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ABSTRACT

This thesis can be roughly divided into two contents.

Firstly, we will discuss an equivalence between left and right relative tensor prod-
ucts. The notion of relative tensor product have been introduced by Connes. For
two W*-bimodules, their relative tensor product is defined by the two ways. We call
them the left and right relative tensor product. We shall show that the two bicat-
egories M> and M~ of W*-bimodules with left and right relative tensor products
as tensor functors, are monoidally equivalent. Each of M” and M~* has an invo-
lutive structure, and they will be involutionally and monoidally equivalent. Such
equivalence is basic when we consider relative tensor products.

Secondly, we will discuss the dilation theory for C'FPy-semigroups. The existence of
the minimal dilation of a given C FPjy-semigroups was shown by Bhat-Skeide, Muhly-
Solel and Arveson. We will provide a notion of relative product system, that is,
a W*-bimodule version of Arveson’s product systems, which enables as to describe
a relation between Bhat-Skeide’s and Muhly-Solel’s approaches. We will then con-
struct the minimal dilation by relative product systems. We also discuss the con-
struction for the discrete semigroup generated by a single normal UCP-map via
discrete relative product systems. Product systems have been originally introduced
to classify Ey-semigroups on type I factors. We will develop the classification theory
of Ey-semigroups in terms of relative product systems with the help of the dilation
theory.
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1. INTRODUCTION

One of von Neumann’s achievements is the mathematical formulation of quantum
mechanics. In a quantum system, observables are associated with self-adjoint oper-
ators on a Hilbert space H and physical states are described by unit vectors in H.
Within the framework of von Neumann, self-adjoint algebras of bounded operators
on a Hilbert space are especially focused on. The set B(#) of all bounded operators
on H has several topologies. A von Neumann algebra M, introduced by Murray
and von Neumann in 1930’s, is a self-adjoint unital closed subalgebra of B(H) with
respect to the weak operator topology. By von Neumann’s double commutant theo-
rem, von Neumann algebras can be characterized by an algebraic property as follows:
for a self-adjoint subalgebra M of B(H) is a von Neumann algebra if and only if
M = M", where the commutant S of a subset S C B(H) is the set of operators
commuting with all operators in .S. We call a von Neumann algebra a W*-algebra
when the representation is not especially referred to.

In the representation theory of von Neumann algebras, the Gelfand-Naimark-Segal
construction guarantees that for every von Neumann algebra M and every faithful
normal positive functional ¢ on M, there is a faithful normal representation 7, on a

Hilbert space H, and ¢z € H, such that Hy = To(M)p2 and ¢(z) = (2, my(x)2)
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for all x € M. Tomita and Takesaki have established the modular theory for von
Neumann algebras which has made a substantial contribution to the noncommu-
tative integration theory. More presicely, if we regard as M C B(Hg), there are
an anti-unitary operator Jy called the modular conjugation and an unbounded self-
adjoint operator A called the modular operator on H, such that the commutant
M’ of M is J,MJ, and A*MA~" = M for all ¢ € R. An automorphism group
{0} er defined by oy(z) = AzA~" for each t € R and = € M is called the modu-
lar automorphism group and it plays important roles in the structure theory of type
I1T factors, the theory of noncommutative LP-spaces, etc. The modular conjugation
gives a right M-module structure on H, which commutes with the left action of
M, and hence H, is an M-bimodule and referred to as a W*-M-bimodule in this
thesis. Also, there is a W*-M-bimodule L*(M) called the standard space of M

independent of the choice of ¢ such that (;S%M = L*(M) = Mgb% like the regular
representation of a group. The standard space L*(B(#)) is the Hilbert space Co(H)
of Hilbert-Schmidt operators on H. Connes[9] has introduced the notion of relative
tensor product for two W*-M-bimodules. The standard space L*(M) is the unit ob-
ject with respect to the relative tensor product ®*, that is, we have isomorphisms
LA(M) M H=2H 2HQM L2(M) for any W*-bimodule H.

A dynamics on a quantum system is described by a semigroup {7;}+>o of normal
unital completely positive (UCP-) maps T; on a von Neumann algebra M for which
t represents a parameter of time development. We often assume that the semi-
group {T}}+>o is continuous with respect to the parameter in the o-weak operator
topology, and then we call it a C'Fy-semigroup. If each T} is a x-homomorphism,
{T}}+>0 is called an Ey-semigroup. By Stinespring’s theorem, a single normal UCP-
map 7" on M C B(H) can be dilated to a representation on an extended Hilbert
space, that is, there exist a Hilbert space K and a representation w of M on K
satisfying T'(x) = pr(x)|y for all x € M, where p is the projection from K onto H.
Roughly speaking, the aim of dilation theory is to extend a UCP-map to a unital -
homomorphism. A dilation of a C' Py-semigroup {7} }+>¢ is a triple (N, p, {0: }+>0) of a
von Neumann algebra N, a projection p € N and an Ey-semigroup {6; };>¢ such that
M = pNp and Ti(x) = pby(x)p for all t > 0 and x € M. A dilation (N, p, {6;}+>0)
is said to be minimal if N is generated by 6y )(M) and the central support of p
in N is 1y. Arveson has defined a hierarchy for dilations in [3], and a minimal
dilation is the minimal one in the hierarchy (if it exists). Note that Stinespring’s
theorem can not be applied to C Fy-semigroups. Some researchers have shown an
existence of minimal dilations gradually. In [6] and [7], Bhat has shown it in the
case when M is a type I factor and in the case when M is a C*-algebra, respectively.
Bhat-Skeide[8] constructed minimal dilations by a method which is valid for both
of von Neumann algebras and C*-algebras. Also, we know Muhly-Solel’s[17] and
Arveson’s[4] constructions, which differ from each other, of the minimal dilation of
a C' Py-semigroup on a von Neumann algebra. Some direct relationships among the
constructions have not been clarified yet.

The study of Eg-semigroups have been initiated by Powers[19]. Arveson[2] has
provided the notion of product system. A product system {H;}i~o is a family of
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Hilbert spaces H; parameterized by nonnegative real numbers equipped with iso-
morphisms Hy, ® H; = H,. with the associativity. He also classified Ey-semigroups
on type I factors by product systems up to cocycle conjugacy. The theory of prod-
uct systems influenced the constructions of minimal dilations of C'Fj-semigroups.
The classification theory of Ejy-semigroups has been developed in terms of Hilbert
modules (that is, modules over a C*-algebra A with A-valued inner products). A
Bhat-Skeide’s[8] product system is a family {F;};>¢ of Hilbert bimodules over a
C*-algebra satisfying a similar property with Arveson’s one with respect to ten-
sor products of Hilbert bimodules. They classified Ej-semigroups on a (general)
C*-algebra by their product systems up to cocycle conjugacy. There have been no
approaches to the classification theory of Fy-semigroups on a von Neumann algebra
by the W*-bimodule theory.

In this thesis, we will discuss the equivalence between left and right relative tensor
products. Also, we will construct the minimal dilation of a C'Py-semigroup in terms
of W*-bimodules and describe a relation between Bhat-Skeide’s and Muhly-Solel’s
constructions of minimal dilations. The classification theory of Ej-semigroups on
a von Neumann algebra will be developed by the W*-bimodules theory with the
help of our construction of minimal dilations. Now, we shall give an outline of the
contents in this thesis.

We shall prepare the notions of W*-bimodule, W*-bicategory, Hilbert modules,
C Py-semigroups and FEj-semigroups in Section 2 related to the later sections.

In Section 3, we will discuss the W*-bicategory whose objects are W *-algebras
and the category associated with W*-algebras M and N consists of W*-M-N-
bimodules with relative tensor products as tensor functors. The relation between
the W*-bicategory of W*-bimodules and general W*-categories has been clarified
by Yamagami[37]. For W*-M-N-bimodule H and W*-N-P-bimodule K, the rela-
tive tensor product H @™ K is defined by two ways. To distinguish them, we call
them the left and the right relative tensor product and denote by H X* K and
H AM K, respectively. Of course, the two relative tensor products are isomorphic:
HIM K =2 H KM K. However, just the existence of isomorphisms is not enough
to show that left and right relative tensor products are equivalent in the sense of
tensor categories. The following theorem is the main result in Subsection 3.1.

Theorem 1.0.1. Let M”> and M* be W*-bicategories of W*-bimodules with left
and right relative tensor products as tensor functors, respectively. Then M™ and
M~ are monoidally equivalent, that is, there exists a natural unitary isomorphism
{mxy : X XY — X KB Y}, where X is a W*-A-B-bimodule and Y is a W*-
B-C-bimodule, such that the following diagram commutes for all W*-A-B-bimodule
X, W*-B-C-bimodule Y and W*-C-D-bimodule Z.

m Nid m
(X AN Z—20 2 (X AVINZ—2 (X AY) A Z
ax\y,z alX,Y,Z
idx m m
XN (YN Z) DM NS (Y K Z)— X K (Y A Z)
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Also, the dual Hilbert space H* of a W*-M-N-bimodule H has the canonical W*-
N-M-bimodule structure: y&*z = (z*{y*)* for each x € M,y € N and £ € H. We
define involutive structures on M” and M~ and show that they are involutionally
and monoidally equivalent in Subsection 3.2 as follows:

Theorem 1.0.2. We denote O = X\ or K. There are natural unitary isomorphisms
{Ry :Y*'OPX* — (XOPY)*}, where X is a W*-A-B-bimodule and Y is a W*-B-
C-bimodule, on M". Then M”> and M* are involutive W*-bicategories and they
are involutionally and monoidally equivalent with respect to {mxy}, that is, the
following diagram commutes for all W*-A-B-bimodule X and W*-B-C'-bimodule Y .

C>\
V5N X* = (X NY)*
my*’X* th,Y
c A
Y* KX = (X AY)*

The equivalence is basic when we consider relative tensor products. Section 3 is
based on [24] which is a joint work with S. Yamagami.

In Section 4, we will provide a notion of relative product system, that is, a W*-
bimodule version of Arveson’s or Bhat-Skeide’s product systems, where tensor prod-
ucts taken into account are relative tensor products, and discuss dilations in terms of
relative product systems. The notion gives a new approach to the dilation theory and
the classification theory of Ejy-semigroups in Section 5. Let 17" be a C'Fy-semigroup
T on a von Neumann algebra M. In Subsection 4.2, we will associate a relative
product system HE = {7—~lt}t20 with T" as follows: for ¢t > 0, let H, be the inductive
limit of {#(p,) | p is a partition of [0,]} with respect to refinements of partitions,
and Hy = L*(M). In Subsection 4.3, we will construct the minimal dilation of 7.
The inductive limit H of H?® has a right W*-module structure, and we can identify
H M H,; with H for all t > 0. If we define a map 6; on End(H,,) by 0;(a) = idy, ®a
for each a € End(#,), then we the following theorem.

Theorem 1.0.3. There is a faithful representation © of M on H and 0 = {6, }>0
is an Ey-semigroup on End(Hy). The triple (End(Hyy), 7(1a),0) is a dilation of
T. Moreover, if we denote the von Neumann algebra generated by | J,~, (M) by N,
then the triple (N, m(1),0|n) is the minimal dilation of T -

There are some advantages of the construction of the minimal dilation of a given
C Py-semigroup T on M in Section 4 as follows: we use the Hilbert (or von Neumann)
module theory in Bhat-Skeide’s and Muhly-Solel’s constructions, however Theorem
1.0.3 makes it possible to construct the minimal dilation without the theory. Also,
Mubhly-Solel’s construction depends on a representation of M and our construction
enables to get the canonical representation of the dilated von Neumann algebra N
independent of the choice of representations of M. We describe a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions. Suppose M acts on a (separable)
Hilbert space H. A common point of Bhat-Skeide’s and Muhly-Solel’s construction
is to establish the product systems of von Neumann bimodules, and to dilate T" to
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an FEjy-semigroup on the inductive limits of the product systems. However, Bhat-
Skeide’s product system { E}; };>o consists of von Neumann M-bimodule and Muhly-
Solel’s one { E(t) }+>0 consists of von Neumann A’-bimodules. Now, we have the one-
to-one correspondence between von Neumann bimodules and W*-bimodules. The
relative product system H® = {H,};>0 associated with T gives a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions of minimal dilations:

Theorem 1.0.4. There is a one-to-one correspondence
E, «— H,, E(t) «— H* oM H, oM H
between von Neumann bimodules and W*-bimodules for each t > 0.

The relation is different from the one described by Skeide’s commutant duality in
[27]. Section 4 is based on [22] mainly. Bhat-Skeide’s and Muhly-Solel’s construc-
tions can apply to a discrete C'Py-semigroup, that is, the semigroup {1" },ez., gen-
erated by a single normal UCP-map T'. The construction (Theorem 1.0.3) and the
relation (Theorem 1.0.4) in this case will be described by discrete relative product
systems in Subsection 4.5 which is based on [21].

In Section 5, we will develop the classification theory of Ejy-semigroups in terms
of relative product systems. We fix a faithful normal state ¢ on a von Neumann
algebra M. A unit of a relative product system H® = {H;}i>0 is a family ¥ =
{&(t) }iso of £(t) € H, satisfying £(s) @M £(t) = &(s + t) for all s,¢ > 0. For a
given pair (H®,£%), the inductive limit H¢ can be defined. We will give a one-
to-one correspondence between C'FPy-semigroups on M without the continuity called
algebraic C' Fy-semigroups and units of relative product systems. Then the continuity
of the C Py-semigroup associated with a unit is described by the one of the unit.
These can be summarized as follows.

Theorem 1.0.5. There is a one-to-one correspondence between algebraic CPy-
semigroups T and pairs (H®,£%9) of relative product systems H® and generating
unital units £ up to unit-preverving isomorphisms. The algebraic C Py-semigroups
T associated with a pair (H®,£%) is a CPy-semigroup if and only if we have

EO7IE(t) — € (t — +0)

for all ¢p-bounded vector & € HE, where {(b_%g(t) means the relative tensor product
with respect to ¢ and we can identify H* @M H, with HE for all s > 0.

For a pair (H®,£%) of a relative product system H® = {H,};>0 and a (continuous
unital) unit €% = {£(¢)}+>0, we can get an Ey-semigroup 6 = {6;}:>0 on a von
Neumann algebra End(H$,) called the maximal dilation of (H®,£®). The main
result in Subsection 5.2 is as follows:

Theorem 1.0.6. Let 0 = {0,}>0 be the mazimal dilation of a pair (H®,E%).
There is a one-to-one correspondence between contractive adapted right cocycles
w = {w }>0 on End(Hyr) and contractive units n® = {n(t) }1>0 in H®.

As a corollary of the previous result, Ey-semigroups on a von Neumann algebra M
will be classified up to cocycle equivalence by relative product systems. For Ep-
semigroup @ on M, we can get the pair (H?®,£%¥) of the relative product system
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HP® and the unit €% as CPy-semigroups in Theorem 1.0.5. Then we have the
following theorem which is an analogue of the classification of Ey-semigroups in [8,
Theorem 7.9] and [30, Theorem 12.3].

Theorem 1.0.7. Let 0 = {0:}1>0 and 0 = {0,}1>0 be Ey-semigroups on a von
Neumann algebra M. Suppose (H'®, &%) and (H'®',£°%") are the pairs associated
with 0 and 0', respectively. Then H*® and HY® are isomorphic if and only if 0 and
0" are cocycle equivalent by a strongly continuous unitary cocycle.

Theorem 1.0.3 and the sequential discussions related to the classification by relative
product systems are reflected by Bhat-Skeide’s observations.

We list some problems in the future as follows:

(1) Ep-semigroups on type I factors are classified by (Arveson’s) product systems
up to cocycle conjugacy as follows: suppose € and 6’ are Ey-semigroups on B(H)
and B(K), respectively. Then 6 and 6" are cocycle conjugate if and only if they
have isomorphic product systems. Bhat-Skeide’s classification of Ey-semigroups
is generalization of Arveson’s one. Is there a concrete relation between our
classification of Ey-semigroups on type I factors and Arveson’s one?

