth or even continuous section s : X → G of the projection map p on the

whole X (see [36, p.380]). Let dGl (g) and dHl (h) be left invariant volume forms for

G and H respectively. In terms (h, x) ∈ H × U we obtain

dGl (g) = r(h, x) dHl (h) dnx ( for some smooth function r on H × U ).

Indeed, since dGl (h′g) = dGl (g) and dHl (h′h) = dHl (h) then r(h′h, x) = r(h, x). This

implies dGl (g) = r(x) dHl (h) dnx. Now let us define a measure dµs on U as follows :

dµs(x) = r(x) ∆G(s(x))−1 dnx.

Therefore, we have

dGl (g) = ∆G(s(x)) dHl (h) dµs(x). (1.16)

Furthermore, since dGr (g) = ∆G(g)−1 dGl (g) and dHr (h) = ∆H(h)−1 dHl (h), then we

have

dGr (g) = dGr (hs(x)) = ∆G,H(h)−1 dHr (h) dµs(x), (1.17)

where ∆G,H(h) =
∆G(h)

∆H(h)
. Moreover, an important property of measure µs is given

as follows:

Lemma 1.9. ([36, p. 381]). We have a measure relation of the form

dµs(x.g) = ∆G,H(hs(x, g)) dµs(x), (1.18)
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where the master equation

s(x)g = hs(x, g)s(x.g) (1.19)

defines hs(x, g) ∈ H.

The explanations above suggest us to define the unitary induced represen-

tation IndGH ρ on the representation space

Hπ = L2(X,Hρ, µs)

=

{
f : X → Hρ ; ||f ||2Hπ =

∫
X

|f(x)|2Hρ dµs(x) <∞
}

(1.20)

by

π(g)f(x) := ∆G,H(hs(x, g))1/2ρ(hs(x, g))f(x · g). (1.21)

Indeed, this representation is unitary since

||π(g)f(x)|| =
∫
G

∆G,H(hs(x, g))||ρ(hs(x, g))f(x · g)||2 dµs(x)

=

∫
G

||f(x · g)||2 ∆G,H(hs(x, g)) dµs(x) (ρ is unitary )

=

∫
G

||f(x · g)||2 dµs(x · g) (dµs(x · g) = ∆G,H(hs(x, g)) dµs(x))

=

∫
G

||f(x′)||2 dµs(x′) = ||f ||2 (x′ = x · g).

We state the useful property for us the so-called the induction by stages.

Proposition 1.10 (see [23], [36]). Let G be a Lie group and G1 ⊂ G2 ⊂ G be

two Lie subgroups of G. Let ρ be a unitary representation of G1 on Hρ. Then the

induced representations IndGG1
ρ and IndGG2

(IndG2
G1
ρ) are unitarily equivalent.

For the second setting, we review the Blattner model like as in [8], [9], and [23].

Let G be a locally compact group and H be a closed subgroup of G. It is well

known that a G-invariant Borel measure on G/H exists if and only if ∆H = ∆G|H.

Definition 1.7. ([23, p.54]). Let G be a locally compact group and H ⊂ G be a
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closed subgroup of G. We define the space E(G/H) as follows :

E(G/H) := {ξ : G→ C ; ξ(gh) = ∆H,G(h)ξ(g), ∀g ∈ G, h ∈ H,
ξ is continuous with compact support moduloH}.

Let us see a useful proposition as follows.

Proposition 1.11. ([23, p. 55]). Let G be a locally compact group and H ⊂ G be

a closed subgroup of G. There exists a unique (up to multiplication by a positive

number) G-invariant positive linear functional on the space E(G/H), denoted by

µG,H(ξ) =

∮
G/H

ξ(x) dµG,H(x). (1.22)

Furthermore, we have∫
G

f(x) dx =

∮
G/H

{
∫
H

f(xh)∆G,H(h) dh}dµG,H(x). (1.23)

Let K be a closed subgroup of H. By the transitivity of µG,H , we obtain∮
G/K

φ(g) dġ =

∮
G/H

{
∮
H/K

φ(gh)∆G,H(h) dµG,H(h)} dµG,H(g) (φ ∈ E(G/K)).

(1.24)

Definition 1.8. ([23, p. 59]). Let G be a locally compact group and H be its

closed subgroup. We assume ρ is a unitary representation of H on Hρ. The space

E(G/H, ρ) is defined by

E(G/H, ρ) := {f : G→ Hρ ; f(gh) = ∆G,H(h)−1/2ρ(h)−1f(g), ∀g ∈ G, h ∈ H,
f is continuous with compact support moduloH}.

We define a scalar product on E(G/H, ρ) by

(f1|f2)Indρ :=

∮
G/H

(f1(g)|f2(g)) dġ (f1, f2 ∈ E(G/H, ρ)).

and its norm given by ||f ||Indρ :=
√

(f |f)Indρ .
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Definition 1.9. ([23, p. 61]). Let L2(G/H, ρ) be a completion of E(G/H, ρ) with

|| · ||Indρ . The action of G on L2(G/H, ρ) is denoted by π := IndGH ρ, and given by

π(g)f(x) := f(g−1x) (f ∈ L2(G/H, ρ) g, x ∈ G). (1.25)

We call π an induced representation of G.

Furthermore, we also introduce the notion of unitary representations of semi-

direct products (for detail one can see in [43], [44], and [45]). Let G := NoH be a

semi-direct product of separable, locally compact groups N and H where N is an

abelian group. We define a usual product in G by (n, h)(n′, h′) := (nτ(h)(n′), hh′),

and (n, h)−1 := (τ(h−1)(n−1), h−1), where τ : H → Aut(N) is a group homomor-

phism. The regularity of G must be satisfied. Namely, we assume that we can

find an analytic subset N̂1 of the set of characters N̂ of N which intersects each

G-orbit exactly once. Furthermore, the construction of this representation follows

constructions in [4] and rewritten as follows.

Theorem 1.12. (see [4, p.508-509]). Let G := N o H be a regular semi-direct

product of separable, locally compact groups N and H with N is abelian. Then

every irreducible unitary representation π of G is induced from an irreducible rep-

resentation ν of N oHn̂0 with Hn̂0 is a stabilizer of H at a point n̂0 ∈ N̂ such that

ν|N equals n̂0Id and ν = n̂0 ⊗ L (L ∈ Ĥn̂0). Namely, π = IndGNoHn̂0
ν.

1.5 Intertwining Operators

Let π and π′ be unitary representations of G in the representation spaces Hπ

and Hπ′ respectively. We introduce the notion of an intertwining operator.

Definition 1.10. ([6, p. 9]). A bounded linear operator T : Hπ → Hπ′ is called

an intertwining operator from π to π′, if it satisfies T ◦π(g) = π′(g)◦T for any

g ∈ G. The representations π and π′ are said to be equivalent if the intertwining

operator T : Hπ → Hπ′ is unitary.

We recall that the induced representation πM := πMackey in the Mackey model

is defined on the representation space L2(X,Hρ, µs) given by

πM(g0)f(x) := ∆G,H(hs(x, g0))1/2ρ(hs(x, g0))f(x · g0) (f ∈ L2(X,Hρ, µs)).

22



On the other hand, the induced representation πB := πBlattner in the Blattner model

is defined on the representation space L2(G/H, ρ) given by

πB(g0)φ(g) := φ(g−1
0 g) (φ ∈ L2(G/H, ρ)).

In this section, we shall see that πM and πB is equivalent.

First of all, let us introduce a linear isomorphism

R : E(G/H)→ Cc(X)

given by Rξ(x) := ξ(s(x)−1) (ξ ∈ E(G/H), x ∈ X) with its invers is given by

R−1f(g) = ∆G,H(h)f(x) (f ∈ Cc(X), g−1 = hs(x)). Let us define for each a ∈ G,

ξa(g) := ξ(a−1g). We see that

Rξa(x) = ξa(s(x)−1) = ξ(a−1s(x)−1)

= ξ(hs(x, a)−1s(x · a)−1) (s(x)a = hs(x, a)s(x · a))

= ∆G,H(hs(x, a))Rξ(x · a).

It follows that∫
X

Rξa(x) dµs(x) =

∫
X

Rξ(x · a)∆G,H(hs(x, a)) dµs(x)

=

∫
X

Rξ(x · a) dµs(x · a) (by (1.18))

=

∫
X

Rξ(x′) dµs(x
′) (x′ = x · a).

Therefore a linear functional µ′ : E(G/H) → R given by µ′(ξ) =
∫
X
Rξ(x) dµs(x)

is left G-invariant. By Proposition 1.11, there exist C0 > 0 such that µ′(ξ) =

C0µG,H(ξ). In other words we have∫
X

ξ(s(x)−1) dµs(x) = C0

∮
G/H

ξ(g) dµG,H(g). (1.26)

Now we are ready to prove the following proposition.

Proposition 1.13. The unitary representations πB and πM are equivalent.

Proof. Let us recall that s : X ⊃ U → G is a section of of natural projection
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p : G 3 g 7→ Hg ∈ X and almost all g ∈ G can be expressed as g = hs(x) ( h ∈
H, x ∈ U ). We shall show that the linear isomorphism

T : L2(G/H, ρ)→ L2(X,Hρ, µs)

given by Tφ(x) := 1√
C0
φ(s(x)−1) (C0 is defined in (1.26)) is an intertwining

operator which is unitary. Indeed, the invers map of T is given by T−1f(g) =

∆G,H(h)1/2ρ(h)f(x) (g−1 = hs(x)). Using (1.26), we have

||Tφ||2L2(X,Hρ,µs) =

∫
X

|Tφ(x)|2 dµs(x)

=

∫
X

1

C0

|φ(s(x)−1)|2 dµs(x)

=

∮
G/H

|φ(g)|2 dµG,H(g) = ||φ||2L2(G/H,ρ).

This means that T is unitary. Moreover, we see that

T ◦ πB(g0)φ(x) = πB(g0)φ(s(x)−1)

= φ(g−1
0 s(x)−1) = φ((s(x)g0)−1)

= φ((hs(x, g0)s(x · g0))−1) = φ(s(x · g0)−1hs(x, g0)−1)

= ∆G,H(hs(x, g0))1/2ρ(hs(x, g0))φ(s(x · g0)−1)

= πM(g0) ◦ Tφ(x).

In other words T ◦ πB(g0) = πM(g0) ◦ T . Therefore, T is a unitary intertwining

operator. Thus, πB and πM are equivalent as desired.

1.6 Square-integrable representation

It is well known that the study of square-integrable representations corresponds

to continuous wavelet transform (see for examples in [21], [22]). First of all, let us

introduce the notion of a square-integrable representation as follows :

Definition 1.11 (see [15]). Let (π,Hπ) be an irreducible unitary representation

of a locally compact group G. Then π is said to be square-integrable if there exists
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a non-zero vector φ ∈ Hπ such that∫
G

|(φ|π(g)φ)Hπ |2 dg <∞. (1.27)

If this happens then a vector φ is called admissible. Moreover, Duflo and Moore

[15] showed that there exists a (not necessarily bounded, densely defined) unique

operator Cπ on Hπ and it is called Duflo-Moore operator which is positive self-

adjoint. This operator satisfies (see [15] or [27] for detail)

1. φ is admissible if and only if φ ∈ domCπ, and

2. For φ1, φ3 ∈ Hπ and φ2, φ4 ∈ domCπ, we have∫
G

(φ1|π(g)φ2)Hπ(π(g)φ4|φ3)Hπ dg = (φ1|φ3)Hπ(Cπφ4|Cπφ2)Hπ . (1.28)

By changing variable g′ = ga with a fixed a ∈ G at the integral in (1.28), we obtain

(φ1|φ3)Hπ(Cπφ4|Cπφ2)Hπ

=

∫
G

(φ1|π(g′)π(a)φ2)Hπ(π(g′)π(a)φ4|φ3)Hπ∆G(a) dg′

= ∆G(a)(φ1|φ3)Hπ(Cππ(a)φ4|Cππ(a)φ3)Hπ ,

where ∆G denotes the modular function of G. Therefore, if φ2 ∈ domCπ, then

π(a)φ2 ∈ domCπ, and we have

C2
πφ2 = ∆G(a) π(a)−1 ◦ C2

π ◦ π(a)φ2

thanks to the self-adjointness of Cπ. Moreover, since Cπ is positive, we obtain

π(a) ◦ Cπ ◦ π(a)−1 = ∆G(a)1/2Cπ (a ∈ G). (1.29)

Taking an admissible vector v0 ∈ domCπ, we have an isometric embedding

Wv0 : Hπ → L2(G) defined by

Wv0v(g) := (v|π(g)v0)/||Cπv0||2 (v ∈ Hπ, g ∈ G).

We observe that the map Wv0 , called a continuous wavelet transform, is an inter-
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twining operator from π into the left-regular representation. In this way, we see

that a square-integrable representation is a subrepresentation of the left-regular

representation, and vice-versa. For more detail, the works of square-integrable

representations for instance can be read in [7], [10], [29], [31], [32], and [53].
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Chapter 2

Harmonic Analysis for Frobenius

Lie Algebra of Dimension 4

Based on the work [12] by Csikós and Verhóczki about classification of iso-

morphism classes of Frobenius Lie algebras with dimension ≤ 6 over a field with

characteristic not equals 2, we present some results of harmonic analysis of real Lie

groups whose Lie algebras are Frobenius of dimension 4. Particularly, we work on

real case. The isomorphism classes of Frobenius Lie algebras of dimension 4 are

given by

Theorem 2.1. (see [12, p.448]) For any Frobenius Lie algebra of dimension 4

over a field F of characteristic 6= 2 is isomorphic to one of the following

1. gI : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −
X2

2
, [X3, X4] = −

X3

2
,

2. gII(τ), τ ∈ F : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −X3,

[X3, X4] = −X3 + τX2,

3. gIII(ε), where 0 6= ε ∈ F : [X1, X3] = [X2, X4] = −X1, [X1, X4] = εX2,

[X2, X3] = −X2.

The Frobenius Lie algebras gIII(ε) and gIII(ε
′) are isomorphic if and only if

ε/ε′ is the square element of an element of F.

From Theorem 2.1 above, we get a list of 4-dimensional real Frobenius Lie algebras

as follows :
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1. gI : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −
X2

2
, [X3, X4] = −

X3

2
,

2. gII(τ), τ ∈ R : [X1, X4] = [X2, X3] = −X1, [X2, X4] = −X3,

[X3, X4] = −X3 + τX2,

3. gIII(ε), ε = ±1 : [X1, X3] = [X2, X4] = −X1, [X1, X4] = εX2,

[X2, X3] = −X2.

Remark 2. For the third type, for ε = −1, we know that gIII(−1) is exponential

solvable and it is isomorphic to a direct sum aff(1) ⊕ aff(1) where aff(1) is a

Lie algebra of ax + b group. On the other hand, for ε = 1, the Lie algebra

gIII(1) is solvable but not exponential and gIII(1) is isomorphic to the Lie algebra

R2 o (R× so(2)) of a similitude group Sim(2) := R2 o (R+ × SO(2)) (see Section

4.1).

2.1 The first type gI

We observe that the first type of real Frobenius Lie algebra gI is exponen-

tial solvable. Let GI be an exponential solvable Lie group whose Lie algebra

is gI . We start by computing coadjoint orbits of GI . Let U = aX1 + bX2 +

cX3 + qX4 ∈ gI and F = αX∗1 + βX∗2 + γX∗3 + δX∗4 ∈ g∗I . We obtain ad(−U) =
−q −c b a

0 −q/2 0 b/2

0 0 −q/2 c/2

0 0 0 0

 with respect to the basis {Xi}4
i=1. In addition, for

the case q 6= 0 we use identity
−q −c b a

0 −q/2 0 b/2

0 0 −q/2 c/2

0 0 0 0

 = P


−q 0 0 0

0 −q/2 0 0

0 0 −q/2 0

0 0 0 0

P−1 (2.1)

28



for a suitable non-singular matrix P , to compute exp(ad(−U)). The result is

exp(ad(−U)) =


λ2 2cλ

q
(λ− 1) 2bλ

q
(1− λ) a

q
(1− λ2)

0 λ 0 b
q
(1− λ)

0 0 λ c
q
(1− λ)

0 0 0 1

 , (2.2)

where λ := exp(−q/2) > 0. When q = 0, exp(ad(−U)) is given by the limit of

d→ 0 in the expression (2.2), that is
1 −c −b a

0 1 0 b
2

0 0 1 c
2

0 0 0 1

 . (2.3)

Since gI is exponential, we compute the coadjoint orbit ΩF = Ω(α,β,γ,δ) of GI as

the set of Ad∗(expU)F = xX∗1 + yX∗2 + zX∗3 + tX∗4 . We obtain the following from

(2.2)

x = λ2α,

y =
2cλ

q
(λ− 1)α + λβ,

z =
2bλ

q
(1− λ)α + λγ,

t =
a

q
(1− λ2)α +

b

q
(1− λ)β +

c

q
(1− λ)γ + δ. (2.4)

Again the case q = 0 is obtained by taking limit. From (2.4) we can determine all

coadjoint orbits of GI . It is easy to see for α = β = γ = 0 we have 0-dimensional

coadjoint orbits. Also for α = 0 and (β, γ) 6= (0, 0) we have 2-dimensional coadjoint

orbits of the form Ω(0,cos θ,sin θ,0) and for the last we have 4-dimensional coadjoint

orbits if α 6= 0. Thus we have the following theorem

Theorem 2.2. Let GI be the exponential solvable Lie group whose Lie algebra is

the 4-dimensional real Frobenius Lie algebra gI . Then the set O(GI) of all coadjoint

orbits for the group GI consists of

1. the 0-dimensional coadjoint orbit Ω(0,0,0,δ) = {(0, 0, 0, δ)} for δ ∈ R.
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2. the 2-dimensional coadjoint orbits Ω(0,cos θ,sin θ,0) = {(0, e−q/2 sin θ, e−q/2 cos θ, t) ; q, t ∈
R} where θ ∈ [0, 2π).

