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Abstract

This thesis can be roughly divided into two contents.
Firstly, we will discuss an equivalence between left and right relative tensor prod-

ucts. The notion of relative tensor product have been introduced by Connes. For
two W ∗-bimodules, their relative tensor product is defined by the two ways. We call
them the left and right relative tensor product. We shall show that the two bicat-
egoriesM⋋ andM⋌ of W ∗-bimodules with left and right relative tensor products
as tensor functors, are monoidally equivalent. Each of M⋋ and M⋌ has an invo-
lutive structure, and they will be involutionally and monoidally equivalent. Such
equivalence is basic when we consider relative tensor products.
Secondly, we will discuss the dilation theory for CP0-semigroups. The existence of

the minimal dilation of a given CP0-semigroups was shown by Bhat-Skeide, Muhly-
Solel and Arveson. We will provide a notion of relative product system, that is,
a W ∗-bimodule version of Arveson’s product systems, which enables as to describe
a relation between Bhat-Skeide’s and Muhly-Solel’s approaches. We will then con-
struct the minimal dilation by relative product systems. We also discuss the con-
struction for the discrete semigroup generated by a single normal UCP-map via
discrete relative product systems. Product systems have been originally introduced
to classify E0-semigroups on type I factors. We will develop the classification theory
of E0-semigroups in terms of relative product systems with the help of the dilation
theory.
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1. Introduction

One of von Neumann’s achievements is the mathematical formulation of quantum
mechanics. In a quantum system, observables are associated with self-adjoint oper-
ators on a Hilbert space H and physical states are described by unit vectors in H.
Within the framework of von Neumann, self-adjoint algebras of bounded operators
on a Hilbert space are especially focused on. The set B(H) of all bounded operators
on H has several topologies. A von Neumann algebra M , introduced by Murray
and von Neumann in 1930’s, is a self-adjoint unital closed subalgebra of B(H) with
respect to the weak operator topology. By von Neumann’s double commutant theo-
rem, von Neumann algebras can be characterized by an algebraic property as follows:
for a self-adjoint subalgebra M of B(H) is a von Neumann algebra if and only if
M = M ′′, where the commutant S ′ of a subset S ⊂ B(H) is the set of operators
commuting with all operators in S. We call a von Neumann algebra a W ∗-algebra
when the representation is not especially referred to.
In the representation theory of von Neumann algebras, the Gelfand-Naimark-Segal

construction guarantees that for every von Neumann algebra M and every faithful
normal positive functional ϕ on M , there is a faithful normal representation πϕ on a

Hilbert space Hϕ and ϕ
1
2 ∈ Hϕ such that Hϕ = πϕ(M)ϕ

1
2 and ϕ(x) = ⟨ϕ 1

2 , πϕ(x)ϕ
1
2 ⟩
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for all x ∈ M . Tomita and Takesaki have established the modular theory for von
Neumann algebras which has made a substantial contribution to the noncommu-
tative integration theory. More presicely, if we regard as M ⊂ B(Hϕ), there are
an anti-unitary operator Jϕ called the modular conjugation and an unbounded self-
adjoint operator ∆ called the modular operator on Hϕ such that the commutant
M ′ of M is JϕMJϕ and ∆itM∆−it = M for all t ∈ R. An automorphism group

{σϕt }t∈R defined by σt(x) = ∆itx∆−it for each t ∈ R and x ∈M is called the modu-
lar automorphism group and it plays important roles in the structure theory of type
III factors, the theory of noncommutative Lp-spaces, etc. The modular conjugation
gives a right M -module structure on Hϕ which commutes with the left action of
M , and hence Hϕ is an M -bimodule and referred to as a W ∗-M -bimodule in this
thesis. Also, there is a W ∗-M -bimodule L2(M) called the standard space of M

independent of the choice of ϕ such that ϕ
1
2M = L2(M) = Mϕ

1
2 like the regular

representation of a group. The standard space L2(B(H)) is the Hilbert space C2(H)
of Hilbert-Schmidt operators on H. Connes[9] has introduced the notion of relative
tensor product for twoW ∗-M -bimodules. The standard space L2(M) is the unit ob-
ject with respect to the relative tensor product ⊗M , that is, we have isomorphisms
L2(M)⊗M H ∼= H ∼= H⊗M L2(M) for any W ∗-bimodule H.
A dynamics on a quantum system is described by a semigroup {Tt}t≥0 of normal

unital completely positive (UCP-) maps Tt on a von Neumann algebra M for which
t represents a parameter of time development. We often assume that the semi-
group {Tt}t≥0 is continuous with respect to the parameter in the σ-weak operator
topology, and then we call it a CP0-semigroup. If each Tt is a ∗-homomorphism,
{Tt}t≥0 is called an E0-semigroup. By Stinespring’s theorem, a single normal UCP-
map T on M ⊂ B(H) can be dilated to a representation on an extended Hilbert
space, that is, there exist a Hilbert space K and a representation π of M on K
satisfying T (x) = pπ(x)|H for all x ∈ M , where p is the projection from K onto H.
Roughly speaking, the aim of dilation theory is to extend a UCP-map to a unital ∗-
homomorphism. A dilation of a CP0-semigroup {Tt}t≥0 is a triple (N, p, {θt}t≥0) of a
von Neumann algebra N , a projection p ∈ N and an E0-semigroup {θt}t≥0 such that
M = pNp and Tt(x) = pθt(x)p for all t ≥ 0 and x ∈ M . A dilation (N, p, {θt}t≥0)
is said to be minimal if N is generated by θ[0,∞)(M) and the central support of p
in N is 1N . Arveson has defined a hierarchy for dilations in [3], and a minimal
dilation is the minimal one in the hierarchy (if it exists). Note that Stinespring’s
theorem can not be applied to CP0-semigroups. Some researchers have shown an
existence of minimal dilations gradually. In [6] and [7], Bhat has shown it in the
case whenM is a type I factor and in the case whenM is a C∗-algebra, respectively.
Bhat-Skeide[8] constructed minimal dilations by a method which is valid for both
of von Neumann algebras and C∗-algebras. Also, we know Muhly-Solel’s[17] and
Arveson’s[4] constructions, which differ from each other, of the minimal dilation of
a CP0-semigroup on a von Neumann algebra. Some direct relationships among the
constructions have not been clarified yet.
The study of E0-semigroups have been initiated by Powers[19]. Arveson[2] has

provided the notion of product system. A product system {Ht}t>0 is a family of
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Hilbert spaces Ht parameterized by nonnegative real numbers equipped with iso-
morphisms Hs⊗Ht

∼= Hs+t with the associativity. He also classified E0-semigroups
on type I factors by product systems up to cocycle conjugacy. The theory of prod-
uct systems influenced the constructions of minimal dilations of CP0-semigroups.
The classification theory of E0-semigroups has been developed in terms of Hilbert
modules (that is, modules over a C∗-algebra A with A-valued inner products). A
Bhat-Skeide’s[8] product system is a family {Et}t≥0 of Hilbert bimodules over a
C∗-algebra satisfying a similar property with Arveson’s one with respect to ten-
sor products of Hilbert bimodules. They classified E0-semigroups on a (general)
C∗-algebra by their product systems up to cocycle conjugacy. There have been no
approaches to the classification theory of E0-semigroups on a von Neumann algebra
by the W ∗-bimodule theory.

In this thesis, we will discuss the equivalence between left and right relative tensor
products. Also, we will construct the minimal dilation of a CP0-semigroup in terms
of W ∗-bimodules and describe a relation between Bhat-Skeide’s and Muhly-Solel’s
constructions of minimal dilations. The classification theory of E0-semigroups on
a von Neumann algebra will be developed by the W ∗-bimodules theory with the
help of our construction of minimal dilations. Now, we shall give an outline of the
contents in this thesis.
We shall prepare the notions of W ∗-bimodule, W ∗-bicategory, Hilbert modules,

CP0-semigroups and E0-semigroups in Section 2 related to the later sections.
In Section 3, we will discuss the W ∗-bicategory whose objects are W ∗-algebras

and the category associated with W ∗-algebras M and N consists of W ∗-M -N -
bimodules with relative tensor products as tensor functors. The relation between
the W ∗-bicategory of W ∗-bimodules and general W ∗-categories has been clarified
by Yamagami[37]. For W ∗-M -N -bimodule H and W ∗-N -P -bimodule K, the rela-
tive tensor product H ⊗M K is defined by two ways. To distinguish them, we call
them the left and the right relative tensor product and denote by H ⋋M K and
H ⋌M K, respectively. Of course, the two relative tensor products are isomorphic:
H ⋋M K ∼= H ⋌M K. However, just the existence of isomorphisms is not enough
to show that left and right relative tensor products are equivalent in the sense of
tensor categories. The following theorem is the main result in Subsection 3.1.

Theorem 1.0.1. Let M⋋ and M⋌ be W ∗-bicategories of W ∗-bimodules with left
and right relative tensor products as tensor functors, respectively. Then M⋋ and
M⋌ are monoidally equivalent, that is, there exists a natural unitary isomorphism
{mX,Y : X ⋋B Y → X ⋌B Y }, where X is a W ∗-A-B-bimodule and Y is a W ∗-
B-C-bimodule, such that the following diagram commutes for all W ∗-A-B-bimodule
X, W ∗-B-C-bimodule Y and W ∗-C-D-bimodule Z.

(X ⋋ Y )⋋ Z (X ⋌ Y )⋋ Z (X ⋌ Y )⋌ Z

X ⋋ (Y ⋋ Z) X ⋋ (Y ⋌ Z) X ⋌ (Y ⋌ Z)

mX,Y ⋋idZ //
mX⋌Y,Z //

a′X,Y,Z

��

aX,Y,Z

�� idX⋋mY,Z //
mX,Y ⋌Z //
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Also, the dual Hilbert space H∗ of a W ∗-M -N -bimodule H has the canonical W ∗-
N -M -bimodule structure: yξ∗x = (x∗ξy∗)∗ for each x ∈ M, y ∈ N and ξ ∈ H. We
define involutive structures onM⋋ andM⋌ and show that they are involutionally
and monoidally equivalent in Subsection 3.2 as follows:

Theorem 1.0.2. We denote 2 = ⋋ or ⋌. There are natural unitary isomorphisms
{c2X,Y : Y ∗2BX∗ → (X2BY )∗}, where X is a W ∗-A-B-bimodule and Y is a W ∗-B-

C-bimodule, on M2. Then M⋋ and M⋌ are involutive W ∗-bicategories and they
are involutionally and monoidally equivalent with respect to {mX,Y }, that is, the
following diagram commutes for all W ∗-A-B-bimodule X and W ∗-B-C-bimodule Y .