(2) Arveson[2] have introduced the index invariant of Ey-semigroups on type I fac-
tors. In particular, type I Ey-semigroups on type I factors are completely classi-
fied by indices. Also, Alevras[l] and Margetts-Srinivasan[15] have defined index
invariants of Fy-semigroups on type II; factors. Is there an analogous theory
for (general) von Neumann algebras in terms of relative product systems, with
their observation?

(3) Let E be a Hilbert (or von Neumann) module and B*(E) the algebra of ad-
jointable right linear maps on E. Within the framework of the Hilbert module
theory, Ep-semigroups on B%(E) are classified by product systems of Hilbert
(von Neumann) bimodules. We refer the reader to Skeide’s monograph [30] for
details. Can we refine the classification theory of Ejy-semigroups in terms of
relative product systems?

(4) Recall that there are the three approaches to construct minimal dilation by
Bhat-Skeide, Muhly-Solel and Arveson. We will describe a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions in Subsection 4.4. However, some
concrete relationships among Arveson’s construction and them have not been
clarified yet.
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NOTATION

- C : The set of all complex numbers.

- R : The set of all real numbers.

- R0 : The set of real numbers which are not less than 0.

- Z : The set of all integers.

- Z>p : The set of integers which are not less than 0.

- N : The set of all natural numbers which are grater than 1.

- (+,+) : Inner products on Hilbert spaces or Hilbert modules whose second terms
are linear.

- ‘H* : The dual Hilbert space of a Hilbert space H.

- [2(I) : The Hilbert space of square summable sequences indexed by a set I.

- span(S) : The linear span of a subset S in a vector space.

- Span(S) : The closure of span(S) with respect to a suitable topology.

- B(#H) : The set of all bounded linear operators on a Hilbert space H.

- Co(H) : The Hilbert space of all Hilbert-Schmidt operators on a Hilbert space H.

- &n* : The operator on a Hilbert space H given by £n*(¢) = (£, )¢ for each ( € H,
for a £ € H and an n* € H*.

- §": The commutant of a subset S in B(H).

- M, : The predual of a von Neumann algebra M.

- M : The set of o-weakly positive functionals in M,.

- A° : The opposite algebra of an algebra A.

- ||z]] : The operator norm of an operator x € B(H).

- id4 : The identity map on a set A.

- 1ps : The unit of a von Neumann algebra M.

- [¢] : The support projection of a functional ¢ € M.
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2. PRELIMINARIES

In this section, we prepare some notions and notations for later sections. Subsec-
tion 2.1 is a preparation for W*-bimodules related with all sections. Subsection 2.2
is for W*-bicategories and we will discuss the W*-bicategory of W*-bimodules in
Section 3. In Subsection 4.1, the minimal dilation is constructed in terms of Hilbert
modules prepared in Subsection 2.3 by Bhat-Skeide’s and Muhly-Solel’s approaches.
In Subsection 2.4, we recall the notions of C' FPy-semigroups and FEy-semigroups re-
lated with Section 4 and 5

2.1. W*-bimodules. W*-bimodules are Hilbert spaces on which von Neumann al-
gebras act from the left and the right. More precisely, for von Neumann algebras
N and M, a Hilbert space H with normal *-representations of N and the oppo-
site von Neumann algebra M° of M is a W*-N-M-bimodule if their representations
commute. When N = C or M = C, we call H a right W*-M-module or a left
W*-N-module, respectively. We write a W*-N-M-bimodule, a right W*-M-module
and a left W*-N-module by yHas, Har and yH, respectively.

Let N be a von Neumann algebra, Hy and Kn be right W*-N-modules, and
NvH' and NK' be left W*-N-modules. Hom(Hy, Kxn) and Hom(yH', vK') are the
sets of all right and left N-linear bounded maps, respectively. If H = K and
H' = K', they are denoted by End(Hy) and End(yH'), respectively. Suppose
the space Hom(yH', yK')° is bijevtive to Hom(yH', yK') as sets and each operator
f € Hom(yH', yNK')° acts from the right like opposite algebras.

For a von Neumann algebra M and ¢ € M, the left (right) GNS-representation
of M with respect to ¢ is defined as follows: we define a left (right) ideal N} =
{r € M| ¢(z*z) = 0}y W = {2 € M | ¢(zaz*) = 0}) of M and denote as
197 =1 + N}, € M/N} (20 =z +Nj € M/N}) for each x € M. The left (right)
GNS-space is the completion M gb% (QS%M ) with respect to an inner product defined
by (x¢7,y02) = d(a*y) ((p2x,¢7y) = G(yax*)) for each z,y € M. The left (right)
GNS-representation is a x-homomorphism 7 : M — B(M¢2) (x-anti-homomorphism
p: M — B(¢2M)) defined by w(a)zpz = (az)pz (pla)pzz = ¢2(za)) for each
a,r € M.

The standard space of M denoted by L?(M) is defined as a W*-M-bimodule such
that all left and right GNS-spaces are included and [¢p] Mz = ¢z M[p] in L2(M) and
¢z M = [¢]|L2(M) for all ¢, € M. In particular, we have ¢p2 M = L3(M) = M¢z
if ¢ € M is faithful. This observation will be helpful under the assumption which
a von Neumann algebra has a faithful normal state in Section 4 and 5. Also L?(M)
has an involutive structure J : L?(M) — L?*(M) called the modular conjugation
such that J(z€y) = y*J€x* for all z,y € M and & € L?(M). Note that for ¢ € M,
we have J(z¢2) = ¢p2a* for all = € [¢|M[@]. We refer the reader to [32, Chapter
IX], [38], [34] and [35] for details of the definition and properties of standard spaces
included in the modular theory.

Example 2.1.1. We consider the standard space of a type I factor. Let H be a
separable Hilbert space and M = B(H). The one-to-one correspondence between
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positive normal functionals on M and positive trace-class operators on H makes it
possible to identify L?(M) with Co(H). Moreover, by the correspondence H @ H* >
E@n* — &n* € B(H), we have M-bimodule isomorphism H @ H* = Co(H). The
standard representation of M on H @ H* is defined by w(x)(§ @ n*) = (&) @ n* for
each x € M and &,m € H. The modular conjugation J is given by J(E@n*) = nRE*
for each §&,m € H. The vector Q=" %fn@)f;'; is cyclic and separating for w(M),
where {£,}°°, is an orthonormal basis for H.

For a W*-M-N-bimodule pHy, Hom(y L*(M), ,yH)° and Hom(L*(N)y, Hy)
have the canonical M-N-bimodule structures. For fi, fo € Hom(y L*(M), ;yH)°
and g1, g2 € Hom(L*(N)n, Hn), we define {(f2f7) = (£f2) fi and (g192)€ = g7 (g2m)
for each ¢ € L?*(M) and n € L?(N). Note that fof € End(yL*(M))° and
gigo € End(L*(N)y) are elements in M and N acting from right and left, re-
spectively.

Now, we introduce relative tensor products as follows:

Definition 2.1.2. Let Hy and yK be right and left W*-N-modules, respectively.
The left relative tensor product H X\ K of H and K is defined by the completion
of the tensor product Hom(L*(N)n, Hy) @n K of Banach spaces with respect an
M -valued inner product

(fr@n, fa @) = (m, (fi f2)n2)

for all f1, fo € Hom(L*(N)n,Hn), m,m2 € K. We can also define the right relative
tensor product H AN K by the completion of H @x Hom(yL2(N), vK)° similarly.

For more details, see [5], [25] and [33]. When H is a W*-M-N-bimodule and K is a
W*-N-P-bimodule, the left and right relative tensor products H XM K and H <M K
have W*-M-P-bimodules structures. In Section 3, we will give an isomorphism
HIM K = H AM K as W*-bimodules by the canonical way, and show that the two
W*-bicategories of W*-bimmodules with left and right tensor products as tensor
functors are monoidally equivalent in the sense of Definition 2.2.6.

Let yHy, vHy, vKp and K% be W*-bimodules. For two bilinear maps f :
MHy — yHy and g @ vKp — Kb, we can define M-P-linear maps f XN g :
MH>\’CP—>M,H/>\IC39 and ngMHKICP%M,H/K’CZD by

(frg)x@n) = (fr) @ (gn), (f £g)E@y) = (f&) @ (gv)
for each z € Hom(L*(N)y, Hn),n € K,y € Hom(yL*(N), yK)° and £ € H, where
gy is defined by ((gy) = g(Cy) for each ¢ € L*(N).

Now, we introduce the alternative definition of (left) lelative tensor products in|9,
Chapter 5, Appendix B] or [32, Chapter IX, Section 3]. Suppose H is a W*-M-
N-bimodule and K is a W*-N-P-bimodule. For simplicity, assume that N has a
faithful normal state ¢. A vector { € H is called a (left) ¢-bounded vector if there
is ¢ > 0 such that ||z|| < ¢||¢2z| for all z € M. We denote the set of all ¢-bounded
vectors in H by D(H; ¢). The (left) relative tensor product H >\f;7 K with respect to

¢ is the completion D(H; ¢) @z K with respect to an inner product defined by
<§1¢7%7717§2¢7%772> = (1, my(&1) e (E2)12),
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for each &1,& € D(H; ¢) and n1, 12 € K, where m4(¢) : L*(N) 2 ¢2x — Ex € H and
we usually use a notation f(;S_%n rather than ¢ ® n. By [32, Chapter IX, Lemma
3.3], we have an isomorphism H >\f;7 K =2 HXK. For relative tensor product, we will
use this definition in Section 4 and 5. Also, we can define the right relative tensor
product H Ag IC by right ¢-bounded vectors. We already know the isomorphism
HNY K =M AY K and the associativity (H XN} K) AL L= HX (K A} L) in [32,
Chapter IX, Theorem 3.20]. However, they are not enough to show the pentagonal
identity in Definition 2.2.1.

2.2. W*-bicategories. For the general theory of categories and tensor categories,
see [14] and [10]. For convenience, we recall the notion of naturality as the following.
Let C and D be categories and F, G : C — D be two functors. A natural isomorphism
from F' to G is a family {t¢}cec of isomorphisms ¢t : F'(C) — G(C) in D such that
for all morphism f : C'— C’, the following diagram commutes.

F(C)——G(C)
lF(f) lG(f)
FOY—"< g

Definition 2.2.1. A bicategory B consists of objects A, B,C,--- and linear cat-
egories 4Bp labeled by a pair (A, B) of objects A and B satisfying the following
properties.

(1) There is a bifunctor (called a tensor functor) @ : s4Bp X gBe — aBc for each
three objects A, B and C'.

(2) There is an object I called a unit object in sBa for each abject A such that
there are natural isomorphisms {lx : Ix ® X — X}xe,n, called a left unit
isomorphism and {rx : X ® Iz — X }xe, 5, called a right unit isomorphism for
each objects A and B.

(3) There is a natural isomorphism {axyz : (X QY)®Z - X@ (Y ®Z)| X €
ABg, Y € pBc, Z € ¢Bp} called an associativity isomorphism for each objects
A, B,C and D.

(4) The isomorphisms lx,rx and axy z satisfy the following commutativity.

(XReY—X®(I®Y) (X®Y)2(ZoW)

XY (XeY)2Z) W XY (ZW))

XeoYe2)eW X (Yo2)eW)

The left commutativity is called the triangle identity and the right one is called
the pentagonal identity.

For the naturalities of {Ix}, {r,} and {axy_z}, related functors are not specified
in the above definition. However it is clear, for example the left unit isomorphism
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{lx}xe Bp is a natural isomorphism from the functor 485 3 X — I, ® X € 4Bp
to the identity functor on 4Bp.
The triangle identity implies the following lemma which will be used in Section 3.

Lemma 2.2.2. ([10, Proposition 2.2.4]) For any objects X in 4aBg and Y in gBc,
the following diagrams are commutative.

LX) QY ——=[L®(XQY) (XQYV)®I—Xo (Y ®I)

X®Y X®Y

Remark 2.2.3. Any bicategory satisfies the coherence theorem in the following
sense. For m,n € N, if X, Y € sBp are objects given by tensor products of com-
posable m and n objects with any order of parentheses, and fi,fs : X — Y are
isomorphisms given by products of the left and right isomorphisms and the associa-
tivity isomorphisms and their inverses, then we have f; = fo. The above lemma is
a special case of the coherence.

We shall give the formal definition of W*-bicategories.

Definition 2.2.4. A linear category C is called a C*-category if there is an antilinear
contravariant functor x : C — C preserving any objects, for every objects X and Y,
the space Hom(X,Y) of morphisms from X toY is a Banach space satisfying the
following properties.

(1) For every x € Hom(X,Y'), z*x is a positive element in Hom(X, X) and we have
l2)]* = [l

(2) For every x € Hom(Y,Z) and y € Hom(X,Y), we have ||zy|| < ||z||||ly]|-
We require functors between C*-categories to be x-preserving and natural isomor-
phisms between such functors to consist of unitaries.

If each Hom(X,Y") is the dual of a Banach space, C is called W*-categories.

A C*-bicategory (W*-bicategory) is a bicategories consisting of C*-category (W*-
categories) such that the left and the right unit isomorphisms and the associativity
1somorphism consist of unitaries.

Example 2.2.5. (1) The category whose objects are Hilbert spaces and a morphism
15 a bounded operator, is a W*-categories.

(2) Let M be a von Neumann algebra. The category whose objects are projections in
M and a morphism from a projection p to a projection q is qxp for some x € M,
is a W*-category.

An involutive W*-bicategory is a W*-bicategory B equipped with a family of
contravariant functors denoted by

ABp > X — X* € By, Hom(X,Y)> f—"'feHom(Y* X*),

a natural unitary isomorphisms {cxy : Y*®@X* = (X ®Y)* | X € 4Bp, Y € B¢}
and {dx : X — (X*)*}xe, 5, satisfying tdy = d* for all object X € ABg, '(f*) =
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(*f)* for all f € Hom(X,Y") and the following commutativities.
(X®Y)o2)* XY ®2) XV X**TY**

7@ (XeY)* YoZ)yoX* (XV)* —(Y*® X*)*

7" (V'@ X*)——=(Z"Y*) @ X*
The left and right diagrams are called the hexagon identity and the square identity,
respectively. The triple (%, {cxy}, {dx}) is called a unitary involution on B. For
involutions on tensor categories, see [36].

Finally, we shall provide the notion of monoidal equivalence between two (in-
volutive) W*-bicategories with same objects by the identify functor. The following
definition is a special case of the general definition of ( involutionally and ) monoidal
equivalences, however it is enough for the aims in Section 3.

Definition 2.2.6. Two W*-bicategories B = ({A},{aBs},{®a5c},{axyz}) and
B = ({A}, {aB},{®) pc}, 1dxy x}) are said to be monoidally equivalent if for
each objects A, B and C, there is a natural unitary isomorphism {mxy : X @Y —
X QY| X € aBp, Y € pBc} such that the following diagram commutes for every
composable objects X,Y and Z.

m id m /
(XoY)0 72— (X' e Z— 2" (Xe'V)e' Z
ax\y,z a/X,Y,Z
id m m /
X@Y®Z)—2"7 oY 2 X (Y& )

In addition, suppose B and B' have unitary involutions {cxy} and {cy}, respec-
tively. If the following diagram commutes for all composable objects X andY , then B
and B' are said to be involutionally and monoidal equivalent with respect to {mxy}.

