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Abstract

We first present results of harmonic analysis for real Lie groups whose Lie alge-
bras are 4-dimensional Frobenius. In this context we find square-integrable unitary
representations of these groups corresponding to open coadjoint orbits. Concerning
square-integrable representations, we compute their Duflo-Moore operators which
can be described in terms of their Pfaffians.

Furthermore, we generalize the arguments for the semi-direct product group
G :=V x H where V is isomorphic to R™ and H is a Lie subgroup of GL(V'). We
give necessary and sufficient conditions for the coadjoint orbits of G to be open
in g*. When the coadjoint orbit €, through & = &(po, ) € g = V* @ h* is
open in g*, we describe the Duflo-Moore operator C, for a representation 7 of
G corresponding to the orbit €)¢ . In particular, for the case where the stabilizer
H, is not trivial, the operator 7 can be written using the Duflo-Moore operator
for a representation of H, . We apply such general results to the similitude Lie
group Sim(n) := R™ x (Ry x SO(n)) and the real connected affine Lie group
Aff*(n) := R" x GL} (R).
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Introduction

The main object of this thesis is finite dimensional real Frobenius Lie algebras
studied in terms of semi-direct products. We present harmonic analysis for real
Lie groups whose Lie algebras are Frobenius. In particular, we consider square-
integrable unitary representations of the real Lie groups corresponding to open
coadjoint orbits and their Duflo-Moore operators.

The notion of Frobenius Lie algebras appeared and was studied at the first
time in [47], [48], and [49] in the context to answer what conditions on finite
dimensional Lie algebra g in order that its universal enveloping algebra U(g) has
an exact simple module (see [48], p.488]). Frobenius Lie algebras form an important
class of Lie algebras having this property. The Lie algebra g is called Frobenius
if there exists a linear functional fy on g such that its stabilizer g, is equal to
zero. Let {X;}, be a basis for g and M, be an n X n matrix of g-entry whose
(¢, j)-component is [X;, X;]. We define det M; as an element of the symmetric
algebra S(g) which is identified with the polynomial algebra Pol(g*) on g*. Then
the Lie algebra g is Frobenius if det M; is not identically zero. It means that g
is a Frobenius Lie algebra if and only if det My(fo) = det (fo, [Xi, Xj])1<ij<n # 0
for a suitable fy. In other words, the Lie algebra g is Frobenius if and only if the
alternating bilinear form B, : g x g — R given by B, (X,Y) = (fo, [X,Y]) is
non-degenerate at some f, € g*. In this case, g is even dimensional so that we
define the Pfaffian @)y € S(g) as the Pfaffian of the matrix M,. One can consult
further about Frobenius Lie algebras and their properties in [13], [18], [26], [30],
[50], [51], and [52].

Let G be a connected Lie group whose Lie algebra is g. Then G has an open
coadjoint orbit if and only if g is Frobenius. Keeping in mind the orbit method,
we study unitary representations corresponding to open coadjoint orbits. Such
representations are expected to be square-integrable. We recall here that for an
almost algebraic group G, Lipsman [40] found a one-to-one correspondence be-
tween square-integrable representations of G' and open orbits in a certain G-space.
Lipsman’s results were established in a framework of a sophisticated version of
the orbit method, and the “open orbits” in [40] did not necessarily mean open
coadjoint orbits. Indeed, if G is a compact Lie group, all the irreducible unitary
representations are square-integrable, whereas GG has no open coadjoint orbit.

In general, we say that an irreducible unitary representation (7, H,) of a locally



compact group G is said to be square-integrable if there exist 0 # ¢ € H, such
that

/G ($ln(9)8)n I dg < oc. 0

In this case a vector ¢ is called admissible. Furthermore, there exists a (not
necessarily bounded, densely defined) unique operator C, : H, — H,, called
Duflo-Moore operator, which is positive self-adjoint and it satisfies (see [15], [27],
and [28])

1. ¢ is admissible if and only if ¢ € dom C}, and

2. For ¢, ¢3 € H, and ¢9, ¢4 € dom C}, we have

/G (61[7(9) ), (m(@)dalds)s dg = (b1]65)ne. (CadalCoba)ren.  (2)

The Duflo-Moore operator as well as square-integrable representations are impor-
tant in the theory of continuous wavelet transform.

The simplest example of Frobenius Lie algebra is aff(1) := (X1, X2) whose non-
zero bracket is given by [Xi, X5] = X,. This is the Lie algebra of the connected
affine group Aff*(1) over the real line. There are two open coadjoint orbits € X3
and 2_ X; through X3 and — X3 respectively. In our case, we construct the unitary

representations 7. of Aff™(1) corresponding to the open coadjoint orbits X3 by

mi(exp apXy)f(a) = f(e”™a),
7y (exp foX2)f(a) = eﬂmﬂoailf(@) ( fe LRy, %)a a>0,a0,5 €R), (3)

which are square-integrable (see Section 4.2). Moreover, since 7. is square-integrable,
we can compute the Duflo-Moore operator Cy, for (my, L?(R,, C%‘1)) Even though
the harmonic analysis of Aff*(1) has been already investigated as in [19], [23], [25],
[35], [36], and [54], we note that the representations 74 are usually realized as sub-
representations of the quasi-regular representations on L?(R) and the Duflo-Moore
operator is given in terms of Fourier transforms (see [21], [28]). On the other hand,

we have



Proposition (see Proposition . The Duflo-Moore operator Cr. for the repre-

sentation (me, L*(Ry, %)) of Aff™(1) can be written as

Crcfla) = () (FeL’(Re,™), acRy). (4)

Let us note that the Pfaffian Q1) := Pf M50 € S(g) equals X5. We relate the

Duflo-Moore operator Cr, and Q1) as follows.

Proposition (see Proposition . The Duflo-Moore operator C,. for the repre-
sentation (my, L*(Ry, %)) of Aff* (1) corresponding to Qa1 is written as

Oy = V2 idn(Quiry)| /. (5)

Our explanations above motivate us to study harmonic analysis for the 4-
dimensional Frobenius Lie algebras classified in [12] specially for the real case.
Here we summarize our preceding work [37], compared with what have done in
this thesis. Let g be a real Frobenius Lie algebra and G' = exp(ad g) be a con-
nected Lie subgroup of GL(g). Since g is Frobenius, the adjoint representation of g
is faithful, so that we regard g as the Lie algebra of G. For f € g*, we denote by 2
the coadjoint orbit Ad*(G)f C g* through f. We pose the following conjectures:

Conjecture. If (); is open in g*, there exists a polarization p C g at f such that

G
exp p

representation of the group expp C G defined by v¢(exp X) := e2™{hX) for X € p.

¢ = Indg, v is a square-integrable representation, where vs is a one-dimensional

Let s: S(g) — U(g) be the symmetrization operator. For a unitary representation

7 of G, i"/?dr(s(Qy)) is a symmetric operator.

Conjecture. Let (7, H,) be a square-integrable representation of G. Then i™/?dn(s(Q,))
15 essentially self-adjoint, and the Duflo-Moore operator C. of m equals a constant
multipe of the operator |i"™2dr(s(Q,))| 7Y% on H,. Namely, there exists a positive
constant c; > 0 such that Cy = c.|[i"?dn(s(Q,))| /2.

We remark here that for the case where G is exponential solvable, results similar
to both conjectures above were claimed by Duflo and Rais [16, Théoreme 5.3.8]. We
also notice that, since a Frobenius Lie algebra is not necessarily almost algebraic,

Lipsman’s work [40] does not imply our conjectures.



We have already confirmed both Conjectures above for 4-dimensional Frobenius
Lie algebras in [37] in terms of group Fourier transforms using [31]. Here we recall
the result by Csikds and Verhdczki [12] as follows :

Theorem. ([12, p.448]). Any j-dimensional Frobenius Lie algebra g over a field
F of characteristic # 2 is isomorphic to one of the following
X3

X
1. gr: [X1>X4] = [X27X3] = —Xy, [XQ,XAJ = —7, [X37X4] = —7-

2. gII(T)yT elF: [XI,X4] = [XQ,X?)] — _)(17 [X27X4] — _X3’
[Xg,X4] = —X3 +TX2.

3. g[]](&f), where 0 7é € € F: [Xl,Xg} = [XQ,X4] = —Xl, [X17X4] = 8X2,
(X, X3] = =X,
The Frobenius Lie algebras grrr(€) and grrr(€') are isomorphic if and only if

there exists a € F for which €' = a’¢.

Contrary to [37], in this thesis we obtain the results of harmonic analysis for the
real Lie groups whose Lie algebras are 4-dimensional Frobenius Lie algebras in
more concrete realization with more direct computations. Let G;, G, (7), and
G;;;(¢) be the Lie groups corresponding to 4-dimensional real Frobenius Lie alge-

bras g7, 977(7), grr7(€) respectively. We declare the results as follows.

Theorem (see Theorem. The Duflo Moore operator Cr,, for the representation
(mq, L*(R?)) of Gr as in (2.7) can be written of the form

Crof(z,y) =€V f(z,y)  (feLl*R)). (6)

Let us note that the Pfaffian Q,, := Pf M,, € S(gr) equals X7?. We relate the

Duflo-Moore operator Cy, and @)y, as follows.

Proposition (see Proposition 2.5)). The Duflo-Moore operator Cy, for the repre-
sentation mq of G as in (2.7)) is written in terms of the Pfaffian Qg, as

Cry = 27ldm(Qg,)| 2. (7)

We can apply exactly the same argument to g;;(7) as the one for g;, and we obtain

the same result for the Duflo-Moore operator Cr, —of the representation mg, of



G;(7) as in (2.41). The latter result for g;;;(e) is divided into the cases ¢ = —1
and € = 1. For the first case, that is for £ = —1, we have four open coadjoint orbits
Q4 x; and €2, y,. We present results only for 2, . but the ones for Q2 v are almost

same. The Duflo-Moore operator Cr,, . for the representation (Ta, s L*(R?)) of
1 1

G;;(—1) can be written in the following theorem.

Theorem (see Theorem [2.13)). The Duflo-Moore operator for the representation

T - of G;;1(=1) as in (2.60) can be written of the form

flay)=e"flz,y)  (f€L*(RY)). (8)

T xx

The Duflo-Moore operator above can be related to the Pfaffian of g;;;(—1). We
have

Proposition (see Proposition 2.14)). The Dufio-Moore operator for the represen-
tation mo, . of Gy (—1) as in (2.60)) related to the Pfaffian of g;;;(—1) is of the
1

form

= 27T|d7T(Qg”I(_1))|_1/2, (9)

Secondly, when ¢ = 1, we can apply exactly the same argument as the one for
grr7(—1), and we obtain the similar result for Duflo-Moore operator C’mxf (see
Theorem and Proposition .

The results of harmonic analysis for the real Lie groups, whose Lie algebras are
4-dimensional real Frobenius Lie algebras, motivate us to generalize the arguments
further for G := V x H where V is isomorphic to the n-dimensional vector space
R™ and H is a Lie subgroup of GL(V). Let g := V x b be the Lie algebra of G
and g* = V* @ h* be its dual. We shall give conditions for g to be Frobenius. Let
& = &(py, ) be an element of g* with py € V*, ag € h* and )¢, be the coadjoint
orbit of G through &,. Moreover, let b,, be a stabilizer of h at py and @ be the

projection map from g* onto V*. We obtain

Theorem (see Theorem. Q¢, is open if and only if the following two conditions

are satisfied :

1. w(Qy,) is open in V*.



2. bp, = 0, or the coadjoint orbit Ad™(H,,)(aoly,,) i by, through aols,, € by,

18 open.

Corollary. The Lie algebra g =V x b is a Frobenius Lie algebra if and only if
there exists pg € V™ such that b.po = V* and the stabilizer b, C b is zero or a

Frobenius Lie algebra.
For the case that stabilizer b,, = {0}, we obtain the Duflo-Moore operator as

Theorem (see Theorem [3.7). The Duflo-Moore operator Cy : L*(H) — L*(H) for
the representation m = Indgupo as in (3.13) and (3.15) is described as

Crfa(h) = Cy* Ag(h) 2 fo(h)  (f2 € LX(H)), (10)

where Cy > 0 is a constant given by (3.11).

For the case b,, # {0}, let us consider some properties of representations of G =
V x H as follows.

Theorem (see Theorems and [3.10). Let mo C b, be a polarization at aoly,
satisfying Pukanszky condition and let my be the induced representation Indg{?mo Ve

of H,, .

1. po ==V xmg C g is a polarization at § = &(po, ) satisfying Pukanszky

condition.
2. m= Indg(ppoz/go is wrreducible if mo s irreducible.
3. m 1s square integrable if my is square integrable.

4. The representation 7 is isomorphic to Indgpo (Vpo®m0), where G, = R"xH,

and vy, @ T is defined by

Vpo @ mo(u, h) = vy (w)mo(R)  ((u,h) € G, ).

We also obtain the Duflo-Moore operator when the stabilizer b,, # {0}. In this

case, C is described by using C, based on the assertion 4 above.



Theorem (see Theorem [3.14). The Duflo-Moore operator for the representation
(m,Hr) as in (3.33)) can be described as

Cro(l) = Co P AG (1) Cryd(1)  (3(1) € Hry) (11)

for almost alll € H.

Furthermore, as an application from our results above, we declare some results

for concrete groups as follows.

Theorem (see Thorem4.1)). The Lie algebra g := R"x(R®so(n)) of the similitude
Lie group Sim(n) := R" x (Ry. x SO(n)) is not a Frobenius Lie algebra for n > 3.

Theorem (see Theorem W.6). The Lie algebra aff(n) = R™ x gl,(R) of the con-

nected affine automorphism group Aff*(n) is Frobenius.

The fact that aff(n) is Frobenius was mentioned by Ooms (see [48, p.497]), but
we give an alternative proof in this thesis. In more detail, we have criteria for the
openness of the coadjoint orbit of Aff™(n) as follows. Let (¢, be a coadjoint orbit
of Aff*(n) through & := £(p1, 1) € g* := aff(n)*. We denote the centralizer of a;
in Mat,,(R) by Cent («1) and image of the map ad (o) : Mat, (R) — Mat,(R) by
Imad ().

Proposition (see Proposition . The orbit Q¢ is open in g* if and only if the

following three conditions are satisfied
1. dim Cent (o) = n.
2. Imad (oq) N {vpy ; v e R} = {0}.
3. If A€ Cent (ay) \ {0}, then —p1 A # 0.

We also investigate the representations of Aff™(n) corresponding to open coad-
joint orbits and their Duflo-Moore operators. For simplicity, let G* := Aff"(n) =
R™ x H™ with H" := GL(R), and g" := aff(n) = R" x h" with h" := gl (R). Let
& = (#£1,0) be an element of (g')* and &F := £(p,, aF) be an element of (g")* for



n 2 2 with

0 ... 00 0
+1 0 ... 0 0 O
01 ... 000
pn:(0707---71)7 Oli:: L ... : (12)
1
0 1

We observe that e C (g")* are open coadjoint orbits [see Section 4.3]. Moreover,
let ¢y, 1 g™t by, be a Lie algebra isomorphism defined by

A
0 ; ) (Aegl, 1(R), veR"™),

(X (v, A)) = (
and let p, = R™ x m,, be defined inductively by m, := ¢,(p,_1) starting from
p1 = RX, C g' = aff(1). In this case, m, is a polarization of b satisfying
Pukanszky condition and f | = aF ou,. We obtain

Theorem (see Theorem [4.10). Let £ = (pn, oiF) be the element of (g")* = aff(n)*
as above.

1. p, is a polarization of g™ at & satisfying Pukanszky condition.

2. TO = Ind%’

+ exppn Ve 18 trreducible and square-integrable.

3. Under the identification H} ~ G = Aff*(n — 1), the representation g, |
et

is isomorphic to Inan Gn-1 (Vp, ® Tq - ).

n 1

Proposition (see Proposition4.11)). The Duflo-Moore operator of (mq,, , L2(H”/H;Ln)
of G" = Aff"(n) (n > 2) can be described as

C”Qs o(a) = 1/2]det a|1/2(77rQ§ o(a) (13)
n n—1
for almost all a € H".

The general formula for the Pfaffian of aff(n) can described as follows.



Proposition (see Proposition [4.12)). Let £ := &(p, ) be an element of (g")* as in
(4.31) and ®,, be a map given by

®, 0 (g")" 2 & D(E) = Ad"(g(a))§ 0t € (8"71)"

with

1 0 0 0

0 1 0 0

0 0 1 0 0

a =
0 0 0 . 1 0
51/Bn 62/5n ﬂ?:/ﬂn CIE Bn—l/ﬁn 1
Then the Pfaffian of g™ = aff(n) is of the form
Qg (§) = By Qgn-1(Pn(E)). (14)

Furthermore, we see from Proposition and Proposition that Aff*(n) has
exactly two open coadjoint orbits Qéi and Qgg.

Finally, we explain the organization of this thesis as follows. In Chapter 1,
we review the notion of coadjoint orbits which is the main object of the orbit
method, Haar measure, and notion of the induced representations based on the
Mackey model and the Blattner model. Furthermore, we also review the notion
of a Frobenius Lie algebra, whose Lie group has open coadjoint orbits, and the
notions of square-integrable representations. Concerning square-integrable repre-
sentations, we review the notion of Duflo-Moore operator [I5]. In Chapter 2, we
present the results of harmonic analysis for 4-dimensional real Frobenius Lie alge-
bras. We compute coadjoint orbits of each Lie group of 4-dimensional Frobenius
Lie algebras, and we apply the orbits to construction of unitary irreducible repre-
sentations using the orbit method. In case of 4-dimensional Frobenius Lie algebras,
each irreducible unitary representation corresponding to the open coadjoint orbit
is square-integrable and we give the formulas of Duflo-Moore operators as in @ -
(9) in Introduction. Differing from [37], our results in Chapter 2 are obtained in
more concrete realizations with more direct computations. Chapter 3 consists of
three parts. Firstly, we obtain the conditions for the Lie algebra g := V x h of Lie
group G :=V x H (V ~R", H C GL(V)) to be Frobenius. Secondly, we assume



that the stabilizer h,, = {0} and we compute the Duflo-Moore operator formula in
this case. Thirdly, for the case of b,, # {0}, we obtain the Duflo-Moore operator
for (m,H.) of G using Duflo-Moore operator for (mg, Hr,) of the stabilizer H, .
In Chapter 4, we apply the results to prove that the Lie algebra of similitude Lie
group Sim(n) := R" x (R @ SO(n)) is not Frobenius for n > 3. Furthermore, we
prove that the Lie algebra aff(n) = R™ x gl,(R) of the connected affine automor-
phism group Aff*(n) is Frobenius. This means that Aff*(n) has open coadjoint
orbits. In addition, we get in more detail the necessary and sufficient conditions
for the coadjoint orbits of Aff*(n) to be open in aff(n)* besides the general condi-
tions in Chapter 3. Moreover, these open coadjoint orbits yield square-integrable
unitary representations of Aff*(n) for which we obtain their Duflo-Moore opera-
tors formula. We should mention here that Lipsman and Wolf (see [42]) discussed
the Plancherel formulas of parabolic subgroups, while Aff*(n) is isomorphic to a
maximal parabolic subgroup of SL,1(R). But our results are more direct than
Lipsman and Wolf’s work in [42].