Y ∗ ⋋X∗ (X ⋋ Y )∗

Y ∗ ⋌X∗ (X ⋌ Y )∗

c⋋X,Y //

mY ∗,X∗

�� cX,Y ⋌
//

tmX,Y

OO

The equivalence is basic when we consider relative tensor products. Section 3 is
based on [24] which is a joint work with S. Yamagami.
In Section 4, we will provide a notion of relative product system, that is, a W ∗-

bimodule version of Arveson’s or Bhat-Skeide’s product systems, where tensor prod-
ucts taken into account are relative tensor products, and discuss dilations in terms of
relative product systems. The notion gives a new approach to the dilation theory and
the classification theory of E0-semigroups in Section 5. Let T be a CP0-semigroup
T on a von Neumann algebra M . In Subsection 4.2, we will associate a relative
product system H̃⊗ = {H̃t}t≥0 with T as follows: for t > 0, let H̃t be the inductive

limit of {H̃(p, t) | p is a partition of [0, t]} with respect to refinements of partitions,
and H̃0 = L2(M). In Subsection 4.3, we will construct the minimal dilation of T .
The inductive limit H̃ of H̃⊗ has a right W ∗-module structure, and we can identify
H̃⊗M H̃t with H̃ for all t ≥ 0. If we define a map θt on End(H̃M) by θt(a) = idH̃t

⊗a
for each a ∈ End(H̃M), then we the following theorem.

Theorem 1.0.3. There is a faithful representation π of M on H̃ and θ = {θt}t≥0

is an E0-semigroup on End(H̃M). The triple (End(H̃M), π(1M), θ) is a dilation of
T . Moreover, if we denote the von Neumann algebra generated by

∪
t≥0 θt(M) by N ,

then the triple (N, π(1M), θ|N) is the minimal dilation of T .

There are some advantages of the construction of the minimal dilation of a given
CP0-semigroup T onM in Section 4 as follows: we use the Hilbert (or von Neumann)
module theory in Bhat-Skeide’s and Muhly-Solel’s constructions, however Theorem
1.0.3 makes it possible to construct the minimal dilation without the theory. Also,
Muhly-Solel’s construction depends on a representation of M and our construction
enables to get the canonical representation of the dilated von Neumann algebra N
independent of the choice of representations of M . We describe a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions. Suppose M acts on a (separable)
Hilbert space H. A common point of Bhat-Skeide’s and Muhly-Solel’s construction
is to establish the product systems of von Neumann bimodules, and to dilate T to
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an E0-semigroup on the inductive limits of the product systems. However, Bhat-
Skeide’s product system {Et}t≥0 consists of von Neumann M -bimodule and Muhly-
Solel’s one {E(t)}t≥0 consists of von NeumannM ′-bimodules. Now, we have the one-
to-one correspondence between von Neumann bimodules and W ∗-bimodules. The
relative product system H̃⊗ = {H̃t}t≥0 associated with T gives a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions of minimal dilations:

Theorem 1.0.4. There is a one-to-one correspondence

Et ←→ H̃t, E(t)←→ H∗ ⊗M H̃t ⊗M H
between von Neumann bimodules and W ∗-bimodules for each t ≥ 0.

The relation is different from the one described by Skeide’s commutant duality in
[27]. Section 4 is based on [22] mainly. Bhat-Skeide’s and Muhly-Solel’s construc-
tions can apply to a discrete CP0-semigroup, that is, the semigroup {T n}n∈Z≥0

gen-
erated by a single normal UCP-map T . The construction (Theorem 1.0.3) and the
relation (Theorem 1.0.4) in this case will be described by discrete relative product
systems in Subsection 4.5 which is based on [21].
In Section 5, we will develop the classification theory of E0-semigroups in terms

of relative product systems. We fix a faithful normal state ϕ on a von Neumann
algebra M . A unit of a relative product system H⊗ = {Ht}t≥0 is a family ξ⊗ =
{ξ(t)}t≥0 of ξ(t) ∈ Ht satisfying ξ(s) ⊗M ξ(t) = ξ(s + t) for all s, t ≥ 0. For a
given pair (H⊗, ξ⊗), the inductive limit Hξ can be defined. We will give a one-
to-one correspondence between CP0-semigroups on M without the continuity called
algebraic CP0-semigroups and units of relative product systems. Then the continuity
of the CP0-semigroup associated with a unit is described by the one of the unit.
These can be summarized as follows.

Theorem 1.0.5. There is a one-to-one correspondence between algebraic CP0-
semigroups T and pairs (H⊗, ξ⊗) of relative product systems H⊗ and generating
unital units ξ⊗ up to unit-preverving isomorphisms. The algebraic CP0-semigroups
T associated with a pair (H⊗, ξ⊗) is a CP0-semigroup if and only if we have

ξϕ− 1
2 ξ(t)→ ξ (t→ +0)

for all ϕ-bounded vector ξ ∈ Hξ, where ξϕ− 1
2 ξ(t) means the relative tensor product

with respect to ϕ and we can identify Hξ ⊗M Ht with Hξ for all s ≥ 0.

For a pair (H⊗, ξ⊗) of a relative product system H⊗ = {Ht}t≥0 and a (continuous
unital) unit ξ⊗ = {ξ(t)}t≥0, we can get an E0-semigroup θ = {θt}t≥0 on a von

Neumann algebra End(Hξ
M) called the maximal dilation of (H⊗, ξ⊗). The main

result in Subsection 5.2 is as follows:

Theorem 1.0.6. Let θ = {θt}t≥0 be the maximal dilation of a pair (H⊗, ξ⊗).
There is a one-to-one correspondence between contractive adapted right cocycles
w = {wt}t≥0 on End(HM) and contractive units η⊗ = {η(t)}t≥0 in H⊗.

As a corollary of the previous result, E0-semigroups on a von Neumann algebra M
will be classified up to cocycle equivalence by relative product systems. For E0-
semigroup θ on M , we can get the pair (H̃θ⊗, ξθ⊗) of the relative product system
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H̃θ⊗ and the unit ξθ⊗ as CP0-semigroups in Theorem 1.0.5. Then we have the
following theorem which is an analogue of the classification of E0-semigroups in [8,
Theorem 7.9] and [30, Theorem 12.3].

Theorem 1.0.7. Let θ = {θt}t≥0 and θ′ = {θ′t}t≥0 be E0-semigroups on a von

Neumann algebra M . Suppose (H̃θ⊗, ξθ⊗) and (H̃θ⊗′
, ξθ⊗

′
) are the pairs associated

with θ and θ′, respectively. Then H̃θ⊗ and H̃θ′⊗ are isomorphic if and only if θ and
θ′ are cocycle equivalent by a strongly continuous unitary cocycle.

Theorem 1.0.3 and the sequential discussions related to the classification by relative
product systems are reflected by Bhat-Skeide’s observations.

We list some problems in the future as follows:

(1) E0-semigroups on type I factors are classified by (Arveson’s) product systems
up to cocycle conjugacy as follows: suppose θ and θ′ are E0-semigroups on B(H)
and B(K), respectively. Then θ and θ′ are cocycle conjugate if and only if they
have isomorphic product systems. Bhat-Skeide’s classification of E0-semigroups
is generalization of Arveson’s one. Is there a concrete relation between our
classification of E0-semigroups on type I factors and Arveson’s one?

(2) Arveson[2] have introduced the index invariant of E0-semigroups on type I fac-
tors. In particular, type I E0-semigroups on type I factors are completely classi-
fied by indices. Also, Alevras[1] and Margetts-Srinivasan[15] have defined index
invariants of E0-semigroups on type II1 factors. Is there an analogous theory
for (general) von Neumann algebras in terms of relative product systems, with
their observation?

(3) Let E be a Hilbert (or von Neumann) module and Ba(E) the algebra of ad-
jointable right linear maps on E. Within the framework of the Hilbert module
theory, E0-semigroups on Ba(E) are classified by product systems of Hilbert
(von Neumann) bimodules. We refer the reader to Skeide’s monograph [30] for
details. Can we refine the classification theory of E0-semigroups in terms of
relative product systems?

(4) Recall that there are the three approaches to construct minimal dilation by
Bhat-Skeide, Muhly-Solel and Arveson. We will describe a relation between
Bhat-Skeide’s and Muhly-Solel’s constructions in Subsection 4.4. However, some
concrete relationships among Arveson’s construction and them have not been
clarified yet.
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Notation

· C : The set of all complex numbers.
· R : The set of all real numbers.
· R≥0 : The set of real numbers which are not less than 0.
· Z : The set of all integers.
· Z≥0 : The set of integers which are not less than 0.
· N : The set of all natural numbers which are grater than 1.
· ⟨·, ·⟩ : Inner products on Hilbert spaces or Hilbert modules whose second terms
are linear.
· H∗ : The dual Hilbert space of a Hilbert space H.
· l2(I) : The Hilbert space of square summable sequences indexed by a set I.
· span(S) : The linear span of a subset S in a vector space.
· span(S) : The closure of span(S) with respect to a suitable topology.
· B(H) : The set of all bounded linear operators on a Hilbert space H.
· C2(H) : The Hilbert space of all Hilbert-Schmidt operators on a Hilbert space H.
· ξη∗ : The operator on a Hilbert space H given by ξη∗(ζ) = ⟨ξ, η⟩ξ for each ζ ∈ H,
for a ξ ∈ H and an η∗ ∈ H∗.
· S ′ : The commutant of a subset S in B(H).
· M∗ : The predual of a von Neumann algebra M .
· M+

∗ : The set of σ-weakly positive functionals in M∗.
· A◦ : The opposite algebra of an algebra A.
· ∥x∥ : The operator norm of an operator x ∈ B(H).
· idA : The identity map on a set A.
· 1M : The unit of a von Neumann algebra M .
· [ϕ] : The support projection of a functional ϕ ∈M+