CcX,Y

My x* tmx,y
Y& X = (X&'Y)

2.3. Hilbert bimodules. We refer the reader to [12] for the general theory of
Hilbert modules. For a von Neumann algebra M, a Hilbert M-module F is a right
M-module with an M-valued inner product such that (X,Yz) = (X,Y)x for all
X,Y € F and x € M, and F is complete with respect to a norm defined by
| X|| = +/|{X,X)]|. For Hilbert M-module F and F, a bounded right module
homomorphism b : £ — F is said to be adjointable if there is a bounded right
module homomorphism b* : F' — E satisfying (X,0Y) = (b*X,Y) for all Y € E and
X € F. We denote the set of all adjointable bounded right module homomorphisms
from F to F' by B*(E, F). We write a C*-algebra B*(E, E) by B*(E). If there is a
surjection u € B*(E, F') preserving the inner products (that is, unitary), F and F
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are said to be isomorphic as Hilbert M-modules. For another von Neumann algebra
N, when there is a *-homomorphism j : N — B*(E), E is called a Hilbert N-M-
bimodule or a C*-correspondence from N to M. We assume that the unit of N acts
as a unit on E. (This means the non-degeneracy.)

Now, we discuss some tensor products related with Hilbert modules. In this
process, we will define a von Neumann modules as a complete Hilbert module with
respect to a suitable topology.

Definition 2.3.1. For a Hilbert N-M-bimodule E and a Hilbert M-P-bimodule F,
the tensor product E ®y F of E and F over M is a Hilbert N-P-bimodule given by
the completion of the algebraic tensor product E Qg ' with respect to a P-valued
sesquilinear form defined by

(X®Y,X' oY) =(V,(X, XY

for each X, X' € E and Y,Y' € F. (Precisely, we take the completion of a quotient
space E Qug F/N, where N = {Z € E Q. F | (Z,Z) = 0}. We often omit this
argument when we define new tensor products.)

Note that the tensor product of Hilbert bimodules is associative.

Let M be a von Neumann algebra acting on a Hilbert space H and E be a
Hilbert M-module. Then H and E are a Hilbert M-C-bimodule and a Hilbert C-
M-bimodule, respectively, and hence we can define the tensor product E ©,; H as
Hilbert bimodules. We can regard E as a right M-submodule of B(H, E® ) H) by an
embedding Ly : H2>¢(— X®E € EoOyHforeach X € E.IfE C B(H,EGQuH) is
closed with respect to the strong operator topology, F is called a von Neumann M-
module. Suppose N is another von Neumann algebra. A von Neumann M-module
E is called a von Neumann N-M-bimodule if E is a Hilbert N-M-bimodule, and a
map p: N — B(E ©y H) defined by

p()EQR) =26E@h  (reNEEE, heH)
is normal.

Example 2.3.2. A C*-algebra A and a von Neumann algebra M are a Hilbert
A-bimodule and a von Neumann M -bimodule, respectively by the canonical inner
product (z,y) = x*y. For a right W*-M-module, the space Hom(L*(M )y, Har) is a
von Neumann M -module.

For a von Neumann M-N-bimodule £ and a von Neumann N-P-bimodule F,
the strong closure denoted by £ ®y F of E ©y F via the above argument is a von
Neumann M-P-bimodule.

Like von Neumann algebras, von Neumann modules are also characterized by
self-duality, see [18] and [26].

We define the tensor product of Hilbert modules with respect to a UCP-map T
whose inner products have information for T, like GNS-representation of C*-algebra
A with respect to a positive functional ¢ on A.

Definition 2.3.3. Suppose M is a von Neumann algebra acting on a Hilbert space
H and T : M — M is a normal unital completely positive map (UCP-map). We
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define a Hilbert M-M -bimodule Ep by the completion of algebraic tensor product
M ®a1g M with respect to an M-valued sesquilinear form defined by

(z@y, 2 @y )r =y T(x"z")y

for each a,a’,b,b/ € M. The left and right actions are defined naturally. If we
write the image of 1y @ 1y in Ep by Zr, then span(MZrM) is dense in Er and
T(x) = (Zr,xZy) holds for all x € M. We call the couple (Er, Zr) the GNS-

representation with respect to T'.

Note that the strong closure & in B(H,Er @y H) is a von Neumann M-M-
bimodule. The following tensor product will be helpful for the construction of
minimal dilation by Muhly-Solel in Subsection 4.1 and the construction of relative
product systems from C'Fy-semigroups in Subsection 4.3 and Section 5.

Definition 2.3.4. Suppose M is a von Neumann algebra acting on a Hilbert space
H oand T : M — M is a normal unital completely positive map (UCP-map) The
tensor product M @7 H of M and H with respect to T is defined as a Hilbert space
given by the completion of the algebraic tensor product M ®a, H with respect to a
sesquilinear form defined by

(r@&yen) =T y)n)
for each x,y € M and £&,n € H. M ®@p H has a left W*-M-module structure by
a(x® &) = (ax) ®E for alla,x € M and £ € H.

Finally, we see a relation between the above tensor products and the GNS-
representations:

Proposition 2.3.5. Let T be a normal UCP-map on a von Neumann algebra M and
H a left W*-M-module. Then we have Er Ry H = M @7 H as left W*-M-modules.

Proof. We can define a left M-module map u : Er@pyH — MrH by u((2@y)®E) =
x ® y& for each x,y € M and € € H. Then we have
(u((r1 @1y1) @&), u((12 @1) ® &) = (11 @ Y161, T2 ® Y2&2)
(161, T(x]22)y262)
(1, (z @Y1, 72 @ y2)72)
((z1@ Y1) ® &, (32 ® Y2) ® &),

and hence it is a unitary. a

2.4. CPy-semigroups, FEj-semigroups and Arveson’s product systems. In
this subsection, we provide the basic notion related with C'Fy-semigroups and FEjy-
semigroups. Also, we simply explain Arveson’s classification of Ej-semigroups on
type I factors by his product systems.

We provide the formal definitions of C'Fjy-semigroups and FEjy-semigroups as the
following. A family 7" = {T}};>0 of normal UCP-maps 7} on a von Neumann al-
gebra M is called a C'Py-semigroup if Ty = idy;, TsT; = Tsyy for all s,¢ > 0, and
for every x € M and ¢ € M,, the function ¢(7}(x)) on [0,00) is continuous. If
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each T; is a x-homomorphism, 7" is called an Fy-semigroup. A C Py-semigroup (Fo-
semigroup) without the continuity is called an algebraic C'Py-semigroup (algebraic
Eqy-semigroup, respectively).

Example 2.4.1. Let {v;}1>0 be a family of isometries v, in a von Neumann algebra
M such that vsiy = vsvy for all s,t > 0 and vy = 1p. Suppose {vi}i>o is strongly
continuous with respect to the parameter. If we define T = {T}}i>0 by Ti(x) = viav,
for each x € M and t > 0, then T is a CFPy-semigroup. If each v, is unitary, T is
an Ey-semigroup.

Example 2.4.2. The CCR heat flow is a C Py-semigroup T" which has the noncom-
mutative Laplacian A as generators. This will be immediately and concretely defined
by the Weyl system. For more details, see [4, Section 7].

Let H = L*(R) and M = B(H). For x = (z,y) € R?, the concrete Weyl op-
erator is Wy = exp(2i)U,V,, where {Us,}zer and {Vi}zer are the unitary groups
which have the position operator Q) and the momentum operator P as generators,
respectively, i.e.

(Uf)(@) = e f(x), (Vif)(x) = f(z+1)
for f € L*(R) and t,x € R. Then the family {Wy }xer> of the unitaries satisfies the
Weyl relations

1
(2'1) WX1WX2 = exp (§($2y2 - xly?)) WX1+X2
for x1 = (z1,41), X2 = (22,2) € R%. The CCR heat flow is defined as the unique
CPy-semigroup T = {T;}>0 on M satisfying Ty(Wy) = exp(—t||z|*)Wx for all
x € R? and t > 0. More precisely, we define T, for t > 0 by a weak integral

Ti(x) = - W%Q/'W%dﬂt@)
for each x € M, where i, is the probability measure whose Fourier transformation
is uy(x) = exp(—t[|x||*).

According to Stinespring’s dilation theorem, for a UCP-map T from a C*-algebra
A into B(H), there exist a Hilbert space K, a unital representation of A on K
and an isometry v : H — K such that T'(a) = v*m(a)v for all a € A. However,
Stinespring’s theorem does not apply to C Fy-semigroup. The notion of dilation of
C Py-semigroups are introduced as the following.

Definition 2.4.3. Let T' = {T}}i>0 be a CPy-semigroup on a von Neumann algebra
M. A dilation of T consists of a von Neumann algebra N, a projection p € N
and an Eg-semigroup {0;}i>0 on N such that M = pNp and T,(x) = pbi(x)p for
all x € M and t > 0. In addition, if N is generated by O o\(M) and the central
support of p in N is 1y, the dilation is said to be minimal.

Note that a minimal dilation of a C Py-semigroup is unique (if it exists). The
existence of minimal dilations is proved by Bhat-Skeide and Muhly-solel which we
recall in Subsection 4.1. In Subsection 4.4, a relation between the two constructions
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will be clarified. Arveson also constructed the minimal dilation by other approach
in [4] (or [3]).

The notion of cocycle for Ey-semigroups is introduced as the following, and the
notion is useful for the classification of Ey-semigroups.

Definition 2.4.4. Let 0 = {6, };>0 be an Ey-semigroup on a von Neumann algebra
M. A family w = {w >0 C M is called a right cocycle for 6 if wsyy = 0y (ws)wy
for all s,t > 0. If each wy is unitary (contractive), then w is called a right unitary
(contractive, respectively) cocycle.

Two Ey-semigroups 0 = {0:}i>0 and ' = {0, }1>0 on M are said to be cocycle
equivalent if there is a strongly continuous right unitary cocycle w = {w;}i>o such
that 0,(x) = wiO(x)w; for allt > 0 and x € M. Then 6 is called a cocycle
perturbation of 0 with respect to w.

Definition 2.4.5. Let 0 and 0" be Ey-semigroups on von Neumann algebras M and
N, respectively. If there is a *-isomorphism o : M — N such that 6, o« = a0 6,
for allt > 0, then 6 and 0" are said to be conjugate. If 0" is conjugate to a cocycle
perturbation of 6, then 6 and 0" are said to be cocycle conjugate.

Example 2.4.6. We give an example of two Ey-semigroups which are conjugate
in [16, Example 3.11]. Let M = B(H) with a separable Hilbert space H. The
standard space L*(M) of M is H @ H*. We use the notations in Example 2.1.1.

Let 6 be an Egy-semigroup on M and 6 the conjugate Ey-semigroup mo 0 omw~t on

w(M). For x € B(H), let T be the operator on H* defined by T(£*) = (x€)*, and
0 the Ey-semigroup defined on B(H*) by 0,(%) = 0,(x) for each t > 0 and x € M.
Margetts-Srinivasan|[15] introduced the dual Eo-semigroup 07 on w(M) C B(H@H*)
by

0] (') = JO,(J2'J)J
for each t > 0 and ' € ©7(M)". Then 07 is conjugate to 0 via an x-isomorphism.:
BH*)>T— 1y T € n(M).

Arveson|[2| classified Fy-semigroups on type I factors up to cocycle congugacy by
his product systems. We introduce a product system in the sense of Arveson as the
follows:

Definition 2.4.7. Let H® = {H,;}1>0 be a family of separable Hilbert spaces Hy. If
there is a unitary Usy : Hs @ Hy — Hsqe for each s, t > 0 satisfying the associativity

U'r,s—&—t(id?-lr ® Us,t) - U'r—l—s,t(Ur,s X ldHt>
for allr,s,t > 0. Then the pair (H®, {Usy}si=0) is called a product system.

Note that we require a product system of a measurable structure in the original
definition by Arveson. For more details, see [4] or [13]. We call such a product sys-
tem a continuous product system. We will introduce the notion of product system
of Hilbert bimodules (Bhat-Skeide’s product system) and the one of relative product
system in Section 4, however we will not consider their measurable structures. In-
deed, the construction of minimal dilations and the classification of Ey-semigroups
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do not require measurable structures of Bhat-Skeide’s product systems and relative
ones.

For Ey-semigroup 6 = {6;}:+>¢ on B(#H) with a separable Hilbert space H, Arveson
associated with the (continuous) product system £9¢ = {£9}~¢ by

El={x e B(H) | 0,(a)r = za (Va € B(H))}
equipped with the inner product defined by (z,y) = 2*y € B(H)' = Clp, for each
z,y € EY. He showed that two Ey-semigroup 6 on B(H) and ¢’ on B(K) are cocycle

conjugate if and only if the associated product systems £°¢ and £%® are isomorphic
([4, Theorem 2.4.10]). Now, units of product systems are defined as the following.

Definition 2.4.8. A unit of a (continuous) product system (H®,{Us}si=0) s a
(measurable) family {£(t)}iso0 of £(t) € Hy for each t > 0 satisfying

ot = Usa(€(s) ® (1))
for all s,t > 0. We denote the set of all units of H® by U(H®).

The notion of unit gives the index invariant of Ejy-semigroups on type I factors
(see [4, Section 2.5]). Let 6 be an Ey-semigroup on B(H). We can define a Hilbert
space structure on H(E?) of all functions f : U(E%®) — C that are finitely nonzero
and sum to zero. The index of @ is defined by ind(0) = dim H (%) if U(E9®) # ()
and ind(f) = 2% if U(EP®) = (. The index is a numerical invariant for cocycle
conjugacy: if § and 6" are cocycle conjugate, then we have ind(6) = ind(#").
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3. W*-BICATEGORIES OF W*-BIMODULES

In this section, we discuss the results in [24]. We will show that two W*-
bicategories M”> and M~ of W*-bimodules with left and right relative tensor prod-
uct as tensor functors, respectively, are monoidally equivalent in Subsection 3.1.
In Subsection 3.2, we will define unitary involutions on M” and M*, and show
that they are also involutionally and monoidally equivalent. We will use notations
A, B,C--- for W*-algebras and X,Y, Z,--- for W*-bimodules in accordance with
Subsection 2.2.

Before we construct M”> and M~ we recall matrix extensions in [34] and Dixmier’s
structure theorem on homomorphisms between von Neumann algebras. Let A be a
W*-algebra, and I and J index sets. A matrix extension of A is defined by

M; ;(A) = Hom(I*(J) @ L*(A) 4, 1*(I) @ L*(A)4).
In particular, M;(A) = M;;(A) is a von Neumann algebra acting on [*(1) ® L*(A).
M ;(A) can be identified with a subspace of A/ = {(z;;) |i €1, j € J, z;; € A},
and it has a dense subspace of (z;;) such that z;; = 0 except for finite numbers

of i € I and j € J in the strong operator topology. For a W*-bimodule 4 Xp, we
define a matrix extension of X by

X7 = {(&,j) liel, jed &ieX, D al’< OO}
il jet
which is a W*-M(A)-M;(B)-bimodule. If I or J is any singleton, we denote /X7
by X7 or /X, respectively.

Dixmier’s theorem asserts the following projective module realization (see [31]).
For W*-A-B-bimodule X, there exist an index set I and a projection p € M;(A)
such that X = L?(A)!p as left W*-modules, and there is a normal homomorphism
B — End(4L*(A)'p)° = pM(A)p. Tt is also similar as right W*-modules.