Lastly, we compute the general formula for the Pfaffian of aff(n) and we show
that Aff™(n) has exactly two open coadjoint orbits. We want to find a formula
connecting the Duflo-Moore operator and the Pfaffian of aff(n), but it remains for

future study.

10



Chapter 1
Preliminaries

In this chapter we introduce some notions contributing in our study. We start
from introducing the notion of coadjoint orbits which is the main object of the or-
bit method, Haar measure, and the notion of induced representation based on the
Mackey model and the Blatter model. Furthermore, we also introduce the notion of
a Frobenius Lie algebra which has open coadjoint orbits, and square-integrable rep-
resentations corresponding to open coadjoint orbits. Concerning square-integrable

representations, we review the Duflo-Moore operator.

1.1 The orbit method

First of all, let us introduce the notion of adjoint representation as follows.

Definition 1.1. ([38, p. 211]). Let G be a Lie group with Lie algebra g. For any
g € G, the conjugation map given by C, : G 3 z — grg~' € G is a Lie group
homomorphism whose differential is denoted by Ad(g). The group homomorphism
Ad: G — GL(g) is called the adjoint representation of G.

Furthermore, the adjoint representation ad : g 3 X — ad (X)) € gl(g) is defined by
ad(X)Y = [X,Y] (X,Y € g). We shall see in the following theorem that both

representations are related.

Theorem 1.1. ([38, p. 529]). Let G be a Lie group with Lie algebra g and Ad :
G — GL(g) be the adjoint representation of G. Then the adjoint representation
Ad, : g — gl(g) is given by Ad, = ad.

11



Moreover, we define a dual representation of Ad, called the coadjoint represen-
tation, by Ad*(g) := Ad(¢g~1)*. Namely, we have

(Ad*(9)f. X) = (f.Ad(g™)X) (X eg feg) (1.1)

Then the above formula implies
(Ad* (e £, Y) = (f,e¥YY) (XY €g). (1.2)

We also review the formula for an infinitesimal of coadjoint actions. Namely, for

the corresponding representation ad® of g in g* we have
(ad™(X) [, Y) = (f, —ad(X)Y) = (f, [\, X]) (X,Y €g). (1.3)

Next, we review a coadjoint orbit. One can find the detailed reading of the prop-
erties of the coadjoint orbit for instance in [34],[36], and [46]. The coadjoint orbit
of f € g* is the set Qr = {Ad"(g)f ; g € G} C g*. First of all, the coadjoint orbit
2 has a differential two-form wq given by wo(f)(ad*(X)f,ad*(Y)f) = (f,[X,Y]).
The form wy, is non-degenerate and closed, and this fact implies that the dimension
of the coajoint orbit €); is always even. In fact, we know that Q; is a symplectic

manifold. Secondly, for any f € g* we define the group stabilizer as
Gr={ge G Ad(g)(f) = f} € G, (1.4)
and its Lie algebra is denoted by g; and it is given by
gr={Xe€g;ad"(X)f =0} Cg. (1.5)

One of the important things in our discussion is the orbit method that shall be
explained as follows. Let GG be a connected Lie group, and g the Lie algebra of G.
A subalgebra p of g is called a polarization at f € g* if p is a Lagrangian subspace
with respect to the alternating form By : g x g 3 (X,Y) — (f,[X,Y]) € R. To

be more precise we have

Definition 1.2. ([36] p.26]). A subalgebra p of g is called a polarization at f € g*
if f[,,, = 0 and codimg p = 3 dim Q.

Let us assume that the coadjoint orbit €24 of G is integral, that is, the form wq

12



belongs to an integer cohomology class [34, p. 239]. This is known to be equivalent
to that there exists a one-dimensional unitary representation vy : expp — C
such that v;(exp X) = >™/X) for X € p. Now we introduce the notion of the

Pukanszky condition for a polarization p at f.

Definition 1.3. (|3, p. 281 - 286]). A polarization p C g satisfies the Pukanszky
condition if

pH(p(f) = f+p"CQy, (1.6)

where p : g* — p* is the natural projection map.

The representation 7y of G' corresponding to the coadjoint orbit €2y is defined
a
exppvf'
following theorem.

by m; = Ind The irreducibility of the representation 7; is given by the

Theorem 1.2. ([36, p.111]). Let G be an exponential solvable Lie group. The rep-

resentation g is irreducible if only if the polarization p C g satisfies the condition

[T6).

We recall that a Lie group G is said to be exponential if the exponential map
exp : g — G is diffeomorphism. It is known that an exponential Lie group is
necessarily solvable. On the other hand, a Lie algebra g is said to be exponential if
the corresponding connected and simply connected Lie group is exponential. The

following is known.

Proposition 1.3. (see [36, p. 110]) A Lie algebra g is exponential if and only if

ad(X) has no non-zero pure imaginary eigenvalues for any X € g.

It was shown in [5] that, if G is exponential, then for each f € g* there exists a

polarization p satisfying the Pukanszky condition at f, and the unitary representa-

G
exp p

not depend on the choice of such polarization p, and the map f +— [rf] induces a

tion 7y := Indg,, ,vr of G is irreducible. Moreover, the equivalence class [rf] does

one-to-one correspondence from the orbit space g*/Ad*(G) onto the unitary dual

A

G.
Although a Frobenius Lie algebra g is not necessarily exponential solvable, we
shall consider a unitary representation IndeGXp pVy defined from a polarization p at

f € g* satisfying the Pukanszky condition when 2; is an open coadjoint orbit.
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1.2 Frobenius Lie algebras

In the history, a Frobenius Lie algebra was found at first time in [47], [48], and
[49] to give conditions for a finite dimensional Lie algebra in order its universal
enveloping algebra U(g) has an exact simple module. Frobenius Lie algebra is very

important in this thesis. Therefore, let us introduce this notion as follows.

Definition 1.4. ([12] p.427]). A Lie algebra g over an arbitrary field F is said to

be Frobenius if there exists a linear functional fy € g* such that g, = 0.

We introduce the index of Lie algebra g (see for example in [14] and [52]) given

by
indg = min {dimg, ; f € g"}. (1.7)
We can say that a Lie algebra g is Frobenius if ind g = 0. Let {X;}?”_, be a basis for
g and M be an n X n matrix of g-entry whose (4, j)- component is [X;, X;]. We de-
fine det M, as an element of the symmetric algebra S(g) which is identified with the
polynomial algebra Pol(g*) on g* and det My(fo) = det (fo, [Xi, Xj])1<ijcn, fo €
g*. In other words, det M,(fy) is equal to the determinant of the alternating bilin-

ear form

By igxg>(X,Y) e (fo,[X,Y]) €F.
Proposition 1.4. ([12, p.428-430], [50, p. 20]). The Lie algebra g is Frobenius

if one of the following equivalent conditions is satisfied :

1. There exists fo € g* so that the stabilizer g, = 0.
2. indg = 0.
3. det My # 0.

4. det My(fo) # 0 for a suitable fy € g*.
We observe that det M,(fo) # 0 if and only if B, is non-degenerate. Therefore,

the Frobenius Lie algebra has even dimension. Then we define the Pfaffian of g
in S(g) as the Pfaffian of the matrix M, and we denote it by ();. Let us recall
the notion of Pfaffian for a square alternating matrix. Let A = (Ajj);<; j<o, be a

square alternating matrix. The Pfaffian of A is defined as follows :

1 n
Pf(A) = ol Z Sgn(o) H Ag(gi_l)o(gi). (18)
) 1

2n
c€Ga, i=
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For example, we see that

0 a b c

pr| ¢ 0 d e =af — be + cd.
—-b —d 0 f
—c —e —f 0

Remark 1. We have det A = Pf(A)>.

We go back to the Pfaffian ), = Pf M of a Frobenius Lie algebra g. We know
that Q4 # 0. Note that the Pfaffian @ is defined for a fixed basis {X;} of g, but
it is unique up to a constant multiple. Let {Y,}"_; be another basis for g. Then
we write Y, = > p;, X, with p;. € F. We put P = (p;;) € GL,(F). Let M
be an n x n matrix of g-entry whose (r,s)-component is [Y;,Y;]. Then we have
My = tPMgP, so that

Pf M, = (det P) Pf M, (1.9)

Therefore, we get

Proposition 1.5. [50, p.28]. If g is a Frobenius Lie algebra with a basis {X;},
then QQq := Pf My € S(g) is non-zero and it is determined by g up to non-zero

scalar multiple.

Let v : ¢ — g be a Lie algebra automorphism which is naturally extended to
an algebra automorphism v : S(g) — S(g). Then we obtain

1/)(629) = (det ¢)Qg‘ (1.10)

To prove (1.10), we take A, = (a;;) as the matrix expression of i with re-
spect to the basis {X;}7;. We get another basis {1)(X;)}"_, of g with ¢(X;) =

7j=1
v ai;X;, 7 =1,...,n. By extension ¢ to an algebra automorphism of S(g) and

using (|1.9) we obtain

¥(Qg) =PI (Y[X;, X;]) = P ([v(X5), v (X;)])
= (det Ay) Qg = (det ¥) Q.

Moreover, we obtain
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Proposition 1.6. [72, p.430]). Let g be n-dimensional Frobenius Lie algebra and
let S(g) be its symmetric algebra of g. Then we have

e D,yx)@y = (trad X)Q, where

D,ax) : S(g) = S(g)
is an algebra derivation extended from ad(X) : g — g.
e [f g is non-zero with charF = 0 then g is non-unimodular.

We shall consider the case F = R. Namely, let g be a real Frobenius Lie algebra
and G be a real Lie group whose Lie algebra is g. We see that the Lie algebra

g is Frobenius if and only if G’ has open coadjoint orbits. Moreover, substituting

Y =Ad(g) (g € G) to we get

Proposition 1.7.

Qu(Ad™(9)7'€) = (det Ad(g)) Qe(§) (9 € G, E€g”). (1.11)

We shall apply the proposition above later, particularly in Section 4.5 to derive
the general formula for the Pfaffian of aff(n).

1.3 Haar measure

In this subsection we shall introduce the notion of an invariant measure over a

locally compact topological group G.

Definition 1.5. (see [4, p. 67-70] & [23, p. 29-34]). Let C.(G) be the space of all
continuous functions on G with a compact support. A norm on C.(G) is defined
by
| fllse := sup [f(g)]-
geq

The support of f € C.(G) is denoted by supp(f) and defined as the closure of
{ge G flg) # 0}

Definition 1.6. (see [4, p. 67-70] & [23, p. 29-34]). A linear functional u on
C.(G) is said to be a Borel measure if for each compact subset M C G, there
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exists a constant C; such that

(N = Cullfllse (f € C(G), supp(f) C M).

Moreover, a linear functional p is said to be positive if p(f) = 0 for any non-
negative function f € C,(G).

For f € C.(G) and a € G, we define a left translation L, f and a right translation

Ruf in Co(G) by Laf(g) := f(a~"g) and R.f(g) := f(ga) respectively.
A positive Borel measure yy; is called a left Haar measure if 4 is left-invariant,
that is,

:ul(Laf>::ul(f) (fGCC(G),GGG).

We also define a right Haar measure pu, by

pr(Baf) = pe(f)  (f € Ce(G),a € G).

Theorem 1.8. (see [4, p. 67]). Every locally compact group G has a unique left

Haar measure p; up to multiplication by a positive number.
For each a € G, let us define yi;,(f) = u(Raf). Since L, o R, = R, o L, we have
Ml,a(fo) - ,ul(Rafo) = Ml(LzRaf) = ,ul,a(f)'

Therefore, p4(f) is a left Haar measure. By Theorem , there exists a positive
number denoted by Ag(a) such that

Hia = Ag(a)flm. (112)

The function Ag : G 2 a — Ag(a) € R, is called the modular function of
G which is continuous homomorphism. We note that some authors denote the
modular function of G by A, and others denote it by A;'. Furthermore, we shall
use the left Haar measure in the Blattner model in Chapter 3.

Let 1/ be a measure on G given by

/ £(9) di(g) = / F(9)Ac(9)" dyu(g).
G G
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Then we have

/ Ruf(g) dyi'(g) = / £(90)A6(9)~" dpu(g)
G G
~ Ag(a) /G F(90)Ac((90)™") dyu(g)
~ Au(a) / F(&)Aeld) dulg'a™) (g = ga)
~ Ao(a) / F(6)Dele) ™ danalg)
~ Ao(a) / £(6)Deld) Dala) ™ dule)
= [ 16)86tg) duls) = [ $) e,
G G

Therefore, i is a right Haar measure and we can write

e = AG . (1.13)
By Theorem [1.8 and (1.13)), we can obtain
tra = Ag(a) . (1.14)

We shall use the right Haar measure in the Mackey model in Chapter 2. In this
thesis, we usually write dg (g € G) for the left Haar measure dy,(g).

1.4 Induced representation

We now review briefly the notion of induced representations of Lie groups as
an essential summary of [6], [8], [I1], [I7], [23], [24], [33], [34], [36], [39], and [41].
Our setting devides into two parts. The first is the Mackey model as in [36] which
is applied to Chapter 2, and the second is the Blattner model as devoted in [§],
[9], and [23] which is applied to Chapter 3.

For the first setting, let H be a closed subgroup of a Lie group G, and let L*(X),
where X := H\G = {Hg ; g € G}, dim X = n, be what so-called natural Hilbert
space consisting of square integrable sections of line bundle L of half-densities on

X. Although the Mackey model can be considered for locally compact groups, we
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discuss it in the Lie groups category following [36]. For a given coordinate chart U
on X with the component (2!, z?%,...,2"), we can write the section f by f(x)vd"z
and the the inner product on L*(X) is given by

(i) gy = /X L@R@ ds  (fi, f € (X)), (1.15)

Let p be a unitary representation of H in a Hilbert space H,. We shall define a
unitary representation 7 of G through an extension of (p, H,). This representation
is called the induced representation and is denoted by Indgp.

Let s: U — G be a section of natural projection p : g — Hg. We assume that
almost all ¢ € G can be written as ¢ = hs(x) (h € H,x € U ). We emphasize
here that in general the fiber bundle H — G — X is non-trivial, so that there is
no smooth or even continuous section s : X — G of the projection map p on the
whole X (see [36, p.380]). Let d¥(g) and df?(h) be left invariant volume forms for
G and H respectively. In terms (h,z) € H x U we obtain

dS(g) = r(h,z)d(h)d"z ( for some smooth function  on H x U ).

Indeed, since d¥ (h'g) = d¥(g) and d(W'h) = df*(h) then r(h’'h,z) = r(h,z). This

implies d(g) = r(x) d” (h) d"x. Now let us define a measure dy, on U as follows :
dps(z) = r(z) Ag(s(x))  d".
Therefore, we have

af (g) = A (s(x)) df! () duy(a). (1.16)

Furthermore, since d%(g) = Ac(g)~1d¥(g) and dZ(h) = Ay (h)~tdf(h), then we
have

d(9) = d7 (hs(x)) = Ag g (h) ™" i (h) dps(), (1.17)
Aq(h
where Ag y(h) = AGE h;' Moreover, an important property of measure pu, is given
H

as follows:

Lemma 1.9. ([30, p. 381]). We have a measure relation of the form

dps(r.9) = Dg (hs(2, 9)) dps(), (1.18)
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where the master equation

s(2)g = halr. g)s(x.9) (119)
defines hs(x,q) € H.

The explanations above suggest us to define the unitary induced represen-

tation Indg p on the representation space
He = L2(X7 Hpa :uS)

~{rxsus k= [ @R aw < b 0

by
w(9)f(2) == Ag u(hs(x,9))p(hs(2, 9)) f (2 - 9). (1.21)

Indeed, this representation is unitary since
I~/ @I = | Aunlhlaa)llpthi(e.) @ 9 difo)
= [ 17 9l Bn (b9 dia) (o s wnitary)
= [ gl dute-a) (@inte- 9) = Acuhule,o) du(a)

B / 1@ dus(a) = £ (@ =2-g).

We state the useful property for us the so-called the induction by stages.

Proposition 1.10 (see [23], [36]). Let G be a Lie group and Gy C Gy C G be
two Lie subgroups of G. Let p be a unitary representation of G1 on H,. Then the

induced representations Indg . p and Indg2 (Indgf p) are unitarily equivalent.

For the second setting, we review the Blattner model like as in [§], [9], and [23].
Let G be a locally compact group and H be a closed subgroup of G. It is well

known that a G-invariant Borel measure on G/H exists if and only if Ay = Ag|H.

Definition 1.7. ([23| p.54]). Let G be a locally compact group and H C G be a
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closed subgroup of G. We define the space £(G/H) as follows :

E(G/H) :={{:G—=C; &(gh) = Aua(h)é(g), Vge G, heH,

¢ is continuous with compact support modulo H }.

Let us see a useful proposition as follows.