∗ .
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2. Preliminaries

In this section, we prepare some notions and notations for later sections. Subsec-
tion 2.1 is a preparation for W ∗-bimodules related with all sections. Subsection 2.2
is for W ∗-bicategories and we will discuss the W ∗-bicategory of W ∗-bimodules in
Section 3. In Subsection 4.1, the minimal dilation is constructed in terms of Hilbert
modules prepared in Subsection 2.3 by Bhat-Skeide’s and Muhly-Solel’s approaches.
In Subsection 2.4, we recall the notions of CP0-semigroups and E0-semigroups re-
lated with Section 4 and 5

2.1. W ∗-bimodules. W ∗-bimodules are Hilbert spaces on which von Neumann al-
gebras act from the left and the right. More precisely, for von Neumann algebras
N and M , a Hilbert space H with normal ∗-representations of N and the oppo-
site von Neumann algebra M◦ of M is a W ∗-N -M -bimodule if their representations
commute. When N = C or M = C, we call H a right W ∗-M -module or a left
W ∗-N -module, respectively. We write a W ∗-N -M -bimodule, a right W ∗-M -module
and a left W ∗-N -module by NHM , HM and NH, respectively.
Let N be a von Neumann algebra, HN and KN be right W ∗-N -modules, and

NH′ and NK′ be left W ∗-N -modules. Hom(HN ,KN) and Hom(NH′,NK′) are the
sets of all right and left N -linear bounded maps, respectively. If H = K and
H′ = K′, they are denoted by End(HN) and End(NH′), respectively. Suppose
the space Hom(NH′,NK′)◦ is bijevtive to Hom(NH′,NK′) as sets and each operator
f ∈ Hom(NH′,NK′)◦ acts from the right like opposite algebras.
For a von Neumann algebra M and ϕ ∈M+

∗ , the left (right) GNS-representation
of M with respect to ϕ is defined as follows: we define a left (right) ideal N l

ϕ =
{x ∈ M | ϕ(x∗x) = 0} (N r

ϕ = {x ∈ M | ϕ(xx∗) = 0}) of M and denote as

xϕ
1
2 = x+N l

ϕ ∈ M/N l
ϕ (ϕ

1
2x = x+N r

ϕ ∈ M/N r
ϕ) for each x ∈ M . The left (right)

GNS-space is the completion Mϕ
1
2 (ϕ

1
2M) with respect to an inner product defined

by ⟨xϕ 1
2 , yϕ

1
2 ⟩ = ϕ(x∗y) (⟨ϕ 1

2x, ϕ
1
2y⟩ = ϕ(yx∗)) for each x, y ∈ M . The left (right)

GNS-representation is a ∗-homomorphism π :M → B(Mϕ
1
2 ) (∗-anti-homomorphism

ρ : M → B(ϕ 1
2M)) defined by π(a)xϕ

1
2 = (ax)ϕ

1
2 (ρ(a)ϕ

1
2x = ϕ

1
2 (xa)) for each

a, x ∈M .
The standard space ofM denoted by L2(M) is defined as a W ∗-M -bimodule such

that all left and right GNS-spaces are included and [ϕ]Mψ
1
2 = ϕ

1
2M [ψ] in L2(M) and

ϕ
1
2M = [ϕ]L2(M) for all ϕ, ψ ∈M+

∗ . In particular, we have ϕ
1
2M = L2(M) =Mϕ

1
2

if ϕ ∈ M+
∗ is faithful. This observation will be helpful under the assumption which

a von Neumann algebra has a faithful normal state in Section 4 and 5. Also L2(M)
has an involutive structure J : L2(M) → L2(M) called the modular conjugation
such that J(xξy) = y∗Jξx∗ for all x, y ∈M and ξ ∈ L2(M). Note that for ϕ ∈M+

∗ ,

we have J(xϕ
1
2 ) = ϕ

1
2x∗ for all x ∈ [ϕ]M [ϕ]. We refer the reader to [32, Chapter

IX], [38], [34] and [35] for details of the definition and properties of standard spaces
included in the modular theory.

Example 2.1.1. We consider the standard space of a type I factor. Let H be a
separable Hilbert space and M = B(H). The one-to-one correspondence between
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positive normal functionals on M and positive trace-class operators on H makes it
possible to identify L2(M) with C2(H). Moreover, by the correspondence H⊗H∗ ∋
ξ ⊗ η∗ 7→ ξη∗ ∈ B(H), we have M-bimodule isomorphism H ⊗ H∗ ∼= C2(H). The
standard representation of M on H⊗H∗ is defined by π(x)(ξ ⊗ η∗) = (xξ)⊗ η∗ for
each x ∈M and ξ, η ∈ H. The modular conjugation J is given by J(ξ⊗η∗) = η⊗ ξ∗
for each ξ, η ∈ H. The vector Ω =

∑∞
n=1

1
n
ξn⊗ ξ∗n is cyclic and separating for π(M),

where {ξn}∞n=1 is an orthonormal basis for H.

For a W ∗-M -N -bimodule MHN , Hom(ML
2(M),MH)◦ and Hom(L2(N)N ,HN)

have the canonical M -N -bimodule structures. For f1, f2 ∈ Hom(ML
2(M),MH)◦

and g1, g2 ∈ Hom(L2(N)N ,HN), we define ξ(f2f
∗
1 ) = (ξf2)f

∗
1 and (g∗1g2)ξ = g∗1(g2η)

for each ξ ∈ L2(M) and η ∈ L2(N). Note that f2f
∗
1 ∈ End(ML

2(M))◦ and
g∗1g2 ∈ End(L2(N)N) are elements in M and N acting from right and left, re-
spectively.
Now, we introduce relative tensor products as follows:

Definition 2.1.2. Let HN and NK be right and left W ∗-N-modules, respectively.
The left relative tensor product H ⋋M K of H and K is defined by the completion
of the tensor product Hom(L2(N)N ,HN) ⊗N K of Banach spaces with respect an
M-valued inner product

⟨f1 ⊗ η1, f2 ⊗ η2⟩ = ⟨η1, (f ∗
1 f2)η2⟩

for all f1, f2 ∈ Hom(L2(N)N ,HN), η1, η2 ∈ K. We can also define the right relative
tensor product H⋌N K by the completion of H⊗N Hom(NL

2(N),NK)◦ similarly.

For more details, see [5], [25] and [33]. WhenH is aW ∗-M -N -bimodule and K is a
W ∗-N -P -bimodule, the left and right relative tensor products H⋋M K and H⋌M K
have W ∗-M -P -bimodules structures. In Section 3, we will give an isomorphism
H⋋M K ∼= H⋌M K as W ∗-bimodules by the canonical way, and show that the two
W ∗-bicategories of W ∗-bimmodules with left and right tensor products as tensor
functors are monoidally equivalent in the sense of Definition 2.2.6.
Let MHN ,MH′

N ,NKP and NK′
P be W ∗-bimodules. For two bilinear maps f :

MHN → MH′
N and g : NKP → NK′

P , we can define M -P -linear maps f ⋋ g :

MH⋋KP → MH′ ⋋K′
P and f ⋌ g : MH⋌KP → MH′ ⋌K′

P by

(f ⋋ g)(x⊗ η) = (fx)⊗ (gη), (f ⋌ g)(ξ ⊗ y) = (fξ)⊗ (gy)

for each x ∈ Hom(L2(N)N ,HN), η ∈ K, y ∈ Hom(NL
2(N),NK)◦ and ξ ∈ H, where

gy is defined by ζ(gy) = g(ζy) for each ζ ∈ L2(N).
Now, we introduce the alternative definition of (left) lelative tensor products in[9,

Chapter 5, Appendix B] or [32, Chapter IX, Section 3]. Suppose H is a W ∗-M -
N -bimodule and K is a W ∗-N -P -bimodule. For simplicity, assume that N has a
faithful normal state ϕ. A vector ξ ∈ H is called a (left) ϕ-bounded vector if there

is c > 0 such that ∥ξx∥ ≤ c∥ϕ 1
2x∥ for all x ∈M . We denote the set of all ϕ-bounded

vectors in H by D(H;ϕ). The (left) relative tensor product H⋋N
ϕ K with respect to

ϕ is the completion D(H;ϕ)⊗alg K with respect to an inner product defined by

⟨ξ1ϕ− 1
2η1, ξ2ϕ

− 1
2η2⟩ = ⟨η1, πϕ(ξ1)∗πϕ(ξ2)η2⟩,
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for each ξ1, ξ2 ∈ D(H;ϕ) and η1, η2 ∈ K, where πϕ(ξ) : L2(N) ∋ ϕ 1
2x→ ξx ∈ H and

we usually use a notation ξϕ− 1
2η rather than ξ ⊗ η. By [32, Chapter IX, Lemma

3.3], we have an isomorphism H⋋N
ϕ K ∼= H⋋K. For relative tensor product, we will

use this definition in Section 4 and 5. Also, we can define the right relative tensor
product H ⋌N

ϕ K by right ϕ-bounded vectors. We already know the isomorphism

H⋋N
ϕ K ∼= H⋌N

ϕ K and the associativity (H⋋N
ϕ K)⋌P

ψ L ∼= H⋋N
ϕ (K⋌P

ψ L) in [32,
Chapter IX, Theorem 3.20]. However, they are not enough to show the pentagonal
identity in Definition 2.2.1.

2.2. W ∗-bicategories. For the general theory of categories and tensor categories,
see [14] and [10]. For convenience, we recall the notion of naturality as the following.
Let C and D be categories and F,G : C → D be two functors. A natural isomorphism
from F to G is a family {tC}C∈C of isomorphisms tC : F (C)→ G(C) in D such that
for all morphism f : C → C ′, the following diagram commutes.

F (C) G(C)

F (C ′) G(C ′)

tC //

F (f)

��
G(f)

��tC′ //

Definition 2.2.1. A bicategory B consists of objects A,B,C, · · · and linear cat-
egories ABB labeled by a pair (A,B) of objects A and B satisfying the following
properties.

(1) There is a bifunctor (called a tensor functor) ⊗ : ABB × BBC → ABC for each
three objects A,B and C.