We shall define two W*-bicategories M”> and M~. Of course, their objects are
W*-algebras, and for W*-algebra A and B, both of W*-categories 4 M7 and 4 M7
is the W*-categories of W*-A-B-bimodules. Suppose 4 M7 and 4 M7 have tensor

functor X and K, respectively. For W*-A-B-bimodule 4Xpg, unit isomorphisms
Iy, ry in 4My and 15,75 in 4 M5 are defined by

(a®§) = a8, ry(z®B) =yb, Ix(a®r) =az, rx(®D) = &b

for each a € A, b € B, a € L*(A), 8 € L*(B), x € Hom(4L*(A), 4 X)°, y €
Hom(L*(B)g, Xp) and £ € X. Let 4Xp,gYe and ¢Zp be W*-bimodules. Note
that the following projective module realizations imply that

Hom(L*(B)g, Xg) @3 Hom(L*(C)¢, Yo) ®c Z C X N (Y N Z),

X ®p Hom(pL?*(B), gY)° ®c Hom(cL*(C),c2)° C X A (Y £ Z)
are dense. Hence, we can define associativity isomorphisms ayy , in 4Mp and
af(yyvz in A./\/lg by

axyz((zRY) @) =20 (y®(), adxy,((E®2)Qw) =£R (20 w)
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for each z € Hom(L*(B)p,Xp), v € Hom(L*(C)c,Ye), ¢ € Z, £ € X, z €
Hom(pL?(B), gY)° and w € Hom(cL*(C), cZ)°.

We can check that the unit isomorphism {I%},{r}} and the associativity iso-
morphism {ay y.,} in M”> satisfy the triangle and the pentagonal identity by the
definitions, and similarly for M~.

3.1. Monoidal equivalence. In this subsection, we shall construct a natural uni-
tary isomorphism {myy : X XY — X £Y} giving a monoidal equivalence in the
sense of Definition 2.2.6 by the explicit and canonical way.

Let 4Xp and Yo be W*-bimodules. Suppose u : X — p/L?*(B) and v : Y —
L*(B)’q are B-linear unitaries for some index sets I and J and projections p €
M;(B) and ¢ € M;(B). Note that (!L*(B))~(L*(B)”) and (! L*(B)) A(L*(B)”) can
be identified with /(L?(B)XL?(B))” and (L*(B) KL*(B))’, respectively. Thus, the
unit isomorphisms (» = 7> : L(B)XL?(B) — L*(B) and I = r*: L*(B)KL*(B) —
L?(B) induce M;(B)-Mj(B)-linear unitaries

mo : ('L*(B))D(L*(B)") = {(L*(B)DL*(B))” — 'L*(B)’,

where O is X or £. We define an M;(B)-M;(B)-linear unitary m’ = (m)*ms, :
('L*(B)) ™ (L*(B)?) — ('L*(B)) A (L*(B)”).

Definition 3.1.1. We define a unitary mxy : X XY — X Y by the following
diagram.

XNY—2% (' L2(B)) ™ (L2(B)’q) = p(("LA(B)) » (L3(B)’))q
X XY —"C((p'L*(B)) A (L2(B)’q) = p(("L%(B)) £ (L*(B)”))q

Since ‘/m? is M;(B)-M;(B)-linear and we have the isomorphisms
End(p' L*(B)g) = pM;(B)p, End(5L*(B)’q)° = qM;(B)g,

mx.y is A-C-linear. The naturalities of {my y } is then reduced to those of the left
and the right unit isomorphisms.

Theorem 3.1.2. The W*-bicategories M”> and M” are monoidally equivalent.

Proof. For a W*-A-B-bimodule X, by the definitions of my2(4) x and mx r2(4), the
following diagrams commute.

(3.1) L2(A) N X— =D 12(A) K X, X N L2(B)——2P L x £ [2(B).
I% 1% ™ 5

Let 4 Xp, gYc and ¢Zp be W*-bimodules. We shall check that the hexagonal
diagram in Definition 2.2.6 commutes. It is enough to show it in the case when
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X = L*(B) and Z = L*(C) by projective module realizations. For simplicity, we
put Iz = L*(B) and I = L*(C). We consider the following diagram.

(IgXY) N Io (I AY) N Io (Ig AY) Ao

Y>\IC/7®T\Y/<IC
/ @ /@\
Igx (YN 1) Ip N (Y K1¢) Ip A (Y K1),

The diagrams around (1) commute by the triangle identity of the unit isomorphisms
of Lemma 2.2.2, (2) commute by the naturalities of the unit isomorphisms and (3)
commute by (3.1). O

3.2. Unitary involutions and involutionally equivalence. In this subsection,
we define unitary involutions on M” and M*, and show that they are involution-
ally and monoidally equivalent with respect to the natural unitary isomorphism
{mxy}xy which was constructed in Subsection 3.1.

For a W*-A-B-bimodule X, the dual Hilbert space X* has the canonical W*-B-
A-bimodule structure: b&*a = (a*£b*)* for each a € A, b € B and { € X, where
the notation &* means the linear functional £* : X 3 n — (£,n). We can take
the transpose 'f : Y* — X* for each A-B-linear map f from 4Xp to 4Yz, more
precisely 'f is defined by (*fn*)(&) = (n, f§) for each £ € X and n € Y. The
operation gives a contravariant functor 4 Mp — pM 4. It is well known that (X*)*
can be identified with X by the canonical isomorphism dy : X 3 £ — (£*)* € (X*)*
satisfying ‘dx = dy.. Note that the family {dx}x is natural.

Now, we shall define natural unitary isomorphisms {cx ;- : Y*OX* — (XOY)*} x v,
where O is X or £. Fix W*-bimodules 4 Xp and gY¢. For each z € Hom(L?*(B)g, X3),
we define a conjugation 7 € Hom(gL?(B), gX*) of x by T(8) = (x(JB))* for each
B € L*(B), where J is the modular conjugation. We denote T regarded as in
HOIIl(BLz(B), BX*>O by \Ifx(x) Then \I/X . HOIIl(L2(B)B, XB) — Hom(BLQ(B), BX*)O
is an isometric isomorphism satisfying

(3.2) Uy (azb) = 0"V x(z)a*, z°c’ = Uy (2")Ux(x)*
for all z,2' € Hom(L?(B)p, Xp), a € A and b € B.

Proposition 3.2.1. We define cxy : Y* A X* 3 n@ ¥(x) — (z@n)* € (X X
Y)*. Then {cxy}xy is a unitary satisfying the following commutativity for all
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W*-bimodules s Xpg, gYe and ¢ Zp.

cy, z Aid x * CX,YNZ
(7 KY*) K X220y s 7y K X7 (X (Y N Z))
aé*,y*,x* ‘aX v,z
7% K (Y KXY e XNY )27 (X NV )N Z)*

Proof. The property (3.2) implies an equality [|n* @ Ux(x)|| = ||z ® n||. Also, the
morphism cxy has a dense range of vectors of the form n* ® Uy (x), and hence cx y
is a unitary.

For every x € Hom(L*(B)pg, Xp) and y € Hom(L?*(C)¢, X¢), we have

Uy ®y) =cxy(Yy(y) ® Ux(z)),
because we have
Y(exy(Py(y) @ Ux(2))) = exy (7Py (y) @ Ux(2)) = ex v ((y(J7))" @ Ux(z))
= ((z@y)(J7) =1¥xy (T @y)
for all v € L*(C). Thus, we have the following commutative diagram.

cy,z Aid x = CX,YNZ

(€@ Uy (y) @ Vx(z)
¢ @ (Vy(y) @ Ux(z)) ¢ @Uhy(z®y) (z@y)® )"

for all (* € Z*, x € Hom(L?*(B)p, Xp) and y € Hom(L*(C)¢, X¢). By the surjec-
tivity of W, the proof is completed. a

(y® ()" ® ¥x(x)

(z®(y®()

ta>\

idg«Aex,y CXNY,Z

Definition 3.2.2. We define natural unitary isomorphisms {cx y }xy and {cx y}x,y
by
Ky ='myyexy YO AXT = (X AY),
C>)\(,Y =cxyMmysx: Y XN X" = (X XNY)"
for each W*-bimodules s Xp and gY¢.
Theorem 3.2.3. The triples (*,{c§(’y}x7y,{dx}x) and (*’{Cf(,y}X,Y?{dX}X) are

involutions on M> and M*, respectively, and they are involutionally and monoidally
equivalent with respect to {mxy}xy.

Proof. We shall consider {c%y}xy. By Proposition 3.2.1, it satisfies the hexagon
identity. We shall show the square identity. Let 4 Xz and gYs be W*-bimodules
and u : p! L*(B) — X a projective module realization as right B-modules. By the
canonical isomorphism L?(B)* = L*(B), we can get a left B-linear unitary v : X* —
L*(B)'p. Note that for n* € Y*, b; € B, 8 € L*(B) and y € Hom(sL*(B), gY)°,
we can define unitaries by

Y* KLX(B)'p3n* @ (b))p— (p(bi) ®n)* € (p"L*(B)yXNY)",
(P'L*(B)NY)* 3 (p(bi) @ n)* = (p(Bi @ y))* € (p'(L*(B) LY))*
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under the relation p(b;n) = p(Biy), where (b;) and (b)) are a column and a row
vector, respectively. Also assume that other notations (-;) will be used as row or
Column vectors as products of matrices and vectors are compatible. Then by the
naturalities of cx y and mx y, the following diagram commutes.

CX,Y

Y* A X : (XNY)
idy+ Av E(unidy)
YV* LKL*(B) p————=('L*(B)\Y)* (p("L*(B) AY))*

Then cyy is specified as the following diagram with the bottom arrow given by
@ )p = (3, Uyt (y)(JB;) ® &) p— (p(Bi) @y), where we identify (Y*)* with ¥’

(X AY)

mxy

viady and 9; = (0,---,0,15,0-- ) is the canonical row vector whose i-th component
is 1B-
c/(
XY
(3.3) YA X" (X AY)*
idy« Av f(ukidy)

Y* K LZ(B)Ip—>(pIL2(B) AY)*
Similarly, we have also the following commutativity for W*-bimodules 3 Z 4 and «Wp

with a projective module realization Z = L?*(B)”q.
(3.4) Z* K W™ (W K Z)
o’ L2(B) AW W < LL(B)Iq)*

Here, the bottom arrow is given by

(3.5)
¢ L*(B) AW* 3 q(8;) ® Uy (w ((Z w(JB;) @ ) q) € (W K L*(B)'q)"

for 8; € L*(B) and w € Hom(L*(B) g, Wp).
Put Z = X* and W = Y*. For 3; € L*(B) and y € Hom(zL?*(B), gY), by (3.5),
we have

id<dy

p(Bj) @y ® dyy

! 0
((B)) ® y) (X, Uy (dyy) (T B) @ 8.)p)",

and hence the following commutative diagram.

id<dy

(3.6) pIL*(B) KY P L2(B) A Y™

(p L2(B) K Y)"*—< <Y*ALL<B>Ip>*
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Here, note that the isomorphisms (p’ L?(B))** = p! L?(B) and (p’ L*(B))* = L*(B)’p.
Now, we consider the following diagram.

I[2(B) XY ——p'[*(B) A Y™

p

(p'L2(B) AY ) ——(Y" L L*(B)'p)*

The left diagram commutes by the naturality of d, the top one commutes by the
definition, the bottom one commutes by (3.3), the right one commutes by (3.4) and
the central one commutes by (3.6).
We have shown that M~ is an involutive W *-bicategory with a unitary involution
(*,{cxy}xy,{dx}x). By similar arguments, it can be proved for the case of M.
By the definition of {c},} and {c5}, the square diagram in Definition 2.2.6
commutes clearly. O
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4. MINIMAL DILATIONS OF C'FPy-SEMIGROUPS

In this section, we discuss constructions of minimal dilations of C'FPy-semigroups.
The minimal dilation of a given C'Fy-semigroup 7' in the sense of Definition 2.4.3 is
constructed by some approaches. We will introduce Bhat-Skeide’s and Muhly-Solel’s
constructions in Subsection 4.1. In Subsection 4.2, we will provide the notion of rela-
tive product system, that is, a WW*-bimodule version of Arveson’s and Bhat-Skeide’s
product systems, and establish a relative product system from a CFy-semigroup.
The notion naturally arise from a relation between the two construction of minimal
dilations, which will be provided in Subsection 4.4. In the discrete case, that is,
T is the semigroup generated by a normal UCP-map, we have a similar relation,
which will be discussed in Subsection 4.5. There is also Arveson’s approach ([3]
or [4]) which is different from the two ways. Obviously the three constructions are
mutually related but no explicit connection has been established yet. In Subsec-
tion 4.3, we will construct minimal dilations in terms of relative product systems.
We associate a given C'Fy-semigroup with the relative product system and take the
inductive limit of the relative product system, which is inspired by Bhat-Skeide’s
construction. Subsection 4.2, 4.3 and 4.4 are based on [22].

In Section 4 and 5, we assume that a von Neumann algebra M on which CFy-
semigroups act has a faithful normal state

4.1. Bhat-Skeide’s and Muhly-Solel’s constructions. Let M be a von Neu-
mann algebra acting on a separable Hilbert space H and T' = {T;}+>0 a CFy-
semigroup. In this subsection, we review Bhat-Skeide’s[8] and Muhly-Solel’s[17]
constructions of the minimal dilation of 7.

Bhat-Skeide’s construction

First, we prepare notations related with partitions. We fix ¢ > 0. Let P; be
the set of all finite tuples p = (ty,---,t,) with ¢; > 0 such that " ¢, = t.
Now, for p = (t1,--- ,tn), 4 = (S1,+* ,Sm) € P, we define the joint tuple by
pVaq=(t, - ,tn, 51, ,Snm) and write p = q if for each ¢ = 1,--- ,m there is
q; € P, such that p = q; V---V q,,. Let Py be the singleton of the empty tuple
() satisfying p vV () = () Vp = p. Note that when we consider partitions of an
interval [0,¢], treating ; or the set B} of all finite tuples (¢y,--- ,%,) such that
t=t, >t,—1 > -+ >t >0 is equivalent because B; and B, are order isomorphic
via a map o : PB; — B, defined by

1

2 n
O(tl,tg,"' ,tn): (th, tz, ,th>
=1 i=1 i=1

(2

Now, we introduce the notion of product system and units in the sense of Bhat-
Skeide. These are Hilbert (or von Neumann) bimodule versions of Arveson’s product
systems and units in Definition 2.4.7 and Definition 2.4.8.

Definition 4.1.1. Let A be a C*-algebra and E® = {E;};>0 a family of Hilbert A-
bimodules E;. Suppose Ey = A and there is a A-bilinear unitary us : E;OE, — Esiy
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for each s, t > 0 with the associativity
ur,ert(idEr ® us,t) = urJrs,t(ur,s ® ldEt>
for allr,s,t > 0. Then the pair (E®,{us,}ss>0) is called a product system of Hilbert

bimodules over A. We can define a product system of von Neumann bimodules
similarly. Then © is replaced by .

Definition 4.1.2. A unit Z® = {Z'}>0 of a product system (E®, {us;}si>0) of
Hilbert (or von Neumann,) bimodules over A is a family of Z' € E; satisfying Z° = 1,4
and us (25 © Z') = Z5 for all s,t > 0. A unit Z® is unital if (Z',Z") = 14 for
all t > 0.

For each GNS-representation (Er,, Z7,) with respect to T3, we denote the strong
closure as von Neumann M-M-bimodules by the same notation &r,, and (&7, Z7,,)
is denoted by (&, Z;) simply. We fix ¢t > 0 and p € B;. We define a von Neumann
M-M-bimodule E,; by the tensor product &, @ -+ Q@ &, if t > 0, and Ey = &
if t =0. FOI'p:ql\/\/qm }quthp: (tl,"' ,tn>,q: (81,"' 7Sm) E;»Bt and
qi = (8i1,7 7 5 Siks)) € Ps,» we define an M-bilinear isometry By q : Eqr — Ep; by

ﬁp,q - 5q1(51) Q- ® /qu(sm)7
where each g, (s,) : &, — Ey, ¢ is an M-bilinear isometry defined by the map: Z;, —
Zs, R -QZ Then the pair ({Ey+ }fpep, s {Bp.q}psq) becomes an inductive system

Si,1 Si,k(i) "
with respect to the partial order >, and the inductive limit E; of the inductive system
is a von Neumann M-bimodule. For ¢t > 0, put Z! = L)Ly, Where vy 0 By — By
is the canonical embedding for each p € B;. For s,¢ > 0, we define an M-bilinear
unitary u; s is defined by

U5 (Lp,t Xp @ 1g2Yq) = tpvae(Xp @ Yg)

for each X, € E,; and Y, € £ ;.