3. the 4-dimensional coadjoint orbit Ω(±1,0,0,0) = {(x, y, z, t) ; ±x > 0}.

Irreducible unitary representations corresponding to the coadjoint orbits ob-

tained in Theorem 2.2 can be stated as follows.

Theorem 2.3. 1. The irreducible unitary representation πΩ of GI correspond-

ing to the coadjoint orbit Ω(0,0,0,δ) = {(0, 0, 0, δ)} is one-dimensional given by

πΩ(g(a, b, c, q)) = e2πiδq, (2.5)

where g(a, b, c, q) = exp U ∈ G with U = aX1 + bX2 + cX3 + qX4.

2. The irreducible unitary representation πΩ of GI corresponding to the coad-

joint orbit Ω(0,cos θ,sin θ,0) is realized on L2(R) by

(πΩ(g(a, b, c, q))f)(x) = e4πi(ed/2−1)(b cos θ+c sin θ) e
x/2

q f(x+ q), (2.6)

where f ∈ L2(R, dx).

3. The irreducible unitary representation πΩ of GI corresponding to the coad-

joint orbit Ω(±1,0,0,0) is realized on L2(R2, dxdy) by

(πΩ(exp aX1)f)(x, y) = e±2πiaeyf(x, y),

(πΩ(exp bX2)f)(x, y) = e±2πibxey/2f(x, y),

(πΩ(exp cX3)f)(x, y) = f(x+ cey/2, y),

(πΩ(exp qX4)f)(x, y) = f(x, y + q), (2.7)

where f ∈ L2(R2, dxdy).

Proof. For the first assertion, we see that the symmetric bilinear form BF is iden-

tically zero since rankBF = dim Ω = 0. Hence, a polarization p = gI , exp p = GI

and πΩ = νF . Therefore, the irreducible unitary representations of GI correspond-

ing to this orbit can be written in the simple formula πΩ(g(a, b, c, q)) = e2πiδq.
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For the second assertion, we construct the irreducible unitary representations

of GI corresponding to 2-dimensional coadjoint orbits Ω(0,cos θ,sin θ,0) as follows. Let

p = RX1 ⊕ RX2 ⊕ RX3 be a polarization of gI at F = cos θX∗2 + sin θX∗3 sat-

isfying the Pukanszky condition. We have the 1-dimensional irreducible unitary

representation νF of exp p of the form νF (exp(aX1 +bX2 +cX3)) = e2πi(b cos θ+c sin θ).

Identifying the coset space exp p\GI with R by

R 3 x 7→ exp p expxX4 ∈ exp p\GI ,

we have a section

s : exp p\GI ' R 3 x 7→ expxX4 ∈ GI ,

then the master equation

s(x)g(a, b, c, q) = hs(x, g(a, b, c, q))s(x · g(a, b, c, q)),

(x ∈ exp p\GI , g(a, b, c, q) ∈ G1, hs(x, g(a, b, c, q)) ∈ exp p )

becomes in our case
ex 0 0 0

0 ex/2 0 0

0 0 ex/2 0

0 0 0 1




eq 2ceq/2/q(eq/2 − 1) −2beq/2/d(eq/2 − 1) −a
q
(eq − 1

0 eq/2 0 − b
q
(eq/2 − 1)

0 0 eq/2 − c
q
(eq/2 − 1)

0 0 0 1



=


1 x3 −x2 −x1

0 1 0 −x2/2

0 0 1 −x3/2

0 0 0 1




ey 0 0 0

0 ey/2 0 0

0 0 ey/2 0

0 0 0 1

 ,

(2.8)

where we see that

y = x+ q, x1 =
aex

q
(eq − 1),

x2 =
2bex/2

q
(eq/2 − 1), x3 =

2cex/2

q
(ed/2 − 1).
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Therefore, the formula of the irreducible unitary representation of GI is

(πΩ(g(a, b, c, q))f)(x) = e4πi(eq/2−1)(b cos θ+c sin θ) e
x/2

q f(x+ q) (f ∈ L2(R, dx)).

We can also compute this representation with respect to its basis {X1, X2, X3, X4}
as follows.

• the master equation with respect to eaX1 is of the form

expxX4 exp aX1 = exp(eadxX4aX1) expxX4

= exp(aexX1) expxX4.

• the master equation with respect to ebX2 is of the form

expxX4 exp bX2 = exp(eadxX4bX2) expxX4

= exp(bex/2X2) expxX4.

• the master equation with respect to ecX3 is of the form

expxX4 exp cX3 = exp(eadxX4cX3) expxX4

= exp(cex/2X3) expxX4.

• the master equation with respect to eqX4 is of the form

expxX4 exp qX4 = exp(x+ q)X4,

so that we obtain simpler formula as follows :

(πΩ(exp aX1)f)(x) = f(x),

(πΩ(exp bX2)f)(x) = e2πibex/2 cos θf(x),

(πΩ(exp cX3)f)(x) = e2πicex/2 sin θf(x),

(πΩ(exp qX4)f)(x) = f(x+ q) (f ∈ L2(R, dx)). (2.9)

For the third assertion, the irreducible unitary representations corresponding to

4-dimensional coadjoint orbits Ω(±1,0,0,0) through F = ±X∗1 can be computed by
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considering a real algebraic polarization p = 〈X1, X2〉 satisfying the Pukanszky

condition. Identifying the coset space exp p\GI with R2 by

R2 3 (x, y) 7→ exp p expxX3 exp yX4 ∈ exp p\GI ,

we have a section

s : exp p\GI ' R2 3 (x, y) 7→ expxX3 exp yX4 ∈ GI ,

then finishing the master equation

s(ẋ)g = hs(ẋ, g)s(ẋ · g), (ẋ ∈ exp p\GI , g ∈ G1, hs(ẋ, g) ∈ exp p)

with respect to the basis {X1, X2, X3, X4} as follows

• the master equation with respect to eaX1 is of the form

expxX3 exp yX4 exp aX1 = expxX3 exp(eadyX4aX1) exp yX4

= expxX3 exp(aeyX1) exp yX4

= exp(eadxX3 (aeyX1)) expxX3 exp yX4

= exp(aeyX1) expxX3 exp yX4.

• the master equation with respect to ebX2 is of the form

expxX3 exp yX4 exp bX2 = expxX3 exp(eadyX4bX2) exp yX4

= expxX3 exp(bey/2X2) exp yX4

= exp(eadxX3 (bey/2X2)) expxX3 exp yX4

= exp(bxey/2X1 + bey/2X2) expxX3 exp yX4.

• the master equation with respect to ecX3 is of the form

expxX3 exp yX4 exp cX3 = exp(x+ cey/2)X3 exp yX4.

• the master equation with respect to eqX4 is of the form

expxX3 exp yX4 exp qX4 = expxX3 exp(y + q)X4.
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Therefore, we obtain the formulas below.

(πΩ(eaX1)f)(x, y) = e±2πiaeyf(x, y),

(πΩ(ebX2)f)(x, y) = e±2πibxey/2f(x, y),

(πΩ(ecX3)f)(x, y) = f(x+ cey/2, y),

(πΩ(eqX4)f)(x, y) = f(x, y + q),

where f ∈ L2(R2, dxdy).

Furthermore, we shall compute the Duflo-Moore operator of representation

π := πΩ of GI given by (2.7) corresponding to Ω(±1,0,0,0) directly. To do that, we

note that for φ ∈ Cc(GI), we have∫
GI

φ(g) dg =

∫
R4

φ(eaX1ebX2ecX3eqX4)
dadbdcdq

e2q
. (2.10)

We compute for f1, f2 ∈ L2(R2) the integral∫
GI

|(f1|π(g)f2)|2 dg. (2.11)

Now we put g = eaX1g′ where g′ = ebX2ecX3eqX4 . We obtain

(f1|π(g)f2) =

∫
R2

f1(x, y)e2πiaeyπ(g′)f2(x, y) dxdy

=

∫
R
e−2πiaey{

∫
R
f1(x, y)π(g′)f2(x, y) dx} dy

=

∫ ∞
0

e−2πiaη{
∫
R
f1(x, log η)π(g′)f2(x, log η) dx} dη

η

(η = ey, dy =
dη

η
). (2.12)

Using Plancherel formula, we have∫
R
|(f1|π(eaX1)π(g′)f2)|2 da =

∫ ∞
0

∣∣∣∣∫
R
f1(x, log η)π(g′)f2(x, log η) dx

∣∣∣∣2 dηη2
. (2.13)
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We put g′ = ebX2g′′, where g′′ = ecX3eqX4 . Thus, we obtain∫
R
f1(x, log η)π(g′)f2(x, log η) dx

=

∫
R
e−2πibx

√
ηf1(x, log η)π(g′′)f2(x, log η) dx

=

∫
R
e−2πibx′f1(

x′
√
η
, log η)π(g′′)f2(

x′
√
η
, log η)

dx′
√
η

(x′ = x
√
η , dx =

dx′
√
η

). (2.14)

Again by Plancherel formula we have∫
R

∣∣∣∣∫
R
f1(x, log η)π(g′)f2(x, log η) dx

∣∣∣∣2 db
=

1

η

∫
R
|f1(

x′
√
η
, log η)π(g′′)f2(

x′
√
η
, log η)|2 dx′. (2.15)

Combining (2.13) and (2.15) we obtain∫
R2

|(f1|π(eaX1)π(ebX2)π(g′′)f2)|2 dadb

=

∫ ∞
0

∫
R
|f1(

x′
√
η
, log η)|2 |π(g′′)f2(

x′
√
η
, log η)|2 dx′dη

η3
. (2.16)

We can see

π(g′′)f2(
x′
√
η
, log η) = π(ecX3)π(eqX4)f2(

x′
√
η
, log η)

= π(eqX4)f2(
x′
√
η

+ c
√
η, log η), (2.17)
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then we have ∫
R
|π(eqX4)f2(

x′
√
η

+ c
√
η, log η)|2 dc

=

∫
R
|π(eqX4)f2(c′, log η)|2 dc

′
√
η

(c′ =
x′
√
η

+ c
√
η, dc′ =

√
η dc)

=

∫
R
|f2(c′, log η + q)|2 dc

′
√
η
. (2.18)

Therefore, we obtain∫
R2

|π(ecX3)π(eqX4)f2(
x′
√
η
, log η)|2 dcdq

e2q

=

∫
R2

|f2(c′, log η + q)|2 dc
′

√
η

dq

e2q

=

∫
R2

|f2(c′, q′)|2 dc′
√
η

η2dq′

e2q′

(q′ = log η + q). (2.19)

Combining (2.16) and (2.19), then the formula (2.11) becomes∫
GI

|(f1|π(g)f2)|2 dg =

∫
R4

|(f1|π(eaX1)π(ebX2)π(ecX3)π(edX4)f2|2
dadbdcdq

e2q

=

∫ ∞
0

∫
R
|f1(

x′
√
η
, log η)|2 dx′ dη

η
√
η

∫
R2

|f2(c′, q′)|2 dc
′dq′

e2q′

=

∫
R

∫
R
|f1(r, s)|2 dr ds ·

∫
R2

|e−q′f2(c′, q′)|2 dc′dq′

(r =
x′
√
η
, s = log η)

= ||f1||2L2(R2) ·
∫
R2

|e−q′f2(c′, q′)|2 dc′dq′.

(2.20)

Therefore, we obtain the following theorem.

Theorem 2.4. The Duflo Moore operator CπΩ
for the representation (πΩ, L

2(R2))
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of GI as in (2.7) can be written of the form

Cπf(x, y) = e−yf(x, y) ( f ∈ L2(R2) ). (2.21)

We can relate this result to Pfaffian of gI . For π(eaX1)f(x, y) = e2πiaeyf(x, y)

we have

dπ(X1)f(x, y) = 2πieyf(x, y), (2.22)

and since Pf(gI) = QgI
= X2

1 , then we obtain

dπ(Q) = (dπ(X1))2 = 4π2i2e2yf(x, y). (2.23)

Therefore, we obtain the following proposition

Proposition 2.5. The Duflo-Moore operator CπΩ
for representation πΩ of GI as

in (2.7) is written in terms of the Pfaffian QgI as

CπΩ
= 2π|dπ(QgI

)|−1/2. (2.24)

We also notice that GI is a semi-direct product of N := exp〈X1, X2, X3〉 which

is isomorphic to Heisenberg Lie group, and a closed subgroup H := exp〈X4〉 of

Aut(N). It is known that the irreducible unitary representation σα of N corre-

sponding to 2-dimensional coadjoint orbits through αX∗1 (α ∈ R \ {0}) can be

characterized by formula σα(exp aX1) = e2παaId for a ∈ R. When α = ±1, we

define σ± to be a standard Schrödinger representation of N on L2(R) given by

σ±(eaX1)f(x) = e±2πiaf(x),

σ±(ebX2)f(x) = e±2πibxf(x),

σ±(ecX3)f(x) = f(x+ c), (2.25)

where f ∈ L2(R). We observe that σ± is equivalent to induced representation

IndNexp〈X1,X2〉 ν±X∗1 . Using the action of H on R\{0} given by

h · α = e−qα (h = exp qX4, α ∈ R\{0}),
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we define for general α ∈ R\{0} a representation (σα, L
2(R)) by

σα(n) := σε(h
−1 · n) (n ∈ N),

where h ∈ H and ε = ±1 are unique elements for which α = h · ε.

Remark 3. In [37, Kurniadi and Ishi], we realize the representation πΩ = IndGexp pν±
as a subrepresentation of the quasi-regular representation of GI on L2(N). Then

it was shown implicitly that πΩ|N =
∫ ⊕
±R+

σα dα for Ω = Ω±.

2.2 The Second type gII(τ )

First of all, let us see the structure of coadjoint orbits of GII(τ)

Theorem 2.6. Let GII(τ) be an exponential solvable Lie group of the 4-dimensional

real Frobenius Lie algebra gII(τ), τ ∈ R with {X1, X2, X3, X4} as basis. Then, the

set GII(τ)\gII(τ)∗ of all coadjoint orbits for the group GII(τ) (i.e. Ω(α,β,γ,δ) :=

Ad∗(GII(τ))(αX∗1 + βX∗2 + γX∗3 + δX∗4 )) consists of

1. the 0-dimensional coadjoint orbit with α = β = γ = 0 given by

Ω(0,0,0,δ) = {(0, 0, 0, δ)}, (2.26)

for any δ ∈ R.

2. the 2-dimensional coadjoint orbits with (β, γ) 6= (0, 0) :

Ω(0,β,γ,0) = {(0, fτ (q; β, γ), gτ (q; β, γ), t); t, q ∈ R}, (2.27)

where (
fτ (q; β, γ)

gτ (q; β, γ)

)
= exp q

(
0 −1

τ −1

)(
β

γ

)
.

3. the 4-dimensional coadjoint orbit of the form :

Ω(±1,0,0,0) = {xX∗1 + yX∗2 + zX∗3 + tX∗4 ; ±x > 0, y, z, t ∈ R}. (2.28)
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Proof. Let us compute coadjoint orbits ofGII(τ) with respect to the basis {X1, X2, X3, X4}
and F = αX∗1 + βX∗2 + γX∗3 + δX∗4 . We obtain

Ad∗(eaX1)F = αX∗1 + βX∗2 + γX∗3 + (αa+ δ)X∗4 ,

Ad∗(ebX2)F = αX∗1 + βX∗2 + (αb+ γ)X∗3 + (
αb2

2
+ γb+ δ)X∗4 ,

Ad∗(ecX3)F = αX∗1 + (−αc+ β)X∗2 + γX∗3 + (
ταc2

2
− τβc+ γc+ δ)X∗4 ,

Ad∗(eqX4)(αX∗1 ) = αe−qX∗1 . (2.29)

We note that Ad∗(eqX4)F is complicated in general, while the formula Ad∗(eqX4)(αX∗1 )

is sufficient for our observation of coadjoint orbits. We observe that for α =

β = γ = 0, we have the 0-dimensional coadjoint orbits in the form Ω(0,0,0,δ) =

{(0, 0, 0, δ)} for δ ∈ R. Let U = aX1 + bX2 + cX3 + qX4, we have

ad(U) =


q c −b −a
0 0 −τq τc

0 q q −b− c
0 0 0 0

 . (2.30)

By considering ad∗(U) and α = 0, we obtain y

z

t

 = Ad∗(eU)(βX∗2 + γX∗3 + δX∗4 ) = (exp

 0 −q 0

τq −q 0

−τc b+ c 0

)

 β

γ

δ

 .

(2.31)

Moreover, we have (
y

z

)
= (exp

(
0 −q
τq −q

)
)

(
β

γ

)

=

(
fτ (q; β, γ)

gτ (q; β, γ)

)
. (2.32)
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If q = 0, then we have y

z

t

 = (exp

 0 0 0

0 0 0

−τc b+ c 0

)

 β

γ

δ


=

 1 0 0

0 1 0

−τc b+ c 1


 β

γ

δ

 . (2.33)

If (β, γ) 6= 0, then t = −τcβ+(b+c)γ+δ runs over R with (b, c) runs over R2. Thus

we have 2-dimensional coadjoint orbits Ω(0,β,γ,0) = {(0, fτ (q; β, γ), gτ (q; β, γ), t) ; q, t ∈
R}. Now if we consider q = 0, then

x

y

z

t

 = Ad∗(eU)F =


1 0 0 0

−c 1 0 0

b 0 1 0

a+ 1/2(b2 + bc+ τc2) −τc b+ c 1




α

β

γ

δ

 .