(2) There is an object IA called a unit object in ABA for each abject A such that
there are natural isomorphisms {lX : IA ⊗ X → X}X∈ABB

called a left unit
isomorphism and {rX : X ⊗ IB → X}X∈ABB

called a right unit isomorphism for
each objects A and B.

(3) There is a natural isomorphism {aX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) | X ∈
ABB, Y ∈ BBC , Z ∈ CBD} called an associativity isomorphism for each objects
A,B,C and D.

(4) The isomorphisms lX , rX and aX,Y,Z satisfy the following commutativity.

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

(X ⊗ Y )⊗ (Z ⊗W )

((X ⊗ Y )⊗ Z)⊗W

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z))⊗W )

X ⊗ (Y ⊗ (Z ⊗W ))

//

��?
??

??
??

??
?

����
��
��
��
��

%%LL
LLL

LLL
LLL

L99rrrrrrrrrrrr

��
//

OO

The left commutativity is called the triangle identity and the right one is called
the pentagonal identity.

For the naturalities of {lX}, {rx} and {aX,Y,Z}, related functors are not specified
in the above definition. However it is clear, for example the left unit isomorphism
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{lX}X∈ABB
is a natural isomorphism from the functor ABB ∋ X → IA ⊗X ∈ ABB

to the identity functor on ABB.
The triangle identity implies the following lemma which will be used in Section 3.

Lemma 2.2.2. ([10, Proposition 2.2.4]) For any objects X in ABB and Y in BBC,
the following diagrams are commutative.

(IA ⊗X)⊗ Y IA ⊗ (X ⊗ Y )

X ⊗ Y

//

""D
DD

DD
DD

DD
DD

||zz
zz
zz
zz
zz
z

(X ⊗ Y )⊗ IC X ⊗ (Y ⊗ IC)

X ⊗ Y

//

""D
DD

DD
DD

DD
DD

||zz
zz
zz
zz
zz
z

Remark 2.2.3. Any bicategory satisfies the coherence theorem in the following
sense. For m,n ∈ N, if X, Y ∈ ABB are objects given by tensor products of com-
posable m and n objects with any order of parentheses, and f1, f2 : X → Y are
isomorphisms given by products of the left and right isomorphisms and the associa-
tivity isomorphisms and their inverses, then we have f1 = f2. The above lemma is
a special case of the coherence.

We shall give the formal definition of W ∗-bicategories.

Definition 2.2.4. A linear category C is called a C∗-category if there is an antilinear
contravariant functor ∗ : C → C preserving any objects, for every objects X and Y ,
the space Hom(X,Y ) of morphisms from X to Y is a Banach space satisfying the
following properties.

(1) For every x ∈ Hom(X,Y ), x∗x is a positive element in Hom(X,X) and we have
∥x∥2 = ∥x∗x∥.

(2) For every x ∈ Hom(Y, Z) and y ∈ Hom(X,Y ), we have ∥xy∥ ≤ ∥x∥∥y∥.
We require functors between C∗-categories to be ∗-preserving and natural isomor-
phisms between such functors to consist of unitaries.
If each Hom(X, Y ) is the dual of a Banach space, C is called W ∗-categories.
A C∗-bicategory (W ∗-bicategory) is a bicategories consisting of C∗-category (W ∗-

categories) such that the left and the right unit isomorphisms and the associativity
isomorphism consist of unitaries.

Example 2.2.5. (1) The category whose objects are Hilbert spaces and a morphism
is a bounded operator, is a W ∗-categories.

(2) Let M be a von Neumann algebra. The category whose objects are projections in
M and a morphism from a projection p to a projection q is qxp for some x ∈M ,
is a W ∗-category.

An involutive W ∗-bicategory is a W ∗-bicategory B equipped with a family of
contravariant functors denoted by

ABB ∋ X 7→ X∗ ∈ BBA, Hom(X,Y ) ∋ f 7→ tf ∈ Hom(Y ∗, X∗),

a natural unitary isomorphisms {cX,Y : Y ∗⊗X∗ → (X⊗Y )∗ | X ∈ ABB, Y ∈ BBC}
and {dX : X → (X∗)∗}X∈ABB

satisfying tdX = d−1
X∗ for all object X ∈ ABB, t(f ∗) =
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(tf)∗ for all f ∈ Hom(X, Y ) and the following commutativities.

((X ⊗ Y )⊗ Z)∗ (X ⊗ (Y ⊗ Z))∗

(Y ⊗ Z)∗ ⊗X∗

(Z∗ ⊗ Y ∗)⊗X∗

Z∗ ⊗ (X ⊗ Y )∗

Z∗ ⊗ (Y ∗ ⊗X∗)

��

//

//

��

��

��

X ⊗ Y X∗∗ ⊗ Y ∗∗

(X ⊗ Y )∗∗ (Y ∗ ⊗X∗)∗

//

�� ��
//

The left and right diagrams are called the hexagon identity and the square identity,
respectively. The triple (∗, {cX,Y }, {dX}) is called a unitary involution on B. For
involutions on tensor categories, see [36].
Finally, we shall provide the notion of monoidal equivalence between two (in-

volutive) W ∗-bicategories with same objects by the identify functor. The following
definition is a special case of the general definition of ( involutionally and ) monoidal
equivalences, however it is enough for the aims in Section 3.

Definition 2.2.6. Two W ∗-bicategories B = ({A}, {ABB}, {⊗A,B,C}, {aX,Y,Z}) and
B′ = ({A}, {ABB}, {⊗′

A,B,C}, {a′X,Y,X}) are said to be monoidally equivalent if for
each objects A,B and C, there is a natural unitary isomorphism {mX,Y : X ⊗ Y →
X ⊗′ Y | X ∈ ABB, Y ∈ BBC} such that the following diagram commutes for every
composable objects X,Y and Z.

(X ⊗ Y )⊗ Z (X ⊗′ Y )⊗ Z (X ⊗′ Y )⊗′ Z

X ⊗ (Y ⊗ Z) X ⊗ (Y ⊗′ Z) X ⊗′ (Y ⊗′ Z)

mX,Y ⊗idZ //
mX⊗′Y,Z //

a′X,Y,Z

��

aX,Y,Z

�� idX⊗mY,Z //
mX,Y ⊗′Z //

In addition, suppose B and B′ have unitary involutions {cX,Y } and {c′X,Y }, respec-
tively. If the following diagram commutes for all composable objects X and Y , then B
and B′ are said to be involutionally and monoidal equivalent with respect to {mX,Y }.

Y ∗ ⊗X∗ (X ⊗ Y )∗

Y ∗ ⊗′ X∗ (X ⊗′ Y )∗

cX,Y //

mY ∗,X∗

�� c′X,Y //

tmX,Y

OO

2.3. Hilbert bimodules. We refer the reader to [12] for the general theory of
Hilbert modules. For a von Neumann algebra M , a Hilbert M -module E is a right
M -module with an M -valued inner product such that ⟨X,Y x⟩ = ⟨X, Y ⟩x for all
X, Y ∈ E and x ∈ M , and E is complete with respect to a norm defined by
∥X∥ =

√
∥⟨X,X⟩∥. For Hilbert M -module E and F , a bounded right module

homomorphism b : E → F is said to be adjointable if there is a bounded right
module homomorphism b∗ : F → E satisfying ⟨X, bY ⟩ = ⟨b∗X, Y ⟩ for all Y ∈ E and
X ∈ F . We denote the set of all adjointable bounded right module homomorphisms
from E to F by Ba(E,F ). We write a C∗-algebra Ba(E,E) by Ba(E). If there is a
surjection u ∈ Ba(E,F ) preserving the inner products (that is, unitary), E and F
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are said to be isomorphic as Hilbert M -modules. For another von Neumann algebra
N , when there is a ∗-homomorphism j : N → Ba(E), E is called a Hilbert N -M -
bimodule or a C∗-correspondence from N to M . We assume that the unit of N acts
as a unit on E. (This means the non-degeneracy.)
Now, we discuss some tensor products related with Hilbert modules. In this

process, we will define a von Neumann modules as a complete Hilbert module with
respect to a suitable topology.

Definition 2.3.1. For a Hilbert N-M-bimodule E and a Hilbert M-P -bimodule F ,
the tensor product E ⊙M F of E and F over M is a Hilbert N-P -bimodule given by
the completion of the algebraic tensor product E ⊗alg F with respect to a P -valued
sesquilinear form defined by

⟨X ⊗ Y,X ′ ⊗ Y ′⟩ = ⟨Y, ⟨X,X ′⟩Y ′⟩
for each X,X ′ ∈ E and Y, Y ′ ∈ F . (Precisely, we take the completion of a quotient
space E ⊗alg F/N , where N = {Z ∈ E ⊗alg F | ⟨Z,Z⟩ = 0}. We often omit this
argument when we define new tensor products.)

Note that the tensor product of Hilbert bimodules is associative.
Let M be a von Neumann algebra acting on a Hilbert space H and E be a

Hilbert M -module. Then H and E are a Hilbert M -C-bimodule and a Hilbert C-
M -bimodule, respectively, and hence we can define the tensor product E ⊙M H as
Hilbert bimodules. We can regard E as a rightM -submodule of B(H, E⊙MH) by an
embedding LX : H ∋ ξ 7→ X⊗ξ ∈ E⊙MH for each X ∈ E. If E ⊂ B(H, E⊙MH) is
closed with respect to the strong operator topology, E is called a von Neumann M -
module. Suppose N is another von Neumann algebra. A von Neumann M -module
E is called a von Neumann N -M -bimodule if E is a Hilbert N -M -bimodule, and a
map ρ : N → B(E ⊙M H) defined by

ρ(x)(ξ ⊗ h) = xξ ⊗ h (x ∈ N ξ ∈ E, h ∈ H)
is normal.

Example 2.3.2. A C∗-algebra A and a von Neumann algebra M are a Hilbert
A-bimodule and a von Neumann M-bimodule, respectively by the canonical inner
product ⟨x, y⟩ = x∗y. For a right W ∗-M-module, the space Hom(L2(M)M ,HM) is a
von Neumann M-module.