Theorem 4.1.3. ([8, Theorem 4.8]) The family ({Ei}iso0, {tust}st>0) is a product
system of von Neumann M -bimodules with the unital unit {Z"'}i>o.

Note that the unit {Z"};>o satisfies T;(z) = (Z%,2Z") for all t > 0 and x € M.
For t > s > 0, we define an isometry
Vs B3 X 2@ X € B, @y B, = E,.

Then ({E:}i>0, {75 }t>s) is an inductive system of von Neumann M-modules. The
inductive limit £ of ({E}}i>0, {V1,s}t>s) is @ von Neumann M-module and satisfies
E®y E; = E as von Neumann M-modules for all ¢ > 0. Let ky be the canonical
embedding from Fy = M into E and Z = kgl,;. If we define

Jo(x)(X)=Zx(Z, X) (X €ExeM),

a(a) =a®idg, (e € BY(F)),

(@) = au(jo(x))  (x € M),
{at}+>0 1s a semigroup of endomorphism on the von Neumann algebra B*(E). We

identify M with jo(M) in B*(E). Let N be a von Neumann algebra generated by
Uiz Jt(M), p = jo(1ar) and 6, = of |y for each > 0. Then we obtained the minimal
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dilation of 7" by [8, Theorem 5.8].

Muhly-Solel’s construction
Fort > 0 and p = (0 = tg,t1, - ,tn_1,t, =) € P}, we define a Hilbert space

(4.1) Hpt = M @4, (M Rpyty (- (M @41, H) ),

where we denote the tensor product M @, K in Definition 2.3.4 by M ®, K for a left
W*-M-module K and s > 0 simply. Then H,; has a left W*-M-module structure
given by

21 ®a®@ - ®a,®E) =(xa1) Raa®@ -+ ®a, VE
for each x,a1,as,--- ,a, € M and £ € H, and also Hom(yH, yHy,) has an M'-
bimodule structure given by

(X2")e = X(2€), (¢'X)E=(Iy ®--- @ 1y @ 2')XE

for each X € Hom(yH, yHyps), o € M and £ € H. Note that if we write Fy =
Hom(yH, yM ®s H), we have an isomorphism

Hom(pH, mHp) = Fret s Qur Fry ity 0 @nr - @ Fiymty Qur Fiy i

as von Neumann M’-bimodules. For & = 1,--- ,n and ¢, < 7 < tgq1, put pg, =
(tos b1, sty Tyttt -+ 5 1, tn) € P We get a left M-linear isometry vy : Hyp —
Hpk,‘rvt by

V(a1 ® -, ®E) =11 Q- a1y a1 - Ra, ®E
for each ay,--- ,a, € M and £ € ‘H, and an M’-bilinear isometry
v : Hom(yH, iHyps) — Hom(yH, Hy, ., 1)

by v(X) = voX for each X € Hom(yH, M) For a refinement pair p > q, we
can define a left M-linear isometry vg,q : Hqt — Hps and an M'-bilinear isometry

Vpq - Hom(pH, viHqe) — Hom(wmH, mHype)

by a repetition of the above construction. Then {H,;}peq and {Hom(aH, pHp ) bpeyp
become inductive systems with respect to the sets of isometries {vgpq}pq and
{Vp.q}psq, and their inductive limits are denoted by H; and E(t), respectively. We
also denote the canonical embedding from H,; into H; by v9, . Note that the
space Hom(n/H, pH:) has a natural M’-M'-bimodule structure and is isomorphic
to E(t) as von Neumann M’-bimodules ([17, Lemma 3.1]). The family {E(¢)}:>0 is
a product system of von Neumann M’-bimodules.

We shall construct a fully coisometric completely contractive covariant repre-
sentation {®;};>0 of {E(t) >0 on H and dilate {®;};>¢ to the minimal isometric
dilation ({V}}>0,uo, KC). Here, a contractive covariant representation {®;};>¢ is a
set of completely contractive continuous linear maps ®; : E(t) — B(H) with re-
spect to the o-topology ([5]) on E(t) and the o-weak topology on B(H) such that
&y : M’ — B(H) is a normal *-homomorphism and we have &, ® &, = &, for
all s,t > 0. Let E(t) ®p, H be the completion of E(t) ®., H with respect to the
inner product defined by (X ® £,Y @ n) = (£, Po((X,Y))n) for each X,Y € E(t)

and &1 € H. {®};>0 is said to be fully coisometric if ®,®; = idy for all ¢ > 0,
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where @, : E(t) ®g, H 3 X ® € = ®,(X)€ € H. A dilation ({V;};50,u0,K) in
the sense of [17, Section 3] consists of a Hilbert space K, an isometry ug : H — K
and a fully coisometric completely contractive covariant representation {V;};>o of
{E(t) }+>0 on K satistfying that ®,(X) = ufV;(X)up and V;(X)* leaves uo(H) invari-
ant forall X € E(t) and t > 0. If V(X )*V,(Y) = W((X,Y)) for all X, Y € E(t) and
t > 0, and the smallest subspace Iy of K containing uy(H) and Vi(X)Ky = Ky for
all X € E(t) and t > 0, is KC, then ({V;}i>0, uo, K) is called the minimal isometric
dilation of {®;}>0.

For t > 0 and p € P}, we define 1, - H 36— 1y ® -1y ®E € Hyy. Then we
have

L:(al K- ® ang) = (Ttn—tnA (Enfl_tn72(‘ e (Tt1 (a1>a2) T )an—l)an)g

for all ay,---,a, € M and § € H. Put v, = ¢4y when p > q. By the universality
of inductive limits there is a unique map ¢; : H; — H such that (jvoy e = ¢5.
We define {®;}1>0 by ®4(X) = ¢; X for each X € Hom(yH, pH:) = E(t). Then
{®;}+>0 is a fully coisometric completely contractive covariant representation {®; }4>¢
of {E(t) >0 on H and satisfies Ti(x) = q:)t(idE(t) ® z)®f for all z € M and t > 0
([17, Theorem 3.9]).

For 0 <t < s, we denote the isomorphism from E(t) ®yp E(s —t) to E(s) by Uy
and define a left M’-linear isometry

U s = (Ups @ idy)(idpe @ O_,) : E(t) ®ay H — E(s) @a, H.

Then the pair ({E(t) ®a, H }t>0, {tts}i<s) is an inductive system. Let Ko be the
inductive limit of ({E(t) ®a, H}i>0, {testics) and u; @ E(t) ®p, H — K the
canonical embeddings. We can get a well-defined map V; : E(t) — B(K) by
Vi(X)us(Y ® &) = uss(Ups(X @ Y) ® ) for each s,t > 0, X € E(t), Y € E(s)
and ¢ € H. If we define a subspace K of K, as the smallest subspace containing
up(H), then the triplet ({V;}i>0, 1o, K) is the minimal isometric dilation of {®;}+>¢.
Moreover, if we put N = Vo(M')' C B(K) and 6,(z) = Vi(idgu ® x)V;* for each
z € N and t > 0, we get the minimal dilation of {T;}+>0 ([17, Theorem 3.11]).

4.2. Relative product systems from CFj-semigroups. In this section, we in-
troduce a notion of relative product system and construct a relative product system
from a given C Fy-semigroup. The following definition of relative product systems
is inspired by the definitions of Arveson’s and Bhat-Skeide’s product systems in
Definition 2.4.7 and Definition 4.1.1. Also, units of relative product systems will be
defined in Definition 5.1.1.

Definition 4.2.1. Let M be a von Neumann algebra and H® = {H;}>0 a family
of W*-M-M -bimodules with Ho = L*(M). If there exist bimodule unitaries U, :
He @M H, — Hooe with the associativity

(42> Ur,s+t(id7{r ®M Us,t) = Ur—l—s,t(Ur,s ®M ldHt)

for all r,;s,t > 0 such that Uy and Uy, are the canonical identifications, then the
pair (H®,{Us}s1>0) is called a relative product system over M, where the notation
@M denotes the relative tensor product over M
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Remark 4.2.2. Precisely speaking, associativity (4.2) means that the following di-
agram commutes.

H'r—l—s—l—t
Ur+s,t
Ur,s+t
M M
Hr+5 ® Ht %T ® HS"Ft
Ur,s®id’Ht id’HT®U5,t

a

(H, @M H,) @M H, H, M (H, @M H,)

Here, the morphism a is the associativity isomorphism discussed in Section 3. By
Theorem 3.1.2, we can choose either the left or the right relative tensor product. We
will construct a relative product system from a given CPy-semigroup by left relative
tensor products.

Now, we provide a formula related to the relative tensor products and normal
UCP-maps for the convenience in later arguments.

Proposition 4.2.3. Let M be a von Neumann algebra and T a normal UCP-map
on M and ¢ a faithful normal state on M. For x,y € M, r ® ygb% is a ¢-bounded
vector in M @7 L*(M). For x1,22,y1,y2 € M, we have

Ty(21 @ y1¢%)*7¢($2 ® y2¢%) = yi T (z1z2)y2 € M.
Proof. For x',y', 2 € M, we can compute as
(mo(21 ® 162)p2 2,2’ @Y 22) = (11 @ Y1¢72,2' ® Y 92 )
= (22, T(aia )y 922) = (922, 4T (xia )y 92 2),
and hence 74(z1 ® qub%)*(a:’ ® y/dﬁz’) = y]‘T(w’{x’)y’qb%z’. Thus, we have
Ty(T1 ® y1¢%)*ﬂ¢(l’2 ® y2¢%)¢%2 = yIT($T$2)y2¢%Z-
O
Now, we fix a C'Py-semigroup T = {T};}+>¢ on a von Neumann algebra M with a

faithful normal state ¢. We shall construct a relative product system from 7.
Fort > 0 and p = (t1,--- ,t,) € Py, we denote the W*-M-M-bimodule

(M @, L2(M)) @ - @ (M @n,, L*(M))
by H(p,t) and M &7, L*(M) by M ®; L*(M). We shall define an inductive system
structure on the set {H(p,t)}pep,. Suppose p = q with p = (t1,---,t,), q =
(1, ,Sm) € Prand p = q(s1) V-V q(s,,) with q(sj) = (Si1,7 5 Sik()) € P,
We define an M-bilinear map ay(s,) : M ®,, L*(M) — H(q(s;), s;) by
g(s0) (@ @, y62)
= (SE ®Si,1 ¢%)¢_%(1M ®5¢,2 Cb%)qb_% T QS_%(IM ®5i,k(i)71 qb%)qb_%(lM ®5i,k(z‘) yqb%)
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for each x,y € M (we can check that oy, is an isometry by Proposition 4.2.3), and
an isometry

(4.3) Qpq = Olg(sy) QM ... @M Qg(sm 'H(q t) — H(p t).

Then the pair ({?—[(p ) }oepe> {.q bosq) 1s an inductive system of W*-M-M-bimodules.
Let H; be the inductive limit and Kot H(p,t) — H, the canonical embedding. Put
Ho = L2(M).

The following theorem is an analogue of Theorem 4.1.3 and the proof is essentially
the same.

Theorem 4.2.4. The family H® = {H,}0 is a relative product system over M.
Proof. For s,t > 0, we define a map Uy : He @M H, — 7—~£S+t by

Us i ((Fas€a) &2 (Kipala)) = Kqvposri(Ead ™ 210p).

for ea’(zh q = (Sla"' 78771) € q:;sap = (tb"' 7tn) € q:;t? gq € D(,]:l(an)st) and
ny € H(p,t) Here, note that kg &, is ¢-bounded. We shall show that U, is an
isometry, i.e. the equation

((Fq.sa) 02 (pahy)s (i s&4)02 () = (awps (€00 7p), K s 0 20)
holds for all q,q9" € B, p,p’ € Py, & € D(H(q, s); p), &y € D(’H(q’,s);@,np €
H(p,t) and Ny € H(p',t). If g = q’ and p = p’, we have

<<“q,sfq)¢7%(“p,tnp>> (’fq,sf;wi%(’fp,t??;» = <"€p,t77p77T¢(’fq,s§q)*7r¢(“q,s§;)“p,tn;a>

= (Kq, i ip,t (T (Ka,s60) T (Ka,s€))N)) = (Mps T (Fq,s8a) Mo (Kq,64) )

= <77p,7r¢(£q)*7r¢(52|)77;)) = <“qu,s+t(5q¢_%77p)a ’fqvxa,s+t(fé|¢_%77;)>-

In general case, since kg5 = Ky sty for all 5,6 € P, with s’ > s, if we take
q € P, p € Py, such that = q,q" and p = p,p’, then

(g, a€a)0™ 2 (et (i s ) 02 (i o1y ))
= ((g,50.05)8 ™2 (s ) (g s ) ™2 (p 401y )
Kgvp, s+t((%,q5q>¢7% (.5mp)), “aVﬁ,ert((%,q/f;/)qf% (O‘ﬁ,p’n{a')»
(g,48q)9~ (% oTlo) (O‘d o 5,/)925_% (7))
(4,9 e g, p)(5q¢ 77q) (g, oM g, p’)(fé, @5_5% )
Vavpave (€467 210), Oéqu o (Ed721))
Kavp,st+tQvp.avp (§a® 77q) Kavps+t0qviavy (Sy ¢_7 )
= (Kqupst(Ea0 1), Fgrvp st (S d™ 27]p’)>'
In particular, we conclude that U, is well-defined and can be extended to an isom-

etry from ’ﬂs oM 7:[t to ﬁsﬂ, and also denote the isometry by U,; again. The
surjectivity and the two-sides linearity of U, are obvious.

=
= {
{
= {
=
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The isomorphisms Up; and U, are defined as the canonical maps giving the
isomorphisms L2(M) @M H, and H, @™ L?(M), respectively.
To show (4.2), it is enough to check it for a vector (np,rgp)gb_%(nqﬁan)gzﬁ_%g with
the forms
{ & = (21 @y 202)07% - 072 (20 D, Yon?),
Mg = (21 ®51 w1¢§)¢_§ e ¢_ (Zn ®5n wn¢§)

for some x;,y;, z;,w; € M and ¢ € H,. O

NI

Example 4.2.5. Let M be a von Neumann algebra acting on a separable Hilbert
space H and {vi}i>0 a family of isometries in M satisfying vsvy = vsyy for each
s,t > 0. We define a CPy-semigroup T = {T;}i>0 by Ti(x) = vfzv, for each x € M
(Example 2.4.1). For each t > 0, we can identify M ®, L*(M) with L*(M) by a
bilinear unitary U'(x ®; ygb%) = xvtygb% for x,y € M. Fort >0 and p € B, the
unitaries induce a bilinear unitary UP : f[(p,t) — L*(M) such that Uy, = U for
all p > q.
Example 4.2.6. We consider the C'Fy-semigroup generated by a family of stochastic
matrices. Let M = C & C be a von Neumann algebra regarded as a von Neumann
subalgebra of My(C). Then L*(M) = C&®C. Let T = {T}}+>0 be the CPy-semigroup
—t —
on M associated with stochastic matrices {(eo 1 _16 )} , that is, each T} 1is
defined by =
Tia®b)=(e"'a+ (L—e)b) &b
for each a,b € C. By using the normalized canonical trace on My(C), fort > 0 and
p=(t, - ,tn) € By, it turns out that H(p,t) is C* ® C on which M acts as

(a®b)(r1® 2, DYydz) =axr; Dbry B - B br, &by ® bz

(1@ 2, Dy®2)(a®b) =ar,®--- B axr, Bayd bz
for a,b,xy, - x,,y,z € C. Thus, 7—~[(p,t) depends on only the number n of the
partition p.