Proposition 1.11. ([23, p. 55/). Let G be a locally compact group and H C G be
a closed subgroup of G. There exists a unique (up to multiplication by a positive

number) G-invariant positive linear functional on the space E(G/H), denoted by

pon(€) = ¢ &) dun(e), (1.22)
G/H

Furthermore, we have
/f(x) dx :7{ {/ f(zh)Ag.m(h) dh}dung(aj). (1.23)
G G/H JH

Let K be a closed subgroup of H. By the transitivity of pa m, we obtain

¢<g>dg:f (4 6o Dan(h) dug y(h)} ducnla) (6 € EG/K)).
G/K G/H JH/K (1.24)

Definition 1.8. ([23, p. 59]). Let G be a locally compact group and H be its
closed subgroup. We assume p is a unitary representation of H on H,. The space
E(G/H,p) is defined by

E(G/Hp):={f:G—=M,; flgh)=Agu(h) " p(h)""f(g), Vg€ G, heH,

fis continuous with compact support modulo H }.

We define a scalar product on £(G/H, p) by

(il f2)ima, == 7{; BOIR@) i (12 € EG/Hp)

and its norm given by || f||ma, := v/(f]f)md,-

21



Definition 1.9. ([23, p. 61]). Let L?*(G/H, p) be a completion of E(G/H, p) with
|| llma,- The action of G on L*(G/H, p) is denoted by 7 := Ind$, p, and given by

w(9)f(x) = f(¢g~'x) (f € L*(G/H,p) g,z € G). (1.25)
We call m an induced representation of G.

Furthermore, we also introduce the notion of unitary representations of semi-
direct products (for detail one can see in [43], [44], and [45]). Let G := N x H be a
semi-direct product of separable, locally compact groups N and H where N is an
abelian group. We define a usual product in G by (n, h)(n’,h') := (n7(h)(n'), hh'),
and (n,h)™ = (r(h™1)(n7Y),h7), where 7 : H — Aut(N) is a group homomor-
phism. The regularity of G must be satisfied. Namely, we assume that we can
find an analytic subset N; of the set of characters N of N which intersects each
G-orbit exactly once. Furthermore, the construction of this representation follows

constructions in [4] and rewritten as follows.

Theorem 1.12. (see [4, p.508-509]). Let G := N x H be a regular semi-direct
product of separable, locally compact groups N and H with N is abelian. Then
every irreducible unitary representation w of G is induced from an irreducible rep-
resentation v of N x Hy, with Hy, is a stabilizer of H at a point ng € N such that
v|y equals igld and v =1ip ® L (L € Hp,). Namely, T = Ind%wﬁo v.

1.5 Intertwining Operators

Let m and 7’ be unitary representations of GG in the representation spaces H.,

and H, respectively. We introduce the notion of an intertwining operator.

Definition 1.10. ([0, p. 9]). A bounded linear operator 7' : H, — H._, is called
an intertwining operator from 7 to 7', if it satisfies Tom(g) = 7’'(g) o T for any
g € G. The representations m and 7" are said to be equivalent if the intertwining

operator T': H_ — H_, is unitary.

We recall that the induced representation 7y, 1= T,y 10 the Mackey model

is defined on the representation space L*(X, H,, ii5) given by
Tar(90) f (@) = Ag i (hs(x, 90)) P p(hs(x, 90)) f(x - 90)  (f € LX(X, Hyp, p1s))-
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On the other hand, the induced representation 75 := Tg},1ne i the Blattner model

is defined on the representation space L*(G/H, p) given by

T5(90)0(9) == d(95'9) (¢ € L*(G/H, p)).

In this section, we shall see that m,, and 75 is equivalent.

First of all, let us introduce a linear isomorphism
E(G/H) — C.(X)

given by R{(x) = &(s(z)™') (€ € E(G/H),z € X) with its invers is given by
“1f(g) =Agu(h)f(x) (fe€CA(X), g "= hs(x)). Let us define for each a € G,
£,(g9) :=E&(a"tg). We see that

REy(x) = &u(s(2) ™) = E(a s(x) ™)
=¢(hs(x,a)'s(x-a)™h)  (s(x)a = hy(z,a)s(z - a))
= Ag u(hs(x,a))RE(x - a).

It follows that
| Re@)dunto) = [ Reto ) Aauhile,0) du(a)
:/XRf(x @) dpss(z-a) (by (LI9))
- /X RE(@!) dps(') (2 = - a).

Therefore a linear functional y/ : £(G/H) — R given by p/(&) = [, R&(x) dps(x)
is left G-invariant. By Proposition [1.11} there exist Cy > 0 such that p/(§) =
Copc,r(€). In other words we have

/ E(s(2) ) duale) = Co b (g) ducale). (1.26)

G/H
Now we are ready to prove the following proposition.
Proposition 1.13. The unitary representations g and m,,; are equivalent.

Proof. Let us recall that s : X D U — G is a section of of natural projection

23



p:G> g Hg € X and almost all g € G can be expressed as g = hs(z) (h €
H,z € U ). We shall show that the linear isomorphism

T:LXG/H,p) — L*(X,H,, pis)

given by T¢(x) = ﬁqb(s(x)*l) (Co is defined in (1.26])) is an intertwining
operator which is unitary. Indeed, the invers map of T is given by T~ f(g) =

Ay (h)2p(h)f(z) (97 = hs(x)). Using (1.26), we have

1761 = [ TSP duco)
1 —1\2
- [ gholsta) P duo)

b 10(0) dncn(9) = 0110,
G/H
This means that T is unitary. Moreover, we see that

T omp(g0)9(x) = WB(QO)Cb(S(x)_l)
= 0(g5 's(2)™") = &(
= 0((hs(@,90)5(z - 90)) ") = d(s(x - g0) " hs(, 90) ")
= Ag g (hs(, 90)) 2 p(hs (2, 90))(s(a - g9) ™)
= 7a1(9o) © T ().

In other words T o m5(g,) = 7y (go) © T. Therefore, T is a unitary intertwining

operator. Thus, 75 and 7,, are equivalent as desired. O

1.6 Square-integrable representation

It is well known that the study of square-integrable representations corresponds
to continuous wavelet transform (see for examples in [21], [22]). First of all, let us

introduce the notion of a square-integrable representation as follows :

Definition 1.11 (see [I5]). Let (7, H,) be an irreducible unitary representation

of a locally compact group GG. Then 7 is said to be square-integrable if there exists
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a non-zero vector ¢ € H, such that

| Vet dy < . (1.27)

If this happens then a vector ¢ is called admissible. Moreover, Duflo and Moore
[15] showed that there exists a (not necessarily bounded, densely defined) unique
operator C; on H, and it is called Duflo-Moore operator which is positive self-
adjoint. This operator satisfies (see [15] or [27] for detail)

1. ¢ is admissible if and only if ¢ € dom C}, and

2. For ¢1,¢3 € H, and ¢9, ¢4 € dom C;, we have

/G(fblfﬁ(g)@)m (7(9)Pal@3)n, dg = (1]93)1, (Cra|Crpa)n, . (1.28)

By changing variable ¢’ = ga with a fixed a € G at the integral in ([1.28]), we obtain

(01]03) 21, (Cra| Crp2) .,
- / (61]7(g' (@) d2)os ({0 (@) bal s, s () d!
= A (a)($1]03), (Co(a)s| Cam(@) o),

where Ay denotes the modular function of G. Therefore, if ¢o € dom C, then
m(a)ps € dom Cy, and we have

C2da = Agla)m(a)™" 0 CF o (a)ds
thanks to the self-adjointness of C,. Moreover, since C); is positive, we obtain
m(a) o Cpom(a)™ = Ag(a)V?C, (a € G). (1.29)

Taking an admissible vector vy € dom C,, we have an isometric embedding

Woo @ Hy — L*(G) defined by
Woyv(g) = (v|m(g)vo)/[|Crvol | (v € Har, g € G).

We observe that the map W,,, called a continuous wavelet transform, is an inter-
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twining operator from 7 into the left-regular representation. In this way, we see
that a square-integrable representation is a subrepresentation of the left-regular
representation, and vice-versa. For more detail, the works of square-integrable
representations for instance can be read in [7], [10], [29], [31], [32], and [53].
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Chapter 2

Harmonic Analysis for Frobenius

Lie Algebra of Dimension 4

Based on the work [12] by Csikés and Verhécezki about classification of iso-
morphism classes of Frobenius Lie algebras with dimension < 6 over a field with
characteristic not equals 2, we present some results of harmonic analysis of real Lie
groups whose Lie algebras are Frobenius of dimension 4. Particularly, we work on
real case. The isomorphism classes of Frobenius Lie algebras of dimension 4 are

given by

Theorem 2.1. (see [12, p.448]) For any Frobenius Lie algebra of dimension 4
over a field F of characteristic # 2 is isomorphic to one of the following
X5 X3
Logr: [Xo, Xa] = [Xp, Xs] = = X0, [Xo, Xo] = = [X5, X] = ——~
2. 911(7), T € F: [ X1, Xy = [Xo, X3] = — X1, [ X, Xy] = — X5,
(X3, Xy] = — X3+ 7X,

3. grri(e), where 0 #£ ¢ € F: [Xy, X3] = [ Xy, X4] = — X1, [X1, X4] = e Xy,
[XQaX?J = _X2~
The Frobenius Lie algebras grrr(€) and grrr(€') are isomorphic if and only if

e/e' is the square element of an element of F.

From Theorem [2.1]above, we get a list of 4-dimensional real Frobenius Lie algebras

as follows :
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Xo
Logr: [ Xy, Xu] = [Xo, X5] = =X, [ Xy, Xy] = 5 (X3, Xy] = ——

2. g1(7), T € R (X0, Xy] = [Xo, X] = =X, [ Xy, Xy| = =X,
[Xg,X4] = —Xg -+ TXQ,

3. 9111(8),6 ==1: [Xl,Xg] = [X27X4] — _X17 [X17X4] — 8X2,
[X27X3] - _XZ‘

Remark 2. For the third type, for e = —1, we know that g;;;(—1) is exponential
solvable and it is isomorphic to a direct sum aff(1) @ aff(1) where aff(1) is a
Lie algebra of ax 4+ b group. On the other hand, for ¢ = 1, the Lie algebra
g777(1) is solvable but not exponential and g;;;7(1) is isomorphic to the Lie algebra
R? x (R x 50(2)) of a similitude group Sim(2) := R? x (R, x SO(2)) (see Section
4.1).

2.1 The first type g;

We observe that the first type of real Frobenius Lie algebra g; is exponen-
tial solvable. Let G; be an exponential solvable Lie group whose Lie algebra
is g;. We start by computing coadjoint orbits of G;. Let U = aX; + bX, +
X3+ qXy € grand F = aX]+ X5 +9X5 +0X] € g;. We obtain ad(—U) =

—q —c b a

0 —¢/2 0 b/2

0 0 —q/2 ¢/2

0 0 0 0
the case ¢ # 0 we use identity

with respect to the basis {X;}!_;. In addition, for

—q —c b a —q 0 0 0
—q/2 2 —q/2

0 0 —q/2 ¢/2 0 0 —q/2 0

0 0 0 0 0 0 0 O
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for a suitable non-singular matrix P, to compute exp(ad(—U)). The result is

NN -1) BA1-)) (10

q

b1 _
explad(—U)) = 8 3 i qﬁ_i; @22
0 0 0 ' 1

where A := exp(—q/2) > 0. When ¢ = 0, exp(ad(—U)) is given by the limit of
d — 0 in the expression (2.2)), that is

1 —¢c —=b a
b
0o 1 0 3 (2.3)
0 0 1 3
0O 0 0 1

Since g; is exponential, we compute the coadjoint orbit Qp = €, 54,6 of G as
the set of Ad*(expU)F = x X} +yX; + 2X] +tX;. We obtain the following from

(2:2)

r = \a,
Yy = %(A — Da+ A5,
2
2= 22 N A,
a 9 b c
tza(l—/\ )Oz—f-&(l—)\)ﬁ—i—&(l—)\)ﬁ/‘l—(;. (24)

Again the case ¢ = 0 is obtained by taking limit. From (2.4 we can determine all
coadjoint orbits of G;. It is easy to see for « = § = 7 = 0 we have 0-dimensional
coadjoint orbits. Also for o = 0 and (/3,7) # (0,0) we have 2-dimensional coadjoint
orbits of the form (g cos0,sin6,0) and for the last we have 4-dimensional coadjoint

orbits if & # 0. Thus we have the following theorem

Theorem 2.2. Let G} be the exponential solvable Lie group whose Lie algebra is
the 4-dimensional real Frobenius Lie algebra g;. Then the set O(Gy) of all coadjoint

orbits for the group G consists of

1. the 0-dimensional coadjoint orbit Qo005 = {(0,0,0,6)} for 6 € R.
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2. the 2-dimensional coadjoint orbits (o cos o sin0,0) = {(0, e 2sinf,e"%cosh,t) ; q,t €
R} where 8 € [0, 27).

3. the 4-dimensional coadjoint orbit Q11000 = {(x,y,2,t) ; £z > 0}.

Irreducible unitary representations corresponding to the coadjoint orbits ob-

tained in Theorem [2.2] can be stated as follows.

Theorem 2.3. 1. The irreducible unitary representation o of Gy correspond-

ing to the coadjoint orbit Q00,5 = {(0,0,0,0)} is one-dimensional given by

where g(a,b,c,q) =exp U € G with U = aX; + bXs + X5 + ¢Xy.

2. The irreducible unitary representation o of Gy corresponding to the coad-

joint orbit Qocososine,0) 15 realized on L*(R) by

mi(ed/2— cos csin ﬂ
(malg(a,b,c,q)) f)(x) = '™ NOsTresmOT g4 4 gy, (2.6)
where f € L*(R,dz).

3. The wrreducible unitary representation mq of Gy corresponding to the coad-

joint orbit Q110,00 s realized on L*(R?, dxdy) by

(ra(expaXy) f)(z,y) = 27 f(x,y),

(ma(exp bXo) ) (w,y) = 270" £z, y),

(a(exp eXs) f)(z,y) = f(z + ce?’?y),

(ma(exp ¢ Xa) f)(z,y) = f(2,y +q), (2.7)

where f € L*(R?, dzdy).

Proof. For the first assertion, we see that the symmetric bilinear form Bp is iden-
tically zero since rank Br = dim {2 = 0. Hence, a polarization p = gr,expp = Gy
and mo = vp. Therefore, the irreducible unitary representations of Gy correspond-

ing to this orbit can be written in the simple formula 7o (g(a, b, c, q)) = €74,
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For the second assertion, we construct the irreducible unitary representations
of G corresponding to 2-dimensional coadjoint orbits 2(g cos6,sin,0) as follows. Let
p = RX; & RX, @& RXj3 be a polarization of g; at F' = cosX; + sin0X;] sat-
isfying the Pukanszky condition. We have the 1-dimensional irreducible unitary
representation vy of exp p of the form vp(exp(aX;+bXs+cX3)) = ?rilbeosb+esing)

Identifying the coset space exp p\G; with R by
R > x— exppexpaXy € expp\Gy,
we have a section
s:expp\Gr ~R > x— expzXy € Gy,
then the master equation

s(x)g(a,b,c,q) = hy(z, g(a, b, ¢,q))s(x - ga, b, c,q)),
(z € expp\GTr, g(a,b,c,q) € Gy, hy(v,9(a,b,c,q)) € expp)

becomes in our case

et 0 00 el 2ce??/q(e?? —1) —2be??/d(e?/? — 1) —2(e?—1
0 €2 00 0 e?/? 0 —2(er? 1)
0 0 /20 0 0 e?/? —&(e?? = 1)
0 0 0 1 0 0 0 1
1 23 —x9 —13 ey 0 0 0
| o 0 —z2/2 0 e 0 0
o0 1 —xy)/2 0 0 e 0 |’
00 0 1 0 0 0 1

where we see that

ae”

=zr+gq, x;1=—/?—1),
q

B 2he®/?

2ce”/?
To = E—

(e? —1), x3= (e¥? —1).
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Therefore, the formula of the irreducible unitary representation of Gy is
mi(e?/2— cos 0+csin &2
(malg(a,b,c,q) f)(x) = ™ETTNCRTEMOTT 11 1) (f € LA(R, dx)).

We can also compute this representation with respect to its basis { X7, Xo, X3, X4}
as follows.

e the master equation with respect to e?*! is of the form

exp 2Xy expaX; = exp(e ™40 X)) expr X,

= exp(ae®X;) exp xXy.
e the master equation with respect to e**2 is of the form

exp 2Xy exp bXy = exp(e*™*X1bX,) exp v X,
= exp(be®™? X,) exp xX;.

e the master equation with respect to e“*® is of the form

exp Xy exp cXz = exp(e*™* X cX3) exp v Xy
= exp(ce®?X3) exp xXy.

e the master equation with respect to e?X* is of the form
exp Xy exp qXy = exp(x + ¢) Xy,

so that we obtain simpler formula as follows :

)f)(@)
(ma(expbXy) f)(w) = et/ eost f (),
(ma(exp eXy) ) (x) = 20 f (),
(ma(exp ¢Xy)f)(z) = f(z +q) (f € LA(R, dz)). (2.9)

For the third assertion, the irreducible unitary representations corresponding to

4-dimensional coadjoint orbits €2(41,0,0) through F' = £X} can be computed by
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considering a real algebraic polarization p = (X, X5) satisfying the Pukanszky
condition. Identifying the coset space exp p\G; with R? by

R? > (x,5) — exppexprXsexpyXy € expp\Gy,
we have a section
s:expp\Gr ~R? 3 (2,9) — exprXsexpyX, € Gy,
then finishing the master equation
s(t)g = hs(&,9)s(&-g), (& €expp\Gr, g € G1,hs(i, g) € expp)

with respect to the basis { X, Xs, X3, X4} as follows

aXq

e the master equation with respect to e**! is of the form

exp 2X3 expyXy exp aX; = exp 2 X3 exp(e¥¥4aX,) exp yX,
= expr X3 exp(ae?X;) expyXy
= exp(e*™%3 (aev X)) exp 1 X5 exp yXy
= exp(ae? X;) expx X3 expyXy.

e the master equation with respect to e**? is of the form

exp 2X3 exp y Xy exp bXy = exp 2 X5 exp(e ¥4 X,) exp yX,
= exp £ X3 exp(be?/?X5) expyX,
= exp(e*47%3 (he¥/2 X)) exp £ X5 expyX,y
= exp(bze?? Xy + be¥?X5) exp x X expyX,.

e the master equation with respect to e“*® is of the form

exp X3 expyXy expcXs = exp(zr + cey/Q)Xg expyXy.

e the master equation with respect to e?** is of the form

exp X3 expyXy exp¢Xy = expr X3 exp(y + ¢) Xu.
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Therefore, we obtain the formulas below.