(2.34)

Furthermore, if α 6= 0, then (y, z, t) will run over R3 with (a, b, c) runs over R3. In

addition, if (a, b, c) = (0, 0, 0)

Ad∗(eU) =


e−q

exp

(
0 −q
τq −q

)
1

 .

Therefore, we obtain 4-dimensional coadjoint orbits in the forms Ω(±1,0,0,0) =

{(x, y, z, t) ; ±x > 0, y, z, t ∈ R}.

Remark 4. To compute fτ (q; β, γ) and gτ (q; β, γ) in (2.27), we explain by case of

τ . First we consider the case τ < 1/4. Eigenvalues of ad(X4) are λ2 = 1+
√

1−4τ
2

and

λ3 = 1−
√

1−4τ
2

corresponding to eigenvectors v2 =

(
−λ3

1

)
and v3 =

(
−λ2

1

)
respectively. For simpler computations we put

Y2 = −λ3X2 +X3 and Y3 = −λ2X2 +X3.
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Thus, ad(X4)Y2 = λ2Y2 and ad(X4)Y3 = λ3Y3 and we get e−qX4Y2 = e−λ2qY2 and

e−qX4Y3 = e−λ3qY3. Moreover, let us take

Y ∗2 =
1

λ2 − λ3

(X∗2 + λ3X
∗
3 ) and Y ∗3 =

1

λ3 − λ2

(X∗2 + λ4X
∗
3 )

such that
〈
Yi, Y

∗
j

〉
= δij where i, j = 1, 2. In these terms for β ∈ R, we obtain 2

dimensional coadjoint orbits of the forms

Ω±Y ∗2 +γY ∗3
= {±e−λ2qY ∗2 + γe−λ3qY ∗3 + tX∗4 ; q, t ∈ R}

= {±yY ∗2 + zY ∗3 + tX∗4 ; z = γy
λ3
λ2 , y > 0, t ∈ R}. (2.35)

For the second case τ = 1/4, we take

Y2 = −X2 + 2X3, Y3 = 2X2,

Y ∗2 =
1

2
X∗3 , Y ∗3 =

1

2
X∗2 +

1

4
X∗3 ,

where
〈
Yi, Y

∗
j

〉
= δij. Using the equality

ead(−qX4)
(
Y2 Y3

)
=
(
Y2 Y3

)( e−q/2 −qe−q/2

0 e−q/2

)

and (2.33), we obtain

ΩβY ∗2 +γY ∗3
= {yY ∗2 + zY ∗3 + tX∗4 ; q, t ∈ R}, where

y = βe−q/2,

z = −βqe−q/2 + γe−q/2. (2.36)

For the third case τ > 1/4, we practice the argument similar to τ < 1/4. Let us

consider

Y2 = −λ3X2 +X3, Y3 = −λ2X2 +X3,

where λ2 = 1
2

+ i
√

4τ−1
2

and λ3 = 1
2
− i

√
4τ−1
2

. Then, we obtain ad(X4)Y2 = λ2Y2
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and ad(X4)Y3 = λ3Y3. Let us take

Y ∗2 =
1

λ2 − λ3

(X∗2 + λ2X
∗
3 ) =

X∗3
2
− i√

4τ − 1
(X∗2 +

X∗3
2

),

Y ∗3 =
1

λ3 − λ2

(X∗2 + λ3X
∗
3 ) =

X∗3
2

+
i√

4τ − 1
(X∗2 +

X∗3
2

),

where
〈
Yi, Y

∗
j

〉
= δij (i, j = 1, 2). Then we put

Z∗2 =
X∗3
2
, Z∗3 = − 1√

4τ − 1
(X∗2 +

X∗3
2

),

where (
Y ∗2 Y ∗3

)
=
(
Z∗2 Z∗3

)( 1 1

i −i

)
.

Indeed, we have

ad(X4)
(
Z2 Z3

)
=
(
Z2 Z3

)( 1/2
√

4τ−1
2

−
√

4τ−1
2

1/2

)
,

ead(−qX4)
(
Z2 Z3

)
=
(
Z2 Z3

)
e−q/2

(
cos( q

2

√
4τ − 1) − sin( q

2

√
4τ − 1)

sin( q
2

√
4τ − 1) cos( q

2

√
4τ − 1)

)
.

Using (2.33) we obtain

ΩβZ∗2 +γZ∗3
= {yZ∗2 + zZ∗3 + tX∗4 ; q, t ∈ R}, where

y = βe−q/2 cos(
q

2

√
4τ − 1)) + γe−q/2 sin(

q

2

√
4τ − 1)),

z = −βe−q/2 sin(
q

2

√
4τ − 1)) + γe−q/2 cos(

q

2

√
4τ − 1)). (2.37)

We also give another way to compute coadjoint orbits when α 6= 0. Let us now

observe for α > 0. Using (2.29) we consider for F = αX∗1 + βX∗2 + γX∗3 + δX∗4

Ad∗(e(logα)X4e−
δ′′
α
X1e

β
α
X3e−

γ
α
X2)F = X∗1 , (2.38)

where δ′′ =
τα( β

α
)2

2
− τβ(β

α
) + γ(β

α
) + δ and q = logα. We also use the same

arguments for α < 0. Therefore, for α 6= 0 we obtain 2 types of 4-dimensional
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coadjoint orbits in the following patterns

Ω(1,0,0,0) = {F ∈ g∗II(τ) ; α > 0}, (2.39)

and

Ω(−1,0,0,0) = {F ∈ g∗II(τ) ; α < 0}. (2.40)

We can observe that only Ω± := Ω(±1,0,0,0) is an open orbit forGII(τ). Furthermore,

we shall construct irreducible unitary representation for GII(τ) as follows.

Theorem 2.7. The irreducible unitary representation of GII(τ) on the space L2(R2, dxdy)

corresponding to the open orbit Ω± can be written as

(πΩ±(exp qX4)f)(x, y) = f(x, y + q),

(πΩ±(expZ)f)(x, y) = σ±(exp(Ad(exp yX4)Z))f(x, y), (2.41)

where Z = aX1 + bX2 + cX3, and σ± acts on f(·, y) ∈ L2(R) for each y ∈ R.

Proof. Let f = ±X∗1 be element of g∗II(τ) and p = 〈X1, X2〉 be a polariza-

tion of gII(τ) at f satisfying Pukanszky condition. Identifying the coset space

exp p\GII(τ) with R2 by

R2 3 (x, y) 7→ exp p expxX3 exp yX4 ∈ exp p\GII(τ),

we have a section

s : exp p\GII(τ) ' R2 3 (x, y) 7→ expxX3 exp yX4 ∈ GII(τ),

then the master equation s(ẋ)g = hs(ẋ, g)s(ẋ · g) (ẋ ∈ exp p\GII(τ), g ∈
GII(τ), hs(ẋ, g) ∈ exp p) for the representation πΩ± of GII(τ) becomes in our case

exp(xX3) · exp(yX4) · g = h′ · exp(x′X3) · exp(y′X4). (2.42)

Substituting g = exp qX4 to (2.42), we have

exp(xX3) · exp(yX4) · exp(qX4) = exp(xX3) · exp(y + q)X4.
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Therefore, the representation πΩ± with respect to the basis exp qX4 can be written

as follows.

(πΩ±(exp qX4)f)(x, y) = f(x, y + q) ( f ∈ L2(R2) ). (2.43)

Furthermore, let Z = aX1 + bX2 + cX3 be element of 〈X1, X2, X3〉. We see that

N = exp 〈X1, X2, X3〉 is the Heisenberg Lie group and it is well known that the

master equation for the representation σ± := IndNexp〈X1,X2〉ν± of N can be written

as

exp(xX3) · n = h′ · exp(x′X3),

where n ∈ N, x, x′ ∈ R, h′ ∈ exp 〈X1, X2〉. Then the representation σ± takes the

form

(σ±(n)f)(x) = ν±(h′)f(x′) (f ∈ L2(R2), (2.44)

and it can be computed with respect to the basis {X1, X2, X3} as given in (2.25).

On the other hand, the master equation for representation πΩ± := IndGexp〈X1,X2〉ν±
of GII(τ) is given in (2.42). Now, substituting g = expZ to (2.42), we obtain

exp(xX3) · exp(yX4) · expZ = exp(xX3) · exp(Ad(eyX4)Z) · exp(yX4)

= h′ · exp(xX3) · exp(yX4). (2.45)

We see that for n = exp(Ad(eyX4)Z), the formula

exp(xX3) · exp(Ad(eyX4)Z) = h′ · exp(x′X3),

is the master equation for N . Therefore, we obtain the irreducible unitary repre-

sentation for GII(τ) on L2(R2) of the form

(πΩ±(expZ)f)(x, y) = σ±(exp(Ad(exp yX4)Z)f(x, y) ( f ∈ L2(R2) ), (2.46)

as required.

Next task is to consider the Duflo-Moore operator for the representation π :=

πΩ± of GII(τ) given by (2.41) corresponding to the open coadjoint orbitΩ(±1,0,0,0)
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by computing directly as follows. For φ ∈ Cc(GII(τ)), we have∫
GII(τ)

φ(g) dg =

∫
R4

φ(eaX1ebX2ecX3eqX4)
dadbdcdq

e2q
.

We compute for f1, f2 ∈ L2(R2) the integral∫
GII(τ)

|(f1|π(g)f2)|2 dg. (2.47)

Now we put g = eaX1g′ where g′ = ebX2ecX3eqX4 . We obtain

(f1|π(g)f2) =

∫
R2

f1(x, y)e±2πiaeyπ(g′)f2(x, y) dxdy

=

∫
R
e∓2πiaey{

∫
R
f1(x, y)π(g′)f2(x, y) dx} dy

=

∫ ∞
0

e∓2πiaη{
∫
R
f1(x, log η)π(g′)f2(x, log η) dx} dη

η

(η = ey, dy =
dη

η
). (2.48)

Using Plancherel formula, we have∫
R
|(f1|π(eaX1)π(g′)f2)|2 da

=

∫ ∞
0

∣∣∣∣∫
R
f1(x, log η)π(g′)f2(x, log η) dx

∣∣∣∣2 dηη2

=

∫ ∞
0

∣∣∣∣∫
R
f1(x, log η)π(ebX2ecX3)π(eqX4)f2(x, log η) dx

∣∣∣∣2 dηη2
.

(2.49)

Before continuing computations, let us see the useful lemma below, which will be

used in our next computations.

Lemma 2.8 (see [19]). Let σ± be the representation of N = exp〈X1, X2, X3〉 on

L2(R) as in (2.25). For φ1, φ1 ∈ L2(R), we have∫
R2

|(φ1|σ±(ebX2ecX3)φ2)L2(R)|2 dbdc = ||φ1||2L2(R)||φ2||2L2(R). (2.50)
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Proof. Let φ1, φ2 be elements of L2(R). We compute the inner product

(φ1|σ±(ebX2ecX3)φ2) =

∫
R
φ1(x)e±2πibxφ2(x+ c) dx

=

∫
R
e∓2πibxφ1(x)φ2(x+ c) dx, (2.51)

and by Plancherel formula we get∫
R2

|(φ1|σ±(ebX2ecX3)φ2)|2 db dc =

∫
R
|φ1(x)|2 {

∫
R
|φ2(x+ c)|2 dc} dx

=

∫
R
|φ1(x)|2 dx

∫
R
|φ2(x+ c)|2 dc

=

∫
R
|φ1(x)|2 dx

∫
R
|φ2(c′)|2 dc′ (c′ = x+ c)

= ||φ1||2L2(R)||φ2||2L2(R).

(2.52)

Furthermore, since X2 and X3 commute with their commutator, that is,

[X2, [X2, X3]] = [X3, [X2, X3]] = 0,

by the Baker-Campbell-Hausdorff formula we have

ebX2ecX3 = ebX2+cX3+bc[X2,X3]/2

= ebX2+cX3−bcX1/2

= e−bcX1/2ebX2+cX3 .

Therefore, we have

|(φ1|σ±(ebX2ecX3)φ2)|2 = |e±2πi(bc/2)(φ1|σ±(ebX2+cX3)φ2)|2

= |(φ1|σ±(ebX2+cX3)φ2)|2.

Thus we obtain
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Corollary 2.9.∫
R2

|(φ1|σ±(ebX2+cX3φ2))L2(R)|2 dbdc = ||φ1||2L2(R)||φ2||2L2(R). (2.53)

Using (2.41), (2.49), and Corollary 2.9, we obtain∫
R2

∫
R
|(f1|π(eaX1)π(ebX2ecX3)π(eqX4)f2)|2 dadbdc

=

∫ ∞
0

∫
R2

|(f1(·, log η)|π(ebX2+cX3)π(eqX4)f2(·, log η))|2 dbdc dη
η2

=

∫ ∞
0

∫
R2

|(f1(·, log η)|σ±(exp(Ad(elog ηX4)(bX2 + cX3)))π(eqX4)f2(·, log η))|2 dbdc dη
η2

=

∫ ∞
0

∫
R2

|(f1(·, log η)|σ±(eb
′X2+c′X3)π(eqX4)f2(·, log η))|2 db

′ dc′

η

dη

η2

(b′X2 + c′X3 := Ad(elog ηX4)(bX2 + cX3), db′dc′ = η dbdc)

=

∫ ∞
0

||(f1(·, log η)||2L2(R)||π(eqX4)f2(·, log η))||2L2(R)

dη

η3
.

(2.54)

Therefore, we get∫
GII(τ)

|(f1|π(g)f2)|2 dg =

∫
R

∫
R2

∫
R
|(f1|π(eaX1)π(ebX2+cX3)π(eqX4)f2)|2 dadbdcdq

e2q

=

∫ ∞
0

||f1(·, log η)||2L2(R){
∫
R
||π(eqX4)f2(·, log η)||2L2(R)

dq

e2q
} dη
η3

=

∫ ∞
0

||f1(·, log η)||2L2(R){
∫
R
||f2(·, log η + q)||2L2(R)

dq

e2q
} dη
η3

=

∫ ∞
0

||f1(·, log η)||2L2(R){
∫
R
||f2(·, q′)||2L2(R) η

2 dq

e2q′
} dη
η3

(q′ = log η + q)

=

∫ ∞
0

||f1(·, log η)||2L2(R)

dη

η
·
∫
R
||f2(·, q′)||2L2(R)

dq

e2q′

=

∫
R
||f1(·, s)||2L2(R) ds ·

∫
R
||f2(·, q′)||2L2(R)

dq

e2q′

(s = log η, ds =
dη

η
).

(2.55)
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Moreover, we have∫
GII(τ)

|(f1|π(g)f2)|2 dg = ||f1||2L2(R) ·
∫
R
||f2(·, q′)||2L2(R)

dq

e2q′

= ||f1||2L2(R) ·
∫
R
||e−q′f2(·, q′)||2L2(R) dq. (2.56)

Based on computations above, we have proved the following theorem.

Theorem 2.10. The Duflo-Moore operator for the representation (π, L2(R2)) of

GII(τ) can be written of the form

Cπf(x, y) = e−yf(x, y) ( f ∈ L2(R2) ). (2.57)

Furthermore, in notion of Pfaffian of gII(τ), we obtain

Proposition 2.11. The Duflo-Moore operator Cπ for the representation π of

GII(τ) which related to the Pfaffian of gII(τ) is given by

Cπ = 2π|i2dπ(QgII(τ))|−1/2, (2.58)

where QgII(τ) := Pf(gII(τ)) = X2
1 .

2.3 The Third type gIII(±1)

The Lie algebra gIII(ε) is the semi-direct-direct product of a commutative

ideal n := 〈X1, X2〉 and a commutative subalgebra h := 〈X3, X4〉. The matrix

expressions of ad(aX1 + bX2) and ad(cX3 + qX4) with respect to the basis {Xi}4
i=1

are written as 
0 −a −b

0 −b εa

0

0


and 

c q

−εq c

0

0


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respectively. The Lie group GIII(ε) ⊂ GL(gIII(ε)) corresponding to ad(gIII(ε))

can be written as the semi-direct product N oH with

N =




1 −a −b
1 −b εa

1

1

 ; a, b ∈ R

 ,

and when ε = −1,

H =




ec cosh q ec sinh q

ec sinh q ec cosh q

1

1

 ; c, q ∈ R

 ,

and when ε = 1,

H =




ec cos q ec sin q

−ec sin q ec cos q

1

1

 ; c, q ∈ R

 .

Furthermore, we can see that the matrix expression for Ad∗(exp(aX1 + bX2)) with

respect to the basis {X∗i }4
i=1 is

1

1

a b 1

b −εa 1

 .

Now for f = αX∗1 + βX∗2 + γX∗3 + δX∗4 ∈ g∗III(ε), the N-orbit Ad∗(N)f equals

{αX∗1 + βX∗2 + (γ + αa+ βb)X∗3 + (δ − εβa+ αb)X∗4 ; a, b ∈ R}.
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We can observe that Ad∗(N)f is 2-dimensional if and only if the linear map(
a

b

)
7→

(
α β

−εβ α

)(
a

b

)

is non-singular, that is, det

(
α β

−εβ α

)
= α2 + εβ2 6= 0. In this case, we have

Ad∗(N)f = αX∗1 + βX∗2 + 〈X∗3 , X∗4 〉.

Moreover, these orbits are mapped each other by the H-action. When ε = −1, the

set {αX∗1 + βX∗2 ; α2 − β2 6= 0} is decomposed into four orbits

Ad∗(H)(±X∗1 ) = {αX∗1 + βX∗2 ; α2 − β2 > 0, ±(α + β) > 0},

and

Ad∗(H)(±X∗2 ) = {αX∗1 + βX∗2 ; α2 − β2 < 0, ±(α− β) < 0}.

Therefore, there exist four open coadjoint orbits Ω±X∗i (i = 1, 2) in g∗III(−1).