Example 4.2.7. We consider the W*-B(H)-bimodule H(p,t) associated with the
CCR heat flow in Example 2.4.2 fort > 0 and p € B;.

Let H = L*(R) and M = B(H). Then the standard space L*(B(H)) of M is
isomorphic to HQH* =2 Co(H). Fort >0, z,2’ € M and E@n*, & @n™ € HRH*,
the inner product on M ®; L*(M) is given by

(@@ €om)a’® (€ @) =) [ W56 WSENdn(x).

Letyp = (t1,- -+ ,tn) € By. Fizx a faithful normal state ¢ on M and suppose p € C1(H)
is associated with ¢ by ¢(x) = tr(px) for all x € M. In terms of Co(H), the inner
product on H(p,t) is

1 _1 _1 1 1 _1 _1
(21 @1, a1p?)P 7 - ¢ 3 (2 @uy anp?), (1 Dy b1p?)d 7 -+ &2 (Y @y, bpp?))
1 1
— Wi ay - 2o Wiaanp?, y1 Wy by - -y Win byp2 )d cod "
[ n0VE Wyt I bWy b, () - de, ()

N
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for each 1, [ Tp, Y1, yYn, @1, A, by, ... by € M. The properties (2.1) and
Ps * it = syt ensure the fact that o4 defined by (4.3) is isometry for p,q € Pq.
For example, for s,t >0 and x,y,a,b € M, we have

1 1
(Qu(s,),(s40) (T Ryt Ap? ), s p) (s44) (Y D510 DP?))
= ((x ®, p2)¢™2 (Lag @ ap?), (y ©, p?)¢ 72 (Lr @1 bp?))

= /RQ@W}GP%?JW%bPQW(Mt * 115)(2)

2

= / (2W2 ap?,yWs bp?)disri(2) = (& ©uts ap?), (y Dss bp?)).
R2 2 2

We have considered the three examples of C'Fy-semigroups, however it seems to be
difficult to concretely realize their relative product systems and minimal dilations
which will be constructed by the method in the next subsection. This also is so
for Bhat-Skeide’s and Muhly-Solel’s constructions. Remark that in Example 4.2.5
we identified H(p,t) with the standard space L?(M), however the relative product
system associated with 7" is not always isomorphic to the trivial system {L*(M)}i>o
in the sense of Definition 5.1.5.

4.3. Construction of dilations by relative product systems. We shall con-
struct the minimal dilation (V,p,#) of T. The von Neumann algebra N acts on the
inductive limit of the relative product system H® associated with 7. We shall in-
troduce an inductive system structure on H®. For s < t, we define a right M-linear
isometry ay : 7:[8 — 7:[,5 by

ONCt,S(g) = Utfs,s</€(t—s),t—s(1M Qs (ﬁ%)(ﬁi%é‘)

for each & € H,.. Note that for s,t > 0, we have

Us,t("i(s),s(lM X ¢%>¢7%H(t),t(1M X (b%))

L i 1
= K(s,t)5+t (L @5 02)97 2 (Las ®¢ 92)) = Ko t),5-40(s,1),(5+t) (Lag Dsyt 97)
(4.4) = K(stt),st(1nr @spe ¢7).

The following lemma shows that the couple (H®, {4 }s<;) is an inductive system.

Lemma 4.3.1. Forr < s <t, we have &y, = Q50 Qs .
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Proof. For all £ € H,., we can calculate as

&t,s O (g r(€>

= Umsus(R-0)s (Lat @1y )67 2V (Ksmryomr (Lag @y 92)726))

= U alidg, , @ Usr) (K- -s(1at @1ms 62)0 3Ky r(Lag @umy 62)6726)
= Utfrr(Ut $,5— » @M idg, ) (K(t—s)t— s(1M Q¢ sfbl)(f%’i(s s—r (1 @sr ¢%)¢7%§)
= Uprr (U s r(Res) s (1ar @15 62)67 2 sy o (Lt @ 62))672)

= Usrr (Rt r (Lar @1y 93)6736) = @1, (€)

by the associativity and (4.4). O
Remark 4.3.2. If we denote k) (1y @y ¢2) by E(t) for each t > 0 and £(0) =
/i(o),()gb%, then the family €2 = {€(t)}i0 is a unital unit in the sense of Definition
4.4 by (4.4). Clearly, we have ¢(T,(z)) = (£(t), zE(t)) for allt >0 and x € M. The

unit {€(t) Yoo is comparable with the unit { Z*}y=o in Bhat-Skeide’s construction (see
Remark 5.1.3).

We denote the inductive limit of the inductive system (’;Q(X’, {aus}s<t) by H and the
canonical embedding from H; into H by k;. Note that H is a right W*-M-module.

Theorem 4.3.3. Fort > 0, we can define a right M -linear unitary Uy HOMH, —
H by

Ut(&f%m) = ’fs+tUs,t<§s¢7%77t)
for £ = K& € H and n € 7:[t, where &, € 7:[3 18 a ¢-bounded vector.

Proof. We shall show that U, is an isometry. For s > 0, &, &, € H, and n;, 7, € H,,
we have

(Ui(Re€)0™2m0), Unl (197 21)) = (€0 2, E007 217)

= <nt’ﬂ—¢(55)*ﬂ—¢(§g)nz> = <nt77r¢(lis§s>*7r¢<ﬂ8§;)n;t> = <(Hs£s)¢_§nt7 (lisfg)qb_i?];).

This implies that for s > 0, & € Hs, ¢, € H, and Ne, 1y € #,, in the general case,
we have

<Ut((’€855>¢7%77t)7 Ut((ﬁrgr)(bi%nz»
= <Ut((“s+tﬁs+r.s58)¢_%77t)7 Ut((’fs+rﬁs+r,r<r)¢_%ng)>
= <(/€s+tﬁs+r.s£s)¢7%nt; (’is+rﬁs+r,r<r>¢7%n£> = <(’€S£S)¢7%nt7 (’KLTCT)(bi%n;)

We shall check that U, is surjective. In the case when s < t, for n = kyns € 7:[, we
can conclude that the image of (/iogb%)gb_%m;‘/{sns by Uy is 1. In the case when s > ¢,
let D be a subspace of ?:Ls,t QM 7—2,5 spanned by vectors 'r]s,tgzﬁ_%m for all p-bounded
vectors ns_; € 7:154 and 7, € 7—~Zt. For n = kgns € 7:[, 7s can be approximated by
vectors Us_ ¢ for some ¢ € D and we have Uy(ks—¢ ®idy,) = ksUs—ry on D. O
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Now, the von Neumann algebra M can be represented faithfully on H by m(x)€ =
ro(z(k€)) for each € M and € € H. Note that 7(M) C End(Har). For t > 0, we
define a map 6; : End(H ) — End(Har) by

0:(a) = Up(a @™ idg, Uy
for each a € End(7:lM). Since Usyi(idg ® Usy) = Us(Upy ® idy) for all s,¢ > 0,

0 = {6, };>0 is a semigroup. Note that 7(1,)End(H )7 (1) = 7(M) since we have
w(1p)akg = H0W¢(/€0¢%)W¢(a/€0¢%) for a € End(H ).

It will be proved that the semigroup 6 = {6;}+>¢ is a dilation in Theorem 4.3.5.
The following proposition will ensure that € is an Ey-semigroup.

Proposition 4.3.4. We have

(4.5) Uo2E(t) =€ (t—0)
for all £ € D(?—N[; ¢), where recall that g(t) = Kyt (1a @ gb%)
Proof. Suppose that £ has a form

(4.6) Kokias(T1 @y Y1607)077 -+ ¢ 3 (2 D, Ym®?))

for some s > 0, q = (s1,"** ,8m) € P, T1, T, Y1, ,Ym € M, and t <
min{sy, -+, 8, Let p' = (t,s1 —t,t, 80 —t, b, , S — 1, 1) = (£) Vp,pV (t). Then
¢ coincides with

’is+t6‘s+t,8((x1 sy y1¢§)¢7§ T (bii(xm Rsm ym¢§))

= Kapth(tyvp,srt (I @ 92)072 (11 ®s, 11902)0 2 -+ ¢ 2 (T Dss,, Ym®?))

= "qfert/’ip/,ertap’,(t)\/p((lM 2 ¢5)¢7§(~1‘1 ®31 y1¢§)¢7§ e ¢7§(xm ®3m quﬁ))

1,1 1,1 1,1
= Koyehp spt((1ar @1 02)7 2 (11 @44 ¢2)0 2 (1as @y y102)) 9™ 2
1

67 (T Dt 02)672 (Lt @1 Y0?))).
On the other hand, Ut(£¢’%§(t)) is

N

ot iiquiose((T1 @sy Y102)072 - 672 (2 O, Ymd2)97 2 (Ls @1 62))
= Koty 10 o0 (21 @y 1102)672 - 672 (2 By Y ®2)97 % (Las @4 97))
= forori st (21 @0 62)672 (Lyy Dy 1167))672
(i @0 02)07H (Lt @t ym63)) 03 (s @4 61)).
By calculations of inner products and [30, A.2 Lemmal, when ¢ tend to 0, we conclude

that Ut(fqﬁ_%g(t)) converges to &. O

Theorem 4.3.5. The triple (End(?j[M),w(lM),G) is a dilation of T'. Moreover, if
we denote by N the von Neumann algebra generated by U, 0:(7(M)), the triplet
(N, 7(1p1),0|n) is the minimal dilation of T
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Proof. We shall show that 7(T;(z)) = pOy(m(x))p for all t > 0 and x € M. For all
Y,z € M, we have

(02, K50 (m())Ro92 2)) = (Us kod2y, (m(x) @M idy, ) U kod? 2))
= ((ko¢? )~ 2K rod2y, (m(x) @M idg, ) (ko2 )b 2 K} kod?2)

Ko62)6 R4 (Las @1 62y), Ko(262)d™ 2 kpye(Lar @1 622))
L @ 62y, @, 622) = (92y, Ty(2)¢72),
where the fifth equality is implied by the following formula

* o dt,s (t Z S>7
Fiefes = { a;, (t<s).

= <("‘50¢ o~ thy Ho¢2ya (50$“o“0¢ )¢7%/€:/€0¢%2>
= ((ro?)p 2K} 0@252%/‘00@@5 )62k kg2 2)
= ((Ko¢ )Cb %dt0¢2y> /fo(xﬁb Jon %dtoﬁb”)
= ((k0$2)¢ 2002y, Ro(2%) 9™ 2097 2)
((ro?)9 2
{

Thus we have Ty(z) = k§0:(7(x))Ko. )
Now, we discuss the continuity of the semigroup §. For each a € End(Hys) and
each ¢-bounded vector £ € H, by Proposition 4.3.4,

bu(a)é —a& = 0,(a)é — Unlato™ 2E(1)) + Uit 2€(1)) — at
= 0u(a)( ~ Un(&0™2E(1))) + Un(ago™2€(1)) = a€ 0
when ¢ tend to 0. Thus, the map ¢ — 0;(a) is o-weakly continuous for each a €

End(Hy), i.e. 0 is an Eg-semigroup on End ().
Fort >0, p= (t1, - ,tn) € By, 1, ,Tn,y € M, we can check that

O (7 (1)) 011, (7(22)) - - Oar s 410 (7(@01)) 00, (7 () 02y
= Kikip s (11 @1y 0F)P72 (9 Ry $2)P77 -+ 77 (21 @y, $2)G 72 (20 B4, D7Y)).

Hence, we have span(N7(1y)H) D span(NroL*(M)) = H. Since the central
support ¢(m(1y7)) of w(1y) in N is the projection onto spanNw(1,,)H, we have
c(m(1p)) = 1y. We conclude that the triplet (N, (1), ) is the minimal dilation
of T. O

4.4. Relation between the two constructions. In this section, we provide a
relation between Bhat-Skeide’s and Muhly-Solel’s constructions of the minimal dila-
tion of a given C' FPy-semigroup T acting on a von Neumann algebra M by the relative
product system associated with 7. A common point of the two ways is to establish
the product systems of von Neumann bimodules by the inductive limits with respect
to refinements of partitions, and to dilate 7" to an Ejy-semigroup on the inductive
limits of the product systems (see Subsection 4.1). However, Bhat-Skeide’s prod-
uct system {E;};>o consists of von Neumann M-bimodule and Muhly-Solel’s one
{E(t) }+>0 consists of von Neumann M’-bimodules. A concrete aim in this section is
to find the relation between E; and E(t) for each ¢t > 0.
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First, we provide some general results related to tensor product with respect to
finite numbers of normal UCP-maps and relative tensor product.

Definition 4.4.1. Let T1,T5,--- ,T,, be normal UCP-maps on a von Neumann al-
gebra M. We define a Hilbert space

H(TI;"' ,Tn) =M Qr, (M X, ("'<M®Tn L2<M))"')7
and a W*-M-M -bimodule structure by
(o ®as® - ®a, ) =(xa1)) Raz @+ ® a, VE,
(M1 ®a®  ®ae,)r=08a6®  Qa,e )
for each x,ay,as,-+ ,a, € M and & € L*(M).

Proposition 4.4.2. For normal UCP-maps T and S on a von Neumann algebra
M and a W*-M-M -bimodule H, we have an isomorphisms

H(T) @™ H(S) 2 H(T,S), H(T) @M H = M @rH
as W*-bimodules.
Proof. If we define maps by
H(T) & H(S) 3 (x ©r ys2)¢™ 2 (2 @s 02w) = 2 @r ((y2) ©s ($2w)) € H(T, S),
H(T) @M H 3 (z @7 yo?)p 36 > w @7 y€ € M @7 H

for each x,y,z,w € M and & € H, then they give isomorphisms H(T) @M H(S) =
H(T,S) and H(T) @M H = M @7 H as W*-bimodules, respectively. O

Corollary 4.4.3. Let T, --- , Ty be normal UCP-maps on a von Neumann algebra
M and H a W*-M-M-bimodule. We have an isomorphisms

H(TY) @M - @M H(T,) = H(Ty, -, Th),
H(T) @M - M H(T) @M H = M @n (M @7, (- (M ®q, H)---)
as W*-bimodules.

Proof. For example we consider the case of n = 3. (In general case, we can prove
by an induction.) By Proposition 4.4.2, we have W*-bimodule isomorphisms

H(Ty) @Y H(T) @™ H(T3) 2 H(Th) @Y H(Ts, T)
= M @q H(T2, Ts) = H(Th, T, T),
H(Ty) @ H(Ty) @M H(T3) @™ H = H(Ty) @™ H(T) @Y (M @5, H)
>~ H(T) @M (M ®g, (M &7, H))
=M @n (M ®@p, (M @, H)).
O
We fix a C'Py-semigroup 7' = {T;};>0 on a von Neumann algebra M which acts

on a separable Hilbert space H, and we will use the notation in Subsection 4.1 and
4.2.
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Foreacht > 0and p = (¢, ,t,) € Py, the left W*-M-module H,,, is defined as
(4.1). By the second assertion in Corollary 4.4.3, we have the following isomorphism
as von Neumann M’-modules.

Hom (yH, pHy.) = Hom(yH, irH(p, t) @ H)

= Hom((arye H* @M H, (e H* @M H(p, t) @™ H)

>~ Hom(H* @M Hap, H* @™ H(p, t) @M Hap)
(4.7) >~ Hom (L*(M')pp, H* @™ Hp, t) @M Har).

Now, for a von Neumann algebra N, we recall the correspondence between von
Neumann N-bimodules and W*-N-bimodules by the relations

F = Hom(L*(N)y, F @y L*(N)y), K= Hom(L*(N)y,Ky) @y L*(N).

up to isomorphism. We refer the reader to [27, Section 2] for details. The corre-
spondence implies that the tensor category of von Neumann M-M-bimodules and
the tensor category of W*-M-M-bimodules are tensor equivalent.