(ma(e™) f)(x,y) = =27 f(,y),
(ﬂ-Q(ebXQ)f)(x, y) _ eizmbzey/?f(x’ y)’
(ma(e™) f)(x,y) = f(x + ce’/?,y),
(ma(e™*) f)(z,y) = fz,y +q),
where f € L*(R?, dzdy). O

Furthermore, we shall compute the Duflo-Moore operator of representation
7 1= 7o of G given by ([2.7) corresponding to 2110, directly. To do that, we
note that for ¢ € C.(Gy), we have

dadbdcd
o(g)dg = [ (em1etXeeeXapaXey R (2.10)
R4 e=q
We compute for f1, fo € L*(R?) the integral
|(f1lm(g) f2) | dg. (2.11)
Gy
Now we put g = e?*1¢’ where ¢’ = e?X2¢°X3¢9%4, We obtain
(hln(9)fe) = [ filoy) @ nlg oo, ) dedy
R
= [t [ )T R dr) dy
R R
> —2mian / dT/
= [ e fl(:v,log nw(g') f2(x,logn) du} n
0
d
(n=e dy= :) (2.12)

Using Plancherel formula, we have

[ 1l )e(a) ) Fda—/

2

/f1 x,logn)m(g") fo(x,logn) dx % (2.13)
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bXo

We put ¢’ = e?X2¢”, where ¢g” = e“*3¢%X4. Thus, we obtain

/]R fi(x,logn)m(g’) f2(z,log n) dx

= / e 2L (2, log )7 (") fo (2, log n) dz
R

o —2mibx’ i/ 1" i/ d_ZL'/
_/Re fl(\/ﬁ,logn)ﬁ(g )fz(\/ﬁalog")\/ﬁ
(' =ayn ,dx = c\i/xﬁ)

Again by Plancherel formula we have

2
1(93, logn)m(g') fo(x,logn) dz| db

/’f1 ,logn) (”)fQ(%,logn)\ dz'.

Combining (2.13) and - we obtain

|(fi|m (X)) (X2 m(g") fo)|* dadb

RQ

/! x/ ld
/ /|f1 Jogn)|? |7(g") f2(—=,logn)|* dz n_Z

Vi

We can see

/ /

W(g”)fz(%, log ) = w<e6X3>w<eqX4>f2<%, log 1)

— w(eqX‘l)fQ(% + e/, log 1),
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(2.17)



then we have

qX4 x_/ 2
/R ) o T+ ey lom) e

d /
- / )l logn)

/
(¢ = % + ey, dd = y/nde)
dc
B /R | fo(d logn + q)> —

NG (2.18)
Therefore, we obtain
x dedq
(e )m(e™™) fo ==, log m)|* —5.-
72 SV
dd dqg
/ 2
. | fo(c log n + q)| N
dc n’dg
)2
- ’fZ 7q ’ 77 qu

(¢" =logn+q).

(2.19)
Combining (2.16)) and ( - then the formula (2.11)) becomes

dadbdcd
| I(ilnlo) 2l dg = / (Al (e 2)m(e ) m(e™) fof? ==

/ /’fl —=. logn)[* dz’ \/—/ (¢ d)? dddq
= [ [inesparas - [ e pe. )R adad

(r

—, S = 10g"n

Vi

il [ e Rl dedy
R

(2.20)
Therefore, we obtain the following theorem

Theorem 2.4. The Duflo Moore operator Cy,, for the representation (mq, L*(R?))
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of Gy as in (2.7) can be written of the form

Cof(z,y) = flzy)  (feL*R?)) (2.21)

We can relate this result to Pfaffian of g;. For m(e®*) f(xz,y) = >’ f(z,y)

we have
dr(Xy) f(z,y) = 2mie’ f(x,y), (2.22)

and since Pf(g;) = Q,, = X7, then we obtain

g
dr(Q) = (dn(X,))? = 4n?i*e® f(z,y). (2.23)
Therefore, we obtain the following proposition

Proposition 2.5. The Duflo-Moore operator Cr,, for representation mq of G as

in (2.7) is written in terms of the Pfaffian Qy, as
Cry, = 2m|dm(Q,,)| 2. (2.24)

We also notice that G is a semi-direct product of N := exp(Xj, Xo, X3) which
is isomorphic to Heisenberg Lie group, and a closed subgroup H := exp(X,) of
Aut(N). It is known that the irreducible unitary representation o, of N corre-
sponding to 2-dimensional coadjoint orbits through a X7 (o € R\ {0}) can be
characterized by formula o,(expaX;) = €*™Id for a € R. When a = +1, we
define o4 to be a standard Schrodinger representation of N on L?(R) given by

o (") f(x) = M f (@),
0. (e"2) f(x) = ™ (@),
0. () () = flz +0), (2.25)

where f € L*(R). We observe that o. is equivalent to induced representation

Indg(p<X1’X2> vexs. Using the action of H on R\{0} given by

h-a=e%a (h=expqXy, a€R\{0}),
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we define for general o € R\{0} a representation (o,, L*(R)) by
oo(n) :=0.(h"'-n) (neN),

where h € H and € = +£1 are unique elements for which a« = h - €.

Remark 3. In [37, Kurniadi and Ishi], we realize the representation 7, = Indg(ppui
as a subrepresentation of the quasi-regular representation of G; on L?*(N). Then

it was shown implicitly that 7|y = ffR+ o, da for Q=Q,.

2.2 The Second type gU(T)

First of all, let us see the structure of coadjoint orbits of G7(7)

Theorem 2.6. Let G;(T) be an exponential solvable Lie group of the 4-dimensional
real Frobenius Lie algebra g;r(7), 7 € R with { X1, Xo, X3, X4} as basis. Then, the
set Grr(T)\grr(7)* of all coadjoint orbits for the group Grr(7) (i.e. Qaprs) =
Ad* (G (7)) (aXT + X5 + X5+ 0X))) consists of

1. the 0-dimensional coadjoint orbit with o = =~y =0 given by

Q0,008 = {(0,0,0,0)}, (2.26)

for any 0 € R.

2. the 2-dimensional coadjoint orbits with (8,v) # (0,0) :

Q.80 = {00, fr(a: 8,7), 9-(a; B,7), t); t, ¢ € R}, (2.27)

<f7(q;ﬁ,v)>:equ<0 —1><6>
9:(q; 8,7) T -1 v )

3. the 4-dimensional coadjoint orbit of the form :

where

Q1000 = {2 X7 +yX5 +2X5 +tX; ; £ > 0,y,2,t € R} (2.28)
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Proof. Let us compute coadjoint orbits of G;(7) with respect to the basis { X7, Xo, X3, X4}
and F' = aX{ + X5 + X3 +0X]. We obtain

Ad* (e F = aX; + X5 + X5 + (aa + 0)X],
b2
Ad*(eX9)F = X} + B + (ab+7)X; + (- +9b+0)X;,

2

Ad* () F = aX{ + (—ac+ B)X; +7X; + (-

Ad* (e (aX]) = ae 71X, (2.29)

— 1Bc+ ye+ )X,

We note that Ad*(e4%4) F is complicated in general, while the formula Ad*(e?*)(aX7)
is sufficient for our observation of coadjoint orbits. We observe that for a =
B = v = 0, we have the 0-dimensional coadjoint orbits in the form Q0,4 =
{(0,0,0,0)} for § € R. Let U = aX; + bX5 + ¢X3 + ¢Xy4, we have

q ¢ —b —a
0 —
ad(U) = T e (2.30)
0 ¢q qg —b—c
0 0 0 0
By considering ad*(U) and a = 0, we obtain
y 0 —q 0 8
z | =AC()(BXS + X5 +0X]) =(exp| ¢  —q O [)]| ~
t —7¢ b+c O )
(2.31)
Moreover, we have
v\ 0 —q 5
= (exp )
z T4 —q Y
_( b)) (2.32)
9:(a:8,7)
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If ¢ =0, then we have

0 00 3
z | = (exp 0 00 )) v
t —7¢ b+c O 4}
1 00 3
= o 10 ||~ (2.33)
—1c b+c 1 )

If (3,7) # 0, then t = —7¢f+ (b+c¢)y+0 runs over R with (b, ¢) runs over R?. Thus
we have 2-dimensional coadjoint orbits Qo s.,.0) = {(0, f~(¢; B,7), 9-(¢; 8,7),t) ; ¢, t €
R}. Now if we consider ¢ = 0, then

x 1 0 0 0 o
- 1 0 0
Yol = Adr(eY)F = ‘ o
z b 0o 1 0 0%
t a+1/2(* +bc+7c%) —1c b+c 1 4]
(2.34)

Furthermore, if o # 0, then (y, z,t) will run over R? with (a, b, ¢) runs over R3. In
addition, if (a,b,c) = (0,0,0)

Ad*(eY) = exp 0 4
¢ —¢

Therefore, we obtain 4-dimensional coadjoint orbits in the forms 241000 =
{(z,y,2,t) ; 2 > 0,y,2,t € R}. ]

Remark 4. To compute f,(q; 53,7) and g,(¢; 8,7) in (2.27), we explain by case of
7. First we consider the case 7 < 1/4. Eigenvalues of ad(X,) are Ay = 7%= and

-\ —A
Az = # corresponding to eigenvectors vy = ( i’ ) and vy = ( i )

respectively. For simpler computations we put

}/2 = —)\3X2 + X3 and Yg = _)\QXQ + Xg.
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Thus, ad(X,)Ys = XY and ad(X4)Ys = A3Y3 and we get e~ 9%4Y, = e7*29Y; and

e~ 1X1Y; = e~?9Y;. Moreover, let us take

1 1
= o (X AeXE) and Yy = (X5 + MaX3)

Y*
? Az — Az

such that <Y; Y-*> = 0;; where ¢,7 = 1,2. In these terms for 8 € R, we obtain 2

’ ]
dimensional coadjoint orbits of the forms

Qiyyyy = {Fe72YS +9e7 Y +1X] 5 ¢t €R}

Ae
= {£yYy + 2V +tX] z:fyyﬁ,y>0,t€]R}. (2.35)
For the second case 7 = 1/4, we take

Yo = —Xo +2X35, Y3 =2Xy,

YQ :§X3, Ya :§X2+4IX3’

where <Y;, YJ*> = 0;;. Using the equality

_ €_Q/2 _qe_Q/Q
Jad( qX4)<YQ 1@):(5/2 Yé)( 0 a2

and ([2.33), we obtain

Qayy vy = {yYy +2Y5 +1X] ; ¢, t € R}, where
y = fe 2,
z=—Pge” " +ye 2, (2.36)

For the third case 7 > 1/4, we practice the argument similar to 7 < 1/4. Let us
consider
Yo = — A3 X + X, Yy = —XXs + X,

where \y = % + i—vll;_l and \3 = % — i—v4g_1. Then, we obtain ad(X,)Ys = A2Y5
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and ad(X4)Ys = \3Y3. Let us take

Xz ? Xz

Ve (XX = (xrqis
2 )\2_)\3( 2+ 2 3) 9 \/ﬁ( 2+ 2)a
1 X3 1 X2

Yy (X5 +2aX3) = 5+ ———=(X5 + ),

:)\3—)\2 2 \/47'—1 2

where <Y;~,Yj*> = 0;; (i,j = 1,2). Then we put

X3 1 X3
Z*_ 3 Z*__ )Lf* 3
2 2 ) 3 /—47__1( 2 2 )7

where

(i %)

I
~
B
&
~——
-~
. =
[

-~
N~

Indeed, we have

—_
~
[\
N
1
—
\/

ad(X4)(Z2 Z3>:<Z2 Z3><_£ 1;2

ead(—qX4) ( Zz Z3 > = ( ZQ Zg >€_q/2

N
(@)
o
0
—~
NI ke
W
\]
|
—_
SN—
|
&.
=
—~
R R
Ny
\]
I
—
SN—
\/

Using ([2.33)) we obtain
ng;+72§ = {yZ§ + ZZ;,< + tXI ; q,t € R}, where
y = Be /2 cos(g\/élT —-1))+ 76_‘1/2 Sin(g\/47' - 1)),
z = —fe? sin(%\/47 — 1)) + e 92 cos(g\/éh —1)). (2.37)
We also give another way to compute coadjoint orbits when « # 0. Let us now
observe for @ > 0. Using ([2.29) we consider for F' = aX{ + X + X5 +0X]
Ad*(e(loga)X‘*e_%Xlegxe’e_g)@)F = X7, (2.38)

ra(8?

5 Tﬁ(g) + fy(g) + 0 and ¢ = loga. We also use the same

arguments for a < 0. Therefore, for o # 0 we obtain 2 types of 4-dimensional

where ¢ =
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coadjoint orbits in the following patterns

Quo00 ={F €9,(1) ; a>0}, (2.39)
and

Q1000 ={F € g(1) ; @ <0} (2.40)

We can observe that only {21 := (11 0,0,0) is an open orbit for G 11(7). Furthermore,

we shall construct irreducible unitary representation for Gr;(7) as follows.

Theorem 2.7. The irreducible unitary representation of Grr(7) on the space L*(R?, dzdy)

corresponding to the open orbit Q4 can be written as

(Ta. (exp ¢Xa) f)(z,y) = f(z,y +q),
(. (exp Z) f)(7,y) = ox(exp(Ad(exp yX4)Z)) f (2, y), (2.41)

where Z = aX; + bXy + ¢X3, and o1 acts on f(-,y) € L*(R) for each y € R.

Proof. Let f = +X| be element of gj,(7) and p = (X, X,) be a polariza-
tion of g;;(7) at f satisfying Pukanszky condition. Identifying the coset space
exp p\G;(7) with R? by

R? 3 (2,y) — exppexpaXzexpyXy € expp\G;(7),
we have a section
s expp\G (1) 2 R? 3 (z,y) — exprXzexpyXy € Gy (1),

then the master equation s(i)g = hs(z,9)s(¢ - g) (¢ € expp\G(7), g €

G.(T), hs(Z,g) € expp) for the representation mg, of G;;(7) becomes in our case
exp(zX3) - exp(yXy) - g = h' - exp(2'X3) - exp(y' Xy). (2.42)
Substituting g = exp ¢X, to (2.42)), we have

exp(zX3) - exp(yXy) - exp(qXy) = exp(zX3) - exp(y + q) X4.
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Therefore, the representation 7, with respect to the basis exp ¢.X4 can be written

as follows.

(T, (expaXa) f)(z,y) = flz,y+q)  (feL*R?)). (2.43)

Furthermore, let Z = aX; + bX5 4+ ¢X3 be element of (X, X5, X3). We see that

N = exp (Xy, Xy, X3) is the Heisenberg Lie group and it is well known that the

master equation for the representation o := Indéim X1,x,)V4 Oof N can be written

as

exp(zX3) -n=h"-exp(2'X3),

where n € N,z,2' € R/h' € exp (X, X3). Then the representation o takes the

form
(ox(n)f)(x) = vy (W) f(2")  (f € L*(R?), (2.44)

and it can be computed with respect to the basis { X7, X5, X3} as given in (2.25)).

On the other hand, the master equation for representation mq, = Indg(m X1, X\ Vi

of G;(7) is given in (2.42)). Now, substituting g = exp Z to (2.42]), we obtain

exp(xX3) - exp(yXy) - exp Z = exp(zX3) - eXp(Ad(eyX4)Z) -exp(yXy)
=N exp(zX3) - exp(yXy). (2.45)

We see that for n = exp(Ad(e¥*+)Z), the formula
exp(2X3) - exp(Ad(e?*)Z) = b - exp(2'X3),

is the master equation for N. Therefore, we obtain the irreducible unitary repre-
sentation for Gy7(7) on L*(R?) of the form

(T, (exp Z) f)(2,y) = ox(exp(Ad(expyX0)Z) f(z,y)  (f€ L (R?)), (2.46)

as required. O

Next task is to consider the Duflo-Moore operator for the representation 7 :=
mq, of G;;(7) given by (2.41)) corresponding to the open coadjoint orbit€2(11 0,0y
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by computing directly as follows. For ¢ € C.(Gy;(7)), we have

Grr(r) R4 024
We compute for fi, fo € L*(R?) the integral
[ 1o ds .
GU(T)

Now we put g = e**1g’ where ¢’ = e**2e¥3¢9%4, We obtain

(Alr()f2) = | e y)e ) flary) dady
- / 2miact | / fi (o, 97 (@) ol ) da} dy
R R
- / e 2mian / f1(z, log n)a(g) folz, Tog ) dur} 2!
0 R n

d
(n=¢’, dy = #)- (2.48)

Using Plancherel formula, we have

L1 )m(a o) da
_ /OOO
-

Before continuing computations, let us see the useful lemma below, which will be

used in our next computations.

2

772

/R fi(x,logn)m(g’) fa(z,logn) dx

2 d'r]
-

/ fi(z,log n)m(ebX2ecXs)m(eaX4) fo(x, log n) dx

(2.49)

Lemma 2.8 (see [19]). Let o, be the representation of N = exp(Xy, Xs, X3) on
L*(R) as in (2.25)). For ¢1,¢1 € L*(R), we have

/]RZ [(Gr]o s ("¥2eX) d2) oy [ dbde = |1 |Z2(my |02l T2r) - (2.50)
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Proof. Let ¢1, ¢o be elements of L?(R). We compute the inner product

(p1]o o (e2e%)py) = / o1 (2)er2m T o (1 + ¢) dw
R

= [t @)oo,
R

and by Plancherel formula we get

@l yin)dbde = [ jor@) { [ loaa + o) de} da
= [1o@P s [ loxto+ 0P de

(2.51)

= [I@P ds [ o) (¢ = a0

= 1611122l 2172 2)-

Furthermore, since X, and X3 commute with their commutator, that is,
[X27 [X27 X3]] = [X37 [X27 X3]] = 07

by the Baker-Campbell-Hausdorff formula we have

ebX2€CX3 o ebX2+CX3+bC[X2,X3]/2

— ebX2+CX37bCX1/2

— e—bCXl/erXz-f—CX;g )

Therefore, we have

’(¢1|0’i<€bx2€CX3>¢2)|2 — |€i2m'(bc/2)(¢1|0_i(€bX2+cX3)¢2)’2

= |(¢r]ow(e2FX3)y) .