For a von Neumann M -N -bimodule E and a von Neumann N -P -bimodule F ,
the strong closure denoted by E ⊗N F of E ⊙N F via the above argument is a von
Neumann M -P -bimodule.
Like von Neumann algebras, von Neumann modules are also characterized by

self-duality, see [18] and [26].
We define the tensor product of Hilbert modules with respect to a UCP-map T

whose inner products have information for T , like GNS-representation of C∗-algebra
A with respect to a positive functional ϕ on A.

Definition 2.3.3. Suppose M is a von Neumann algebra acting on a Hilbert space
H and T : M → M is a normal unital completely positive map (UCP-map). We
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define a Hilbert M-M-bimodule ET by the completion of algebraic tensor product
M ⊗alg M with respect to an M-valued sesquilinear form defined by

⟨x⊗ y, x′ ⊗ y′⟩T = y∗T (x∗x′)y′

for each a, a′, b, b′ ∈ M . The left and right actions are defined naturally. If we
write the image of 1M ⊗ 1M in ET by ZT , then span(MZTM) is dense in ET and
T (x) = ⟨ZT , xZT ⟩ holds for all x ∈ M . We call the couple (ET , ZT ) the GNS-
representation with respect to T .

Note that the strong closure ET in B(H, ET ⊗M H) is a von Neumann M -M -
bimodule. The following tensor product will be helpful for the construction of
minimal dilation by Muhly-Solel in Subsection 4.1 and the construction of relative
product systems from CP0-semigroups in Subsection 4.3 and Section 5.

Definition 2.3.4. Suppose M is a von Neumann algebra acting on a Hilbert space
H and T : M → M is a normal unital completely positive map (UCP-map) The
tensor product M ⊗T H of M and H with respect to T is defined as a Hilbert space
given by the completion of the algebraic tensor product M ⊗alg H with respect to a
sesquilinear form defined by

⟨x⊗ ξ, y ⊗ η⟩ = ⟨ξ, T (x∗y)η⟩

for each x, y ∈ M and ξ, η ∈ H. M ⊗T H has a left W ∗-M-module structure by
a(x⊗ ξ) = (ax)⊗ ξ for all a, x ∈M and ξ ∈ H.

Finally, we see a relation between the above tensor products and the GNS-
representations:

Proposition 2.3.5. Let T be a normal UCP-map on a von Neumann algebraM and
H a left W ∗-M-module. Then we have ET ⊗M H ∼= M ⊗T H as left W ∗-M-modules.

Proof. We can define a leftM -module map u : ET⊗MH →M⊗TH by u((x⊗y)⊗ξ) =
x⊗ yξ for each x, y ∈M and ξ ∈ H. Then we have

⟨u((x1 ⊗ y1)⊗ ξ1), u((x2 ⊗ y2)⊗ ξ2)⟩ = ⟨x1 ⊗ y1ξ1, x2 ⊗ y2ξ2⟩
= ⟨y1ξ1, T (x∗1x2)y2ξ2⟩
= ⟨ξ1, ⟨x⊗ y1, x2 ⊗ y2⟩T ξ2⟩
= ⟨(x1 ⊗ y1)⊗ ξ1, (x2 ⊗ y2)⊗ ξ2⟩,

and hence it is a unitary. 2

2.4. CP0-semigroups, E0-semigroups and Arveson’s product systems. In
this subsection, we provide the basic notion related with CP0-semigroups and E0-
semigroups. Also, we simply explain Arveson’s classification of E0-semigroups on
type I factors by his product systems.
We provide the formal definitions of CP0-semigroups and E0-semigroups as the

following. A family T = {Tt}t≥0 of normal UCP-maps Tt on a von Neumann al-
gebra M is called a CP0-semigroup if T0 = idM , TsTt = Ts+t for all s, t ≥ 0, and
for every x ∈ M and ϕ ∈ M∗, the function ϕ(Tt(x)) on [0,∞) is continuous. If
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each Tt is a ∗-homomorphism, T is called an E0-semigroup. A CP0-semigroup (E0-
semigroup) without the continuity is called an algebraic CP0-semigroup (algebraic
E0-semigroup, respectively).

Example 2.4.1. Let {vt}t≥0 be a family of isometries vt in a von Neumann algebra
M such that vs+t = vsvt for all s, t ≥ 0 and v0 = 1M . Suppose {vt}t≥0 is strongly
continuous with respect to the parameter. If we define T = {Tt}t≥0 by Tt(x) = v∗t xvt
for each x ∈ M and t ≥ 0, then T is a CP0-semigroup. If each vt is unitary, T is
an E0-semigroup.

Example 2.4.2. The CCR heat flow is a CP0-semigroup T which has the noncom-
mutative Laplacian ∆ as generators. This will be immediately and concretely defined
by the Weyl system. For more details, see [4, Section 7].
Let H = L2(R) and M = B(H). For x = (x, y) ∈ R2, the concrete Weyl op-

erator is Wx = exp(xy
2
i)UxVy, where {Ux}x∈R and {Vx}x∈R are the unitary groups

which have the position operator Q and the momentum operator P as generators,
respectively, i.e.

(Utf)(x) = eitxf(x), (Vtf)(x) = f(x+ t)

for f ∈ L2(R) and t, x ∈ R. Then the family {Wx}x∈R2 of the unitaries satisfies the
Weyl relations

Wx1Wx2 = exp

(
i

2
(x2y2 − x1y2)

)
Wx1+x2(2.1)

for x1 = (x1, y1),x2 = (x2, y2) ∈ R2. The CCR heat flow is defined as the unique
CP0-semigroup T = {Tt}t≥0 on M satisfying Tt(Wx) = exp(−t∥x∥2)Wx for all
x ∈ R2 and t ≥ 0. More precisely, we define Tt for t ≥ 0 by a weak integral

Tt(x) =

∫
R2

W x√
2
xW ∗

x√
2
dµt(x)

for each x ∈ M , where µt is the probability measure whose Fourier transformation
is ut(x) = exp(−t∥x∥2).

According to Stinespring’s dilation theorem, for a UCP-map T from a C∗-algebra
A into B(H), there exist a Hilbert space K, a unital representation of A on K
and an isometry v : H → K such that T (a) = v∗π(a)v for all a ∈ A. However,
Stinespring’s theorem does not apply to CP0-semigroup. The notion of dilation of
CP0-semigroups are introduced as the following.

Definition 2.4.3. Let T = {Tt}t≥0 be a CP0-semigroup on a von Neumann algebra
M . A dilation of T consists of a von Neumann algebra N , a projection p ∈ N
and an E0-semigroup {θt}t≥0 on N such that M = pNp and Tt(x) = pθt(x)p for
all x ∈ M and t ≥ 0. In addition, if N is generated by θ[0,∞)(M) and the central
support of p in N is 1N , the dilation is said to be minimal.

Note that a minimal dilation of a CP0-semigroup is unique (if it exists). The
existence of minimal dilations is proved by Bhat-Skeide and Muhly-solel which we
recall in Subsection 4.1. In Subsection 4.4, a relation between the two constructions
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will be clarified. Arveson also constructed the minimal dilation by other approach
in [4] (or [3]).
The notion of cocycle for E0-semigroups is introduced as the following, and the

notion is useful for the classification of E0-semigroups.

Definition 2.4.4. Let θ = {θt}t≥0 be an E0-semigroup on a von Neumann algebra
M . A family w = {wt}t≥0 ⊂ M is called a right cocycle for θ if ws+t = θt(ws)wt
for all s, t ≥ 0. If each wt is unitary (contractive), then w is called a right unitary
(contractive, respectively) cocycle.
Two E0-semigroups θ = {θt}t≥0 and θ′ = {θ′t}t≥0 on M are said to be cocycle

equivalent if there is a strongly continuous right unitary cocycle w = {wt}t≥0 such
that θ′t(x) = w∗

t θt(x)wt for all t ≥ 0 and x ∈ M . Then θ′ is called a cocycle
perturbation of θ with respect to w.

Definition 2.4.5. Let θ and θ′ be E0-semigroups on von Neumann algebras M and
N , respectively. If there is a ∗-isomorphism α : M → N such that θ′t ◦ α = α ◦ θt
for all t ≥ 0, then θ and θ′ are said to be conjugate. If θ′ is conjugate to a cocycle
perturbation of θ, then θ and θ′ are said to be cocycle conjugate.

Example 2.4.6. We give an example of two E0-semigroups which are conjugate
in [16, Example 3.11]. Let M = B(H) with a separable Hilbert space H. The
standard space L2(M) of M is H ⊗ H∗. We use the notations in Example 2.1.1.

Let θ be an E0-semigroup on M and θ̃ the conjugate E0-semigroup π ◦ θ ◦ π−1 on
π(M). For x ∈ B(H), let x be the operator on H∗ defined by x(ξ∗) = (xξ)∗, and

θ the E0-semigroup defined on B(H∗) by θt(x) = θt(x) for each t ≥ 0 and x ∈ M .

Margetts-Srinivasan[15] introduced the dual E0-semigroup θ̃J on π(M)′ ⊂ B(H⊗H∗)
by

θ̃Jt (x
′) = Jθ̃t(Jx

′J)J

for each t ≥ 0 and x′ ∈ π(M)′. Then θ̃J is conjugate to θ via an ∗-isomorphism:
B(H∗) ∋ x 7→ 1M ⊗ x ∈ π(M)′.

Arveson[2] classified E0-semigroups on type I factors up to cocycle congugacy by
his product systems. We introduce a product system in the sense of Arveson as the
follows:

Definition 2.4.7. Let H⊗ = {Ht}t>0 be a family of separable Hilbert spaces Ht. If
there is a unitary Us,t : Hs⊗Ht → Hs+t for each s, t > 0 satisfying the associativity

Ur,s+t(idHr ⊗ Us,t) = Ur+s,t(Ur,s ⊗ idHt)

for all r, s, t ≥ 0. Then the pair (H⊗, {Us,t}s,t>0) is called a product system.