Hence, by (4.7), the von Neumann A’-bimodule Hom(#, pHy ) corresponds to

H* @M H(p,t) @M H.
Theorem 4.4.4. For normal UCP-maps Ty, --- , T, on a von Neumann algebra M,
we have a W*-(M")°-(M")°-bimodules isomorphism
H M H(T) @M - @M H(T,) @™ H
=~ (H* @M H(Ty) @M H) @M ... M) (H* @M H(T,,) @M H).
Thus, the set {H* @™ H, @™ H} s is a relative product system of W*-(M')°-

bimodules.

On the other hand, by using Proposition 2.3.5 repeatedly, we have E,; Q@
L*(M) = H(p,t) as W*-M-bimodule. Thus, the above correspondence implies that
E,; corresponds to H(p,t). Note that we also have the direct identification via a

unitary vy, : Ep; @y L2(M) — H(p,t) defined by

U (11 © 1) © -+ © (20 @ y) © P 2)

= (21 @YB2)O7E G (Tt @ Yp1§2)67 2 (10 @ e 2)
for each z;,y;,2 € M and a faithful normal state ¢ on M. Now, we have such
correspondences between the inductive limits E(¢) and the left W*-M'-modules

H @M H, @™ H, and between the inductive limits E; and the left W*-M-modules
‘H: as the following theorem.

Theorem 4.4.5. Fiz t > 0. We have an isomorphism E; @y L*(M) = H, as
W*-M -bimodule by an M -bilinear unitary V; : E; @y L*(M) — H; by
Vi(tp X ® qﬁéz) = KpUpt (X ® qﬁéz)

for each p € P, X € E,,, where recall that vy : Eyy — Ey and Ky - 7:[(p,t) — H,
are the canonical embeddings. We have also E(t) @y L*(M') = H* @M H, @M H
as W*-M'-bimodules.
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Proof. 1t is clear that U, is isometry, and hence U, is well-defined. The bilinearity
and the surjectivity is obvious. We also have the following isomorphisms

H M H, @M H = Tm(H @M Hip,t) @Y H)
p
= lig(Hom(MH, MHp,t) Qm LQ(M/))
p
& (ligl(HOH’l(M/H, mHpt)) S LA (M)
p

= E(t) @y L*(M').

as W*-M'-bimodules, where each lim means the inductive limits of the inductive

system which is defined canonically 1;Vith respect to refinements of partitions. a
We conclude that there is a one-to-one correspondence
B, «— H,, BEt) «— H oM H, oM H
between von Neumann bimodules and W*-bimodules for each ¢ > 0.

Remark 4.4.6. Skeide have provided the notion of commutant duality for (concrete)
von Neumann bimodules in [27] and [28] (or see [29, Section 6]). For a von Neumann
M -M -bimodule E, a von Neumann M'-M'-bimodule E' called the commutatnt of E
is defined as the intertwiners space with respect to the left action of E. We have
the duality (E') = E and it is known that the product system in Muhly-Solel’s
construction is the commutant of the one in Bhat-Skeide’s construction.

4.5. The discrete case. Let T be a normal UCP-map on a von Neumann algebra
M. For n € N, we define a W*-M-bimodule

H, = (M @p LX(M)) @™ - @™ (M @7 L*(M)) .

N

g

n times

Of course, the set H*® = {ﬂn}nezx) satisfies Hyn @M Hy, =2 Hypr for all n,m € Z>o
with the associativity, and hence it can be regarded as a discrete relative product
system. By a similar way of Subsection 4.3, H% has a inductive system structure,
and if we denote the inductive limit by H? with the canonical embeddings K
7:[n — 7:Ld, then for each n € Z>(, we have an isomorphism Hi M 7:ln >~ H4 as right
W*-M-modules by a right M-linear unitary U? defined by

Ur?(ﬁfn@m)(bi%nn) = KfnJrn(gm(bi%nn)

for each m € Zsg, £ € D('l:[m; ¢) and n, € H,.. We have Un(Un ®idy ) = Upyn for
alln € Z>o. In this case, we also have a faithful representation 7¢ of M on <. Thus,
a *-homomorphism 6 on End(#¢,) defined by 8(a) = Ui (a®idy )U; gives a dilation
of {T"}nez.,, that is, {8"}nez., is a semigroup, m(M) = 7¢(1,;)End(HS,)7? (1)
and 74(T™(x)) = 74(1,)0™ (w ()7 (157) for all 2 € M.

Now, suppose M acts in a separable Hilbert space ‘H. Bhat-Skeide’s and Muhly-
Solel’s constructions of minimal dilations can apply to {7"},ez.,. The (discrete)
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product systems {E, }nez., and {E(n)}nez., associated with {T"},cz., which ap-
pear in Bhat-Skeide’s and Muhly-Solel’s constructions, are defined by

E,=& @y - Quér, By =M

~~

n times

E(n) = Hom(yH, uy M @7 (M @7 (--- (M @ H) ), B(0) = M
n ti‘;nes
for each n € Z>, respectively. Thus, we have similar correspondences
E, +— Hu, E(n) +— W @™ H, @ .

This subsection is based on [21].
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5. EO—SEMIGROUPS AND RELATIVE PRODUCT SYSTEMS

In this section, we develop the classification theory of Ey-semigroup in terms of
relative product systems. In Subsection 5.1, we will find a one-to-one correspondence
between algebraic C'Fy-semigroups and unital units of relative product systems and
consider the continuities of C'Fy-semigroups by the ones of units. In Subsection
5.2, we will give a one-to-one correspondence between cocycles and units, and the
correspondence will make the classification of Ej-semigroups possible. The corre-
spondences and the classification are analogous to Bhat-Skeide’s observation in [8],
however they considered algebraic C'Fy-semigroups and algebraic Ey-semigroups on
C*-algebras. One of issues in the future is to find some examples related with the
classification other than Example 5.2.3 and 5.2.4.

5.1. Correspondence between C Fy-semigroups and units. We shall define
units of relative product systems similarly with the definitions of units of Arveson’s
and Bhat-Skeide’s product systems in Definition 2.4.8 and Definition 4.1.2, respec-
tively. A unit in the sense of Bhat-Skeide is a family of vectors in Hilbert modules,
however our unit is a family of vectors in Hilbert spaces like a unit in the sense of
Arveson.

Definition 5.1.1. Let M be a von Neumann algebra with a faithful normal state
¢ and (H® = {Hiti>0, {Ust}st>0) a relative product system over M. A family
€% ={&(t) }is0 of £(t) € D(Hy; @) is called a unit of H® with respect to ¢ if £(0) =

¢z and Uy (E(s)p 2E()) = E(s + ) for all s,t > 0. If a unit €2 = {€()}so
E‘atz’sﬁes 7r¢(>£(t))*7r¢(§(t)) = 1y (||me(E(2)) me(E(E)|| < 1), it is said to be unital
contractive).

Now, we fix a faithful normal state ¢ on a von Neumann algebra M. When we say
a unit merely, suppose that it is a unit with respect to ¢, unless otherwise specified.
Let €% = {&(¢)}+>0 be a unital unit of a relative product system H® = {H,;}i>0

with respect to ¢. We define a unital linear map Tf® on M by

(5.1) T (x) = ms(E(t)) ma(aE(t)) € M
fort >0and z € M.

Lemma 5.1.2. The family T¢" = {Tf® ti>o is an algebraic C Py-semigroup.

Proof. By the definition, it is clear that each Tf® is normal completely positive map.
For s,t > 0 and z,y,2 € M, we can compute as

(T (TF (2)) g2y, ¢22) = (my(€(5)) o (ma(€(1)) (€ (1))E(5)) P2y, P2 2)
= (o) 7@t (D)), E(5)2) = (ag(t)o ™ SE(s)y, E(H)d2E(5)z2)
= (U t(E(1)82E(5))y, Usa(E()672E(5)2)) = (2€(t+ 5)y, E(t + 5)2)
= (my(E(s + 1)) mo(w€ (s + 1)) p2y, d22) = (T5,(2)pRy, p22),

and hence T¢® o T¢" = Tfft. O

m\»—A
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Remark 5.1.3. In Bhat-Skeide’s[8] observation, for a unit Z° = {Z'}i>0 of a
product system E® = {E,},>o of Hilbert bimodule over a C*-algebra A, they defined
an algebraic CPy-semigroup T?® on A by T?® (x) = (Z*,xZ") fort >0 and z € A.

Let £€¥ = {&(t)}+>0 be a unital unit of a relative product system (H®,{Us;}s.t)-
Similarly for Subsection 4.3, we can define an inductive system structure on H®
and have an isomorphism lig?—[s QM H, = lig?—[s for each t > 0 as follows. For

0 < s <t, we define a right M-linear isometry 3, s : Hs — H; by

Brs(€) = Up_s 5 (E(t — 5)¢2€)

for each £ € H,. Note that 8,50 s, = B, for 0 < r < s < ¢t by the proof of
Lemma 4.3.1. Let H be the inductive limit of the inductive system (H®, {f;s}s<t)
and Ky : Hy — H the canonical embedding for each ¢ > 0. The right W*-M-module
H is called an inductive limit of the pair (H®, £%).
Fix t > 0. By a similar way of Theorem 4.3.3, if we define
Ut((ﬁsfs)¢_%77t) = Hs+tUs,t<£s¢_%77t>-

for s > 0, & € D(Hy; ¢) and 1, € Hy, then U, can be extended to a unitary from
H M H, onto H.

We can describe the continuity for the algebraic C'FPy-semigroup T¢® as the one
for the unit £® as the following theorem.

Theorem 5.1.4. The semigroup T¢° = {Tt£® }>o0 associated with a unital unit £% =
{&(t) }1>0, is a C'Py-semigroup if and only if

(52)  Umo(ag?)e 26(0) = m(z6(t) = mo(62) (¢ = +0)
holds for each x € M.
Proof. Suppose (5.2) for all z € M. For t > 0 and z,y,z € M, we have
(T (0)02y, 622) = (mol(6(1) mo(x€(1))D2y, 622) = (a6(1)y. £(1)z)
= (Uilro(xd?)d™2E()y), Ulro(9)d™ 2£(1)2)).
Thus, when t — +0, the inner product <7f®(:n)¢%y, $22) tends to

(ko(x02)y, ro(92)2) = (xd2y, ¢22).

We conclude that for every z € M, Tf® () — z weakly when ¢ — +0, and hence
T is a C Py-semigroup by the boundedness of {||Tf® (@) }>o0-
Conversely, we assume that T¢ is a C Py-semigroup. We can compute as

(w€(t),26(t)) = (2Upo(E(t)p 207),aUo(E(t)d 2 97))
— (£(t)p 297, 2 € ()2 p7)

1

= (p2, m(E()) m(a2E(t))97) = (93, TF (277)7),

M
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(e (€(1)), ko(202)) = (ke(2€(1)), KeProrio(6?))
= (w€(0), Uno€(t)9~ 2ho(2¢7)))
(Uso(2€(t)d™20%), Upo(E(t) ™ 2 ko (0)2)))
= (0%, mo(E(0) mo(a*E(1)x2) = (62, TF (2")a 7).

Thus, when t — +0, we have ||k (x£(t)) — Ko(xgzﬁ%)HQ — 0. O

o~

N|—=

We have constructed the algebraic C P,-semigroup 7¢ from a given unital unit £%
of a relative product system H®. Conversely, in Subsection 4.3, we constructed the
relative product system HE = {ﬂt}tzg from a CPy-semigroup T' = {T}};>0 on M
and the unital unit €2 = {£(t)};0 satisfying the condition (5.2) for all € M in
Remark 4.3.2. Note that we can apply the method to algebraic C'Py-semigroups,
and then the unital unit €2 = {£()},>0 does not necessarily satisfy (5.2) for all
x € M. The main aim in this subsection is to show that the correspondence

(H®,€) = T, T (H,E%)

is one-to-one up to isomorphisms. As the corollary of the result, we will show that a
unit with (5.2) for all z € M satisfies U, (¢~ 2£(t)) — & (t — +0) for all € € D(H: ¢)
in Corollary 5.1.8.

For an algebraic C'Py-semigroup T' = {7} }+>0, it turns out that the algebraic C'Fy-
semigroup T¢° = {Tf® }i>0 associated with €€ as (5.1) coincides to T = {T}}4=0. To
show the converse, we introduce the natural notion of isomorphism between relative
product systems and a generating property for units as the following.

Definition 5.1.5. Let (H®, {Us1}s1>0) and (K®,{V;+}si>0) be relative product sys-
tems over M. An isomorphism is a family u® = {u;}1>0 of M-bilinear unitaries
uy : Hy — Ky satisfying

(53) ‘/s,t((usgs)gbié (Utﬁt)) = uertUs,t (fs(ﬁi%nt)

for all s,t >0, € D(Hs; @) and ny € Hy. Then H® is said to be isomorphic to K%
and we denote as H® = K®.

We introduce the notion of generating for units. Let H® = {H,};>0 be a relative
product system over M with M-bilinear unitaries {Us;}si>0. For t > 0 and p =
(t1,- -+ ,tn) € P, we denote the M-bilinear unitary

U(p) = [jzf1,15’1 (idtl ® UtQ,t’Q)(idtl,b ® Uts,tg) T (idtl tn—2 ® Utn Lt 1)

from H;, @M. - -@MH, onto H,, where t], = t;1 1+ - -+, and idy, ... s, = idy, ®- - -®id,,.
A unital unit €% = {£(t) }1>0 is said to be generating when the set

{U@p)(@16(t)¢™2 - ¢ 220 1E(tn1)d 220 (ta)y) | p € Be, @1, @0y € M}

is dense in H; for all £ > 0.
Note that the unital unit £ associated with an algebraic CFPy-semigroup T is
generating.
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Proposition 5.1.6. Let (H®,£%) be a pair of a relative product system H® =
{Hi}i>0 and a unital unit € = {£(t) } >0, and u = {u}i>0 an isomorphism from
H® = {H}i>0 to a relative product system K® = {K;}i>0. We denote n(t) = u&(t)
for each t > 0 and n® = {n(t) }+>o-

(1) n® = {n(t)}i>0 is a unital unit.

(2) If €% is generating, n® = {n(t)}i>0 is so.
(3) Let H and K be the inductive limits of (H®, &%) and (K®,n®), respectively. If
&% satisfies (5.2) for all x € M, so is n®.

Proof. (1) and (2) are clear by the definitions.

We shall show (3). We denote unitaries associated with the relative product
systems H® and K® by Us, and Vi, respectively. Suppose ;s and 7, s give the
inductive system structures on H® and K®. For each € M, we have

wbro(@6?) = ulio(E(t)6™2292) = Vio(u ()9~ 2upa?)
_1 1 1
= Vio((t)¢™22¢7) = y0(xd?).
Thus, [[A(zn(t)) — /\o(xgb%)H = ||ke(x£(t)) — mo(xgb%)H, where x; : Hy — H and
A+ Kt — K are the canonical embeddings. O

Theorem 5.1.7. Let (H®,{Us+}si>0) be a relative product system over M with a
generating unital unit £ = {5( ) H>o0, T = {T§® h>o the algebraic C Py-semigroup
associated with £ and (7—[ {Ust}st>0) the relative product system associated with

T with the unit §® defined in Remark 4.3.2. Then, there is an isomorphism from
HE onto H® preserving the unit.