Thus we obtain
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Corollary 2.9.
[ Gl o) e P dode = o gl oy (259

Using (2.41)), (2.49), and Corollary 2.9} we obtain
/ /|(fl|7T(€aX1)ﬂ—(ebX2€CX3>7T(€qX4)f2)|2 dadbdc
R2 JR
- d
= [ Aol (e ol o )P b
0o Jr
h d
B / (1 log m)lo (exp(Ad(e™5 ™) (X5 + X3)))m(e*) fol -, log m)) | dbde n—n
0o Jre

0 / / dbl dC/ d
:/ / |(f1(-, log m)|ow (e” X243 (e9%4) fo -, log m)) > !
0 R2

2
(V' Xy + ' X3 := Ad(e"5™) (bX, + cX3), dbdd = ndbdc)

non
:/0 ||(f1(-,10g77)|I%Q(R)Ilﬂ(eqxﬂfa(-,logn))lliz(R)ﬁ

(2.54)

Therefore, we get

/Guw|(fl|7r(g)fz>|2 = / /R/ |(film(e ) m(e" ¥ ) () f) %

0 dqg . d
= | It tognlad | ) - Tog i S 5
0 n
dq ., d
= [ ol NG04 ) By S} 5
0 n
dqg . d
= [ oI ] Il sy 7 553

(¢" =logn+q)

d
= [ It S [ Nt ||L2 -

= [UAC ey d / 152 sy 3

(8 - lOg n, ds = )
U
(2.55)
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Moreover, we have

/ dg
| i) )P dg = il [ 1Al sy
Gri(r) R

AT / e ol 2oy da. (256)

Based on computations above, we have proved the following theorem.

Theorem 2.10. The Duflo-Moore operator for the representation (w, L*(R?)) of

G;(T) can be written of the form

Cof(z,y)=eVflzy)  (feL*(RY)) (2.57)

Furthermore, in notion of Pfaffian of g;,(7), we obtain

Proposition 2.11. The Duflo-Moore operator C, for the representation m of
G (1) which related to the Pfaffian of g;,(7) is given by

Cr = 272 (Q, )|V (2.58)

where Qg ) = Pf(g;;(7)) = X3

2.3 The Third type g,;,(£1)

The Lie algebra g;r;(¢) is the semi-direct-direct product of a commutative
ideal n := (X7, X5) and a commutative subalgebra h := (X3, X4). The matrix
expressions of ad(aX; + bX5) and ad(cX3 + ¢X,) with respect to the basis {X;}1_,

are written as

0 —a —b
0 —b ea
0
0
and
c q
—eq ¢
0

0
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respectively. The Lie group Gyrr(e) € GL(grr7(e)) corresponding to ad(grrs(e))
can be written as the semi-direct product N x H with

1 —a —b
1 —b
N: =4 ) a,bER )
1
1
and when ¢ = —1,
e‘coshq e“sinhgq
¢sinh ¢ cosh
"o e“sinhq e“coshq CcqeRY.
1
1
and when ¢ =1,
e‘cosq e°sing
- —efsing  efcosq cg€R
1
1

Furthermore, we can see that the matrix expression for Ad*(exp(aX; 4+ bX5)) with

respect to the basis {X}7_, is

)

1

1
a b 1
b —ca 1

Now for f = aX; + X5 +vX5 +0X; € g7,,(¢), the N-orbit Ad*(N)f equals

{aX; 4+ X5+ (y+aa+ Bb)X; + (6 —eBa+ab)X] ; a,b € R}

49



We can observe that Ad*(N)f is 2-dimensional if and only if the linear map

()2 2)C)

o
is non-singular, that is, det p
—ef «

) = o? + B3 # 0. In this case, we have
AQ'(N)] = aX; + BX; + (X5, X)),

Moreover, these orbits are mapped each other by the H-action. When € = —1, the
set {aX] + BX; ; o® — 3% # 0} is decomposed into four orbits

Ad*(H)(£X7) = {aX] +8X5 ; o* — B2 >0, £(a + B) > 0},

and
Ad*(H)(£X3) = {aX] +8X;; o — B2 <0, £(a— B) <0}

Therefore, there exist four open coadjoint orbits Qix+ (i = 1,2) in g7, (—1).

Next task is to consider the irreducible unitary representation 7 := mg s of

1
Gyr(—1) corresponding to the open coadjoint orbit Qix:. To do so, let f :=
+ X7 € Qiyx; and p = n = (X1, Xy) be a polarization of g;7;(—1) at the point f.
The 1-dimensional representation of N = expp can be written as
Vin (exp(aX1 + bXQ)) = ei27ria>
where aX; + X, € p. Identifying the coset space N\G;;;(—1) with R? by
R? 3 (z,y) — NexpaXzexpyX, € N\G,(—1),
we have a section
s: N\Gy(—1) ~R? 3 (z,y) — exprXzexpyXy € Gy (1),

then the master equation

s(&)g = ns(&,9)s(@-g), (&€ N\Gy(=1), g € Gry(=1), ny(t,9) € N)

20



for the representation mq, . of G;;;(—1) becomes in our case of the form
1

e*coshy e*sinhy 1 —a; —by e” coshy e sinhy/
e*sinhy e* coshy (nh) 1 —b —a e* sinhy’  e* coshy/
1 1 1
1 1 1

where nh € Gr;(—1) = N x H is of the form

1 —a —b e‘coshq e“sinhgq
1 —b —a e‘sinhq e€coshgq
1 1
1 1
Solving the master equation above, we have a; = ae” coshy + be”sinhy, by =

ae” sinhy 4+ be® coshy, 2’ = x + ¢, and ¥ = y + ¢q. Then, the representation 7 of
G;;(—1) can be induced from the representation Vyxy Of N. Namely, m = Ind%ypo.

Therefore, we obtain the following theorem.

Theorem 2.12. The representation © of G;;;(—1) on L*(R?, dzdy) corresponding

to the open coadjoint orbits Qyxy can be written as

T : (9(a. b, ¢,q) (. y) = 2O IIIN 0 ey 4 ) (f € L(RY).
(2.59)

We also compute the representation 7 of G;;;(—1) with respect to basis { X1, Xa, X3, X4}

by computing each master equation as follows.

aX1q

e the master equation with respect to e**! is of the form

exprX3 expyXy expaX; = exprX3 exp(eadyX4aX1) exp yXy
= exp X3 exp((acoshy)X; + (asinhy)Xs) exp yXy
= exp(e®™X ((a coshy) X| + (asinh y)X3)) expr X3 expyXy
= exp((ae” coshy) X + (ae® sinhy) Xs) exp x X3 expyXy.
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e the master equation with respect to e**2 is of the form

exp 2X3 expyXy expbXy = exp 2X;3 exp(e* ¥4 X5) expyXy
= exp((be® sinh y) X, + (be” coshy) X3) exp X3 exp yXy.

e the master equation with respect to e“*® is of the form

exp X3 expyXy exp cX3 = exp(z + ¢) X3 expyXy.

e the master equation with respect to e?** is of the form

exp X3 expyXy exp¢Xy = expr X3 exp(y + ¢) Xu.

Therefore, we have the formulas below.

(Ta . (exp aXy)f)(z,y) = 2T RV f(z,y),

(e y, (exp bX2) f) (2, ) = =m0V (2, ),

(T, (exp eXs) f)(2,y) = f(z +cy),

(o . (exp g Xa) f)(2,y) = f(z,y +q) (f € L*(R?)). (2.60)

Similarly we can apply exactly the same argument as the one for construction of
representation 7 of G;;(—1) corresponding to the open coadjoint orbit QiX; to
construction of representation 7 of Gy;;(—1) corresponding to the open coadjoint
orbit Q4 x;.

Now we shall compute the Duflo-Moore operator of representation 7 := mq_ X1
of Gy;;(—1) given by corresponding to the open coadjoint orbits Q. x- di-
rectly. For ¢ € C.(Grrr(—1)), we have

[ o [ e dady
G (=1) R4 e2c
We compute for fi, fo € L*(R?) the integral
/ |(film(9) f2) | dg. (2.61)
G (=1)
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aXq 6bX2

Now we put g = e g where ¢’ = e“*3¢2%4. We obtain

<f1’77<g)f2) — / fl (.ﬁE, y)eiZﬂiew(acosherbsinhy)ﬂ,(g/)f2(x’ y) d.’ll'dy

= [ [ e i) o ) ) o dy

————— A1 dC,
— $2m(a<1+bC2) /
/{ G—G>0)° filz,y)m(g) f2(xy) 57— oo
G+¢G>0
(G = aoshy, G etsinhy. dody = 5 ! o 06 dG),
2

Using Plancherel formula and (2.62)), then we have
[ I )n() o) da
R2

_ /{ S }f1(a:,y)7r(9)f2(a:,y)| a—ar <2> dcy d,
Cl‘|‘CQ>O

1
- [ A e o e dsdy
~ [ InGy)P ) e
R
On the other hand, we also have

7(g) fo(,y) = w(e*)m(e?™) fo(x,y)
= folr + ¢,y +q).

Therefore, we obtain

dedgq

(e m () folw, y)
R2

de
— [ It eyroP
RQ
dc
:/ |f2(Cl7q/)|2 62m 620/ dq/
]RZ

(=z+c¢ ¢ =y+q).
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Combining (2.63) and - then the formula (2.61)) becomes

/ |(f1’ﬂ-( )f2 ’2 dg —/ | f |7T aXl) (ebXQ) <€CX3) <€qX )f |2 daddedq
G (=1)

5 9y dC’ dq

/ Ay 1fld ) e dady
R2 JR2

= [ h sy - [ e ne )P aca
R2 R2

= [1fllz2w) / le™ folc,¢) P dcdq’.
RQ
(2.66)

Therefore, we obtain the following theorem.

Theorem 2.13. The Duflo Moore operator for the representation m of G;;;(—1)

gien in ([2.60)) can be written of the form

Coflz,y)=e“flz,y)  (fe€L*R?). (2.67)

Now from ([2.60]), we have

drm(Xy) f(z,y) = £2mie” coshy f(z,y),
dr(Xo) f(z,y) = £2mie® sinhy f(z,y). (2.68)

Furthermore, we have
dr(X1)*f(2,y) — dn(Xo)* f(x,y) = 4n*i%*" f (2, y).

Therefore, the Duflo-Moore operator for the representation 7 of Gy;;(—1) as in
(2.60) related to the Pfaffian of g;;;(—1) can be written as

Proposition 2.14. The Duflo-Moore operator for the representation w of G;;(—1)
as in (2.60) related to the Pfaffian of g;;;(—1) is the form

. = 2rldr(Qy ) 2.00

Secondly, when ¢ = 1, the set {aX} + X} ; o + 3% # 0} is an H-orbit
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Ad*(H)X7. In conclusion, we have just one open coadjoint orbit of the form Qx;
in g7;,(1). Now let us construct the irreducible unitary representation m := T
of Gi;7;(1) corresponding to the open coadjoint orbit 2x:. Let f := X} be element
of Qx: and p := RX; @ RXy C gs7(1) be a polarization at the point f. The
1-dimensional representation of N can be written as vx: (exp(aX; +bX5)) = e*™,
where aX; 40X, € p. Moreover, we choose a section s : N|G — G which identified
by Rx[0,27) — G. Our task is to solve the master equation s(x)g = hy(x, g)s(x-g)
with respect to the basis { X, Xo, X3, X4} as follows.

e the master equation with respect to e?*! is of the form

exp X3 expyXy expaX; = expxXs exp(e*¥¥1aX) expyX,
= expxX3 exp((acosy)X; — (asiny)Xs) expyXy

— eXp(eadeg ((

acosy) X1 — (asiny)Xy)) exp X3 expyXy
= exp((ae® cosy) X1 — (ae”siny) Xy) expx X3 exp yXy.

e the master equation with respect to e**2 is of the form

exp 2X3 expyXy expbXy = exp 2X;3 exp(e* ¥4 X5) expyXy
= exp((be® siny) X + (be® cosy) Xs) exp X3 expyXy.

e the master equation with respect to e“*® is of the form

expr X3 expyXy expcXs = exp(z + ¢) X3 expyXy.
e the master equation with respect to e?** is of the form

exp X3 expyXy exp¢Xy = expr X3 exp(y + ¢) Xu.

Therefore, the irreducible unitary representation mq . of G;;;(1) on L*(R x [0, 27))
1

corresponding to the open coadjoint orbit Qx- with respect to the basis { X1,..., X4}
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(ﬂ-ﬂxf (eXp aXl f xz,
L(expbXs) f)(x,
1

Txs exp q¢Xy)f)(x,

Now we put g = e

can be written as

T [ (1, ),

T f (1),

fla+e.y)

fley+a)  (fe PR, x [0,27)

f

))(@,y) =
))(@,y)
. (exp eXs) (2, y)
)@, y)

can be computed in the following way. For ¢ € C.(G;7(1)), we have

dadbdcdq
¢ g dg — ¢ 6aX1 eszecX3eqX4 iabehdutet: 3
/ etwde= [ o )

We compute for fi, fo € L*(R?) the integral

/ (Fulr(9)fo)P do.
Gr(1)

aX1e0X2 g/ where ¢’ = e“*3e4%4, We obtain

(fl"/T(g)f) /;)2 /fl T y €2ﬂ16x(acosy+b81ny ( )fQ(l? y) d.l?dy

/ / 27i(ae® cos y+be® smy)f (ZL‘ y) ( )fQ(;L‘ y) dx dy
0,27)

d¢y d¢y
G+aG
1

G+G

= [, s o, )7l o)

((1 =e"cosy, (o =¢€"siny, dxdy=

o6

d¢y dG).

(2.70)

Furthermore, the Duflo-Moore operator for the representation 7 of G;;;(1) in (2.70)

(2.71)

(2.72)



Using Plancherel formula and (2.72)), then we have
|(f (e )m(e"**)m(g") f) I dadb

/[02 /’fl z,y)m(g) f2(x, y)\2 i e** dx dy
:/[02 )/R’fl(%y)‘ 17(g) f2(z,y)|? e ** dx dy. (2.73)

g A6 dGe

On the other hand, we also have

m(g') fa(,y) = w(e*)m (™) fo(, y)
= folz + ¢,y +q). (2.74)

Therefore, we obtain

dedgq

(e ) m(e™™) folz, y)
R2

dc
:/ |fole +c,y+q))? — d
R2 e

d /
1ol )7 € S dg
R2 620
(d=z+¢ ¢ =y+q). (2.75)

Combining (2.73) and - then the formula (2.71)) becomes

[ Al R g = [ G e nenens o PO
GIII(l)

dc’d
/ / B )P 1l ) e 200 2 gy
[0,27) R2

[ [inwapasdy - [ e ne )P acay
[0,27)

— 1Al /|e (&, q)Pdddq.
(2.76)
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Therefore, we obtain the following theorem.

Theorem 2.15. The Duflo Moore operator for the representation m of G;;(1)

gwen in ([2.70) can be written of the form

Cof(@,y) =e"flz,y)  (fe€L*(Rx[0,2m))). (2.77)

Now from ([2.70)), we have

dr(X1)f(x,y) = 2mie” cosy f(z,y),
dr(Xo) f(z,y) = 2mie® siny f(x,y). (2.78)

From equations above, then we have
dr(X1)* f(x,y) + dn(Xs)* f(x,y) = 4n%i%*" f (2, y).

Thus, the Duflo-Moore operator for the representation m of G;;(1) related to the

Pfaffian of g;;7(1) can be written as

Proposition 2.16. The Duflo-Moore operator for the representation m of G;;(1)
given in (2.70) related to the Pfaffian of g;;;(1) can be written as

Cy = 2mldm(Qy )72, (2.79)

We also compute the Duflo-Moore operator for the representation of Gy;(1)
given in ([2.70) by a different way as in Proposition [4.2]
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Chapter 3

General Results for V x H

Let g be a semi-direct sum of V= R™ and h C gl(V'), denoted by g:=V x b
and its Lie group be denoted by G := V' x H, where H is the connected subgroup of
GL(V) correponding to h. In this chapter we give general results for GG, especially
conditions for coadjoint orbits of G to be open in g*. If this happens, namely the
coadjoint orbit of G at § € g*, denoted by ) , is open in g*, then we have that
the Lie algebra g = V' x b is Frobenius. Furthermore, when the representation of

G is square-integrable, then we compute its Duflo-Moore operator, particularly for

h,, = {0} and the other for b, # {0}.

3.1 Conditions for coadjoint orbits of G =V x H
to be open in g*

Let G be a semi-direct product of V' which is isomorphic to an n-dimensional
real vector space R™ and a connected subgroup H of GL(V'), and let g := V x b be
its Lie algebra with g* := V* @ h* as its dual space. For p € V* and A € End(V),

we define a linear functional A*p by
(A'p,v) = (p, Av)  (veV). (3.1)

For u,v € V,A € h, and a € H, let X(v, A) be an element of g, and let g(u,a)
be an element of G. We also write g(a) = ¢(0,a) and g(u) = g(u,I). We decribe
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adjoint actions of G on g by
Ad(g(a)) X (v, 4) = X (av, Ad(a)A),

and

Ad(g(u)X (v, A) = X (v — Au, A).

Furthermore, we have formulas for coadjoint actions of G and g on g* respectively

as follows :

£((a™)'p, Ad"(a)a),
§(p, a +u.p),
E(—A*p,ad*(A)a + v.p), (3.2)

Ad*(g(a))é(p, @)

Ad*(g(u))¢(p, @)
ad™(X (v, A))¢(p, @)

where u.p € h* is defined by (u.p, A) := (p, Au) (A € b). Let & = &(po, ) be
an element of g* with py € V* and oy € h*, we consider conditions for coadjoint
orbit Q¢ := Ad"(G)& C g* to be open in g* as follows.

Lemma 3.1. The coadjoint orbit S, is open in g* if and only if the map
frg—g (3.3)
defined by
93 X(v,A) = ad (X (v, A)& = {(=A"po, ad”(A)ag +v.po) € g7 (3.4)
18 bijective.