Note that we require a product system of a measurable structure in the original
definition by Arveson. For more details, see [4] or [13]. We call such a product sys-
tem a continuous product system. We will introduce the notion of product system
of Hilbert bimodules (Bhat-Skeide’s product system) and the one of relative product
system in Section 4, however we will not consider their measurable structures. In-
deed, the construction of minimal dilations and the classification of E0-semigroups
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do not require measurable structures of Bhat-Skeide’s product systems and relative
ones.
For E0-semigroup θ = {θt}t≥0 on B(H) with a separable Hilbert space H, Arveson

associated with the (continuous) product system Eθ⊗ = {Eθt }t>0 by

Eθt = {x ∈ B(H) | θt(a)x = xa (∀a ∈ B(H))}
equipped with the inner product defined by ⟨x, y⟩ = x∗y ∈ B(H)′ = C1B(H) for each
x, y ∈ Eθt . He showed that two E0-semigroup θ on B(H) and θ′ on B(K) are cocycle
conjugate if and only if the associated product systems Eθ⊗ and Eθ′⊗ are isomorphic
([4, Theorem 2.4.10]). Now, units of product systems are defined as the following.

Definition 2.4.8. A unit of a (continuous) product system (H⊗, {Us,t}s,t>0) is a
(measurable) family {ξ(t)}t>0 of ξ(t) ∈ Ht for each t > 0 satisfying

ξs+t = Us,t(ξ(s)⊗ ξ(t))
for all s, t > 0. We denote the set of all units of H⊗ by U(H⊗).

The notion of unit gives the index invariant of E0-semigroups on type I factors
(see [4, Section 2.5]). Let θ be an E0-semigroup on B(H). We can define a Hilbert
space structure on H(Eθ) of all functions f : U(Eθ⊗) → C that are finitely nonzero
and sum to zero. The index of θ is defined by ind(θ) = dimH(Eθ) if U(Eθ⊗) ̸= ∅
and ind(θ) = 2ℵ0 if U(Eθ⊗) = ∅. The index is a numerical invariant for cocycle
conjugacy: if θ and θ′ are cocycle conjugate, then we have ind(θ) = ind(θ′).
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3. W ∗-bicategories of W ∗-bimodules

In this section, we discuss the results in [24]. We will show that two W ∗-
bicategoriesM⋋ andM⋌ of W ∗-bimodules with left and right relative tensor prod-
uct as tensor functors, respectively, are monoidally equivalent in Subsection 3.1.
In Subsection 3.2, we will define unitary involutions on M⋋ and M⋌, and show
that they are also involutionally and monoidally equivalent. We will use notations
A,B,C · · · for W ∗-algebras and X,Y, Z, · · · for W ∗-bimodules in accordance with
Subsection 2.2.
Before we constructM⋋ andM⋌, we recall matrix extensions in [34] and Dixmier’s

structure theorem on homomorphisms between von Neumann algebras. Let A be a
W ∗-algebra, and I and J index sets. A matrix extension of A is defined by

MI,J(A) = Hom(l2(J)⊗ L2(A)A, l
2(I)⊗ L2(A)A).

In particular, MI(A) =MI,I(A) is a von Neumann algebra acting on l2(I)⊗L2(A).
MI,J(A) can be identified with a subspace of AI×J = {(xi,j) | i ∈ I, j ∈ J, xi,j ∈ A},
and it has a dense subspace of (xi,j) such that xi,j = 0 except for finite numbers
of i ∈ I and j ∈ J in the strong operator topology. For a W ∗-bimodule AXB, we
define a matrix extension of X by

IXJ =

{
(ξi,j) | i ∈ I, j ∈ J, ξi,j ∈ X,

∑
i∈I,j∈J

∥ξi,j∥2 <∞

}
which is a W ∗-MI(A)-MJ(B)-bimodule. If I or J is any singleton, we denote IXJ

by XJ or IX, respectively.
Dixmier’s theorem asserts the following projective module realization (see [31]).

For W ∗-A-B-bimodule X, there exist an index set I and a projection p ∈ MI(A)
such that X ∼= L2(A)Ip as left W ∗-modules, and there is a normal homomorphism
B → End(AL

2(A)Ip)◦ ∼= pMI(A)p. It is also similar as right W ∗-modules.
We shall define two W ∗-bicategories M⋋ and M⋌. Of course, their objects are

W ∗-algebras, and for W ∗-algebra A and B, both of W ∗-categories AM⋋
B and AM⋌

B

is the W ∗-categories of W ∗-A-B-bimodules. Suppose AM⋋
B and AM⋌

B have tensor
functor ⋋ and ⋌, respectively. For W ∗-A-B-bimodule AXB, unit isomorphisms
l⋋X , r

⋋
X in AM⋋

B and l⋌X , r
⋌
X in AM⋌

B are defined by

l⋋X(a⊗ ξ) = aξ, r⋋X(x⊗ β) = yβ, l⋌X(α⊗ x) = αx, r⋌X(ξ ⊗ b) = ξb.

for each a ∈ A, b ∈ B, α ∈ L2(A), β ∈ L2(B), x ∈ Hom(AL
2(A), AX)◦, y ∈

Hom(L2(B)B, XB) and ξ ∈ X. Let AXB, BYC and CZD be W ∗-bimodules. Note
that the following projective module realizations imply that

Hom(L2(B)B, XB)⊗B Hom(L2(C)C , YC)⊗C Z ⊂ X ⋋ (Y ⋋ Z),

X ⊗B Hom(BL
2(B), BY )◦ ⊗C Hom(CL

2(C), CZ)
◦ ⊂ X ⋌ (Y ⋌ Z)

are dense. Hence, we can define associativity isomorphisms a⋋X,Y,Z in AM⋋
B and

a⋌X,Y,Z in AM⋌
B by

a⋋X,Y,Z((x⊗ y)⊗ ζ) = x⊗ (y ⊗ ζ), a⋌X,Y,Z((ξ ⊗ z)⊗ w) = ξ ⊗ (z ⊗ w)
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for each x ∈ Hom(L2(B)B, XB), y ∈ Hom(L2(C)C , YC), ζ ∈ Z, ξ ∈ X, z ∈
Hom(BL

2(B), BY )◦ and w ∈ Hom(CL
2(C), CZ)

◦.
We can check that the unit isomorphism {l⋋X}, {r⋋X} and the associativity iso-

morphism {a⋋X,Y,Z} in M⋋ satisfy the triangle and the pentagonal identity by the

definitions, and similarly forM⋌.

3.1. Monoidal equivalence. In this subsection, we shall construct a natural uni-
tary isomorphism {mX,Y : X ⋋ Y → X ⋌ Y } giving a monoidal equivalence in the
sense of Definition 2.2.6 by the explicit and canonical way.
Let AXB and BYC be W ∗-bimodules. Suppose u : X → pIL2(B) and v : Y →

L2(B)Jq are B-linear unitaries for some index sets I and J and projections p ∈
MI(B) and q ∈MJ(B). Note that (IL2(B))⋋(L2(B)J) and (IL2(B))⋌(L2(B)J) can
be identified with I(L2(B)⋋L2(B))J and I(L2(B)⋌L2(B))J , respectively. Thus, the
unit isomorphisms l⋋ = r⋋ : L2(B)⋋L2(B)→ L2(B) and l⋌ = r⋌ : L2(B)⋌L2(B)→
L2(B) induce MI(B)-MJ(B)-linear unitaries

m2 : (IL2(B))2(L2(B)J) ∼= I(L2(B)2L2(B))J → IL2(B)J ,

where 2 is ⋋ or ⋌. We define an MI(B)-MJ(B)-linear unitary ImJ = (m⋌)
∗m⋋ :

(IL2(B))⋋ (L2(B)J)→ (IL2(B))⋌ (L2(B)J).

Definition 3.1.1. We define a unitary mX,Y : X ⋋ Y → X ⋌ Y by the following
diagram.

X ⋋ Y (pIL2(B))⋋ (L2(B)Jq) = p((IL2(B))⋋ (L2(B)J))q

X ⋌ Y ((pIL2(B))⋌ (L2(B)Jq) = p((IL2(B))⋌ (L2(B)J))q

u⋋v //

mX,Y

��

ImJ

��u⋌v //

Since ImJ is MI(B)-MJ(B)-linear and we have the isomorphisms

End(pIL2(B)B) ∼= pMI(B)p, End(BL
2(B)Jq)◦ ∼= qMJ(B)q,

mX,Y is A-C-linear. The naturalities of {mX,Y } is then reduced to those of the left
and the right unit isomorphisms.

Theorem 3.1.2. The W ∗-bicategoriesM⋋ andM⋌ are monoidally equivalent.

Proof. For a W ∗-A-B-bimodule X, by the definitions of mL2(A),X and mX,L2(A), the
following diagrams commute.

L2(A)⋋X L2(A)⋌X

X

mL2(A),X //

l⋋X
��?

??
??

??
??

??
??

?

l⋌X
����
��
��
��
��
��
��

, X ⋋ L2(B) X ⋌ L2(B)

X

mX,L2(B) //

r⋋X
��?

??
??

??
??

??
??

?

r⋌X
����
��
��
��
��
��
��

.(3.1)

Let AXB, BYC and CZD be W ∗-bimodules. We shall check that the hexagonal
diagram in Definition 2.2.6 commutes. It is enough to show it in the case when
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X = L2(B) and Z = L2(C) by projective module realizations. For simplicity, we
put IB = L2(B) and IC = L2(C). We consider the following diagram.

(IB ⋋ Y )⋋ IC

IB ⋋ (Y ⋋ IC) IB ⋋ (Y ⋌ IC) IB ⋌ (Y ⋌ IC),

(IB ⋌ Y )⋋ IC (IB ⋌ Y )⋌ IC

IB ⋋ Y IB ⋌ Y

Y ⋌ ICY ⋋ IC

Y

1⃝
2⃝

2⃝

3⃝

3⃝

1⃝
2⃝

2⃝

3⃝

3⃝

//

����
////

//

//%%LL
LLL

LLL
LLL

LL

99rrrrrrrrrrrrr

%%LL
LLL

LLL
LLL

LL

99rrrrrrrrrrrrr

yyrrr
rrr

rrr
rrr

r

eeLLLLLLLLLLLLL

DD����������������������

55llllllllllll //

iiRRRRRRRRRRRR

))RR
RRR

RRR
RRR

R ZZ6666666666666666666666

uullll
lll

lll
ll

The diagrams around 1⃝ commute by the triangle identity of the unit isomorphisms
of Lemma 2.2.2, 2⃝ commute by the naturalities of the unit isomorphisms and 3⃝
commute by (3.1). 2

3.2. Unitary involutions and involutionally equivalence. In this subsection,
we define unitary involutions onM⋋ andM⋌, and show that they are involution-
ally and monoidally equivalent with respect to the natural unitary isomorphism
{mX,Y }X,Y which was constructed in Subsection 3.1.
For a W ∗-A-B-bimodule X, the dual Hilbert space X∗ has the canonical W ∗-B-

A-bimodule structure: bξ∗a = (a∗ξb∗)∗ for each a ∈ A, b ∈ B and ξ ∈ X, where
the notation ξ∗ means the linear functional ξ∗ : X ∋ η 7→ ⟨ξ, η⟩. We can take
the transpose tf : Y ∗ → X∗ for each A-B-linear map f from AXB to AYB, more
precisely tf is defined by (tfη∗)(ξ) = ⟨η, fξ⟩ for each ξ ∈ X and η ∈ Y . The
operation gives a contravariant functor AMB → BMA. It is well known that (X∗)∗

can be identified with X by the canonical isomorphism dX : X ∋ ξ 7→ (ξ∗)∗ ∈ (X∗)∗

satisfying tdX = d−1
X∗ . Note that the family {dX}X is natural.