Next task is to consider the irreducible unitary representation π := πΩ±X∗1
of

GIII(−1) corresponding to the open coadjoint orbit Ω±X∗1 . To do so, let f :=

±X∗1 ∈ Ω±X∗1 and p = n = 〈X1, X2〉 be a polarization of gIII(−1) at the point f .

The 1-dimensional representation of N = exp p can be written as

ν±X∗1 (exp(aX1 + bX2)) = e±2πia,

where aX1 + bX2 ∈ p. Identifying the coset space N\GIII(−1) with R2 by

R2 3 (x, y) 7→ N expxX3 exp yX4 ∈ N\GIII(−1),

we have a section

s : N\GIII(−1) ' R2 3 (x, y) 7→ expxX3 exp yX4 ∈ GIII(−1),

then the master equation

s(ẋ)g = ns(ẋ, g)s(ẋ · g), (ẋ ∈ N\GIII(−1), g ∈ GIII(−1), ns(ẋ, g) ∈ N)
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for the representation πΩ±X∗1
of GIII(−1) becomes in our case of the form


ex cosh y ex sinh y

ex sinh y ex cosh y

1

1

 (nh) =


1 −a1 −b1

1 −b1 −a1

1

1




ex
′
cosh y′ ex

′
sinh y′

ex
′
sinh y′ ex

′
cosh y′

1

1

 ,

where nh ∈ GIII(−1) = N oH is of the form
1 −a −b

1 −b −a
1

1




ec cosh q ec sinh q

ec sinh q ec cosh q

1

1

 .

Solving the master equation above, we have a1 = aex cosh y + bex sinh y, b1 =

aex sinh y + bex cosh y, x′ = x + c, and y′ = y + q. Then, the representation π of

GIII(−1) can be induced from the representation ν±X∗1 of N . Namely, π = IndGNνp0 .

Therefore, we obtain the following theorem.

Theorem 2.12. The representation π of GIII(−1) on L2(R2, dxdy) corresponding

to the open coadjoint orbits Ω±X∗1 can be written as

πΩ±X∗1
(g(a, b, c, q)f(x, y) = e±2πi(aex cosh y+bex sinh y)f(x+ c, y + q) (f ∈ L2(R2)).

(2.59)

We also compute the representation π ofGIII(−1) with respect to basis {X1, X2, X3, X4}
by computing each master equation as follows.

• the master equation with respect to eaX1 is of the form

expxX3 exp yX4 exp aX1 = expxX3 exp(eadyX4aX1) exp yX4

= expxX3 exp((a cosh y)X1 + (a sinh y)X2) exp yX4

= exp(eadxX3 ((a cosh y)X1 + (a sinh y)X2)) expxX3 exp yX4

= exp((aex cosh y)X1 + (aex sinh y)X2) expxX3 exp yX4.
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• the master equation with respect to ebX2 is of the form

expxX3 exp yX4 exp bX2 = expxX3 exp(eadyX4bX2) exp yX4

= exp((bex sinh y)X1 + (bex cosh y)X2) expxX3 exp yX4.

• the master equation with respect to ecX3 is of the form

expxX3 exp yX4 exp cX3 = exp(x+ c)X3 exp yX4.

• the master equation with respect to eqX4 is of the form

expxX3 exp yX4 exp qX4 = expxX3 exp(y + q)X4.

Therefore, we have the formulas below.

(πΩ±X∗1
(exp aX1)f)(x, y) = e±2πiaex cosh yf(x, y),

(πΩ±X∗1
(exp bX2)f)(x, y) = e±2πibex sinh yf(x, y),

(πΩ±X∗1
(exp cX3)f)(x, y) = f(x+ c, y),

(πΩ±X∗1
(exp qX4)f)(x, y) = f(x, y + q) (f ∈ L2(R2)). (2.60)

Similarly we can apply exactly the same argument as the one for construction of

representation π of GIII(−1) corresponding to the open coadjoint orbit Ω±X∗1 to

construction of representation π of GIII(−1) corresponding to the open coadjoint

orbit Ω±X∗2 .

Now we shall compute the Duflo-Moore operator of representation π := πΩ±X∗1

of GIII(−1) given by (2.60) corresponding to the open coadjoint orbits Ω±X∗1 di-

rectly. For φ ∈ Cc(GIII(−1)), we have∫
GIII(−1)

φ(g) dg =

∫
R4

φ(eaX1ebX2ecX3eqX4)
dadbdcdq

e2c
.

We compute for f1, f2 ∈ L2(R2) the integral∫
GIII(−1)

|(f1|π(g)f2)|2 dg. (2.61)
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Now we put g = eaX1ebX2g′ where g′ = ecX3eqX4 . We obtain

(f1|π(g)f2) =

∫
R2

f1(x, y)e±2πiex(a cosh y+b sinh y)π(g′)f2(x, y) dxdy

=

∫
R

∫
R
e∓2πi(aex cosh y+bex sinh y)f1(x, y)π(g′)f2(x, y) dx dy

=

∫ ζ1 − ζ2 > 0

ζ1 + ζ2 > 0


e∓2πi(aζ1+bζ2)f1(x, y)π(g′)f2(x, y)

dζ1 dζ2

ζ2
1 − ζ2

2

(ζ1 = ex cosh y, ζ2 = ex sinh y, dxdy =
1

ζ2
1 − ζ2

2

dζ1 dζ2). (2.62)

Using Plancherel formula and (2.62), then we have∫
R2

|(f1|π(eaX1)π(ebX2)π(g′)f2)|2 da db

=

∫ ζ1 − ζ2 > 0

ζ1 + ζ2 > 0


|f1(x, y)π(g′)f2(x, y)|2 1

(ζ2
1 − ζ2

2 )2
dζ1 dζ2

=

∫
R2

|f1(x, y)π(g′)f2(x, y)|2 1

e4x
e2x dx dy

=

∫
R2

|f1(x, y)|2 |π(g′)f2(x, y)|2 e−2x dx dy. (2.63)

On the other hand, we also have

π(g′)f2(x, y) = π(ecX3)π(eqX4)f2(x, y)

= f2(x+ c, y + q). (2.64)

Therefore, we obtain∫
R2

|π(ecX3)π(eqX4)f2(x, y)|2 dcdq
e2c

=

∫
R2

|f2(x+ c, y + q)|2 dc
e2c

dq

=

∫
R2

|f2(c′, q′)|2 e2x dc′

e2c′
dq′

(c′ = x+ c, q′ = y + q). (2.65)
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Combining (2.63) and (2.65), then the formula (2.61) becomes∫
GIII(−1)

|(f1|π(g)f2)|2 dg =

∫
R4

|(f1|π(eaX1)π(ebX2)π(ecX3)π(eqX4)f2|2
dadbdcdq

e2c

=

∫
R2

∫
R2

|f1(x, y)|2 |f2(c′, q′)|2 e2x dc
′dq′

e2c′
e−2x dxdy

=

∫
R2

|f1(x, y)|2 dxdy ·
∫
R2

|e−c′f2(c′, q′)|2 dc′dq′

= ||f1||L2(R) ·
∫
R2

|e−c′f2(c′, q′)|2 dc′dq′.

(2.66)

Therefore, we obtain the following theorem.

Theorem 2.13. The Duflo Moore operator for the representation π of GIII(−1)

given in (2.60) can be written of the form

Cπf(x, y) = e−xf(x, y) ( f ∈ L2(R2) ). (2.67)

Now from (2.60), we have

dπ(X1)f(x, y) = ±2πiex cosh y f(x, y),

dπ(X2)f(x, y) = ±2πiex sinh y f(x, y). (2.68)

Furthermore, we have

dπ(X1)2f(x, y)− dπ(X2)2f(x, y) = 4π2i2e2xf(x, y).

Therefore, the Duflo-Moore operator for the representation π of GIII(−1) as in

(2.60) related to the Pfaffian of gIII(−1) can be written as

Proposition 2.14. The Duflo-Moore operator for the representation π of GIII(−1)

as in (2.60) related to the Pfaffian of gIII(−1) is the form

Cπ = 2π|dπ(QgIII(−1))|−1/2, (2.69)

where QgIII(−1) := Pf(gIII(−1)) = −X2
1 +X2

2 .

Secondly, when ε = 1, the set {αX∗1 + βX∗2 ; α2 + β2 6= 0} is an H-orbit
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Ad∗(H)X∗1 . In conclusion, we have just one open coadjoint orbit of the form ΩX∗1

in g∗III(1). Now let us construct the irreducible unitary representation π := πΩX∗1

of GIII(1) corresponding to the open coadjoint orbit ΩX∗1
. Let f := X∗1 be element

of ΩX∗1
and p := RX1 ⊕ RX2 ⊂ gIII(1) be a polarization at the point f . The

1-dimensional representation of N can be written as νX∗1 (exp(aX1 + bX2)) = e2πia,

where aX1 +bX2 ∈ p. Moreover, we choose a section s : N |G→ G which identified

by R×[0, 2π)→ G. Our task is to solve the master equation s(x)g = hs(x, g)s(x·g)

with respect to the basis {X1, X2, X3, X4} as follows.

• the master equation with respect to eaX1 is of the form

expxX3 exp yX4 exp aX1 = expxX3 exp(eadyX4aX1) exp yX4

= expxX3 exp((a cos y)X1 − (a sin y)X2) exp yX4

= exp(eadxX3 ((a cos y)X1 − (a sin y)X2)) expxX3 exp yX4

= exp((aex cos y)X1 − (aex sin y)X2) expxX3 exp yX4.

• the master equation with respect to ebX2 is of the form

expxX3 exp yX4 exp bX2 = expxX3 exp(eadyX4bX2) exp yX4

= exp((bex sin y)X1 + (bex cos y)X2) expxX3 exp yX4.

• the master equation with respect to ecX3 is of the form

expxX3 exp yX4 exp cX3 = exp(x+ c)X3 exp yX4.

• the master equation with respect to eqX4 is of the form

expxX3 exp yX4 exp qX4 = expxX3 exp(y + q)X4.

Therefore, the irreducible unitary representation πΩX∗1
of GIII(1) on L2(R×[0, 2π))

corresponding to the open coadjoint orbit ΩX∗1
with respect to the basis {X1, . . . , X4}
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can be written as

(πΩX∗1
(exp aX1)f)(x, y) = e2πiaex cos yf(x, y),

(πΩX∗1
(exp bX2)f)(x, y) = e2πibex sin yf(x, y),

(πΩX∗1
(exp cX3)f)(x, y) = f(x+ c, y),

(πΩX∗1
(exp qX4)f)(x, y) = f(x, y + q) (f ∈ L2(R+ × [0, 2π))). (2.70)

Furthermore, the Duflo-Moore operator for the representation π of GIII(1) in (2.70)

can be computed in the following way. For φ ∈ Cc(GIII(1)), we have∫
GIII(1)

φ(g) dg =

∫
R4

φ(eaX1ebX2ecX3eqX4)
dadbdcdq

e2c
.

We compute for f1, f2 ∈ L2(R2) the integral∫
GIII(1)

|(f1|π(g)f2)|2 dg. (2.71)

Now we put g = eaX1ebX2g′ where g′ = ecX3eqX4 . We obtain

(f1|π(g)f2) =

∫
[0,2π)

∫
R
f1(x, y)e2πiex(a cos y+b sin y)π(g′)f2(x, y) dxdy

=

∫
[0,2π)

∫
R
e2πi(aex cos y+bex sin y)f1(x, y)π(g′)f2(x, y) dx dy

=

∫
R2

e2πi(aζ1+bζ2)f1(x, y)π(g′)f2(x, y)
dζ1 dζ2

ζ2
1 + ζ2

2

(ζ1 = ex cos y, ζ2 = ex sin y, dxdy =
1

ζ2
1 + ζ2

2

dζ1 dζ2). (2.72)
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Using Plancherel formula and (2.72), then we have∫
R2

|(f1|π(eaX1)π(ebX2)π(g′)f2)|2 da db

=

∫
R2

|f1(x, y)π(g′)f2(x, y)|2 1

(ζ2
1 + ζ2

2 )2
dζ1 dζ2

=

∫
[0,2π)

∫
R
|f1(x, y)π(g′)f2(x, y)|2 1

e4x
e2x dx dy

=

∫
[0,2π)

∫
R
|f1(x, y)|2 |π(g′)f2(x, y)|2 e−2x dx dy. (2.73)

On the other hand, we also have

π(g′)f2(x, y) = π(ecX3)π(eqX4)f2(x, y)

= f2(x+ c, y + q). (2.74)

Therefore, we obtain∫
R2

|π(ecX3)π(eqX4)f2(x, y)|2 dcdq
e2c

=

∫
R2

|f2(x+ c, y + q)|2 dc
e2c

dq

=

∫
R2

|f2(c′, q′)|2 e2x dc′

e2c′
dq′

(c′ = x+ c, q′ = y + q). (2.75)

Combining (2.73) and (2.75), then the formula (2.71) becomes∫
GIII(1)

|(f1|π(g)f2)|2 dg =

∫
R4

|(f1|π(eaX1)π(ebX2)π(ecX3)π(eqX4)f2|2
dadbdcdq

e2c

=

∫
[0,2π)

∫
R

∫
R2

|f1(x, y)|2 |f2(c′, q′)|2 e2x dc
′dq′

e2c′
e−2x dxdy

=

∫
[0,2π)

∫
R
|f1(x, y)|2 dxdy ·

∫
R2

|e−c′f2(c′, q′)|2 dc′dq′

= ||f1||L2(R) ·
∫
R2

|e−c′f2(c′, q′)|2 dc′dq′.

(2.76)
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Therefore, we obtain the following theorem.

Theorem 2.15. The Duflo Moore operator for the representation π of GIII(1)

given in (2.70) can be written of the form

Cπf(x, y) = e−xf(x, y) ( f ∈ L2(R× [0, 2π)) ). (2.77)

Now from (2.70), we have

dπ(X1)f(x, y) = 2πiex cos y f(x, y),

dπ(X2)f(x, y) = 2πiex sin y f(x, y). (2.78)

From equations above, then we have

dπ(X1)2f(x, y) + dπ(X2)2f(x, y) = 4π2i2e2xf(x, y).

Thus, the Duflo-Moore operator for the representation π of GIII(1) related to the

Pfaffian of gIII(1) can be written as

Proposition 2.16. The Duflo-Moore operator for the representation π of GIII(1)

given in (2.70) related to the Pfaffian of gIII(1) can be written as

Cπ = 2π|dπ(QgIII(1))|−1/2, (2.79)

where QgIII(1) := Pf(gIII(1)) = −X2
1 −X2

2 .

We also compute the Duflo-Moore operator for the representation of GIII(1)

given in (2.70) by a different way as in Proposition 4.2.
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Chapter 3

General Results for V oH

Let g be a semi-direct sum of V ∼= Rn and h ⊂ gl(V ), denoted by g := V o h

and its Lie group be denoted by G := V oH, where H is the connected subgroup of

GL(V ) correponding to h. In this chapter we give general results for G, especially

conditions for coadjoint orbits of G to be open in g∗. If this happens, namely the

coadjoint orbit of G at ξ0 ∈ g∗, denoted by Ωξ0
, is open in g∗, then we have that

the Lie algebra g = V o h is Frobenius. Furthermore, when the representation of

G is square-integrable, then we compute its Duflo-Moore operator, particularly for

hp0
= {0} and the other for hp0

6= {0}.

3.1 Conditions for coadjoint orbits of G = V oH

to be open in g∗

Let G be a semi-direct product of V which is isomorphic to an n-dimensional

real vector space Rn and a connected subgroup H of GL(V ), and let g := V oh be

its Lie algebra with g∗ := V ∗ ⊕ h∗ as its dual space. For p ∈ V ∗ and A ∈ End(V ),

we define a linear functional A∗p by

〈A∗p, v〉 = 〈p,Av〉 (v ∈ V ). (3.1)

For u, v ∈ V,A ∈ h, and a ∈ H, let X(v, A) be an element of g, and let g(u, a)

be an element of G. We also write g(a) = g(0, a) and g(u) = g(u, I). We decribe
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adjoint actions of G on g by

Ad(g(a))X(v, A) = X(av,Ad(a)A),

and

Ad(g(u))X(v, A) = X(v − Au,A).

Furthermore, we have formulas for coadjoint actions of G and g on g∗ respectively

as follows :

Ad∗(g(a))ξ(p, α) = ξ((a−1)∗p,Ad∗(a)α),

Ad∗(g(u))ξ(p, α) = ξ(p, α + u.p),

ad∗(X(v, A))ξ(p, α) = ξ(−A∗p, ad∗(A)α + v.p), (3.2)

where u.p ∈ h∗ is defined by 〈u.p, A〉 := 〈p,Au〉 (A ∈ h). Let ξ0 = ξ(p0, α0) be

an element of g∗ with p0 ∈ V ∗ and α0 ∈ h∗, we consider conditions for coadjoint

orbit Ωξ0 := Ad∗(G)ξ0 ⊂ g∗ to be open in g∗ as follows.

Lemma 3.1. The coadjoint orbit Ωξ0 is open in g∗ if and only if the map

f : g→ g∗ (3.3)

defined by

f : g 3 X(v,A) 7→ ad∗(X(v, A))ξ0 = ξ(−A∗p0, ad∗(A)α0 + v.p0) ∈ g∗ (3.4)

is bijective.

Proof. Assume that the coadjoint orbit Ωξ0 is open in g∗. This means that f is

surjective. Since dim g = dim g∗, surjectivity of f is equivalent to bijectivity.

Let hp0 be the stabilizer of h at p0 ∈ V ∗. In addition, let l be a subspace of h

such that h = l ⊕ hp0 . Now let $ be a canonical projection of g∗ = V ∗ ⊕ h∗ onto

V ∗.