Proof. Assume that the coadjoint orbit )¢, is open in g*. This means that f is

surjective. Since dim g = dim g*, surjectivity of f is equivalent to bijectivity. [J

Let b,, be the stabilizer of h at py € V*. In addition, let [ be a subspace of f
such that h = [ @ b,,. Now let @ be a canonical projection of g* = V* @ h* onto
V=

Lemma 3.2. The coadjoint orbit w(§d ) is open in V* if and only if

Vovr—ov-pel’
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18 bijective.

Proof. First of all, let assume that @ (€ ) is open in V*. We observe that

w(ng)

w({Ad*(9)é ; 9 € G})
w({Ad*(g(v,h))éo ; vEV, he H})
(h"Y)*py; he H} ~ H/H,,.

Since @ (€, ) >~ H/H,, and @({) ) is open in V*, then dim V* = dim h — dim b,,,.
On the other hand, dim h = dim [+ dim b,,,. Therefore, we obtain dim [ = dim V'*.
Furthermore, let B an element of [ for which —B*py = 0, then B € b,,. We get
B e nh,, ={0}. Therefore, B = 0. We obtain that the map

[ B —B*pye V*

is always injective, so that bijective since dim [ = dim V*. Let us take v € V for

which v - pg = 0, then for all B € [ we have
(v - po, B) = (B*po,v) = 0.

Thus, v = 0. This means the map V' > v — v - pg € [* is injective, so that it is
bijective since dim V' = dim [*.

Now we assume that the map V' > v —— v - pg € [* is bijective. We have dimV =
dim I*. Let us take B € [ for which B*py = 0, then for all v € V' we have

(B*po,v) = (v-poy, B) = 0.

Therefore, B = 0. This means, [ 5 B — —B*py € V* is injective, so that
bijective. Thus, @ (€2, ) is open. O

Theorem 3.3. (), is open if and only if the following two conditions are satisfied
1. w(§,) is open in V*.
2. bp, = 0, or the coadjoint orbit Ad™(Hy,)(awly,,) in by, through aols,, € by,

18 open.

61



Proof. In the previous construction, h = [ @ b, so that we have g =V © [ D b,
and g* = V* @ [* @ b’ . We note that [* is naturally identified with (b, ). For
(p,B,7) € V* @ I* @ by, we write ((p,3,7) for the corresponding element of g*.
Namely,

(€(p, B,7), X (v, B+ C)) == (p,v) + (B, B) + (7, C) ,

where B € [ and C € by,. In other words, £(p, @) = ((p, aly, aly,, ) for p € V* and
a € h*. Then, the map fy: g — g in (3.4) is described as

X (v,0) — ¢(0,v.po, 0),
X (0, B) — ((=B"po,ad"(B)(aol), ad"(B)(ly,,) (B € 1),
X(0,C) — ¢(0,ad"(C)(ao|r), ad™(C)(aoly,, ) (C € by,). (3.5)

We shall prove "if” part. Assume w(€2,) is open and Ad*(Hy,)(aoly,,) C by, is
open. As is seen before dim [ = dim V*. Therefore, the map [ 3 B +— —B*py € V*
is bijective. For a given ((p1, f1,71) € g%, we can find X (v, By + C}) for which

ad" (X (vi, By + C1))& = ((p1, B1, M)

In fact, we have by (3.5))

p1 = —Bipo, (3.6)
51 = V1.Po + ad*(31 + Cl)(a0|[), (37)
Y1 = ad*(31 -+ Ol)(a0|bp0>- (38)

First, by (3.6) we find B; € . Then by (3.8) and openness of Ad*(H )(O‘|h ), we
can find C; € b,,. Finally, we can find v; € V by (3.7 . and Lemma Thus we
prove ”if part’ for the case b, # {0}, and the case b, = {0} is proved similarly.
Now we shall prove the ”only if” part. If w({l) is not open in V*, then there
exists p; € V* such that A*py # p; for any A € h. This implies that ad"(X)&, #
C(p1, %, %) by (3.6 - for any X € g. Therefore, ()¢, is not open in g*.
Assume that @({,) is open. If h,, # {0} and Ad"(H,,)(ol,,) is not open in
5o, then there exists 41 € by such that ad™(C)(aly,, ) # 1 for any C' € b,,. This
implies that ad™(X)&, # ((0,0,v,) for any X € g. In fact, if ad*(X)& = ¢(0,0,v1)
with X = X(vy, By + C4), then Bipy = 0 means B; = 0, because as is already
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seen that openness of w({2,) implies By — —Bjpy is injective. On the other hand,
(3.8) means v, = ad*(C1)(aoly,,). This is a contradiction, therefore, (¢, is not
open in g* either. We have shown that if Qg is open in g* then w(€),) is open in
V* and Ad"(H,,)(aoly,,) is open in b or b, = {0}. O

As a corollary of Theorem [3.3] we obtain the following result.

Corollary 3.4. The Lie algebra g =V x b is a Frobenius Lie algebra if and only if
there exists po € V* such that h.po = V* and the stabilizer b, C b is a Frobenius
Lie algebra.

We shall see later that Corollary [3.4] will be applied to similitude and connected
affine Lie group in Chapter IV.

3.2 Duflo-Moore Operators for V x H with trivial

stabilizer case of H

As in the previous section, let G be a semi-direct product of V' = R" and a
Lie subgroup H of GL(V'). We take & := £(po, ) in g* and assume that €, is
open as described in Theorem Furthermore, we assume b, = {0}. The case
b,, 7 10}, it shall be discussed in the Section 3.3.

Lemma 3.5.
Q&) = Q&(povo)' (3'9>

Proof. Since by, = {0}, we have b, = h* and the bijection
Voursu-py€h”
as in the proof of Lemma Let ug € V for which ug - pg = . Then,
€o = &(po, o) = Ad”*(g(uo))&(po, 0)

by (3.2). Therefore, Q¢ = Qe(p.0)- O

We define an action of H on V* by
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Then O,, 1= w({2y,,) C V* is the H-orbit {h - po;h € H}. By Theorem [3.3] O, is
open in V*. By Lemma 3.5 we assume &, = &(po, 0) in what follows. We also note
that Q= Op, ® V™.

Furthermore, since the stabilizer H,, = {1}, we have a bijection H > h
h.py € Op,. In addition, for p € O,,, we denote by h, a unique element of H for
which h, - py = p.

Lemma 3.6. Define a linear form
p:Ceo(H) - R

by
)= [l dethyldp (v € C()) (3.10)

Then, u is left invariant.

Proof. For each a € H, we define left translation L(a)w(h) := ¢ (a"'h). Then we

have,
p(L@) = [ ol ) ldeth,|dp

OPO

= [ 0l ety do
OPO

= [ wlbldethy, | ldetal (' =ap)
0,

:/ (hy)\deta - h||det o] dpf
OPO

_ / $(hy)ldetal - |det b, | |det o] dp
OPO

:/O (hy)\det by, | dpf = ().

Therefore, u is left invariant. O

By a uniqueness of Haar measure and Lemma there exists a Cy > 0 such
that

| vty ah = Cot) = C: /O ()| det by dp. (3.11)
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If we define D(p) := Co|det h,| (p € O,,), then (3.11) is rewritten as

/H vy = [ v Dw)dp (v € CH)). (3.12)

Let us consider a unitary representation of G corresponding to €¢, C g*. In this
case, V' C g is a polarization at &. Let m be the induced representation Indgup0
of G. By Mackey Theory, 7 is irreducible and we realize = on L*(H,dh) by

w(g(a))f(h) = f(a™"h), (3.13)
m(g()) f(h) = vy (b ) f(h) (f € L*(H,dh), a,h € H, v € V). (3.14)

Since v, (h™'v) = e2mifpoh™tv) _ 2mithon) e pewrite (3.14) as

(g(0) f(h) = PV (). (3.15)

Now we shall compute the Duflo-Moore operator C for the representation w. To
do that, let f; and f, be elements in L?>(H). We shall consider the integral

//|f1|7r m(g(a)) f2) 2 )|2dv|deta|_1da. (3.16)

We obtain by (3.15))

(film(g())m(g(a)) f2) 2y =/ fi(h)m(g(v))m(g(a)) fa(h) dpu(h)

H

= [ e @) R ). (317

Using (3.12), the last term equals

/ e~ 2w £ (h,)m(g(a)) fa(hy) D(p) dp. (3.18)
Oy,
By the Plancherel formula, we have

/ (il (g()m(9(@)) fo) e > dv = / () Pl (9(0)) folhy) 2 D) dp.

Po

(3.19)

65



On the other hand, we have

/|7r hy)|? |det a|~ 1da—/ |f2(a™ - hy)? |det a| ' da
— |det Ay |- 1/ o (W) 2 |det 1| A (W) "2 dl (W = a~* - ).
(3.20)

By (3.19) and Fubini Theorem, we obtain

|(f1lm(g (9(a)) f2)r2(m)|? dv |det a| ™ da
I,

:/H{/O [f1(hp)I? |7 (g(a)) fa( p)|2D(p)2dp} |det a| ™! da
:/ |fi(h {/ | fo(a™"hy)[? |det a)~ lda} D(p)* dp. (3.21)

Then we apply (3.20) and D(p) = Cy|det h,|, we see that (3.21) equals

/ |f1(hp)|200|dethp|dp{00/|f2(h’)|2|deth’|AH(h’)‘1dh’}. (3.22)
(@) H

PO

Using , we see that equals
1l { Co [ (0P et 180 at | (3.23)
Substituting Ag(h')~! = |det A'|Ax(R/)~1, the result equals
1l Co [ 16002 ) '}, (324

Therefore, from (3.24) we obtain the Duflo-Moore operator for the representation

7 of G as follows.

Theorem 3.7. We assume that b,, = {0}. The Duflo-Moore operator C;
L*(H) — L*(H) of the representation 7 := Ind$y,, is described as

Crfo(h) = Cy* Ag(h) ™2 fo(h)  (fo € LA(H)), (3.25)
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where Cy is defined in (3.11)).

3.3 (General Formula of Duflo-Moore Operator

for V x H

As in the previous section, let GG be a semi-direct product of V' = R" and a Lie

subgroup H of GL(V'). We take & := £(po, o) in g* and assume that €, is open

as described in Theorem . Furthermore, we assume b, # {0}.

Lemma 3.8. For hg € H, , we have

Ac(ho) = Mg, (ho).

(3.26)

Proof. We shall consider the coadjoint orbit Q,, := Ad*(G)py C g* and the isotropy

representation
7 Hyy — GL(T,,8,)-

We have

TpoQpo = {ad™ (X (v, A))po;v € V, A € b}
= {&(—=A"po,v.pg);v € V, A € b},

and we see that v.py € (b,,)" by Lemma Thus,
TSy = V" @ (b,,) "
For hg € H,,, the linear map
T(ho) @ Tpopy = Tpopy
is symplectic, so that det 7(hg) = 1. On the other hand by

det 7(ho) = det (7(ho)|y~) - det (T(h0)|hé0)
= (det ho) ™" - det Ady(ho) ™" /det Ady, (ho)™!
= (det ho)_l . AH(hO)/AHpo (hg)
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Therefore,

det ho = AH(hO)/AHPO (ho)

On the other hand,
det ho = Ag(ho)/Ag(ho),

which implies that Ag(ho) = Ap,, (ho). O
We also obtain

Theorem 3.9. Let mg C b, be a polarization at oz0|hp0 satisfying Pukanszky con-

dition and let my be the induced representation Indgfg’moyao of H,, .

1. po ==V xmg C g is a polarization at § = &(po, ) satisfying Pukanszky

condition.
2. m= IndeGprOl/g0 is wrreducible if mo s irreducible.
3. m 1s square-integrable if my is square-integrable.

Proof. For the first part, let us observe the value of linear functional & on [pg, po].

Since we have
(&, [v+ A 0"+ A']) = po(Av' — Av) + ap([4,A]) =0 (v, e VA A € my),

we see that (£, [Po, Po]) = 0. Moreover, since my is a polarization at Oég|hp0, we

have dimmg = 3dim b, = 3(dim b —n). Therefore we obtain

1 1
dimp =n+dimm, = é(n +dimb) = §dimg.

Now we shall prove that p, satisfies Pukanszky condition, namely, for each ¢ €
&0+ pg, there exist g(v, h) € G so that Ad*(g(v, h))& = &). We recall the notation
in the proof of Theorem so that & = ((po, Bo,Y0) and &, = ((po, B, V) Where
Bo, By € I* and 79, vy € bg. By the assumption that my satisfies Pukansky condition,
we can take h € H, for which vy = Ad"(h)yo. Let & := Ad*(h)&. For C €

Po?
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we have

(&, C) = (Ad"(h)&, C)
= (&, Ad(h™1)C)
= (¢(po; Bo,70), Ad(h™1)C)
= (%, Ad(h7")C)
= (Ad*(h)70, C)
= (10, C)-

Therefore, we have & = ((po, 8],7))- On the other hand, by Lemma [3.2] we can
take v € V for which fj — ) = v - po. Then we have

Ad"(g(v, h))§o = Ad"(g(v))Ad"(g(h)&o
= Ad"(g9(v))&
= Ad"(g9(v))¢(pos By 70)
= ((po, By + v - po; 7o)
= ((po; Bos 10) = &o-

Therefore, pg satisfies Pukanszky condition.

For the second part, the proof of the statement can be found in [4] and [23]
in the context of Mackey Machine. The last part about square-integrability of
7= Ind%

exppoVeos We can find the detailed proof in [2]. O

Let us assume that 7 is irreducible and square integrable in what follows. We
shall describe the Duflo-Moore operator of square-integrable representation 7 of
G. To do that, we realize induced representations in the Blattner model in ([8],
[23]) as follows.
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The representation space H_ of 7 is given by

Hﬂ' = LQ(G/ €xp Po, 1/50)
d(gexp X) = AGﬁpro(eXp X)_1/2V£0 (exp X)) 'o(g)
(ge G, X €py),

6|2, = fG o)) <
exp po

=¢:G—C;

(3.31)

Since G/ expp, =~ H/expm,, the space H, is identified with L?(H/expmy, V4,)

through the restriction map
H. D¢ ¢ly € L*(H/ expmy, Vy,). (3.32)
Then 7 is realized on L?(H/ expmy, Vq,) by

m(g(a))g(h) = ¢(a™"h),
m(g()p(h) = v, (b~ - v)p(h) (¢ € L*(H/expmy, vy,), a,h € H, v E V),

(3.33)
and the latter formula is rewritten as
(g(v))p(h) = TP g(h). (3.34)
Because of induction by stage, we have
Hp
g myVao = ndjy, (Ideximg Va,)
o T H
— Indeo 7-(_0.
This equivalence is realized by the Hilbert space isomorphism
L*(H/expmg,v,,) > ¢ — ¢ € L*(H/H, , 1)
given by
o(1)(h) == ¢(lh)App, (B)'/* (1€ H, heH,). (3.35)
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Indeed, for almost all I € H, we see that ¢(l) € H., because

16| = 71{1 GG
- 7{ { ]4 [@(1h0)[* At 1, (ho) dpa(ho) Ylpao (1)
H/Hp, JHy,/expmo
_ 7}{{ o G, ) (3.36)

G
exp Po

o), where Gy, :=V x H, and v,, ® 7o is defined by

Theorem 3.10. The representation m = Ind Vg, 15 isomorphic to Indgpo (Vpo @

Vpo @ mo(u, h) = vy (w)mo(R)  ((u,h) € G, ).

Proof. Let ' = Indgp0 (Vp, ® mp). The representation space of 7' is Hp =
L*(G/Gpy, Hnry) which is isomorphic to L?(H/H,,, Hr,) via

LG /Gy, Hry) 3 0 — |y € L*(H/Hyy, Hry).
Then 7' is realized on L*(H/H,,, Hn,) by

' (g(a))¥(h) = v(a™"h),

©(9(0)e(h) = v, (K '0)(h) (a,h € H, v eV, ¢ e L*(H/ expmgy, vy,) ).
(3.37)
Comparing (3.33) and (3.37)), we see that the isomorphism
LQ(H/QXme’ yag) > gb — @Z) - QE € L2(H/Hp0’H7TO)
defined in (3.35)) gives an intertwining operator from 7 to 7’ O

Based on Theorem [3.10, we describe the Duflo-Moore operator C; for the repre-
sentation 7 by using Duflo-Moore operator C, for the representation my. Now take
a section L = {l, ; p € Oy} C H of H/H, such that L 31, p=1,.po € Op, is

bijective.
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Lemma 3.11. Define a linear form

p:E(H/Hy) = R

Mﬁzé F)\det | dp (f € E(H/H,,)).

Then
1. p does not depend on the choice of L.
2. w 1s left invariant.

3. There exists Cy > 0 such that

imlWmez%Mﬁ

(3.38)

(3.39)

Proof. 1. Let L' := {l,} be another section of O,,. We observe that for each

p € Oy, we can find a unique a, € H,, such that [, = l,a,. Moreover, for

f € E(H/H,y,) we have f(la) = Ag g, (a)~' f(1), so that

/ mwwmwzf £ (Lyap)|det Lyay | dp
OFO OPO

_ / ) A, (ap)"" det 1| |det a,| dp.
OPO

By Lemma we have det a, = Ay u, (a,). Therefore, the last term equals

| et ap
Opg

as required.
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2. Let [}, = a "t l,., which is a section of O,,. We have

p(L(a)f) = o f(aillp> |det I,,| dp

= fla ™ oy) |detlyy||deta| ™ dp’  (p=a-p)
Ono

O
By the first statement, the last term equals p(f).