Now, we shall define natural unitary isomorphisms {c2X,Y : Y ∗2X∗ → (X2Y )∗}X,Y ,
where2 is⋋ or⋌. FixW ∗-bimodules AXB and BYC . For each x ∈ Hom(L2(B)B, XB),
we define a conjugation x ∈ Hom(BL

2(B), BX
∗) of x by x(β) = (x(Jβ))∗ for each

β ∈ L2(B), where J is the modular conjugation. We denote x regarded as in
Hom(BL

2(B), BX
∗)◦ by ΨX(x). Then ΨX : Hom(L2(B)B, XB)→ Hom(BL

2(B), BX
∗)◦

is an isometric isomorphism satisfying

ΨX(axb) = b∗ΨX(x)a
∗, x∗x′ = ΨX(x

′)ΨX(x)
∗(3.2)

for all x, x′ ∈ Hom(L2(B)B, XB), a ∈ A and b ∈ B.

Proposition 3.2.1. We define cX,Y : Y ∗ ⋌ X∗ ∋ η ⊗ Ψ(x) 7→ (x ⊗ η)∗ ∈ (X ⋋
Y )∗. Then {cX,Y }X,Y is a unitary satisfying the following commutativity for all
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W ∗-bimodules AXB, BYC and CZD.

(Z∗ ⋌ Y ∗)⋌X∗ (Y ⋋ Z)∗ ⋌X∗ (X ⋋ (Y ⋋ Z))∗

Z∗ ⋌ (Y ∗ ⋌X∗) Z∗ ⋌ (X ⋋ Y )∗ ((X ⋋ Y )⋋ Z)∗

cY,Z⋌idX∗
//

cX,Y ⋋Z //

ta⋋X,Y,Z

��

a⋌
Z∗,Y ∗,X∗

�� idZ∗⋌cX,Y //
cX⋋Y,Z //

Proof. The property (3.2) implies an equality ∥η∗ ⊗ ΨX(x)∥ = ∥x ⊗ η∥. Also, the
morphism cX,Y has a dense range of vectors of the form η∗⊗ΨX(x), and hence cX,Y
is a unitary.
For every x ∈ Hom(L2(B)B, XB) and y ∈ Hom(L2(C)C , XC), we have

ΨX⋋Y (x⊗ y) = cX,Y (ΨY (y)⊗ΨX(x)),

because we have

γ(cX,Y (ΨY (y)⊗ΨX(x))) = cX,Y (γΨY (y)⊗ΨX(x)) = cX,Y ((y(Jγ))
∗ ⊗ΨX(x))

= ((x⊗ y)(Jγ))∗ = γΨX⋋Y (x⊗ y)

for all γ ∈ L2(C). Thus, we have the following commutative diagram.

(ζ∗ ⊗ΨY (y))⊗ΨX(x) (y ⊗ ζ)∗ ⊗ΨX(x) (x⊗ (y ⊗ ζ))∗

ζ∗ ⊗ (ΨY (y)⊗ΨX(x)) ζ∗ ⊗Ψ⋋Y (x⊗ y) ((x⊗ y)⊗ ζ)∗

cY,Z⋌idX∗
//

cX,Y ⋋Z //

ta⋋X,Y,Z

��

a⋌
Z∗,Y ∗,X∗

�� idZ∗⋌cX,Y //
cX⋋Y,Z //

for all ζ∗ ∈ Z∗, x ∈ Hom(L2(B)B, XB) and y ∈ Hom(L2(C)C , XC). By the surjec-
tivity of Ψ, the proof is completed. 2

Definition 3.2.2. We define natural unitary isomorphisms {c⋌X,Y }X,Y and {c⋋X,Y }X,Y
by

c⋌X,Y = tm−1
X,Y cX,Y : Y ∗ ⋌X∗ → (X ⋌ Y )∗,

c⋋X,Y = cX,YmY ∗,X∗ : Y ∗ ⋋X∗ → (X ⋋ Y )∗

for each W ∗-bimodules AXB and BYC.

Theorem 3.2.3. The triples (∗, {c⋋X,Y }X,Y , {dX}X) and (∗, {c⋌X,Y }X,Y , {dX}X) are

involutions onM⋋ andM⋌, respectively, and they are involutionally and monoidally
equivalent with respect to {mX,Y }X,Y .

Proof. We shall consider {c⋌X,Y }X,Y . By Proposition 3.2.1, it satisfies the hexagon
identity. We shall show the square identity. Let AXB and BYC be W ∗-bimodules
and u : pIL2(B) → X a projective module realization as right B-modules. By the
canonical isomorphism L2(B)∗ ∼= L2(B), we can get a left B-linear unitary v : X∗ →
L2(B)Ip. Note that for η∗ ∈ Y ∗, bi ∈ B, β ∈ L2(B) and y ∈ Hom(BL

2(B), BY )◦,
we can define unitaries by

Y ∗ ⋌ L2(B)Ip ∋ η∗ ⊗ (b∗i )p 7→ (p(bi)⊗ η)∗ ∈ (pIL2(B)⋋ Y )∗,

(pIL2(B)⋋ Y )∗ ∋ (p(bi)⊗ η)∗ 7→ (p(βi ⊗ y))∗ ∈ (pI(L2(B)⋌ Y ))∗
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under the relation p(biη) = p(βiy), where (bi) and (b∗i ) are a column and a row
vector, respectively. Also assume that other notations ( ·i ) will be used as row or
column vectors as products of matrices and vectors are compatible. Then by the
naturalities of cX,Y and mX,Y , the following diagram commutes.

Y ∗ ⋌X∗ (X ⋋ Y )∗ (X ⋌ Y )∗

Y ∗ ⋌ L2(B)Ip (pIL2(B)⋋ Y )∗ (p(IL2(B)⋌ Y ))∗

cX,Y //
tmX,Y

oo

��
idY ∗⋌v
��

// //

t(u⋋idY )

��

Then cX,Y is specified as the following diagram with the bottom arrow given by
η∗⊗ (b∗i )p =

(∑
iΨ

−1
Y ∗(y)(Jβi)⊗ δi

)
p 7→ (p(βi)⊗ y), where we identify (Y ∗)∗ with Y

via dY and δi = (0, · · · , 0, 1B, 0 · · · ) is the canonical row vector whose i-th component
is 1B.

Y ∗ ⋌X∗ (X ⋌ Y )∗

Y ∗ ⋌ L2(B)Ip (pIL2(B)⋌ Y )∗

c⋌X,Y //

idY ∗⋌v
��

t(u⋌idY )

��
//

(3.3)

Similarly, we have also the following commutativity forW ∗-bimodules BZA and CWB

with a projective module realization Z ∼= L2(B)Jq.

Z∗ ⋌W ∗ (W ⋌ Z)∗

qJL2(B)⋌W ∗ (W ⋌ L2(B)Iq)∗

//

�� ��
//

(3.4)

Here, the bottom arrow is given by

(3.5)

qJL2(B)⋌W ∗ ∋ q(βj)⊗ΨW (w) 7→

((∑
j

w(Jβj)⊗ δj

)
q

)∗

∈ (W ⋌ L2(B)Iq)∗

for βj ∈ L2(B) and w ∈ Hom(L2(B)B,WB).
Put Z = X∗ and W = Y ∗. For βi ∈ L2(B) and y ∈ Hom(BL

2(B), BY ), by (3.5),
we have

p(βj)⊗ y p(βj)⊗ dY y

(p(βj)⊗ y)∗∗ ((
∑

iΨ
−1
Y ∗(dY y)(Jβi)⊗ δi)p)∗,

id⋌dY //

d

��
c⋌

��tc⋌ //

and hence the following commutative diagram.

pIL2(B)⋌ Y pIL2(B)⋌ Y ∗∗

(pIL2(B)⋌ Y )∗∗ (Y ∗ ⋌ L2(B)Ip)∗

id⋌dY //

d

��
c⋌

��tc⋌ //

(3.6)



W ∗-BIMODULES AND THE DILATION THEORY RELATED TO PRODUCT SYSTEMS 25

Here, note that the isomorphisms (pIL2(B))∗∗ ∼= pIL2(B) and (pIL2(B))∗ ∼= L2(B)Ip.
Now, we consider the following diagram.

X ⋌ Y X∗∗ ⋌ Y ∗∗

(X ⋌ Y )∗∗ (Y ∗ ⋌X∗)∗

pIL2(B)⋌ Y pIL2(B)⋌ Y ∗∗

(pIL2(B)⋌ Y )∗ (Y ∗ ⋌ L2(B)Ip)∗

//

�� ��
//

''PP
PPP

PPP
PPP

//

��
//

77nnnnnnnnnnn

77nnnnnnnnnnn

��
ggPPPPPPPPPPP

The left diagram commutes by the naturality of d, the top one commutes by the
definition, the bottom one commutes by (3.3), the right one commutes by (3.4) and
the central one commutes by (3.6).
We have shown thatM⋌ is an involutiveW ∗-bicategory with a unitary involution

(∗, {c⋌X,Y }X,Y , {dX}X). By similar arguments, it can be proved for the case ofM⋋.