Lemma 3.2. The coadjoint orbit $(Ωξ0
) is open in V ∗ if and only if

V 3 v 7−→ v · p0 ∈ l∗
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is bijective.

Proof. First of all, let assume that $(Ωξ0
) is open in V ∗. We observe that

$(Ωξ0
) = $({Ad∗(g)ξ0 ; g ∈ G})

= $({Ad∗(g(v, h))ξ0 ; v ∈ V, h ∈ H})
= {(h−1)∗p0 ; h ∈ H} ' H/Hp0 .

Since $(Ωξ0
) ' H/Hp0 and $(Ωξ0

) is open in V ∗, then dimV ∗ = dim h− dim hp0 .

On the other hand, dim h = dim l+ dim hp0 . Therefore, we obtain dim l = dimV ∗.

Furthermore, let B an element of l for which −B∗p0 = 0, then B ∈ hp0 . We get

B ∈ l ∩ hp0 = {0}. Therefore, B = 0. We obtain that the map

l 3 B 7−→ −B∗p0 ∈ V ∗

is always injective, so that bijective since dim l = dimV ∗. Let us take v ∈ V for

which v · p0 = 0, then for all B ∈ l we have

〈v · p0, B〉 = 〈B∗p0, v〉 = 0.

Thus, v = 0. This means the map V 3 v 7−→ v · p0 ∈ l∗ is injective, so that it is

bijective since dimV = dim l∗.

Now we assume that the map V 3 v 7−→ v · p0 ∈ l∗ is bijective. We have dimV =

dim l∗. Let us take B ∈ l for which B∗p0 = 0, then for all v ∈ V we have

〈B∗p0, v〉 = 〈v · p0, B〉 = 0.

Therefore, B = 0. This means, l 3 B 7−→ −B∗p0 ∈ V ∗ is injective, so that

bijective. Thus, $(Ωξ0
) is open.

Theorem 3.3. Ωξ0 is open if and only if the following two conditions are satisfied

:

1. $(Ωξ0) is open in V ∗.

2. hp0 = 0, or the coadjoint orbit Ad∗(Hp0)(α0|hp0 ) in h∗p0
through α0|hp0 ∈ h∗p0

is open.
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Proof. In the previous construction, h = l ⊕ hp0 , so that we have g = V ⊕ l ⊕ hp0

and g∗ = V ∗ ⊕ l∗ ⊕ h∗p0
. We note that l∗ is naturally identified with (h⊥p0

). For

(p, β, γ) ∈ V ∗ ⊕ l∗ ⊕ h∗p0
, we write ζ(p, β, γ) for the corresponding element of g∗.

Namely,

〈ζ(p, β, γ), X(v,B + C)〉 := 〈p, v〉+ 〈β,B〉+ 〈γ, C〉 ,

where B ∈ l and C ∈ hp0 . In other words, ξ(p, α) = ζ(p, α|l, α|hp0 ) for p ∈ V ∗ and

α ∈ h∗. Then, the map f0 : g→ g∗ in (3.4) is described as

X(v, 0) 7−→ ζ(0, v.p0, 0),

X(0, B) 7−→ ζ(−B∗p0, ad∗(B)(α0|l), ad∗(B)(α0|hp0 ) (B ∈ l),

X(0, C) 7−→ ζ(0, ad∗(C)(α0|l), ad∗(C)(α0|hp0 ) (C ∈ hp0). (3.5)

We shall prove ”if” part. Assume $(Ωξ0) is open and Ad∗(Hp0)(α0|hp0 ) ⊂ hp0 is

open. As is seen before dim l = dimV ∗. Therefore, the map l 3 B 7→ −B∗p0 ∈ V ∗

is bijective. For a given ζ(p1, β1, γ1) ∈ g∗, we can find X(v1, B1 + C1) for which

ad∗(X(v1, B1 + C1))ξ0 = ζ(p1, β1, γ1).

In fact, we have by (3.5)

p1 = −B∗1p0, (3.6)

β1 = v1.p0 + ad∗(B1 + C1)(α0|l), (3.7)

γ1 = ad∗(B1 + C1)(α0|hp0 ). (3.8)

First, by (3.6) we find B1 ∈ l. Then by (3.8) and openness of Ad∗(Hp0
)(α|hp0 ), we

can find C1 ∈ hp0 . Finally, we can find v1 ∈ V by (3.7) and Lemma 3.2. Thus, we

prove ”if part’ for the case hp0
6= {0}, and the case hp0

= {0} is proved similarly.

Now we shall prove the ”only if” part. If $(Ωξ0) is not open in V ∗, then there

exists p1 ∈ V ∗ such that A∗p0 6= p1 for any A ∈ h. This implies that ad∗(X)ξ0 6=
ζ(p1, ∗, ∗) by (3.6) for any X ∈ g. Therefore, Ωξ0 is not open in g∗.

Assume that $(Ωξ0) is open. If hp0 6= {0} and Ad∗(Hp0)(α0|hp0 ) is not open in

h∗p0
, then there exists γ1 ∈ h∗p0

such that ad∗(C)(α|hp0 ) 6= γ1 for any C ∈ hp0 . This

implies that ad∗(X)ξ0 6= ζ(0, 0, γ1) for any X ∈ g. In fact, if ad∗(X)ξ0 = ζ(0, 0, γ1)

with X = X(v1, B1 + C1), then B∗1p0 = 0 means B1 = 0, because as is already
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seen that openness of $(Ωξ0) implies B1 7→ −B∗1p0 is injective. On the other hand,

(3.8) means γ1 = ad∗(C1)(α0|hp0 ). This is a contradiction, therefore, Ωξ0 is not

open in g∗ either. We have shown that if Ωξ0 is open in g∗ then $(Ωξ0) is open in

V ∗ and Ad∗(Hp0)(α0|hp0 ) is open in h∗p0
or hp0 = {0}.

As a corollary of Theorem 3.3, we obtain the following result.

Corollary 3.4. The Lie algebra g = V oh is a Frobenius Lie algebra if and only if

there exists p0 ∈ V ∗ such that h.p0 = V ∗ and the stabilizer hp0
⊂ h is a Frobenius

Lie algebra.

We shall see later that Corollary 3.4 will be applied to similitude and connected

affine Lie group in Chapter IV.

3.2 Duflo-Moore Operators for V oH with trivial

stabilizer case of H

As in the previous section, let G be a semi-direct product of V ∼= Rn and a

Lie subgroup H of GL(V ). We take ξ0 := ξ(p0, α0) in g∗ and assume that Ωξ0 is

open as described in Theorem 3.3. Furthermore, we assume hp0
= {0}. The case

hp0
6= {0}, it shall be discussed in the Section 3.3.

Lemma 3.5.

Ωξ0 = Ωξ(p0,0). (3.9)

Proof. Since hp0 = {0}, we have h⊥p0
= h∗ and the bijection

V 3 u 7→ u · p0 ∈ h∗

as in the proof of Lemma 3.2. Let u0 ∈ V for which u0 · p0 = α0. Then,

ξ0 = ξ(p0, α0) = Ad∗(g(u0))ξ(p0, 0)

by (3.2). Therefore, Ωξ0 = Ωξ(p0,0).

We define an action of H on V ∗ by

h · p := (h−1)∗p (h ∈ H, p ∈ V ∗).
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Then Op0 := $(Ωp0) ⊂ V ∗ is the H-orbit {h · p0;h ∈ H}. By Theorem 3.3, Op0 is

open in V ∗. By Lemma 3.5, we assume ξ0 = ξ(p0, 0) in what follows. We also note

that Ωξ0
= Op0 ⊕ V ∗.

Furthermore, since the stabilizer Hp0 = {1}, we have a bijection H 3 h 7→
h.p0 ∈ Op0 . In addition, for p ∈ Op0 , we denote by hp a unique element of H for

which hp · p0 = p.

Lemma 3.6. Define a linear form

µ : Cc(H)→ R

by

µ(ψ) :=

∫
Op0

ψ(hp) |dethp| dp (ψ ∈ Cc(H)). (3.10)

Then, µ is left invariant.

Proof. For each a ∈ H, we define left translation L(a)ψ(h) := ψ(a−1h). Then we

have,

µ(L(a)ψ) =

∫
Op0

ψ(a−1hp)|dethp| dp

=

∫
Op0

ψ(ha−1·p)|dethp| dp

=

∫
Op0

ψ(hp′)|detha·p′| |det a|−1 dp′ (p′ = a−1 · p)

=

∫
Op0

ψ(hp′)|det a · hp′ | |det a|−1 dp′

=

∫
Op0

ψ(hp′)|det a| · |dethp′ | |det a|−1 dp′

=

∫
Op0

ψ(hp′)|dethp′ | dp′ = µ(ψ).

Therefore, µ is left invariant.

By a uniqueness of Haar measure and Lemma 3.6, there exists a C0 > 0 such

that ∫
H

ψ(h) dh = C0µ(ψ) = C0

∫
Op0

ψ(hp)|dethp| dp. (3.11)
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If we define D(p) := C0|dethp| (p ∈ Op0
), then (3.11) is rewritten as∫

H

ψ(h) dh =

∫
Op0

ψ(p)D(p) dp (ψ ∈ Cc(H)). (3.12)

Let us consider a unitary representation of G corresponding to Ωξ0 ⊂ g∗. In this

case, V ⊂ g is a polarization at ξ0. Let π be the induced representation IndGV νp0

of G. By Mackey Theory, π is irreducible and we realize π on L2(H, dh) by

π(g(a))f(h) = f(a−1h), (3.13)

π(g(v))f(h) = νp0(h−1v)f(h) (f ∈ L2(H, dh), a, h ∈ H, v ∈ V ). (3.14)

Since νp0(h−1v) = e2πi〈p0,h−1v〉 = e2πi〈h·p0,v〉, we rewrite (3.14) as

π(g(v))f(h) = e2πi〈h·p0,v〉f(h). (3.15)

Now we shall compute the Duflo-Moore operator Cπ for the representation π. To

do that, let f1 and f2 be elements in L2(H). We shall consider the integral∫
H

∫
V

|(f1|π(g(v))π(g(a))f2)L2(H)|2 dv |det a|−1 da. (3.16)

We obtain by (3.15)

(f1|π(g(v))π(g(a))f2)L2(H) =

∫
H

f1(h)π(g(v))π(g(a))f2(h) dµl(h)

=

∫
H

e−2πi〈h.p0,v〉f1(h)π(g(a))f2(h) dµl(h). (3.17)

Using (3.12), the last term equals∫
Op0

e−2πi〈p,v〉f1(hp)π(g(a))f2(hp)D(p) dp. (3.18)

By the Plancherel formula, we have∫
V

|(f1|π(g(v))π(g(a))f2)L2(H)|2 dv =

∫
Op0

|f1(hp)|2|π(g(a))f2(hp)|2D(p)2 dp.

(3.19)
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On the other hand, we have∫
H

|π(g(a))f2(hp)|2 |det a|−1 da =

∫
H

|f2(a−1 · hp)|2 |det a|−1 da

= |dethp|−1

∫
H

|f2(h′)|2 |deth′|∆H(h′)−1 dh′ (h′ = a−1 · hp).

(3.20)

By (3.19) and Fubini Theorem, we obtain∫
H

∫
V

|(f1|π(g(v))π(g(a))f2)L2(H)|2 dv |det a|−1 da

=

∫
H

{∫
Op0

|f1(hp)|2 |π(g(a))f2(hp)|2D(p)2 dp

}
|det a|−1 da

=

∫
Op0
|f1(hp)|2

{∫
H

|f2(a−1hp)|2 |det a|−1 da

}
D(p)2 dp. (3.21)

Then we apply (3.20) and D(p) = C0|dethp|, we see that (3.21) equals∫
Op0
|f1(hp)|2C0|dethp| dp

{
C0

∫
H

|f2(h′)|2 |deth′|∆H(h′)−1 dh′
}
. (3.22)

Using (3.11), we see that (3.22) equals

||f1||2L2(H) ·
{
C0

∫
H

|f2(h′)|2 |deth′|∆H(h′)−1 dh′
}
. (3.23)

Substituting ∆G(h′)−1 = |deth′|∆H(h′)−1, the result equals

||f1||2L2(H) ·
{
C0

∫
H

|f2(h′)|2 ∆G(h′)−1 dh′
}
. (3.24)

Therefore, from (3.24) we obtain the Duflo-Moore operator for the representation

π of G as follows.

Theorem 3.7. We assume that hp0 = {0}. The Duflo-Moore operator Cπ :

L2(H)→ L2(H) of the representation π := IndGV νp0 is described as

Cπf2(h) = C
1/2
0 ∆G(h)−1/2f2(h) (f2 ∈ L2(H)), (3.25)
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where C0 is defined in (3.11).

3.3 General Formula of Duflo-Moore Operator

for V oH

As in the previous section, let G be a semi-direct product of V ∼= Rn and a Lie

subgroup H of GL(V ). We take ξ0 := ξ(p0, α0) in g∗ and assume that Ωξ0 is open

as described in Theorem 3.3. Furthermore, we assume hp0
6= {0}.

Lemma 3.8. For h0 ∈ Hp0
, we have

∆G(h0) = ∆Hp0
(h0). (3.26)

Proof. We shall consider the coadjoint orbit Ωp0 := Ad∗(G)p0 ⊂ g∗ and the isotropy

representation

τ : Hp0 → GL(Tp0Ωp0).

We have

Tp0Ωp0 = {ad∗(X(v,A))p0; v ∈ V,A ∈ h}
= {ξ(−A∗p0, v.p0); v ∈ V,A ∈ h}, (3.27)

and we see that v.p0 ∈ (hp0
)⊥ by Lemma 3.2. Thus,

Tp0Ωp0 = V ∗ ⊕ (hp0
)⊥. (3.28)

For h0 ∈ Hp0
, the linear map

τ(h0) : Tp0Ωp0 → Tp0Ωp0 (3.29)

is symplectic, so that det τ(h0) = 1. On the other hand by (3.28)

det τ(h0) = det (τ(h0)|V ∗) · det (τ(h0)|h⊥p0 )

= (deth0)−1 · det Adh(h0)−1/det Adhp0
(h0)−1

= (deth0)−1 ·∆H(h0)/∆Hp0
(h0). (3.30)
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Therefore,

deth0 = ∆H(h0)/∆Hp0
(h0).

On the other hand,

deth0 = ∆H(h0)/∆G(h0),

which implies that ∆G(h0) = ∆Hp0
(h0).

We also obtain

Theorem 3.9. Let m0 ⊂ hp0
be a polarization at α0|hp0 satisfying Pukanszky con-

dition and let π0 be the induced representation Ind
Hp0
expm0να0 of Hp0

.

1. p0 := V o m0 ⊂ g is a polarization at ξ0 = ξ(p0, α0) satisfying Pukanszky

condition.

2. π := IndGexp p0
νξ0 is irreducible if π0 is irreducible.

3. π is square-integrable if π0 is square-integrable.

Proof. For the first part, let us observe the value of linear functional ξ0 on [p0, p0].

Since we have

〈ξ0, [v + A, v′ + A′]〉 = p0(Av′ − A′v) + α0([A,A′]) = 0 (v, v′ ∈ V,A,A′ ∈ m0),

we see that 〈ξ0, [p0, p0]〉 = 0. Moreover, since m0 is a polarization at α0|hp0 , we

have dimm0 = 1
2
dim hp0

= 1
2
(dim h− n). Therefore we obtain

dim p = n+ dimm0 =
1

2
(n+ dim h) =

1

2
dim g.

Now we shall prove that p0 satisfies Pukanszky condition, namely, for each ξ′0 ∈
ξ0 +p⊥0 , there exist g(v, h) ∈ G so that Ad∗(g(v, h))ξ0 = ξ′0. We recall the notation

in the proof of Theorem 3.3 so that ξ0 = ζ(p0, β0, γ0) and ξ′0 = ζ(p0, β
′
0, γ
′
0) where

β0, β
′
0 ∈ l∗ and γ0, γ

′
0 ∈ h∗0. By the assumption that m0 satisfies Pukansky condition,

we can take h ∈ Hp0
for which γ′0 = Ad∗(h)γ0. Let ξ′′0 := Ad∗(h)ξ0. For C ∈ hp0

,
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we have

〈ξ′′0 , C〉 = 〈Ad∗(h)ξ0, C〉
= 〈ξ0,Ad(h−1)C〉
= 〈ζ(p0, β0, γ0),Ad(h−1)C〉
= 〈γ0,Ad(h−1)C〉
= 〈Ad∗(h)γ0, C〉
= 〈γ′0, C〉.

Therefore, we have ξ′′0 = ζ(p0, β
′′
0 , γ

′
0). On the other hand, by Lemma 3.2, we can

take v ∈ V for which β′0 − β′′0 = v · p0. Then we have

Ad∗(g(v, h))ξ0 = Ad∗(g(v))Ad∗(g(h)ξ0

= Ad∗(g(v))ξ′′0

= Ad∗(g(v))ζ(p0, β
′′
0 , γ

′
0)

= ζ(p0, β
′′
0 + v · p0, γ

′
0)

= ζ(p0, β
′
0, γ
′
0) = ξ′0.

Therefore, p0 satisfies Pukanszky condition.

For the second part, the proof of the statement can be found in [4] and [23]

in the context of Mackey Machine. The last part about square-integrability of

π := IndGexp p0
νξ0 , we can find the detailed proof in [2].

Let us assume that π0 is irreducible and square integrable in what follows. We

shall describe the Duflo-Moore operator of square-integrable representation π of

G. To do that, we realize induced representations in the Blattner model in ([8],

[23]) as follows.
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The representation space Hπ of π is given by

Hπ = L2(G/ exp p0, νξ0)

=

φ : G→ C ;

φ(g expX) = ∆G,exp p0(expX)−1/2νξ0(expX)−1φ(g)

( g ∈ G, X ∈ p0 ),

||φ||2Hπ =

∮
G/ exp p0

|φ(g)|2 dµ(ġ) <∞.