3. Since p is left invariant, the statement follows from a uniqueness of the linear

functional g in Proposition [1.11} O]

We define Dy(p) := Co|det l,|. Then by Lemma [3.11)(3), we have
$ SO0 = [ 1)) (7 <SR (340
H/Hp,

Now for ¢1, o € H,, we shall evaluate the integral

| lrlr@)onn, g = / | K@rma@)n(a ), et dh v (341

We have for g = g(v)g(h) €

(01| (9)P2)n. = /H/H (&1(D)|7(9)92(1))e,, du(l)

- /o (@1(p)|7(9)62(1p))91, Dr(p) dp

PO

_ /O &2 (G, (1) (g ()62 (1)) s, Di(p) dp

PO

by (3.36)), (3.40)), and (3.34]). Furthermore, using the Plancherel formula, we have

P

/ (Gal(g(0))m(g(R)) bl I dv = /@ (61 (1) 7 (g (1) dally))re, |2 D (p)? dp.
" (3.42)
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Next task is to consider for each p € O, the following integral

[ G )62 et

|(cgl(lp)Iﬂ(g(h‘l))%(lp))mo [* |det h{Ap(h) " dh  (h— h™")

/ B dally) s, P Acs() (3.43)

By Proposition [1.11} we have
[ fyan= ¢ ([ A, (o) dho} dpali) (f € CulI).
H H/Hy, J Hp,

Indeed, the formula is valid for a continuous function f on H if the integrals in

both sides converges. Thus, for a € H we have

/f )dh = /faha—1

f{ {| flalhoa™") A m,, (ho) dho} dpo(l)
H/HPO HPO
_ ]{ ([ flala™ ahoa™)Ap g, (ho) dho} dpiofi).
H/HPO HPO
Using the identification
H/H, 3l 1€ HlaH,a ' = H/H,,,  (I':=ala™),

we define a linear functional y, on E(H/H,,,) in such a way that

/ ol dpa(i') = / olala™) duo (D). (3.44)
H/Hq.p,

H/Hy,
Based on the observation above, we obtain

Lemma 3.12. For each a € H, we have

1 ’ ~1 1/
/H F(h)dh = e 7{[ /HWO{ . F(l'ahoa™) A, (ho) dho} dua(i').  (3.45)
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Substituting a = [, and

—_—

F(h) = (@1 L) (g(h=2) (1)1 I* Ac ()~
to Lemma , we see that equals

1 x —17—1 Ny—1 ~ 2
Ap(l) j{{/H{/H |(@01(Lp)[[m (g (Lpho "L, ")) (g ()™ P2l ™ (1) )2t |

PO

% Ac(Ulhols ") A, (ho) dho} dpy, (1)
1

= An) ]i /Hp{ /H (D) [T (g(pho M1 )7 (g(1) )™ (1)),

PO

x Aa(l') " Ac(ho) ™ Apra, (ho) dho} dp (1.

(3.46)

Lemma 3.13. For each ¢ € H,, hyg € H,, and a € H we have

[m(g(ahoa™))d]™ (a) = Ap ., (ho)*mo(ho)[d(a)] (3.47)
as element of Hr,.

Proof. For W' € H, , we observe

m(g(ahoa™))p(ah') Ay u,, (W)
¢(ahg'a™ al) Ay, (W)
¢(ahy ' W) Ay, (hg ')A a,, (ho)'?

[m(g(ahoa™))]™ (a) (R

Furthermore, the last term equals

At iy (ho)*d(a) (hg 1) = A, (ho)*mo(ho) [H(a)] (),
which completes the proof. O]

Substituting ¢ = 7(g(l')) '¢2 and a = [, to Lemma [3.13} we have

[(S1(L) [ (g (lphg ', ) (g(1) " 62)] ™ (1)), |
= 1(61(Lp)Imo(hg [ (9(1)) 1S (lp)) 34,y [* A1, (ho) ™
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so that (3.46) becomes

1
AH(Z;D)

By Lemma (3.48) equals

]{I s | (61 (1)l mo (g (1))~ o (Ip) s, [PAc (o)~ dho} di, (7).
’ " (3.48)

1 n—1 7 -1 N1 2 -1 i
mﬁﬂ{p{ﬁc(l) " (&1 (L) [mo (R ) [ (g(l) " b2(lp)])tny | " Arr,y (ho) ™~ dho} dpu, (1)
(hal —> ho)
1

~ Au(ly) ﬁr/HPO{AG / |(&1.(1y) 170 (o) [ ( N2 (lp))an, I* dho}t dp, (7).

(3.49)
Now by square-integrability of my, we have

[(1.(Lp) o (o) [ (9 (1) d2(0p)] ), |* Ao = 1101 (1) [P Oy [ (g (1))~ 021 By -

Hp,

Thus, (3.49) is equal to

1 NnN—111% 2 //\il 9 )
52 6 B P ) e, i (). (250

We note that

—_——

m(g(l") =" ¢a2(lp) (')

m(g(1") " do(lph) Ay, (W)?
G2 (V,h ) A g, (W)'?

2(I'p) ().
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Therefore, (3.50)) is equal to

1
AH(Z;D)

]{ Ac(l') o1 ()| Ry, [1Cm02(U) By, dpr, (1)
H/H,

1 7 - .
=< A —h—1 2 1712

AH(lp) ﬁ/HpO G(lpllp ) |’¢1<lp)” |’Cﬂ0¢2(lp”p ll’)HHwo d,uo(l)

1

= 11, oy S0 CGalD e, dbold)

1

= [|61(1y) I3, 7{ Aa(l, ') M| Craa (U3, duol') (U =1,0)
1/ Hy,

AH(ZP
AG(lp

~—

— 13O, 75 1862 - Crada) .. dpto(]),
H/Hp,

B>

H(lp)
(3.51)

where we use (3.44) for the first equality. Therefore, using (3.42)) and (3.43)), the

formula (3.41)) equals

2d —
L@@ o= [
P86 o) B, (). (352
H/Hp,

16101, iﬁ; Do) dp

Using Lemma [3.11] the formula (3.52)) equals

/ (Bln(g)be)? dg = / 1B1(L)IE,. - Coldet 1| dp
G

Opy

x 74 1Al - Crsba )2, dpoli)
H/Hp,

— |, - 75 12Dl 2 - Crsba ). dpoll).
H

Hy,

(3.53)

Therefore, by (3.53]) we obtain

Theorem 3.14. The the Duflo-Moore operator of (w,H.) can be described as

—_— ~

Cod(l) = CYPAG P (VCrd(1)  (a.a. 1€ H, ¢(1) € My ). (3.54)
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Chapter 4

Application for similitude and

affine Lie group cases

The goal of this Chapter is to apply previous results to the Lie algebras of simil-
itude Lie group Sim(n) := R" x (R x SO(n)) and the connected affine Lie group
Aff*(n) ;= R™ x GL}(R). We shall describe the condition for the coadjoint orbits
of Sim(n) and Aff*(n) to be open in each dual space respectively. Particularly,
when a representation of Aff"(n) is square-integrable, we compute its Duflo-Moore
operator. We shall also describe the Pfaffian of aff(n) = Lie(Aff™ (n)).

4.1 The Lie algebra R" x (R & so(n))

As an application of Theorem [3.3| and Corollary [3.4] we see that

Theorem 4.1. The Lie algebra g :== R" x (R @ s0(n)) of the similitude Lie group

Sim(n) is not a Frobenius Lie algebra for n > 3.

Proof. Let H be the group R, x SO(n) acting on R" by
h-x=rAz (x eR", h:=(r,A) € H).
Then H acts on (R™)* identified with the space of row vectors by

h-p=rtpAt (pe (RY*, h:=(r,A) € H).
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Let &o(po, ap) € g = (R")*®(R*®so(n)*) and we choose py = (0,0,...,1) € (R")*.
Then

H, ={he€ H; h-py=po}
={(r,A) e H; r'ppA~" = po}

g{(l,(ﬂg 2)); Meso<n—1)}gso<n—1). (4.1)

Now we consider the orbits of H at py as follows.

H-po={h-po; h€ H}
={r'ppA~t; A€ SO(n), r >0}
= {rppA ; A€ SO(n), r > 0}.

This set is equal to (R™)*\ {0}. To see this, let p € (R")*\ {0}. Put r := ||p|| > 0
and ¢ := 3p € (R")*\ {0}. Then ||¢|| = 1 so that we can take A € SO(n) for
which ¢ = pgA. Thus, p = rq = rpgA € H - py as required. Moreover, we note for
p1=hi-po, (b € H), we have H, = thpohl’l. Therefore, we get the stabilizer
of H at p as

~

N {H =R, xS0()  (p=0), (4.2)

SO(n —1) (p € H - po).
We can see from Theorem [3.3] and Corollary [3.4] that
1. If n = 2, then so(1) = {0} and H,, is trivial, so that g := R* % (R4 x 50(2))

is a Frobenius Lie algebra as proved in [12], but

2. If n > 3, then so(n — 1) # {0} which is unimodular. Thus, so(n — 1) nor
R, @ so(n — 1) is not a Frobenius Lie algebra. Therefore, g := R" x (R, X

s0(n)) is not a Frobenius Lie algebra either.
[

Remark 5. Although the Lie algebra of Sim(n) (n > 3) is not Frobenius, Sim(n)

has square-integrable representations as is found in [II, p.308] and [20].

Let us consider the similitude group Sim(n), particularly for the case n = 2,
that is, Sim(2) := V x H where V 2 R? and H 2 R, x SO(2). The multiplication
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in Sim(2) is given as follow.
g(v,r, A)g(v',r', A') = glotrAv',r’, AA")  (v,0 € R?, r,r' € Ry, A, A € SO(2)).

Recalling that the Lie group G,;(1) corresponds to g;;,(1) and noting that

ad(X,)(Xs X1) = (X5 X3) ( ? _(1] ) .

Therefore, we have an isomorphism

! L
G (1) 2 e X1 X2 peXapaXa (( ) , (e, < c?sq Sig ))) € Sim(2).
a sing  cosq

We recall the representation mq,. of G;;;(1) on L*(Ry x [0,27)) as in ([2.70) as

follows.

(Mo, (expaXi)f)(z,y) = ™V f(z,y),

(Mo, (expbXs) f)(x,y) = ™50V f(,y),

(Ta . (expeXs) f)(x,y) = f(z + ¢ y),

(o, (expgXa) f)(2,y) = f(2,y +q) (f € L*(Ry x [0,27))).

On the other hand, we obtain the representation 7 of Sim(2) on L*(H,dh) from

(3.13)) as follows.

(m(exp aX,)F)(h) = ™" sy p(p),
(m(expbXa)F)(h) = > sV [(h) (b€ H, F € L*(H,dh)). (4.3)

Moreover, from ([3.15]) we also obtain the representation 7 of Sim(2) on L?(H, dh)
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as below

<w<exch3>F><e—ﬂf,< ey )> :Fw—c,( oSy sy )
—siny cosy —siny cosy
. cosy siny e cosq sing cosy siny

(m(exp g Xy) F) (e ( . ))ZF(G ( ) ( ))
—siny cosy

—siny cosy —sing cosq
. cos(y + q) Sln(

—sin(y +q) cos(y
(4.4)

cosy siny

where F' € L*(H, dh). In this case, f(z,y) = F(e™%, < )) Further-

—siny cosy
more, we shall prove that

¢ : L*(H,dh) — L*(R x [0,27)) (4.5)

is an intertwining operator, namely, ¢ o 7(g)F = 7. (9) o ¢(F). To do so, let us
1
observe that

o for g = e*X1ebX2

¢o w(e“xlebxz)F(x,y)

o b .
— exp{2ri <p0, o ( c?sy siny > ( >>}F(ez, ( c?sy siny >)
siny cosy a —siny cosy

b o .
— exp{2ri <p0, e ( 09sy asiny >>}F(€m, ( c?sy siny >)
bsiny + acosy —siny cosy

= exp{2mie”(acosy + bsiny) } F(e™*, ( c?sy Sy )) (po=1(0,1)).
—siny cosy
o for g = X3 eaX1
6 o (e 0 Fla,y) = Fle™™, ( cosa s ) ( oy sny ))
—sing cosq —siny cosy

—sin(y +¢q) cos(y + q)

_ Flee, ( cos(y+q) sin(y +q) >>
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Therefore, ¢ o 7(9)F = ma,.(9) o ¢(F) as required.

Now we shall compute the Duflo-Moore operator C7r as follows. We know that
Ag,,mlg) =r?if g = g(v,r, A) and Gy defined in 1)) equals 1. To prove the
latter statement, that is Cp = 1, let us consider ¢ € C. ( ),p0o=(0,1),p = (x,y) €

cosf siné

(R*)* and h, =rA =7 ( € H for which h, - pg = p. Solving the

—sinf cosf
equation, we get p = (x,y) = (r~'sinf,r ' cosf). Thus, using (3.11)) we obtain
Cy as follows :

fH Sy ¥ () dh

Co = :
T fo |det hy| dp fR2\{(070)} (hp) [det hy| dp

but since

drdf
/ (hy) |det by | dp = / blrA)r?
R2\{(0,0)} R2\{(0,0)} r

drdf
— [t
R2\{(0,0)} r

/w ) dh,

then we obtain Cy = 1. Therefore, due to the general result for V' x H in Chapter
IIT in Theorem [3.7], for trivial stabilizer of H, we get

Proposition 4.2. The Duflo-Moore operator for the representation (m, L*(H, dh)
of Sim(2) given by (4.3)) and (4.4) is described by

C.F(h) =7rF(h) (h=h(r,A) € H, F € L*(H,dh)). (4.6)

4.2 Duflo-Moore Operator for Aff™(1)

In this sub-section we recall the Duflo-Moore operator for 2-dimensional affine
Lie group. Although it is well known as in [21] and [28], we shall give the detailed
computation in order to compare the general result in Theorem for the Duflo-
Moore operator of representation  of V' x H in b, = {0} case. Note that in [21]
and [28] the Duflo-Moore operator for the representation Aff*(1) is given by using
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Fourier transform whereas our formula is more direct. Let us denote

G:{g(x,a):<g f) ;a>0,m€R}.

1
ThenwehaveG—VXIH,WhereV—{v(m)—(o T) ;xER}:Rand

H = (h(a)= g (1) ;a > O} ~ R, and g(x,a) = v(x)h(a). Moreover, the

Lie algebra of G is of the form

g:<X1,X2>:{<%1 x(;) ; ZEl,IQGR}.

It is well known that the open coadjoint orbit for G is of the form Qy = {x X} +
yX3 ; £y > 0}. Now let f = £XJ be an element of Q4 and let p = RX, be a
polarization in g at £X; satisfying Pukanszky condition, namely, X3 +p+ C Q4.
We also have V' = expp. Furthermore, Let 7y := Indgl/ixé« be an irreducible

unitary representations of G induced from the representation

Vix; 1V 2 u(z) = (
acts on the space
$(gv) = vex;(v)'0(g) (9 € G, vEV)

]i/vlcb(g)Ing < 00
§. et ai= [ lowmpan= [~ ¢(§ (1)>

Particularly, by restrictions of ¢ to H with Hy 3 ¢ — ¢|,; = f € L*(H,dh),

Hey=R¢:G—C;

where )

da

a
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we obtain

71 (ho)f(h) = f(hg'h),
e (vo) f(h) = eX2™%0 ™ f(h)  (hy,h = h(a) € H,vy = v(zy) € V), (4.7)

Wheref(h):¢<g (1))

Now we shall compute the integral

/O N / (il (o)) (h(@)) fo) e da |d—| (48)

Let us consider

(Al mb@) = [ AR R0

= | no) T G@I R
_ / " (e s (h(@) FalR(ED)

(€=b").
(4.9)

e
i

By Plancherel formula, we have

[ imstele)ms (b)) fo)zan P do = [ (e @) RRE DI G

_ / ) T @) AWy (=€)
(4.10)
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Therefore, (4.8]) equals

/0°° /_Z |(filme(v(@))ms (h(a)) f2) L2 (r.am | dwj—g
= [T 1nthmy{ [ TG 5

0

= [T [ TGRS

0

= [Tinwed [T inea@r Y o @ = ot

0 0

- [ e 2 { | 1@ inar d—} -

/|

(4.11)

Thus, we have

Proposition 4.3. The Duflo-Moore operator C,_. for the representation (w4, L*(H))
of AfY(1) as in (&.7) can be written as

Crof(h)=d2f(h)  (f € L*(H,dh), h=h(a) € H, a>0). (4.12)

Remark 6. It is well known that Ag(g(x,a)) = a™!, and applying Theorem ,
the Duflo-Moore operator of representation 7y of Aff(1) is nothing but (4.12)).

On the other hand, for h := h(a) € H, we have

dr(Xo)f(h) = £2mia ' f(h), Xo= ( 8 (1) ) €g.

Therefore, the formula in (4.12]) corresponding to Pfaffian equals

Cr. = V21 |idr(X,)|7V2,
= V2r |idn(Qq)71?, (4.13)

where @y := X5 is the Pfaffian of g. Thus, we obtain

Proposition 4.4. The Duflo-Moore operator C,_. for the representation (74, L*(H))
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of AffT(1) corresponding to Pfaffian of g := aff(1) is written as
Cra = V27 [idn(Qq) ™2, (4.14)

where @y := Xy is the Pfaffian of g.

4.3 aff(n) as the Frobenius Lie algebra

In this sub-section, we shall prove that the real affine Lie algebra g := aff(n)
of G = Aff*(n) is Frobenius. Although it is mentioned in ([48], p.497), we give a
direct proof and give all open coadjoint orbits. We shall recall notations in Section
3.1 and rephrase some formulas in concrete form. Now, let X (v, A), X (v', A") be
elements of g and g(u, a), g(u', a’) be elements of G. The Lie bracket of g and the

multiplication in G are given as follows.
(X (v, A), X (v, A")] = X (Av" — A'v, [A, A]),

g(u,a)g(u’,d’) = g(u + au’, aa’). (4.15)

We write g(u) := g(u, I) and g(a) := ¢(0,a). We obtain adjoint actions of G on g

as follow

Ad(g(a))X (v, A) = g(a)X (v, A)g(a™") = X(av,aAa™"),

Ad(g(u)) X (v, A) = g(u) X (v, A)g(—u) = X (v — Au, A). (4.16)
Therefore, we have
Ad(g(u,a))X (v, A) = X(av — aAa'u,aAa™). (4.17)

We shall regard p € (R™)* as a row vector and we identify (gl,,(R))* with Mat,,(R)
by
(X, a) =tr(aX) (o € Mat,(R), X € gl,(R)).

Then the coadjoint actions of G and g on g* are given respectively by

E(pat, aca™! 4 upa™t), (4.18)
§<_pA7 [A7 Oé] + Up)? (419>

Ad*(g(u, a))&(p, @)
ad*(X(Ua A))f(p7 Oé)
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where g(u,a) € G, X(v, A) € g, and £(p, ) € g*. Let & := &(po, ) be an element
of g*, and the coadjoint orbit Ad"(G)&, of G' at point &, be denoted by €2,. By
definition, the coadjoint orbit )¢, is open in g* if the dimension of (¢, is equal to
the dimension of G. Using Lemma we obtain that the coadjoint orbit ()¢, is
open in g* if and only if the map f : g — g* defined by

f(X(v, A)) = ad™ (X (v, A))& = &(—poA, [A, ] + vpo) € g* (4.20)

is bijective. We obtain the proposition below.