Proof. For t > 0 and a partition p = (t1,- - ,t,) € P, we define a map w; : H, — H,
by

p(Fopy (11 @1y $2)672 -+ ¢ 2 (01 @1,y 02)672 (0 B, 679))

= U(p)(@16(t)¢ ™2 6 220 16(tn-1) 2 20E(tn)y)

for each z1, -+ ,2,,y € M, where Ky, : 7:[(p,t) — M, is the canonical embedding.
It is proved that u; is an isometry by the similar way of the proof of Theorem 4.3.3.
Since £% is generating, u; can be extended as unitary from ’Ht onto H;.
We must show that Us7t((u5£3)¢’%(umt)) = Us 1 Us 1 (§5007 an,) for all &, € D(H,; ¢)
and all n; € H;. It enough to show it for
55 = "%q,s((xl ®51 ¢%)¢_% e gb_%(xm—l ®sm_1 qﬁ%)gb_%(xm ®sm ¢%))7
M= Fpa((21 @t $2)072 -+ 672 (201 B,y 62)672 (20 By, G2w)),
where q = (817"' 7Sm) € m& p = (t17”' 7tn> € mt and L1y 3 Tmy 15" 5 Zny
w e M. If we put
Go=21€(51)07% - 62w (sm),
G = 21E(t)¢77 -+ 672201 (t1) 2 2 (B,
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then we have
e Us (607 2m) = Usy,sp+t(idsy @ Ugy gpit) = (idsy e sy @ Usy ) (idsy o s @ Uy 1)
(i g @iy, @ Uy 1 (G107 26o)
= Us oy +¢(idsy; @ Ugy g 4¢)(ids; 5, @ Ugy 0 44)
(5.4) v (i sy ® Uiy t) (G020 (9)Ca).
Also, we have
Usal(us€s)™2 (wmy) = Use(U(a)(G1)672U (p)(2))
= Us4(Us, ¢, @1dy)(ids, ® Us, o ®1d;)(ids, s, @ Uy, o, @ idy)
(idsy, 00 @ Usyyy, ®1d0)(GOT2U(P)(G))-

By the associativity of {Us}s+>0, we have
Ust(4s6)072 (uemy)) = Uy, g (idsy ® Uy o) (idsy ® Usy gy @ ide) (ids,y s, ® Uy, ® i)
(i s @ Uiy, ®1d)(G672U ()(G)),
= Uy, s 1+4(ids; ® Uy, 1(Usy,o, @ idy)) (idsy 6y ® Usy o, @ idy)
iy, ® Usy g, @) (GO U (P)(G))
= Uy o 44(ids, ® Uy, gy 44(ids, ® Uy 1)) (idsy 5, @ Usy s, @ idy)
v (iday ey @ Usy g, ®@1d0)(GOT2U(P)(G2))
= Usy ot 14(ids; ® Usy gp44) (ids, s @ Ugy ¢ (Usy e, @ idy)) (ids, 50,85 @ Uy, s, @ idy)
o (iday s ® Usy s, ®1d0)(GO72U(P)(G)):

By repeating the above calculations and (5.4), we have

Ust((u6:)672 (uems))
= U81,S'1+t(id81 ® U82,8'2+t)(id51,82 ® US3,S§,+t) T (idsly'”ysm—l ® USm,t)(C1¢7%U(p)C2)

= us—i—tUs,t(qub_%nt)'

We conclude that {u;}:>0 gives an isomorphism. O

We conclude that the correspondence between algebraic C Fy-semigroups 7' and
pairs (H%, £?) of relative product systems H® and generating unital units £, is one-
to-one. By the correspondence, we shall show that a unit with the condition (5.2)
for all x € M has a stronger condition automatically. For this, a few preparations
are required as the following.

Let H® = {H;}i>0 and K® = {K;};>0 be relative product systems on a von Neu-
mann algebra M with unital units £% = {£(¢) }i>0 and n® = {n(t) }+>0, respectively.
Suppose u® = {u;};>0 is an isomorphism from H® onto K®. Then, we can define
the canonical right M-linear unitary u from the inductive limit H of H® onto the
one K of K£® by

U(’#(ft)) = Hfut(é})



46 YUSUKE SAWADA

for each t > 0 and & € H;, where KZ-L means the canonical embedding from H; into
H and k¥ is similar.

Corollary 5.1.8. Let (H®,£%) be a pair of a relative product system H® = {H; >0
and a generating unital unit £ = {£(t) }i>0, and H the inductive limit of (H®,E®).
When €2 satisfies the condition (5.2) for all x € M, we have

(5.5) Ui(6726() = & (t— +0)
for all € € D(H; ). Then the unit £ is said to be continuous.

Proof. We use the notations in Theorem 5.1.7 and its proof. By Proposition 4.3.4,
the unit &% = {£(t) = Ry (1m &4 $2)}>0 satisfies

(5.6) U(€p2E(t) = & (t— +0)

for all £ € D(”;':L;gb). Suppose H is the inductive limit of H® and & : ﬂt — H
is the canonical embedding for each ¢t > 0. Let u be the unitary from H onto H
induced from {u;};>0 as the above arguments, and U; the unitary giving the right

W*-M-module isomorphism H @M H, = H for each t > 0. For each & € F,, we
have

UUt("%sgs¢_%£(t)) = ugs+tUS,t(£s¢_%é(t>) = 58+tus+t08,t(58¢_%g(t))
= RoriUsa((us€e) ™2 wi()) = Unl(ksu €)™ 2wk (1))
= Ut(<ur€sgs)¢_%utg(t))a

where the third equality is implied from (5.3). Thus, by (5.6) for all £ € D(H; ¢),
we have

1U(€6726(t) — €l = |[U(un'€d 2upu(t)) — €|
= [uU,(u*€¢™2uie(t)) — €|
= ||U(uep~2ui€(t)) — wg] = 0
when ¢t — +0. O

5.2. Classification of FEj-semigroups by relative product systems. In this
subsection, we will show that there is a one-to-one correspondence between contrac-
tive adapted right cocycles and units of relative product systems. By the correspon-
dence, Fy-semigroups will be classified by relative product systems up to the unitary
cocycle equivalence.

Let (H®,£%) be a pair of a relative product system H® on a von Neumann algebra
M and a continuous unital unit ¥, and H the inductive limit of (H®,£%). We can
construct an Ey-semigroup 6 = {6;};>0 on End(Hs) by

(5.7) 0,(a) = U(a @™ id,)U;

for each a € End(Hys), where U; gives the isomorphism H @M H, = H. (The
continuity of 6 is implied from the one of the unit ¥ and the proof of Theorem
4.3.5.) The Ey-semigroup 6 is called the maximal dilation of (H® £®). A right
cocycle w = {w;}i>o for 0 is called adapted if kikfwikik; = wy for all ¢ > 0, where
k¢ is the canonical embedding from H, into H.
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Theorem 5.2.1. Let 6 = {0, },>0 be the Ey-semigroup associated with a pair (H®, &)
of a relative product system H® = {Hi}i>0 and a continuous unital unit &% =
{&(t) }1>0 by (5.7). There is a one-to-one correspondence between contractive adapted
right cocycles w = {w;}i>0 on End(Har) and contractive units n® = {n(t)}r>o in H®
by relations 1(t) = Kiwked? and wy, = 7r¢(/£t77(t))7r¢(/<0¢%)* for allt > 0.

Proof. Let {Us+}s1>0 be a family giving the relative product system structure of H®
and H the inductive limit of (H®,£%).
Let w = {w:}>0 be a contractive adapted right cocycle for 6. Note that each

n(t) = K} wtﬁoqb% is ¢-bounded. Moreover, for each ¢ > 0, we have

(5.8) mo(1(0)) ma(n(1))97 = Kjwjwimedra
for each € M, and hence the contractivity of w; implies that ||ms(n(t))*ms(n(t))]] <
1. We shall show that 7® is a unit. For s,¢ > 0, sy = Uy(ks ® idy)U;, implies the
following calculations.
n(s+t) = “:+tws+tﬁo¢% = ’f:+t9t(ws)wtfio¢% = HZHUt(ws ® idt)Ut*wt/‘ﬁoQﬁ%
= w4 Ui(ws @ ido)((sod2)¢ ™ (wjwemo))
= KLUl (0ikod?) 9™ 2 (W wimod?))
= Ugs(v @id) U Upl(werko? )¢~ 2 (Kjwikod? )
= Uslriwarod?)9™2 (jwirod?)) = Usi(n(s)9™ 211(2)).
Conversely, let n® = {n(t)}:+>o be a contractive unit of H®, and for each ¢ > 0,
wy = 7r¢(/<:t77(t))7r¢(/£0¢%)* € End(Hyy). For all £ € H, the equation

(5.9) wi€ = kU o((t) ™2 K5€)

is implied from the approximation of k;¢ by vectors as the form of gb%a:. In particular,

(5.10) wt(/@'o(b%x) = rn(t)x

forall t > 0, x € M, and hence w; = 0 on the orthogonal complement of the closed
subspace rokyH. Thus, computations

(’itﬁ(t))%(’ioﬁb )" /10((;5%95)
U ki(n(t)x) = Uy(w, @ idy) (kg2 ¢~ 2n(1))
6”2 (nx)) = Us((ken(5))d 2 (n(t)z))
672 (n(t))) = wape(ro2 )

for every x € M, implies that w is a right cocycle. We shall show that w is adapted.
For all t > 0 and all £ € H, by (5.9), we have

Qt(ws)wt(ﬁoﬁb%x) = Uy(ws ®1id;
= Uy(ws ®1id
- Ut((wsﬁogb

= Hs+tUst( (s

!
)

N=

m\»-‘ I\Jb—'

)
)

1
R = R woRaE = Kok (Ren()ma(kod?) RomiE

= R RUno(n(t) 62 (K36)) = werokyl = wik.



48 YUSUKE SAWADA

By (5.9) again and the fact that the family {x:x]}+>0 is increasing, we have also

wikikfE = () Rireri€ = kUpo(n(t)d™ 2 Kk €)
= KUpo(n(t) 6 2k3E) = wik.

We conclude that k;x;w Kk} = wy, that is, the adaptedness.
We can check that the correspondence between contractive adapted right cocycles
and contractive units is one-to-one by (5.9). O

Note that by (5.8) and (5.9), the unit associated with an adapted unitary right
cocycle is unital, and the contractive adapted right cocycle associated with a unital
unit preserves inner products on KorjH.

At the beginning of this subsection, we constructed the Ey-semigroup from a pair
of a relative product system and a continuous unital unit by (5.7).

Conversely, for FEg-semigroup 6 = {6;};>0 on a von Neumann algebra M, we
can get the relative product system H’® = {7—2? }i>0 and the continuous (generat-
ing) unital unit €% = {£%(¢)},>0 by the way in Subsection 4.3 as C'Py-semigroups.
Suppose H? is L*(M) as sets and a left and a right actions of M are defined by
xéy = 0,(x)€y for each x,y € M and £ € HY, and put £9(t) = ¢z for each t > 0.
Then, H® = {H}1>0 and £%¢ = {€%(¢)}+>0 canonically become a relative product
system and continuous (generating) unital unit, respectively. It turns out that there
is an isomorphism u’ = {u¢},~o from H?® onto H® preserving the units. A family
{f0}i>0 of right M-linear unitaries f{ : HY 3 & — ¢ € L*(M) induces the right M-
linear unitary f?: H% — L?(M), where H? is the inductive limit of (H?®, £%%). Note
that the all canonical embeddings ¢ : H? — H? are unitaries and coincide. The
Ey-semigroup 6 is given by (H?®,£%9) in the sense of (5.1), and the Ej-semigroup
{07 - (f9))f%}i=0 coincides with the maximal dilation 6 of (H’®,£%€) on
End(#5,).

If w={w;}y>0 C M is a unitary right cocycle for 6§ and put 0;(-) = w;0,(-)w, for
each t > 0, then u, : H? > ng)% — wt:ab% € HY gives an isomorphism H?'® = H/®,
Thus, we have HY® =~ H'® =~ H0® =~ 319 Conversely, we have the following
theorem.

Theorem 5.2.2. Let 6 = {0, }1>0 and 0" = {0} }1>0 be Ey-semigroups on a von Neu-
mann algebra M. Suppose (H?®,€%9) and (H?®,£7®) are the pairs of the relative
product systems and the continuous unital units associated with 6 and €', respectively.
If HO® and HY® are isomorphic, then 6 and 6’ are cocycle equivalent.

Proof. We will use the above notations for # and 6.

Suppose a family v = {u;}+>¢ of M-bilinear unitaries gives an isomorphism from
HY'® onto HO2. Put n(t) = ulu,c? (t) € HY for each t > 0 and 7® = {n(t)}i>0.
Then, we have

O1(x) = ms (€7 (1)) mo(a€” (1)) = mo (uui” () ms (v uic” (¢))
(5.11) = 7o (1(1)) 7 (27)(1))
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for all z € M, that is, ¢ is given by (H’®,7®) in the sense of (5.1). By Proposition

5.1.6, the unit n® is continuous, generating and unital. We denote the right cocycle

for 6 associated with 7% by w® = {w? = s (K/n(t))me(K562)* }i=0 as Theorem 5.2.1.
By (5.9), each w! is isometry. For all z,y € M, we have

1
(n(®),n(t)y) = (Klwlrferz, klwlrio>y) = (62, d2y),

and hence L2(M) 3 g2z — n(t)x € span{n(t)z | © € M} is unitary. This implies

that span{n(t)z | * € M} = L*(M). Thus, by (5.10), each w? is surjective. Now,

we shall show that w? is strongly continuous. For s > 0, by the continuity of %,

we can check that x%n(t) — k?n(s) when t — s. On the other hand, for ¢ € H? and
t > s, we have

(wig, wi&) = (kUL (n(t)p~2 (1)*E), §U§0<n<s> “2(k0)%E))

= (UL (n(t)¢™2 (K5)*€), B U4 (n(s)¢™2 (15)€))

= (U2o(n(t)¢™ 2 (k8)"€), UL, ,(ids—s @ UL ) (E(t — 5)d™2n(5)d 2 (k9)E))

= (UL (n(t)p~2 (50)*€), Uy (UL, , ® ido) (£(t — 8)o2n(s)p™2 (k0)°€))
)

NI

(K0
0
0

UL, J(E(t—s)p~2n(s))d 2 (KE)*E)
(1 (

)
)€, 3 377( )62 (K)"€) = (KIn(t)d™ 2 (kG)*€, Kn(s)d 2 (KG)*€)

D=

{
{
= (n(t)¢~
= (n(t)¢~
(5.12) = ((rg) "€, mo(k{n (1)) ms(rn(5)) () "E).-
Since g (kIn(t))* ms(kin(s)) — 1ar weakly when t — s or s — ¢, (5.12) tends to
(€,€) when t — s+ 0 and by the symmetry, (w;§, ws€) also tends to (£, &) when
t—s—0. We conclude that w6 — ws& when t — s.

Put w; = fouwd(f%)* € M. Then w = {w;}s>0 is a strongly continuous right
cocycle. For all t > 0 and x,y, 2z € M, since

wire = fIR{UL (1067 ()" (') 622) = fln(t)r = n(t)a,
and ¢’ is given by (H%® n®) as (5.11), we have 0}(x) = w;0;(z)w; by equations
(wibh(@)urdty, 632) = {6h(a) finb)y. fIn(®)2) = (:(@m(E)y.n(®)2)
= (mo(n(t)) mo(x - n(1))02y, §72) = (6 (x)¢2y, 672).
O
Example 5.2.3. The relative product system associated with the Ey-semigroup given

by a semigroup in Example 2.4.1 of unitaries, is isomorphic to the trivial relative
product system {L*(M)}i>o.

Example 5.2.4. Let 0 be an Ey-semigroup on a von Neumann algebra M and
u € M a unitary. The inner conjugate of 0 by u is an Eg-semigroup 0’ defined by
0, (x) = ub(u*zu)u* for each t > 0 and x € M. Then 8 and 0" have isomorphic
relative product systems and they are cocycle equivalent by a right unitary cocycle w
defined by w; = 0,(u)u* for each t > 0.
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