 .

(3.31)

Since G/ exp p0 ' H/ expm0, the space Hπ is identified with L2(H/ expm0, να0)

through the restriction map

Hπ 3 φ 7−→ φ|H ∈ L2(H/ expm0, να0). (3.32)

Then π is realized on L2(H/ expm0, να0) by

π(g(a))φ(h) = φ(a−1h),

π(g(v))φ(h) = νp0
(h−1 · v)φ(h) ( φ ∈ L2(H/ expm0, να0), a, h ∈ H, v ∈ V ),

(3.33)

and the latter formula is rewritten as

π(g(v))φ(h) = e2πi〈h·p0,v〉φ(h). (3.34)

Because of induction by stage, we have

IndHexpm0
να0 ' IndHHp0 (Ind

Hp0
expm0 να0

)

' IndHHp0π0.

This equivalence is realized by the Hilbert space isomorphism

L2(H/ expm0, να0
) 3 φ 7−→ φ̃ ∈ L2(H/Hp0

,Hπ0
)

given by

φ̃(l)(h) := φ(lh)∆H,Hp0
(h)1/2 ( l ∈ H, h ∈ Hp0

). (3.35)
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Indeed, for almost all l ∈ H, we see that φ̃(l) ∈ Hπ0
because

||φ||2 =

∮
H/ expm0

|φ(h)|2dµ0(ḣ)

=

∮
H/Hp0

{
∮
Hp0/ expm0

|φ(lh0)|2∆H,Hp0
(h0)dµ(ḣ0)}dµ0(l̇)

=

∮
H/Hp0

||φ̃(l)||2Hπ0
dµ0(l̇). (3.36)

Theorem 3.10. The representation π = IndGexp p0 νξ0 is isomorphic to IndGGp0 (νp0⊗
π0), where Gp0 := V oHp0

and νp0 ⊗ π0 is defined by

νp0 ⊗ π0(u, h) := νp0(u)π0(h) ( (u, h) ∈ Gp0
).

Proof. Let π′ := IndGGp0 (νp0 ⊗ π0). The representation space of π′ is Hπ′ =

L2(G/Gp0 ,Hπ0) which is isomorphic to L2(H/Hp0 ,Hπ0) via

L2(G/Gp0 ,Hπ0) 3 ψ 7−→ ψ|H ∈ L2(H/Hp0 ,Hπ0).

Then π′ is realized on L2(H/Hp0 ,Hπ0) by

π′(g(a))ψ(h) = ψ(a−1h),

π′(g(v))ψ(h) = νp0
(h−1v)ψ(h) ( a, h ∈ H, v ∈ V, ψ ∈ L2(H/ expm0, να0) ).

(3.37)

Comparing (3.33) and (3.37), we see that the isomorphism

L2(H/ expm0, να0
) 3 φ 7−→ ψ = φ̃ ∈ L2(H/Hp0

,Hπ0
)

defined in (3.35) gives an intertwining operator from π to π′.

Based on Theorem 3.10, we describe the Duflo-Moore operator Cπ for the repre-

sentation π by using Duflo-Moore operator Cπ0 for the representation π0. Now take

a section L = {lp ; p ∈ Op0} ⊂ H of H/Hp0
such that L 3 lp 7→ p = lp.p0 ∈ Op0 is

bijective.
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Lemma 3.11. Define a linear form

µ : E(H/Hp0)→ R

by

µ(f) =

∫
Op0

f(lp)|det lp| dp (f ∈ E(H/Hp0)). (3.38)

Then

1. µ does not depend on the choice of L.

2. µ is left invariant.

3. There exists C0 > 0 such that∮
H/Hp0

f(l) dµ0(l̇) = C0µ(f). (3.39)

Proof. 1. Let L′ := {l′p} be another section of Op0 . We observe that for each

p ∈ Op0 , we can find a unique ap ∈ Hp0 such that l′p = lpap. Moreover, for

f ∈ E(H/Hp0) we have f(la) = ∆H,Hp0
(a)−1f(l), so that∫

Op0
f(l′p)|det l′p| dp =

∫
Op0

f(lpap)|det lpap| dp

=

∫
Op0

f(lp)∆H,Hp0
(ap)

−1 |det lp| |det ap| dp.

By Lemma 3.8, we have det ap = ∆H,Hp0
(ap). Therefore, the last term equals∫

Op0

f(lp)|det lp| dp

as required.
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2. Let l′p = a−1 · la·p which is a section of Op0 . We have

µ(L(a)f) =

∫
Op0

f(a−1lp) |det lp| dp

=

∫
Op0

f(a−1la·p′) |det la·p′| |det a|−1 dp′ (p = a · p′)

=

∫
Op0

f(l′p′) |det l′p′| dp′.

By the first statement, the last term equals µ(f).

3. Since µ is left invariant, the statement follows from a uniqueness of the linear

functional µ0 in Proposition 1.11.

We define DL(p) := C0|det lp|. Then by Lemma 3.11(3), we have∮
H/Hp0

f(l) dµ0(l̇) =

∫
Op0

f(lp)DL(p) dp (f ∈ E(H/Hp0
)). (3.40)

Now for φ1, φ2 ∈ Hπ, we shall evaluate the integral∫
G

|(φ1|π(g)φ2)Hπ |2 dg =

∫
H

∫
V

|(φ1|π(g(v))π(g(h))φ2)Hπ |2 |deth|−1dh dv. (3.41)

We have for g = g(v)g(h) ∈ G

(φ1|π(g)φ2)Hπ =

∫
H/Hp0

(φ̃1(l)|π̃(g)φ2(l))Hπ0
dµ(l̇)

=

∫
Op0

(φ̃1(lp)|π̃(g)φ2(lp))Hπ0
DL(p) dp

=

∫
Op0

e−2πi〈p,v〉(φ̃1(lp)| ˜π(g(h))φ2(lp))Hπ0
DL(p) dp

by (3.36), (3.40), and (3.34). Furthermore, using the Plancherel formula, we have∫
V

|(φ1|π(g(v))π(g(h))φ2)Hπ |2 dv =

∫
Op0
|(φ̃1(lp)| ˜π(g(h))φ2(lp))Hπ0

|2DL(p)2 dp.

(3.42)
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Next task is to consider for each p ∈ Op0 the following integral∫
H

|(φ̃1(lp)| ˜π(g(h))φ2(lp))Hπ0
|2 |deth|−1 dh

=

∫
H

|(φ̃1(lp)| ˜π(g(h−1))φ2(lp))Hπ0
|2 |deth|∆H(h)−1 dh (h→ h−1)

=

∫
H

|(φ̃1(lp)| ˜π(g(h−1))φ2(lp))Hπ0
|2 ∆G(h)−1 dh. (3.43)

By Proposition 1.11, we have∫
H

f(h) dh =

∮
H/Hp0

{
∫
Hp0

f(lh0)∆H,Hp0
(h0) dh0} dµ0(l̇) (f ∈ Cc(H)).

Indeed, the formula is valid for a continuous function f on H if the integrals in

both sides converges. Thus, for a ∈ H we have

∆H(a)

∫
H

f(h) dh =

∫
H

f(aha−1) dh

=

∮
H/Hp0

{
∫
Hp0

f(alh0a
−1)∆H,Hp0

(h0) dh0} dµ0(l̇)

=

∮
H/Hp0

{
∫
Hp0

f(ala−1.ah0a
−1)∆H,Hp0

(h0) dh0} dµ0(l̇).

Using the identification

H/Hp0 3 l̇ 7→ l̇′ ∈ H/aHp0a
−1 = H/Ha.p0 (l′ := ala−1),

we define a linear functional µa on E(H/Ha.p0) in such a way that∫
H/Ha.p0

φ(l′) dµa(l̇
′) =

∫
H/Hp0

φ(ala−1) dµ0(l̇). (3.44)

Based on the observation above, we obtain

Lemma 3.12. For each a ∈ H, we have∫
H

f(h) dh =
1

∆H(a)

∮
H/Ha.p0

{
∫
Hp0

f(l′ah0a
−1)∆H,Hp0

(h0) dh0} dµa(l̇′). (3.45)
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Substituting a = lp and

f(h) = |(φ̃1(lp)| ˜π(g(h−1))φ2(lp))Hπ0
|2 ∆G(h)−1

to Lemma 3.12, we see that (3.43) equals

1

∆H(lp)

∮
H/Hp

{∫
Hp0

|(φ̃1(lp)|[π(g(lph
−1
0 l−1

p ))π(g(l′))−1φ2]∼(lp))Hπ0
|2

×∆G(l′lph0l
−1
p )−1∆H,Hp0

(h0) dh0

}
dµlp(l̇

′)

=
1

∆H(lp)

∮
H/Hp

{∫
Hp0

|(φ̃1(lp)|[π(g(lph
−1
0 l−1

p ))π(g(l′))−1φ2]∼(lp))Hπ0
|2

×∆G(l′)−1∆G(h0)−1∆H,Hp0
(h0) dh0

}
dµlp(l̇

′).

(3.46)

Lemma 3.13. For each φ ∈ Hπ, h0 ∈ Hp0 and a ∈ H we have

[π(g(ah0a
−1))φ]∼(a) = ∆H,Hp0

(h0)1/2π0(h0)[φ̃(a)] (3.47)

as element of Hπ0.

Proof. For h′ ∈ Hp0
, we observe

[π(g(ah0a
−1))φ]∼(a)(h′) = π(g(ah0a

−1))φ(ah′)∆H,Hp0
(h′)1/2

= φ(ah−1
0 a−1ah′)∆H,Hp0

(h′)1/2

= φ(ah−1
0 h′)∆H,Hp0

(h−1
0 h′)1/2∆H,Hp0

(h0)1/2.

Furthermore, the last term equals

∆H,Hp0
(h0)1/2φ̃(a)(h−1

0 h′) = ∆H,Hp0
(h0)1/2π0(h0)[φ̃(a)](h′),

which completes the proof.

Substituting φ = π(g(l′))−1φ2 and a = lp to Lemma 3.13, we have

|(φ̃1(lp)|[π(g(lph
−1
0 l−1

p ))π(g(l′))−1φ2)]∼(lp))Hπ0
|2

= |(φ̃1(lp)|π0(h−1
0 )[ ˜π(g(l′))−1φ2(lp)])Hπ0

|2∆H,Hp0
(h0)−1,
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so that (3.46) becomes

1

∆H(lp)

∮
H/Hp

{∆G(l′)−1

∫
Hp0

|(φ̃1(lp)|π0(h−1
0 )[ ˜π(g(l′))−1φ2(lp)])Hπ0

|2∆G(h0)−1 dh0} dµlp(l̇′).

(3.48)

By Lemma 3.8, (3.48) equals

1

∆H(lp)

∮
H/Hp

{∆G(l′)−1

∫
Hp0

|(φ̃1(lp)|π0(h−1
0 )[ ˜π(g(l′))−1φ2(lp)])Hπ0

|2∆Hp0
(h0)−1 dh0} dµlp(l̇′)

(h−1
0 7→ h0)

=
1

∆H(lp)

∮
H/Hp0

{∆G(l′)−1

∫
Hp0

|(φ̃1(lp)|π0(h0)[ ˜π(g(l′))−1φ2(lp)])Hπ0
|2 dh0} dµlp(l̇′).

(3.49)

Now by square-integrability of π0, we have∫
Hp0

|(φ̃1(lp)|π0(h0)[ ˜π(g(l′))−1φ2(lp)])Hπ0
|2 dh0 = ||φ̃1(lp)||2||Cπ0 [ ˜π(g(l′))−1φ2(lp)]||2Hπ0

.

Thus, (3.49) is equal to

1

∆H(lp)

∮
H/Hp

∆G(l′)−1 ||φ̃1(lp)||2||Cπ0 [ ˜π(g(l′))−1φ2(lp)]||2Hπ0
dµlp(l̇

′). (3.50)

We note that

˜π(g(l′))−1φ2(lp)(h
′) = π(g(l′))−1φ2(lph

′)∆H,Hp0
(h′)1/2

= φ2(l′lph
′)∆H,Hp0

(h′)1/2

= φ̃2(l′lp)(h
′).
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Therefore, (3.50) is equal to

1

∆H(lp)

∮
H/Hp

∆G(l′)−1 ||φ̃1(lp)||2Hπ0
||Cπ0φ̃2(l′lp)||2Hπ0

dµlp(l̇
′)

=
1

∆H(lp)

∮
H/Hp0

∆G(lpll
−1
p )−1 ||φ̃1(lp)||2||Cπ0φ̃2(lpll

−1
p lp)||2Hπ0

dµ0(l̇)

= ||φ̃1(lp)||2Hπ0
.

1

∆H(lp)

∮
H/Hp0

∆G(l)−1||Cπ0φ̃2(lpl)||2Hπ0
dµ0(l̇)

= ||φ̃1(lp)||2Hπ0
.

1

∆H(lp)

∮
H/Hp0

∆G(l−1
p l′)−1||Cπ0φ̃2(l′)||2Hπ0

dµ0(l̇′) (l′ = lpl)

= ||φ̃1(lp)||2Hπ0
.
∆G(lp)

∆H(lp)

∮
H/Hp0

||∆G(l)−1/2 · Cπ0φ̃2(l′)||2Hπ0
dµ0(l̇′),

(3.51)

where we use (3.44) for the first equality. Therefore, using (3.42) and (3.43), the

formula (3.41) equals∫
G

|(φ1|π(g)φ2)Hπ |2 dg =

∫
Op0
||φ̃1(lp)||2Hπ0

∆G(lp)

∆H(lp)
DL(p)2 dp

×
∮
H/Hp0

||∆G(l′)−1/2 · Cπ0φ̃2(l′)||2Hπ0
dµ0(l̇′). (3.52)

Using Lemma 3.11, the formula (3.52) equals∫
G

|(φ|π(g)φ2)|2 dg =

∫
Op0
||φ̃1(lp)||2Hπ0

· C0|det lp| dp

×
∮
H/Hp0

||C1/2
0 ∆G(l′)−1/2 · Cπ0φ̃2(l′)||2Hπ0

dµ0(l̇′)

= ||φ1||2Hπ ·
∮
H/Hp0

||C1/2
0 ∆G(l′)−1/2 · Cπ0φ̃2(l′)||2Hπ0

dµ0(l̇′).

(3.53)

Therefore, by (3.53) we obtain

Theorem 3.14. The the Duflo-Moore operator of (π,Hπ) can be described as

C̃πφ(l) = C
1/2
0 ∆

−1/2
G (l)Cπ0φ̃(l) ( a.a. l ∈ H, φ̃(l) ∈ Hπ0 ). (3.54)
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Chapter 4

Application for similitude and

affine Lie group cases

The goal of this Chapter is to apply previous results to the Lie algebras of simil-

itude Lie group Sim(n) := Rn o (R+ × SO(n)) and the connected affine Lie group

Aff+(n) := Rn o GL+
n (R). We shall describe the condition for the coadjoint orbits

of Sim(n) and Aff+(n) to be open in each dual space respectively. Particularly,

when a representation of Aff+(n) is square-integrable, we compute its Duflo-Moore

operator. We shall also describe the Pfaffian of aff(n) = Lie(Aff+(n)).

4.1 The Lie algebra Rn o (R⊕ so(n))

As an application of Theorem 3.3 and Corollary 3.4, we see that

Theorem 4.1. The Lie algebra g := Rn o (R⊕ so(n)) of the similitude Lie group

Sim(n) is not a Frobenius Lie algebra for n ≥ 3.

Proof. Let H be the group R+ × SO(n) acting on Rn by

h · x = rAx (x ∈ Rn, h := (r, A) ∈ H).

Then H acts on (Rn)∗ identified with the space of row vectors by

h · p = r−1pA−1 (p ∈ (Rn)∗, h := (r, A) ∈ H).
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Let ξ0(p0, α0) ∈ g∗ ∼= (Rn)∗⊕(R∗⊕so(n)∗) and we choose p0 = (0, 0, . . . , 1) ∈ (Rn)∗.

Then

Hp0
= {h ∈ H ; h · p0 = p0}
= {(r, A) ∈ H ; r−1p0A

−1 = p0}

∼=

{
(1,

(
M 0

0 1

)
) ; M ∈ SO(n− 1)

}
∼= SO(n− 1). (4.1)

Now we consider the orbits of H at p0 as follows.

H · p0 = {h · p0 ; h ∈ H}
= {r−1p0A

−1 ; A ∈ SO(n), r > 0}
= {rp0A ; A ∈ SO(n), r > 0}.

This set is equal to (Rn)∗ \ {0}. To see this, let p ∈ (Rn)∗ \ {0}. Put r := ||p|| > 0

and q := 1
rp ∈ (Rn)∗ \ {0}. Then ||q|| = 1 so that we can take A ∈ SO(n) for

which q = p0A. Thus, p = rq = rp0A ∈ H · p0 as required. Moreover, we note for

p1 = h1 · p0, (h1 ∈ H), we have Hp1
= h1Hp0

h−1
1 . Therefore, we get the stabilizer

of H at p as

Hp '

{
H = R+ × SO(n) (p = 0),

SO(n− 1) (p ∈ H · p0).
(4.2)

We can see from Theorem 3.3 and Corollary 3.4 that

1. If n = 2, then so(1) = {0} and Hp0
is trivial, so that g := R2 o (R+ × so(2))

is a Frobenius Lie algebra as proved in [12], but

2. If n ≥ 3, then so(n − 1) 6= {0} which is unimodular. Thus, so(n − 1) nor

R+ ⊕ so(n− 1) is not a Frobenius Lie algebra. Therefore, g := Rn o (R+ ×
so(n)) is not a Frobenius Lie algebra either.