Proposition 4.5. For &y = &(po, ag) withpy == (1,1,...,1) and o := diag {aq, ag, . ..

a; # aj, the coadjoint orbit ¢, is open.

Proof. Using Lemma , we will show that the map (4.20) is bijective. We intro-
duce sets D := {diag {d;,ds,...,d,} ; d; € R} and D+ := {A € Mat,(R) ; A; =
0,7=1,2,...,n}. Let us denote sets

h1 = {X(v,0) ; v e R"},
b ={X(0,B); B € D},
hs = {X(0,C) ; C € D*}, (4.21)

then the affine Lie algebra g can be written as a direct sum of the form h; ®ho D bhs.
Furthermore, the map f : g — g* defined in (4.20]) can be described as

f1:R" 5 v+ vpy € Mat,(R),
f2:D 3> B+ pyB = (Bi1,Bas, ..., Bu,) € (R"),

fs: D> C+— [C, 9] € Mat, (R). (4.22)
vy U1 ... U1
Vo Vg ... Vg

Sincevpo = | | | | and [C, ap] € D+, we can see that Im fiNIm f3 =
Up  Up Un
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{0}. Furthermore, we also have

dim (Im f; + Im f3) = dim Im f; + dim Im f3

= dimR" + dim D*
=n+(n*—n)=n’
= dim Mat,, (R).

Therefore, Mat, (R) = Im f; @ Im f3. This means that for each a« € Mat,(R),
there exist v € R™ and C € D* uniquely such that o = [C, ap] + vpo. Therefore,
fi+ f3: R"® D+ — Mat, (R) is surjective, so that f; + fs is bijective. On the
other hand, f5 is bijective. Therefore, f is bijective. m

Thus we obtain
Theorem 4.6. The affine Lie algebra aff(n) is Frobenius.

Let & := &(p1,1) be an element of g* with p; € (R™)* and oy € gl,(R)*.
We shall give other criteria for coadjoint orbit €, to be open in g*. First, let us
assume that )¢, is open. Then the map (4.20) is surjective, so that

Mat,(R) = {[A4, a1] + vp; ; A € Mat,(R),v € R"}
=Imadog + {vp1 ; veR"} (4.23)

We observe
Imad (o) = Mat, (R)/Ker ad (o) = Mat,,(R)/Cent (ay), (4.24)

where Cent (o) denotes the centralizer of a; in Mat,(R) so that dimImad (o) =
n? — dim Cent (). Let

¢1:R" 5 v vp, € Mat,(R),
then we have Mat,,(R) = Imad (o) + Im (¢71) by (4.23). Therefore,
n? < n? — dim Cent (o) + n — dim Ker (¢1), (4.25)

that is
dim Ker (¢1) = n — dim Cent (o).
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Since dim Cent () 2 n in general, the possibility is only that dim Cent (a;) = n
and dim Ker (a;) = 0 and the equality (4.25)) holds. In particular

Mat, (R) = Imad (ay) & Im (¢1). (4.26)

Therefore, we proved the lemma below.
Lemma 4.7. If Q¢ is open then dim Cent (o) = n.

Again from (4.26)), we have Imad (1) N{vp; ; v € R"} = {0}. In other words,

we have
Lemma 4.8. If Imada; N{vp; ; v € R"} # {0}, then S, is not open in g*.

If the coadjoint orbit {2 is open in g*, f is injective by Lemma , so that
the map
F:Cent(ag) > Ar— —p1A € (R")"

is injective. On the other hand, if dim Cent (o) = n and Ker ' = {0}, then F
is surjective. Based on the explanation above, we obtain necessary and sufficient

conditions for ()¢, to be open in g* as follows.

Proposition 4.9. The orbit Q¢ is open in g* if and only if the following three

conditions are satisfied
1. dim Cent (o) = n.
2. Imad (aq) N{vp; ; v € R"} = {0}.
3. If A€ Cent (aq) \ {0}, then —p1 A # 0.

To bring it down to earth, we shall give some examples as follow. If we choose

1
& = &(p1,0q) where py = (1,0) and oy = 0 (1) , then the coadjoint orbit
(¢, is not open in aff(2)* since Imad oy N {vp; ; v € R"} # {0} . On the other
hand, if we choose & = &(po, ) where pg = (0,1) and «g = (1] 8 , then the

coadjoint orbit €2, is open in aff(2)*, and this implies that aff(2) is Frobenius Lie
algebra.
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Now we shall prove the openness of some coadjoint orbits of Aff™(n). For
simplicity, let G" := Aff*(n) = R" x H™ with H" := GL(R), and g" := aff(n) =
R™ x b with b” := gl (R). Let & = (£1,0) be an element of (g')* and &F :=
£(pn, @) be an element of (g")* for n = 2 with

00 ... 00O
+1 0 ... 0 0 O
01 ... 000
pn=(0,0,...,1), af= R (4.27)
00 ... 1
01

Although we can check the coadjoint orbit €., of G" through &8 = E(pp, ) is
open in (g")* by applying Proposition |4.9 we s};all show the openness (2 e in other
way by induction.

For n =1, Q = (1, x; through ¢ = (£1,0) = £X3 is open as is shown in
Section 4.2. Assume that n = 2 and Q is open in (g"!)*. We observe that the

—1
stabilizer H is equal to

{(zg ?>;A4eGLiARLveRmd}fGWJZAﬁWn—D- (4.28)

Let ¢, : g" ! — b, be the corresponding Lie algebra isomorphism defined by

A

(X (v, A)) = ( 0

g>(AEg%4R%veR%U, (4.29)

then && | = af 04,. Since Ad*(G"1)&X | is open in (g"~!)* by induction hypoth-
esis, Ad"(H},)(a; ] ) is open in (hy )*. On the other hand,

=(0) = {-pod : Ac H")
= {_(anlaanb cee aann) ; A= (aij) € Hn}
= (R™)*\ {(0,0,...,0)}

is open in (R™)*. Therefore, () ¢+ 15 open in (g")* by Theorem . We shall show
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later that Q§+ # QE’ so that we have exactly two open coadjoint orbits in (g")*.

4.4 The Duflo-Moore operator for Aff"(n)

We have already proved that 2 - through & = £(p,, o) with p, and a,, in
(4.27)) is open in (g™)*. We shall observe representations g, o of G™ correspond-
ing to the open coadjoint orbit 2.+ as follows. We have already described the

representation 7TQ of G™ for n = 1 case in Section 4.2. Let p, = R” x m, be

defined mductlvely by m, := t,(p,_1) starting from p; = RX, C g' = aff(1) with
by @ gv 1 — b, be the corresponding Lie algebra isomorphism as is defined in
. In this case, m,, is a polarization of b satisfying Pukanszky condition and
&y = af ou,. Asis already seen that the stabilizer H is of the form (4.28).

Assume that p,_; is a polarization of g"~! satisfying Pukanszky condition and
dGn 1

representations g - = Indgyp,

Vet are irreducible and square-integrable. We

shall show that p, 1S a polarization of g" satisfying Pukanszky condition. Since
P ={X(v,A); ve R Aegl, {(R)} with

v 0 x12 w3 ... Tin-2 Tin-—1
1

0 0 x93 ... Ton2 Ton1

U2

v = ) , and A = : : : : :

0 0 0 . 0 Tn—2n—1

Un—1
0 O 0 0 0

is a polarization of g"~! at & | satisfying Pukanszky condition by induction hy-

pothesis, m,, defined inductively by

0 z12 13 ... Tip-1 U1
0 0 za3 ... Tap-1 12
My, = tn(Pn-1) =< S : >
0o 0 0 ... 0 Up_1
0 0 O 0 0

is also a polarization of by —at ozn|bg satisfying Pukanszky condition. Then by
Theorem (1), pp := R™ xm,, C g" is a polarization at £ satisfying Pukanszky
condition. Furthermore, through the identification of H}' and G™' = Aff*(n —
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. Gn— 1
1), the representations my = Indexpmnuai|hn are exactly mq " = Indg,,. Vet

which are irreducible and square-integrable by induction hypothesm Therefore,
by Theorem (3.9) (2) and (3), the representation g - Indexpp Vver of G" is

irreducible and square-integrable. Moreover, using T heorem 3.10l we have 7, =
&

Ind$, , gn-1 (v, ® g . ). Therefore, we have already proved the Theorem below.
¢

n—1

Theorem 4.10. Let (X = (p,, ) be an element of (g")* as in (4.27).
1. p, is a polarization of g" at £ satisfying Pukanszky condition.

2. T = Ind%’ Vex 1 irreducible and square-integrable.

Es exp Pn

8. Under the identification HJ) ~ G = Afi™(n —1), the representation g, ,
5

is isomorphic to IndeGn L (1, ® g - ).

n 1

In our discussion above, the coadjoint orbit ng is open and indeed, it satisfies
Theorem . Furthermore, we also have known that stabilizer b7 # {0} for n > 2
and T, is the square-integrable representation of H) ~ Gl = AffT(n - 1),

n—1

then using Theorem [3.14) we can describe the Duflo-Moore operator Cr, , for the
¢

representation (7rQ5 ., L*(H"/H ) of G™ as follows.

n

Proposition 4.11. The Duflo-Moore operator of (WQéi ,L*(H™/H} ) of G (n >

2) can be described as

cfr;: é(a) = 1/2|deta|1/20m (a) (4.30)

for almost all a € H".

4.5 Pfaffian of aff(n)

In the end of this sub-section, we shall observe a general formula for the Pfaffian
of the N := n(n + 1)-dimensional affine Lie algebra g" := aff(n) = R" x gl,(R) as

follows. First we realize g” as the subalgebra of gl, (R) via

A v
tni1: 8" 2 X(v, A) — (X (v, A)) = ( 0 0 ) € Z;ll C gl, 1 (R).
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Let & := £(p, @) be an element of (g")* with

a1 G2 ... Qg

Qo1 Qo2 ... oy
p:(ﬁlaﬁ%“'aﬁn)a a = : : . : . (4.31)

ap1 Op2 ... Opp

Furthermore, we denote the Pfaffian of g" by Qg (§) := Pf £([X;, X;])Y,—; with a
basis {X;}¥ | of g" taken in a specific way explained below.

Let us consider the Pfaffian Qg4 () for the case n = 1. We take {E;, E2} as
a basis of g' realized by 15(g!) = bf,z C gly(R). Since [E1, B3] = E1s, we have for
€= (p.a) € (')

E
Mgl = 0 2 and Mgl(§1> = 0 b .
—E12 0 —p 0

Therefore, we get Qg (§) = p.

Now let us consider the case n = 2. Let £ = £(p, @) be an element of (g*)* with

p= (61752)7 o = ( o > .

Qo1 Qg2

We take {E11, E1a, Eo1, Eo, E13, Ea3} as a basis for g2 realized by t3(g?) = hf;S C
gl3(R). We obtain the matrix Mg (§)

Mi1(§)axe Miz(§)axe Miz(§)2x2
Mg(&) = | Mai(€)axz Maa(§)axa Maz(§)axe (4.32)
M31(§)axz M32(§)axz Ms3(§)axe

with

My (€) = ( _221 o ) My (€) = ( 50 ﬂo ) My(€) = ( 50 60 )

M33(£) = Oa M13(€) = _tM31(€)7 MQS(S) = _tMSZ(g)'

Note that My1(€) can be identified with Mg (€) via the map ¢ : g — b2, C g*

93



Moreover, if 3; = 0, then we have M3(&) = Mz, (€) = O and My (&) = — "My (€) =
—Bo15. In this case, the form (4.32)) becomes

Mi1(&)axe Mia(§)axa  Oaxo
Mg(€) = | Ma(€axa Ma()axa —falaxz | (4.33)
02><2 ﬁ212><2 O2><2

so that Q»(€) = 83 Pf M1 (§) = Biaz. For general £ = &(p, ) with B, # 0, take

a= ( 51}52 (1) ) € H? and & := Ad*(g(a))¢. Then B; = 0 because

¢ = Ad*(g(a))§
Qg1 — &0412 Q11
- ((0762)7 ( P2 >)7

Q1 — %0422 + %an - (%)2%2 Qg + %0411

so that ng(f') = B2(ag — %agg + g—lan — (%)2(112). On the other hand, since

2
det Ad(g(a)) = 1, we have Qg &) = Qg (&) by Proposition Therefore, we get

Qpe(§) = Biaz — Bious + Bifa(an — ass).

Since the both sides are polynomial functions, the formula above is valid also for

the case Py = 0. We define a rational map

P (g°)" = (9')

given by
(&) = § o= (g1 — %0612, Q1 — %0422 + %0611 - (%)20412)-
Then, the arguments above are summarized as an equality
Qg (&) = B3Qq (2(€))- (4.34)

Let us consider the case n = 3. We take a basis

{E117 E127 E217 E227 E137 E237 E317 E327 E337 E147 E247 E34}
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of g3. We take & = £(p, ) with

Q11 Q12 0q3
b= (51752>53), and o = Q1 Qg2 Qi3

Q31 (rzg (33

The matrix My (£) can be written as

M11(£)6><6 M12(€)6><3 M13(£)6><3

Mg3 (f) = M21(§)3x6 Mzz(f)sxs M23(£>3><3 > (435)
M31(§)3x6 M32(§)3x3 M33(§)3x3
where
0 —Q2 Q91 0 —Qq3 0
Q19 0 Qo9 — (¥ —Q2 0 —Q3
Mll(f) _ —Q1 Q1 — (2 0 Q21 —Q23 0 :
0 Q1o —ag 0 0 —a
Q3 0 o3 0 0 0
0 Qa3 0 Q3 0 0
B 0 B 0 0 O B:s 0 0
Mu)=1 0 1 0 B 0 0 |, Mp(§)=| 0 Bz 0
0 0 0 0 B B 0 0 B

My3(€) = O, M3(§) = ="Mz (§),  Mas(§) = —"May(€).

Note that Mi1(€) can be identified with Mg (&) via the map t3 : g* = b3, C g°.
Moreover, if 5, = B2 = 0, then we have My3(§) = M31(§) = O and Ma3(§) =
—"M35(€) = —f3313. In this case, the form (4.35]) becomes

Mi1(exe Mi2(§)exs  Osxs
Mg(&) = | Ma(§)sxe Maa(§)sxs —Oslsxs | - (4.36)
O3><6 B3I3><3 03><3

We apply exactly the same arguments to the Pfaffian Q(§) as the one for the
Pfaffian Qg2(£). We obtain that Qgs(£) = 85 Qg, (P3(£)) with @ : (g°)* > £ —
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1 0 0
P3(&) = Ad*(g(a))€ oz € (¢°)* and a = 0 1 0 |. Repeating the
Bi/Bs Ba/Bs 1

computations in these ways, we obtain

Proposition 4.12. Let & := &(p, «) be an element of (g™)* as in (4.31)) and ®,, be

a map given by

1 (g")" 2 £ u(§) = Ad™(g(a))€ 0 € (g"1)

with
1 0 0 0 0
0 1 0 0 0
0 0 0
a =
0 0 0 1 0
ﬁl/ﬁn 62/671 ﬁS/ﬁn ce Bn—l/ﬁn 1

Then the Pfaffian of g" = aff(n) is of the form

Qgr(§) = B Qg1 (Pn(£))- (4.37)

Proposition 4.13. Let £ := &(p, ) with p € (R™")* and a € Mat,,(R) such that
Q¢ is open in (g")", then Q¢ = Qe+ or Qg = Q.

Proof. We apply induction on n as follows. It is true for n = 1. Now let us assume
that for n = k — 1 the statement is true, that is, if Q¢ is open in (gF~!)*, then
Qe = Qe or Qe =0 . Let § = &(p, @) be an element of aff(k)* such that € is
open in (g*)*. Then p # 0. Take a € GL; (R) such that pa™' = p = (0,...,0,1)
then by we have

oy Ay A Qg

! Oé/ OC, B Od/
¢ = Ad*(g(a))§ = E(pr, o) € (g")*, with o/ = | 71 % peh
Ay Uy Qpp1 Vg
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—Qa

Let v = : , we obtain by (4.18]) that £” = Ad*(g(v)){ = &(pk, o +
_O‘;c—l,k
a;c,k

/ / /
. Qg . Qg 0
/ / /
, Qg gy ... Qgp 4
a 4+ vpg =
/ / /
Qg gy -or Qg g 0

We get that (gF)* D Q¢ = Q¢ = Qv By Theorem , since Qgr is open in (g*)*,
then Ad*(H;fk)(ﬁ”|b,;k) is open in (hy )* with §”|h§k = &(p',a”) is identified with
& o, € (gh1)* given by

/ / /
Qqq Qg o Qg g
ol o o
;) / ’ / "o 21 22 tee 2,k—1
P = (A, Qs - aak,k—1> and o = ) ) )
! / /
Op 11 12 -+ Op 1p

On the other hand, G*! ~ HF so that Qero, = Ad*(GF)(¢” 0 ) is open
in (g"1)*. By induction hypothesis, there exists h € G¥! such that " o1, =
Ad*(h)&; | and if we regard h € H} then " = Ad*(h)&E. Moreover, we obtain

€ = Ad”(g(a) A" (g(v) A" (h)E;.

Therefore, €2 = Qg,j or e = Qg,; as required. O

Proposition 4.14. Let &8 = £(p,, o) as in (£.27). We have

1 Quleh) = +1.

2. Q. #0Q -
Proof. Taking &£ = £(p,, o) as in (1.27) and applying to Proposition 4.12] we
obtain Qg (£F) = +1. Suppose that there exists g € Aff*(n) such that Ad*(g)&F =
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&, Then Qg (&) = det Ad(g) Qg (&) by Proposition [1.7, By connectedness of

Aff*(n), we have det Ad(g) > 0. Therefore, Q4 (&, ) > 0. But, this contradicts to

the first assertion. O

In conclusion, using Proposition and Proposition above, we obtain
that Aff"(n) has exactly two open coadjoint orbits Qe+ and Q.
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