Remark 5. Although the Lie algebra of Sim(n) (n ≥ 3) is not Frobenius, Sim(n)

has square-integrable representations as is found in [1, p.308] and [20].

Let us consider the similitude group Sim(n), particularly for the case n = 2,

that is, Sim(2) := V oH where V ∼= R2 and H ∼= R+× SO(2). The multiplication
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in Sim(2) is given as follow.

g(v, r, A)g(v′, r′, A′) = g(v+rAv′, rr′, AA′) (v, v′ ∈ R2, r, r′ ∈ R+, A,A
′ ∈ SO(2)).

Recalling that the Lie group GIII(1) corresponds to gIII(1) and noting that

ad(X4)(X2 X1) = (X2 X1)

(
0 −1

1 0

)
.

Therefore, we have an isomorphism

GIII(1) 3 eaX1ebX2ecX3eqX4 7−→ (

(
b

a

)
, (ec,

(
cos q − sin q

sin q cos q

)
)) ∈ Sim(2).

We recall the representation πΩX∗1
of GIII(1) on L2(R+ × [0, 2π)) as in (2.70) as

follows.

(πΩX∗1
(exp aX1)f)(x, y) = e2πiaex cos yf(x, y),

(πΩX∗1
(exp bX2)f)(x, y) = e2πibex sin yf(x, y),

(πΩX∗1
(exp cX3)f)(x, y) = f(x+ c, y),

(πΩX∗1
(exp qX4)f)(x, y) = f(x, y + q) (f ∈ L2(R+ × [0, 2π))).

On the other hand, we obtain the representation π of Sim(2) on L2(H, dh) from

(3.13) as follows.

(π(exp aX1)F )(h) = e2πiaex cos yF (h),

(π(exp bX2)F )(h) = e2πibex sin yF (h) (h ∈ H, F ∈ L2(H, dh)). (4.3)

Moreover, from (3.15) we also obtain the representation π of Sim(2) on L2(H, dh)
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as below

(π(exp cX3)F )(e−x,

(
cos y sin y

− sin y cos y

)
) = F (e−x−c,

(
cos y sin y

− sin y cos y

)
),

(π(exp qX4)F )(e−x,

(
cos y sin y

− sin y cos y

)
) = F (e−c,

(
cos q sin q

− sin q cos q

)(
cos y sin y

− sin y cos y

)
)

= F (e−c,

(
cos(y + q) sin(y + q)

− sin(y + q) cos(y + q)

)
),

(4.4)

where F ∈ L2(H, dh). In this case, f(x, y) = F (e−x,

(
cos y sin y

− sin y cos y

)
). Further-

more, we shall prove that

φ : L2(H, dh)→ L2(R× [0, 2π)) (4.5)

is an intertwining operator, namely, φ ◦ π(g)F = πΩX∗1
(g) ◦ φ(F ). To do so, let us

observe that

• for g = eaX1ebX2

φ ◦ π(eaX1ebX2)F (x, y)

= exp{2πi

〈
p0, e

x

(
cos y − sin y

sin y cos y

)(
b

a

)〉
}F (e−x,

(
cos y sin y

− sin y cos y

)
)

= exp{2πi

〈
p0, e

x

(
b cos y − a sin y

b sin y + a cos y

)〉
}F (e−x,

(
cos y sin y

− sin y cos y

)
)

= exp{2πiex(a cos y + b sin y)}F (e−x,

(
cos y sin y

− sin y cos y

)
) ( p0 = (0, 1) ).

• for g = ecX3eqX4

φ ◦ π(ecX3eqX4)F (x, y) = F (e−x−c,

(
cos q sin q

− sin q cos q

)(
cos y sin y

− sin y cos y

)
)

= F (e−x−c,

(
cos(y + q) sin(y + q)

− sin(y + q) cos(y + q)

)
).
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Therefore, φ ◦ π(g)F = πΩX∗1
(g) ◦ φ(F ) as required.

Now we shall compute the Duflo-Moore operator Cπ as follows. We know that

∆GIII(1)(g) = r−2 if g = g(v, r, A) and C0 defined in (3.11) equals 1. To prove the

latter statement, that is C0 = 1, let us consider ψ ∈ Cc(H), p0 = (0, 1), p = (x, y) ∈

(R2)∗ and hp = rA = r

(
cos θ sin θ

− sin θ cos θ

)
∈ H for which hp · p0 = p. Solving the

equation, we get p = (x, y) = (r−1 sin θ, r−1 cos θ). Thus, using (3.11) we obtain

C0 as follows :

C0 =

∫
H
ψ(h) dh∫

Op0
ψ(hp) |dethp| dp

=

∫
H
ψ(h) dh∫

R2\{(0,0)} ψ(hp) |dethp| dp
,

but since ∫
R2\{(0,0)}

ψ(hp) |dethp| dp =

∫
R2\{(0,0)}

ψ(rA) r2
drdθ

r3

=

∫
R2\{(0,0)}

ψ(rA)
drdθ

r

=

∫
H

ψ(h) dh,

then we obtain C0 = 1. Therefore, due to the general result for V oH in Chapter

III in Theorem 3.7, for trivial stabilizer of H, we get

Proposition 4.2. The Duflo-Moore operator for the representation (π, L2(H, dh)

of Sim(2) given by (4.3) and (4.4) is described by

CπF (h) = rF (h) (h = h(r, A) ∈ H, F ∈ L2(H, dh)). (4.6)

4.2 Duflo-Moore Operator for Aff+(1)

In this sub-section we recall the Duflo-Moore operator for 2-dimensional affine

Lie group. Although it is well known as in [21] and [28], we shall give the detailed

computation in order to compare the general result in Theorem 3.7 for the Duflo-

Moore operator of representation π of V oH in hp0
= {0} case. Note that in [21]

and [28] the Duflo-Moore operator for the representation Aff+(1) is given by using
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Fourier transform whereas our formula is more direct. Let us denote

G =

{
g(x, a) =

(
a x

0 1

)
; a > 0, x ∈ R

}
.

Then we have G = V o H, where V =

{
v(x) =

(
1 x

0 1

)
; x ∈ R

}
' R and

H =

{
h(a) =

(
a 0

0 1

)
; a > 0

}
' R+ and g(x, a) = v(x)h(a). Moreover, the

Lie algebra of G is of the form

g = 〈X1, X2〉 =

{(
x1 x2

0 0

)
; x1, x2 ∈ R

}
.

It is well known that the open coadjoint orbit for G is of the form Ω± = {xX∗1 +

yX∗2 ; ±y > 0}. Now let f = ±X∗2 be an element of Ω± and let p = RX2 be a

polarization in g at ±X∗2 satisfying Pukanszky condition, namely, ±X∗2 +p⊥ ⊂ Ω±.

We also have V = exp p. Furthermore, Let π± := IndGV ν±X∗2 be an irreducible

unitary representations of G induced from the representation

ν±X∗2 : V 3 v(x) =

(
1 x

0 1

)
7→ e±2πix ∈ C.

acts on the space

H± :=

φ : G→ C ;

φ(gv) = ν±X∗2 (v)−1φ(g) (g ∈ G, v ∈ V )∮
G/V

|φ(g)|2 dġ <∞

 ,

where ∮
G/V

|φ(g)|2 dġ =

∫
H

|φ(h)|2 dh =

∫ ∞
0

∣∣∣∣∣φ
(
a 0

0 1

)∣∣∣∣∣
2
da

a
.

Particularly, by restrictions of φ to H with H± 3 φ 7→ φ|H =: f ∈ L2(H, dh),
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we obtain

π±(h0)f(h) = f(h−1
0 h),

π±(v0)f(h) = e±2πix0a
−1

f(h) (h0, h = h(a) ∈ H, v0 = v(x0) ∈ V ), (4.7)

where f(h) = φ

(
a 0

0 1

)
.

Now we shall compute the integral∫ ∞
0

∫ ∞
−∞
|(f1|π±(v(x))π±(h(a))f2)L2(H,dh)|2 dx

da

|a|2
. (4.8)

Let us consider

(f1|π±(v(x))π±(h(a))f2)L2(H,dh) =

∫ ∞
0

f1(h(b))π±(v(x))π±(h(a))f2(h(b))
db

b

=

∫ ∞
0

f1(h(b))e±2πixb−1π±(h(a))f2(h(b))
db

b

=

∫ ∞
0

e∓2πixξf1(h(ξ−1))π±(h(a))f2(h(ξ−1))
dξ

ξ
(ξ = b−1).

(4.9)

By Plancherel formula, we have∫ ∞
−∞
|(f1|π±(v(x))π±(h(a))f2)L2(H,dh)|2 dx =

∫ ∞
0

|f1(h(ξ−1))π±(h(a))f2(h(ξ−1))|2 dξ
ξ2

=

∫ ∞
0

|f1(h(η))π±(h(a))f2(h(η))|2 dη (η = ξ−1).

(4.10)
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Therefore, (4.8) equals∫ ∞
0

∫ ∞
−∞
|(f1|π±(v(x))π±(h(a))f2)L2(H,dh)|2 dx

da

a2

=

∫ ∞
0

|f1(h(η))|2
{∫ ∞

0

|f2(h(a−1)h(η))|2 da
a2

}
dη

=

∫ ∞
0

|f1(h(η))|2
{∫ ∞

0

|f2(h(a−1η))|2 da
a2

}
dη

=

∫ ∞
0

|f1(h(η))|2
{∫ ∞

0

|f2(h(a′))|2 da
′

η

}
dη (a′ = a−1η)

=

∫ ∞
0

|f1(h(η))|2 dη
η

{∫ ∞
0

|(a′)1/2f2(h(a′))|2 da
′

|a′|

}
.

(4.11)

Thus, we have

Proposition 4.3. The Duflo-Moore operator Cπ± for the representation (π±, L
2(H))

of Aff+(1) as in (4.7) can be written as

Cπ±f(h) = a1/2f(h) (f ∈ L2(H, dh), h = h(a) ∈ H, a > 0). (4.12)

Remark 6. It is well known that ∆G(g(x, a)) = a−1, and applying Theorem 3.7,

the Duflo-Moore operator of representation π± of Aff(1) is nothing but (4.12).

On the other hand, for h := h(a) ∈ H, we have

dπ(X2)f(h) = ±2πia−1f(h), X2 =

(
0 1

0 0

)
∈ g.

Therefore, the formula in (4.12) corresponding to Pfaffian equals

Cπ± =
√

2π |idπ(X2)|−1/2,

=
√

2π |idπ(Qg)|−1/2, (4.13)

where Qg := X2 is the Pfaffian of g. Thus, we obtain

Proposition 4.4. The Duflo-Moore operator Cπ± for the representation (π±, L
2(H))
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of Aff+(1) corresponding to Pfaffian of g := aff(1) is written as

Cπ± =
√

2π |idπ(Qg)|−1/2, (4.14)

where Qg := X2 is the Pfaffian of g.

4.3 aff(n) as the Frobenius Lie algebra

In this sub-section, we shall prove that the real affine Lie algebra g := aff(n)

of G = Aff+(n) is Frobenius. Although it is mentioned in ([48], p.497), we give a

direct proof and give all open coadjoint orbits. We shall recall notations in Section

3.1 and rephrase some formulas in concrete form. Now, let X(v,A), X(v′, A′) be

elements of g and g(u, a), g(u′, a′) be elements of G. The Lie bracket of g and the

multiplication in G are given as follows.

[X(v, A), X(v′, A′)] = X(Av′ − A′v, [A,A′]),
g(u, a)g(u′, a′) = g(u+ au′, aa′). (4.15)

We write g(u) := g(u, I) and g(a) := g(0, a). We obtain adjoint actions of G on g

as follow

Ad(g(a))X(v,A) = g(a)X(v, A)g(a−1) = X(av, aAa−1),

Ad(g(u))X(v,A) = g(u)X(v,A)g(−u) = X(v − Au,A). (4.16)

Therefore, we have

Ad(g(u, a))X(v, A) = X(av − aAa−1u, aAa−1). (4.17)

We shall regard p ∈ (Rn)∗ as a row vector and we identify (gln(R))∗ with Matn(R)

by

〈X,α〉 = tr (αX) (α ∈ Matn(R), X ∈ gln(R)).

Then the coadjoint actions of G and g on g∗ are given respectively by

Ad∗(g(u, a))ξ(p, α) = ξ(pa−1, aαa−1 + upa−1), (4.18)

ad∗(X(v, A))ξ(p, α) = ξ(−pA, [A,α] + vp), (4.19)
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where g(u, a) ∈ G, X(v,A) ∈ g, and ξ(p, α) ∈ g∗. Let ξ0 := ξ(p0, α0) be an element

of g∗, and the coadjoint orbit Ad∗(G)ξ0 of G at point ξ0 be denoted by Ωξ0 . By

definition, the coadjoint orbit Ωξ0 is open in g∗ if the dimension of Ωξ0 is equal to

the dimension of G. Using Lemma 3.1 we obtain that the coadjoint orbit Ωξ0 is

open in g∗ if and only if the map f : g→ g∗ defined by

f(X(v, A)) = ad∗(X(v, A))ξ0 = ξ(−p0A, [A,α0] + vp0) ∈ g∗ (4.20)

is bijective. We obtain the proposition below.

Proposition 4.5. For ξ0 = ξ(p0, α0) with p0 := (1, 1, . . . , 1) and α0 := diag {α1, α2, . . . , αn},
αi 6= αj, the coadjoint orbit Ωξ0 is open.

Proof. Using Lemma 3.1, we will show that the map (4.20) is bijective. We intro-

duce sets D := {diag {d1, d2, . . . , dn} ; di ∈ R} and D⊥ := {A ∈ Matn(R) ; Aii =

0, i = 1, 2, . . . , n}. Let us denote sets

h1 = {X(v, 0) ; v ∈ Rn},
h2 = {X(0, B) ; B ∈ D},
h3 = {X(0, C) ; C ∈ D⊥}, (4.21)

then the affine Lie algebra g can be written as a direct sum of the form h1⊕h2⊕h3.

Furthermore, the map f : g→ g∗ defined in (4.20) can be described as

f1 : Rn 3 v 7−→ vp0 ∈ Matn(R),

f2 : D 3 B 7−→ p0B = (B11, B22, . . . , Bnn) ∈ (Rn)∗,

f3 : D⊥ 3 C 7−→ [C, α0] ∈ Matn(R). (4.22)

Since vp0 =


v1 v1 . . . v1

v2 v2 . . . v2

...
...

. . .
...

vn vn . . . vn

 and [C, α0] ∈ D⊥, we can see that Im f1∩Im f3 =
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{0}. Furthermore, we also have

dim (Im f1 + Im f3) = dim Im f1 + dim Im f3

= dimRn + dimD⊥

= n+ (n2 − n) = n2

= dim Matn(R).

Therefore, Matn(R) = Im f1 ⊕ Im f3. This means that for each α ∈ Matn(R),

there exist v ∈ Rn and C ∈ D⊥ uniquely such that α = [C, α0] + vp0. Therefore,

f1 + f3 : Rn ⊕ D⊥ → Matn(R) is surjective, so that f1 + f3 is bijective. On the

other hand, f2 is bijective. Therefore, f is bijective.

Thus we obtain

Theorem 4.6. The affine Lie algebra aff(n) is Frobenius.

Let ξ1 := ξ(p1, α1) be an element of g∗ with p1 ∈ (Rn)∗ and α1 ∈ gln(R)∗.

We shall give other criteria for coadjoint orbit Ωξ1 to be open in g∗. First, let us

assume that Ωξ1 is open. Then the map (4.20) is surjective, so that

Matn(R) = {[A,α1] + vp1 ; A ∈ Matn(R), v ∈ Rn}
= Im adα1 + {vp1 ; v ∈ Rn}. (4.23)

We observe

Im ad (α1) ∼= Matn(R)/Ker ad (α1) ∼= Matn(R)/Cent (α1), (4.24)

where Cent (α1) denotes the centralizer of α1 in Matn(R) so that dim Im ad (α1) =

n2 − dim Cent (α1). Let

φ1 : Rn 3 v 7→ vp1 ∈ Matn(R),

then we have Matn(R) = Im ad (α1) + Im (φ1) by (4.23). Therefore,

n2 5 n2 − dim Cent (α1) + n− dim Ker (φ1), (4.25)

that is

dim Ker (φ1) 5 n− dim Cent (α1).
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Since dim Cent (α1) = n in general, the possibility is only that dim Cent (α1) = n

and dim Ker (α1) = 0 and the equality (4.25) holds. In particular

Matn(R) = Im ad (α1)⊕ Im (φ1). (4.26)

Therefore, we proved the lemma below.

Lemma 4.7. If Ωξ1 is open then dim Cent (α1) = n.

Again from (4.26), we have Im ad (α1)∩{vp1 ; v ∈ Rn} = {0}. In other words,

we have

Lemma 4.8. If Im adα1 ∩ {vp1 ; v ∈ Rn} 6= {0}, then Ωξ1 is not open in g∗.

If the coadjoint orbit Ωξ1
is open in g∗, f is injective by Lemma 3.1, so that

the map

F : Cent (α1) 3 A 7−→ −p1A ∈ (Rn)∗

is injective. On the other hand, if dim Cent (α1) = n and KerF = {0}, then F

is surjective. Based on the explanation above, we obtain necessary and sufficient

conditions for Ωξ1 to be open in g∗ as follows.

Proposition 4.9. The orbit Ωξ1 is open in g∗ if and only if the following three

conditions are satisfied

1. dim Cent (α1) = n.

2. Im ad (α1) ∩ {vp1 ; v ∈ Rn} = {0}.

3. If A ∈ Cent (α1) \ {0}, then −p1A 6= 0.

To bring it down to earth, we shall give some examples as follow. If we choose

ξ1 = ξ(p1, α1) where p1 = (1, 0) and α1 =

(
1 0

0 −1

)
, then the coadjoint orbit

Ωξ1 is not open in aff(2)∗ since Im adα1 ∩ {vp1 ; v ∈ Rn} 6= {0} . On the other

hand, if we choose ξ0 = ξ(p0, α0) where p0 = (0, 1) and α0 =

(
0 0

1 0

)
, then the

coadjoint orbit Ωξ0 is open in aff(2)∗, and this implies that aff(2) is Frobenius Lie

algebra.
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Now we shall prove the openness of some coadjoint orbits of Aff+(n). For

simplicity, let Gn := Aff+(n) = Rn oHn with Hn := GL+
n (R), and gn := aff(n) =

Rn o hn with hn := gln(R). Let ξ±1 = (±1, 0) be an element of (g1)∗ and ξ±n :=

ξ(pn, α
±
n ) be an element of (gn)∗ for n = 2 with

pn = (0, 0, . . . , 1), α±n =



0 0 . . . 0 0 0

±1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0

0 0 . . . 0 1 0


. (4.27)

Although we can check the coadjoint orbit Ω
ξ±n

of Gn through ξ±n = ξ(pn, α
±
n ) is

open in (gn)∗ by applying Proposition 4.9, we shall show the openness Ω
ξ±n

in other

way by induction.

For n = 1, Ω
ξ±1

= Ω±X∗2 through ξ±1 = (±1, 0) = ±X∗2 is open as is shown in

Section 4.2. Assume that n = 2 and Ω
ξ±n−1

is open in (gn−1)∗. We observe that the

stabilizer Hn
pn is equal to{(

M v

0 1

)
; M ∈ GL+

n−1(R), v ∈ Rn−1

}
' Gn−1 = Aff+(n− 1). (4.28)

Let ιn : gn−1 ↪→ hnpn be the corresponding Lie algebra isomorphism defined by

ιn(X(v, A)) =

(
A v

0 0

)
(A ∈ gln−1(R), v ∈ Rn−1), (4.29)

then ξ±n−1 = α±n ◦ ιn. Since Ad∗(Gn−1)ξ±n−1 is open in (gn−1)∗ by induction hypoth-

esis, Ad∗(Hn
pn)(α±n |hnpn ) is open in (hnpn)∗. On the other hand,

$(Ω
ξ±n

) = {−pnA ; A ∈ Hn}

= {−(an1, an2, . . . , ann) ; A = (aij) ∈ Hn}
= (Rn)∗ \ {(0, 0, . . . , 0)}

is open in (Rn)∗. Therefore, Ω
ξ±n

is open in (gn)∗ by Theorem 3.3. We shall show
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later that Ω
ξ+
n
6= Ω

ξ−n
so that we have exactly two open coadjoint orbits in (gn)∗.

4.4 The Duflo-Moore operator for Aff+(n)

We have already proved that Ω
ξ±n

through ξ±n := ξ(pn, α
±
n ) with pn and αn in

(4.27) is open in (gn)∗. We shall observe representations πΩ
ξ±n

of Gn correspond-

ing to the open coadjoint orbit Ωξ±n
as follows. We have already described the

representation πΩ
ξ±n

of Gn for n = 1 case in Section 4.2. Let pn = Rn o mn be

defined inductively by mn := ιn(pn−1) starting from p1 = RX2 ⊂ g1 = aff(1) with

ιn : gn−1 ↪→ hnpn be the corresponding Lie algebra isomorphism as is defined in

(4.29). In this case, mn is a polarization of hnpn satisfying Pukanszky condition and

ξ±n−1 = α±n ◦ ιn. As is already seen that the stabilizer Hn
pn is of the form (4.28).

Assume that pn−1 is a polarization of gn−1 satisfying Pukanszky condition and

representations πΩ
ξ±n−1

= IndG
n−1

exp pn−1
νξ±n−1

are irreducible and square-integrable. We

shall show that pn is a polarization of gn satisfying Pukanszky condition. Since

pn−1 = {X(v,A) ; v ∈ Rn−1, A ∈ gln−1(R)} with

v =


v1

v2

...

vn−1

 , and A =


0 x12 x13 . . . x1,n−2 x1,n−1

0 0 x23 . . . x2,n−2 x2,n−1

...
...

...
. . .

...
...

0 0 0 . . . 0 xn−2,n−1

0 0 0 . . . 0 0


is a polarization of gn−1 at ξ±n−1 satisfying Pukanszky condition by induction hy-

pothesis, mn defined inductively by

mn := ιn(pn−1) =

〈


0 x12 x13 . . . x1,n−1 v1

0 0 x23 . . . x2,n−1 v2

...
...

...
. . .

...
...

0 0 0 . . . 0 vn−1

0 0 0 . . . 0 0


〉

is also a polarization of hnpn at αn|hnpn satisfying Pukanszky condition. Then by

Theorem 3.9 (1), pn := Rnomn ⊂ gn is a polarization at ξ±n satisfying Pukanszky

condition. Furthermore, through the identification of Hn
pn and Gn−1 = Aff+(n −
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1), the representations π0 = Ind
Hn
pn

expmnνα±n |hnpn are exactly πΩ
ξ±n−1

= IndG
n−1

exp pn−1
νξ±n−1

which are irreducible and square-integrable by induction hypothesis. Therefore,

by Theorem (3.9) (2) and (3), the representation πΩ
ξ±n

= IndG
n

exp pnνξ±n of Gn is

irreducible and square-integrable. Moreover, using Theorem 3.10 we have πΩ
ξ±n

=

IndG
n

RnoGn−1 (νpn ⊗ πΩ
ξ±n−1

). Therefore, we have already proved the Theorem below.

Theorem 4.10. Let ξ±n = (pn, α
±
n ) be an element of (gn)∗ as in (4.27).

1. pn is a polarization of gn at ξ±n satisfying Pukanszky condition.

2. πΩ
ξ±n

= IndG
n

exp pnνξ±n is irreducible and square-integrable.

3. Under the identification Hn
pn ' Gn−1 = Aff+(n− 1), the representation πΩ

ξ±n

is isomorphic to IndGnRnoGn−1 (νpn ⊗ πΩ
ξ±n−1

).

In our discussion above, the coadjoint orbit Ωξ±n
is open and indeed, it satisfies

Theorem 3.3. Furthermore, we also have known that stabilizer hnpn 6= {0} for n ≥ 2

and πΩ
ξ±n−1

is the square-integrable representation of Hn
pn ' Gn−1 = Aff+(n − 1),

then using Theorem 3.14 we can describe the Duflo-Moore operator CπΩ
ξ±n

for the

representation (πΩ
ξ±n
, L2(Hn/Hn

pn) of Gn as follows.

Proposition 4.11. The Duflo-Moore operator of (πΩ
ξ±n
, L2(Hn/Hn

pn) of Gn (n ≥
2) can be described as

C̃πΩ
ξ±n
φ(a) = C

1/2
0 |det a|1/2CπΩ

ξ±n−1

φ̃(a) (4.30)

for almost all a ∈ Hn.

4.5 Pfaffian of aff(n)

In the end of this sub-section, we shall observe a general formula for the Pfaffian

of the N := n(n+ 1)-dimensional affine Lie algebra gn := aff(n) = Rn o gln(R) as

follows. First we realize gn as the subalgebra of gln+1(R) via

ιn+1 : gn 3 X(v, A) 7−→ ι(X(v, A)) :=

(
A v

0 0

)
∈ hn+1

pn+1
⊂ gln+1(R).
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Let ξ := ξ(p, α) be an element of (gn)∗ with

p = (β1, β2, . . . , βn), α =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
...

. . .
...

αn1 αn2 . . . αnn

 . (4.31)

Furthermore, we denote the Pfaffian of gn by Qgn(ξ) := Pf ξ([Xi, Xj])
N
i,j=1 with a

basis {Xi}Ni=1 of gn taken in a specific way explained below.

Let us consider the Pfaffian Qgn(ξ) for the case n = 1. We take {E11, E12} as

a basis of g1 realized by ι2(g1) = h2
p2
⊂ gl2(R). Since [E11, E12] = E12, we have for

ξ = (p, α) ∈ (g1)∗

Mg1 =

(
0 E12

−E12 0

)
and Mg1(ξ1) =

(
0 p

−p 0

)
.

Therefore, we get Qg1(ξ) = p.

Now let us consider the case n = 2. Let ξ = ξ(p, α) be an element of (g2)∗ with

p = (β1, β2), α =

(
α11 α12

α21 α22

)
.

We take {E11, E12, E21, E22, E13, E23} as a basis for g2 realized by ι3(g2) = h3
p3
⊂

gl3(R). We obtain the matrix Mg2(ξ)

Mg2(ξ) =

 M11(ξ)2×2 M12(ξ)2×2 M13(ξ)2×2

M21(ξ)2×2 M22(ξ)2×2 M23(ξ)2×2

M31(ξ)2×2 M32(ξ)2×2 M33(ξ)2×2

 (4.32)

with

M11(ξ) =

(
0 α21

−α21 0

)
, M31(ξ) =

(
β1 0

0 β1

)
, M32(ξ) =

(
β2 0

0 β2

)
M33(ξ) = O, M13(ξ) = − tM31(ξ), M23(ξ) = − tM32(ξ).

Note that M11(ξ) can be identified with Mg1(ξ) via the map ι2 : g1 → h2
p2
⊂ g2.
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Moreover, if β1 = 0, then we haveM13(ξ) = M31(ξ) = O andM23(ξ) = − tM32(ξ) =

−β2I2. In this case, the form (4.32) becomes

Mg3(ξ) =

 M11(ξ)2×2 M12(ξ)2×2 O2×2

M21(ξ)2×2 M22(ξ)2×2 −β2I2×2

O2×2 β2I2×2 O2×2

 , (4.33)

so that Qg2(ξ) = β2
2 Pf M11(ξ) = β2

2α21. For general ξ = ξ(p, α) with β2 6= 0, take

a =

(
1 0

β1/β2 1

)
∈ H2 and ξ′ := Ad∗(g(a))ξ. Then β′1 = 0 because

ξ′ = Ad∗(g(a))ξ

= ((0, β2),

(
α11 − β1

β2
α12 α11

α21 − β1

β2
α22 + β1

β2
α11 − (β1

β2
)2α12 α22 + β1

β2
α11

)
),

so that Qg2(ξ′) = β2
2(α21 − β1

β2
α22 + β1

β2
α11 − (β1

β2
)2α12). On the other hand, since

det Ad(g(a)) = 1, we have Qg2(ξ) = Qg2(ξ′) by Proposition 1.7. Therefore, we get

Qg2(ξ) = β2
2α21 − β2

1α12 + β1β2(α11 − α22).

Since the both sides are polynomial functions, the formula above is valid also for

the case β2 = 0. We define a rational map

Φ : (g2)∗ → (g1)∗

given by

Φ(ξ) = ξ′ ◦ ι2 = (α11 −
β1

β2

α12, α21 −
β1

β2

α22 +
β1

β2

α11 − (
β1

β2

)2α12).

Then, the arguments above are summarized as an equality

Qg2(ξ) = β2
2Qg1(Φ(ξ)). (4.34)

Let us consider the case n = 3. We take a basis

{E11, E12, E21, E22, E13, E23, E31, E32, E33, E14, E24, E34}
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of g3. We take ξ = ξ(p, α) with

p = (β1, β2, β3), and α =

 α11 α12 α13

α21 α22 α23

α31 α32 α33

 .

The matrix Mg3(ξ) can be written as

Mg3(ξ) =

 M11(ξ)6×6 M12(ξ)6×3 M13(ξ)6×3

M21(ξ)3×6 M22(ξ)3×3 M23(ξ)3×3

M31(ξ)3×6 M32(ξ)3×3 M33(ξ)3×3

 , (4.35)

where

M11(ξ) =



0 −α12 α21 0 −α13 0

α12 0 α22 − α11 −α12 0 −α13

−α21 α11 − α22 0 α21 −α23 0

0 α12 −α21 0 0 −α23

α13 0 α23 0 0 0

0 α13 0 α23 0 0


,

M31(ξ) =

 β1 0 β2 0 0 0

0 β1 0 β2 0 0

0 0 0 0 β1 β2

 , M32(ξ) =

 β3 0 0

0 β3 0

0 0 β3


M33(ξ) = O, M13(ξ) = − tM31(ξ), M23(ξ) = − tM32(ξ).

Note that M11(ξ) can be identified with Mg2(ξ) via the map ι3 : g2 → h3
p3
⊂ g3.

Moreover, if β1 = β2 = 0, then we have M13(ξ) = M31(ξ) = O and M23(ξ) =

− tM32(ξ) = −β3I3. In this case, the form (4.35) becomes

Mg3(ξ) =

 M11(ξ)6×6 M12(ξ)6×3 O3×3

M21(ξ)3×6 M22(ξ)3×3 −β3I3×3

O3×6 β3I3×3 O3×3

 . (4.36)

We apply exactly the same arguments to the Pfaffian Qg3(ξ) as the one for the

Pfaffian Qg2(ξ). We obtain that Qg3(ξ) = β3
3 Qg2(Φ3(ξ)) with Φ : (g3)∗ 3 ξ 7−→

95



Φ3(ξ) = Ad∗(g(a))ξ ◦ ι3 ∈ (g2)∗ and a =

 1 0 0

0 1 0

β1/β3 β2/β3 1

. Repeating the

computations in these ways, we obtain

Proposition 4.12. Let ξ := ξ(p, α) be an element of (gn)∗ as in (4.31) and Φn be

a map given by

Φn : (gn)∗ 3 ξ 7−→ Φn(ξ) = Ad∗(g(a))ξ ◦ ιn ∈ (gn−1)∗

with

a =



1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

β1/βn β2/βn β3/βn . . . βn−1/βn 1


.

Then the Pfaffian of gn = aff(n) is of the form

Qgn(ξ) = βnn Qgn−1(Φn(ξ)). (4.37)

Proposition 4.13. Let ξ := ξ(p, α) with p ∈ (Rn)∗ and α ∈ Matn(R) such that

Ωξ is open in (gn)∗, then Ωξ = Ωξ+
n

or Ωξ = Ωξ−n
.

Proof. We apply induction on n as follows. It is true for n = 1. Now let us assume

that for n = k − 1 the statement is true, that is, if Ωξ is open in (gk−1)∗, then

Ωξ = Ωξ+
k−1

or Ωξ = Ωξ−k−1
. Let ξ = ξ(p, α) be an element of aff(k)∗ such that Ωξ is

open in (gk)∗. Then p 6= 0. Take a ∈ GL+
k (R) such that pa−1 = pk = (0, . . . , 0, 1)

then by (4.18) we have

ξ′ = Ad∗(g(a))ξ = ξ(pk, α
′) ∈ (gk)∗, with α′ =


α′11 α′12 . . . α′1,k−1 α′1k
α′21 α′22 . . . α′2,k−1 α′2k

...
...

. . .
...

α′k1 α′k2 . . . α′k,k−1 α′k,k

 .
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Let v =


−α′1,k
−α′2,k

...

−α′k−1,k

−α′k,k

, we obtain by (4.18) that ξ′′ = Ad∗(g(v))ξ′ = ξ(pk, α
′ +

vpk) ∈ (gk)∗ with

α′ + vpk =


α′11 α′12 . . . α′1,k−1 0

α′21 α′22 . . . α′2,k−1 0
...

...
. . .

...
...

α′k1 α′k2 . . . α′k,k−1 0

 .

We get that (gk)∗ ⊃ Ωξ = Ωξ′ = Ωξ′′ . By Theorem 3.3, since Ωξ′′ is open in (gk)∗,

then Ad∗(Hk
pk

)(ξ′′|
hkpk

) is open in (hkpk)
∗ with ξ′′|

hkpk
= ξ(p′, α′′) is identified with

ξ′ ◦ ιk ∈ (gk−1)∗ given by

p′ = (α′k1, α
′
k2, . . . , α

′
k,k−1) and α′′ =


α′11 α′12 . . . α′1,k−1

α′21 α′22 . . . α′2,k−1
...

...
. . .

...

α′k−1,1 α′k−1,2 . . . α′k−1,k−1

 .

On the other hand, Gk−1 ' Hk
pk

so that Ωξ′′◦ιk := Ad∗(Gk−1)(ξ′′ ◦ ιk) is open

in (gk−1)∗. By induction hypothesis, there exists h ∈ Gk−1 such that ξ′′ ◦ ιk =

Ad∗(h)ξ±k−1 and if we regard h ∈ Hk
pk

then ξ′′ = Ad∗(h)ξ±k . Moreover, we obtain

ξ = Ad∗(g(a)−1)Ad∗(g(v)−1)Ad∗(h)ξ±k .

Therefore, Ωξ = Ωξ+
k

or Ωξ = Ωξ−k
as required.

Proposition 4.14. Let ξ±n = ξ(pn, α
±
n ) as in (4.27). We have

1. Qgn(ξ±n ) = ±1.

2. Ω
ξ+
n
6= Ω

ξ−n
.

Proof. Taking ξ±n = ξ(pn, α
±
n ) as in (4.27) and applying to Proposition 4.12, we

obtain Qgn(ξ±n ) = ±1. Suppose that there exists g ∈ Aff+(n) such that Ad∗(g)ξ+
n =
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ξ−n . Then Qgn(ξ−n ) = det Ad(g)Qgn(ξ+
n ) by Proposition 1.7. By connectedness of

Aff+(n), we have det Ad(g) > 0. Therefore, Qgn(ξ−n ) > 0. But, this contradicts to

the first assertion.

In conclusion, using Proposition 4.13 and Proposition 4.14 above, we obtain

that Aff+(n) has exactly two open coadjoint orbits Ωξ+
n

and Ωξ−n
.
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