By the definition of {c⋋X,Y } and {c⋌X,Y }, the square diagram in Definition 2.2.6
commutes clearly. 2
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4. Minimal dilations of CP0-semigroups

In this section, we discuss constructions of minimal dilations of CP0-semigroups.
The minimal dilation of a given CP0-semigroup T in the sense of Definition 2.4.3 is
constructed by some approaches. We will introduce Bhat-Skeide’s and Muhly-Solel’s
constructions in Subsection 4.1. In Subsection 4.2, we will provide the notion of rela-
tive product system, that is, a W ∗-bimodule version of Arveson’s and Bhat-Skeide’s
product systems, and establish a relative product system from a CP0-semigroup.
The notion naturally arise from a relation between the two construction of minimal
dilations, which will be provided in Subsection 4.4. In the discrete case, that is,
T is the semigroup generated by a normal UCP-map, we have a similar relation,
which will be discussed in Subsection 4.5. There is also Arveson’s approach ([3]
or [4]) which is different from the two ways. Obviously the three constructions are
mutually related but no explicit connection has been established yet. In Subsec-
tion 4.3, we will construct minimal dilations in terms of relative product systems.
We associate a given CP0-semigroup with the relative product system and take the
inductive limit of the relative product system, which is inspired by Bhat-Skeide’s
construction. Subsection 4.2, 4.3 and 4.4 are based on [22].
In Section 4 and 5, we assume that a von Neumann algebra M on which CP0-

semigroups act has a faithful normal state

4.1. Bhat-Skeide’s and Muhly-Solel’s constructions. Let M be a von Neu-
mann algebra acting on a separable Hilbert space H and T = {Tt}t≥0 a CP0-
semigroup. In this subsection, we review Bhat-Skeide’s[8] and Muhly-Solel’s[17]
constructions of the minimal dilation of T .

Bhat-Skeide’s construction
First, we prepare notations related with partitions. We fix t > 0. Let Pt be

the set of all finite tuples p = (t1, · · · , tn) with ti > 0 such that
∑n

i=1 ti = t.
Now, for p = (t1, · · · , tn), q = (s1, · · · , sm) ∈ Pt, we define the joint tuple by
p ∨ q = (t1, · · · , tn, s1, · · · , sm) and write p ≻ q if for each i = 1, · · · ,m there is
qi ∈ Psi such that p = q1 ∨ · · · ∨ qm. Let P0 be the singleton of the empty tuple
() satisfying p ∨ () = () ∨ p = p. Note that when we consider partitions of an
interval [0, t], treating Pt or the set P′

t of all finite tuples (t1, · · · , tn) such that
t = tn > tn−1 > · · · > t1 > 0 is equivalent because Pt and P′

t are order isomorphic
via a map o : Pt → P′

t defined by

o(t1, t2, · · · , tn) =

(
1∑
i=1

ti,
2∑
i=1

ti, · · · ,
n∑
i=1

ti

)
.

Now, we introduce the notion of product system and units in the sense of Bhat-
Skeide. These are Hilbert (or von Neumann) bimodule versions of Arveson’s product
systems and units in Definition 2.4.7 and Definition 2.4.8.

Definition 4.1.1. Let A be a C∗-algebra and E⊗ = {Et}t≥0 a family of Hilbert A-
bimodules Et. Suppose E0 = A and there is a A-bilinear unitary us,t : Es⊙Et → Es+t
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for each s, t ≥ 0 with the associativity

ur,s+t(idEr ⊙ us,t) = ur+s,t(ur,s ⊙ idEt)

for all r, s, t ≥ 0. Then the pair (E⊗, {us,t}s,t≥0) is called a product system of Hilbert
bimodules over A. We can define a product system of von Neumann bimodules
similarly. Then ⊙ is replaced by ⊗.

Definition 4.1.2. A unit Z⊗ = {Zt}t≥0 of a product system (E⊗, {us,t}s,t≥0) of
Hilbert (or von Neumann) bimodules over A is a family of Zt ∈ Et satisfying Z0 = 1A
and us,t(Z

s ⊙ Zt) = Zs+t for all s, t ≥ 0. A unit Z⊗ is unital if ⟨Zt, Zt⟩ = 1A for
all t ≥ 0.

For each GNS-representation (ETt , ZTt) with respect to Tt, we denote the strong
closure as von Neumann M -M -bimodules by the same notation ETt , and (ETt , ZTt)
is denoted by (Et, Zt) simply. We fix t ≥ 0 and p ∈ Pt. We define a von Neumann
M -M -bimodule Ep,t by the tensor product Et1 ⊗M · · · ⊗M Etn if t > 0, and E() = E0
if t = 0. For p = q1 ∨ · · · ∨ qm ≻ q with p = (t1, · · · , tn), q = (s1, · · · , sm) ∈ Pt and
qi = (si,1, · · · , si,k(i)) ∈ Psi , we define an M -bilinear isometry βp,q : Eq,t → Ep,t by

βp,q = βq1(s1) ⊗ · · · ⊗ βqm(sm),

where each βqi(si) : Esi → Eqi,t is an M -bilinear isometry defined by the map: Zsi 7→
Zsi,1⊗· · ·⊗Zsi,k(i) . Then the pair ({Ep,t}p∈Pt , {βp,q}p≻q) becomes an inductive system
with respect to the partial order≻, and the inductive limit Et of the inductive system
is a von Neumann M -bimodule. For t ≥ 0, put Zt = ι(t),tZt, where ιp,t : Ep,t → Et
is the canonical embedding for each p ∈ Pt. For s, t ≥ 0, we define an M -bilinear
unitary ut,s is defined by

ut,s(ιp,tXp ⊗ ιq,tYq) = ιp∨q,t(Xp ⊗ Yq)
for each Xp ∈ Ep,t and Yq ∈ Eq,s.

Theorem 4.1.3. ([8, Theorem 4.8]) The family ({Et}t≥0, {us,t}s,t≥0) is a product
system of von Neumann M-bimodules with the unital unit {Zt}t≥0.

Note that the unit {Zt}t≥0 satisfies Tt(x) = ⟨Zt, xZt⟩ for all t ≥ 0 and x ∈M .
For t ≥ s ≥ 0, we define an isometry

γt,s : Es ∋ X 7→ Zt−s ⊗X ∈ Et−s ⊗M Es ∼= Et.

Then ({Et}t≥0, {γt,s}t≥s) is an inductive system of von Neumann M -modules. The
inductive limit E of ({Et}t≥0, {γt,s}t≥s) is a von Neumann M -module and satisfies
E ⊗M Et ∼= E as von Neumann M -modules for all t ≥ 0. Let k0 be the canonical
embedding from E0 =M into E and Z = k01M . If we define

j0(x)(X) = Zx⟨Z,X⟩ (X ∈ E, x ∈M),

αt(a) = a⊗ idEt (a ∈ Ba(E)),
jt(x) = αt(j0(x)) (x ∈M),

{αt}t≥0 is a semigroup of endomorphism on the von Neumann algebra Ba(E). We
identify M with j0(M) in Ba(E). Let N be a von Neumann algebra generated by∪
t≥0 jt(M), p = j0(1M) and θt = α0

t |N for each ≥ 0. Then we obtained the minimal
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dilation of T by [8, Theorem 5.8].

Muhly-Solel’s construction
For t ≥ 0 and p = (0 = t0, t1, · · · , tn−1, tn = t) ∈ P′

t, we define a Hilbert space

Hp,t =M ⊗t1−t0 (M ⊗t2−t1 (· · · (M ⊗tn−tn−1 H) · · · ),(4.1)

where we denote the tensor productM⊗TsK in Definition 2.3.4 byM⊗sK for a left
W ∗-M -module K and s ≥ 0 simply. Then Hp,t has a left W ∗-M -module structure
given by

x(a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ ξ) = (xa1)⊗ a2 ⊗ · · · ⊗ an ⊗ ξ
for each x, a1, a2, · · · , an ∈ M and ξ ∈ H, and also Hom(MH,MHp,t) has an M ′-
bimodule structure given by

(Xx′)ξ = X(x′ξ), (x′X)ξ = (1M ⊗ · · · ⊗ 1M ⊗ x′)Xξ
for each X ∈ Hom(MH,MHp,t), x

′ ∈ M ′ and ξ ∈ H. Note that if we write Fs =
Hom(MH,MM ⊗s H), we have an isomorphism

Hom(MH,MHp,t) ∼= Ftn−tn−1 ⊗M ′ Ftn−1−tn−2 ⊗M ′ · · · ⊗M ′ Ft2−t1 ⊗M ′ Ft1−t0

as von Neumann M ′-bimodules. For k = 1, · · · , n and tk < τ < tk+1, put pk,τ =
(t0, t1, · · · , tk, τ, tk+1, · · · , tn−1, tn) ∈ P′

t. We get a leftM -linear isometry v0 : Hp,t →
Hpk,τ ,t by

v0(a1 ⊗ · · · an ⊗ ξ) = a1 ⊗ · · · ⊗ ak ⊗ 1M ⊗ ak+1 ⊗ · · · ⊗ an ⊗ ξ
for each a1, · · · , an ∈M and ξ ∈ H, and an M ′-bilinear isometry

v : Hom(MH,MHp,t)→ Hom(MH,MHpk,τ ,t)

by v(X) = v0X for each X ∈ Hom(MH,MHp,t). For a refinement pair p ≻ q, we
can define a left M -linear isometry v0,p,q : Hq,t → Hp,t and an M ′-bilinear isometry

vp,q : Hom(MH,MHq,t)→ Hom(MH,MHp,t)

by a repetition of the above construction. Then {Hp,t}p∈P′
t
and {Hom(MH,MHp,t)}p∈P′

t

become inductive systems with respect to the sets of isometries {v0,p,q}p≻q and
{vp,q}p≻q, and their inductive limits are denoted by Ht and E(t), respectively. We
also denote the canonical embedding from Hp,t into Ht by v0,p,∞. Note that the
space Hom(MH,MHt) has a natural M ′-M ′-bimodule structure and is isomorphic
to E(t) as von Neumann M ′-bimodules ([17, Lemma 3.1]). The family {E(t)}t≥0 is
a product system of von Neumann M ′-bimodules.
We shall construct a fully coisometric completely contractive covariant repre-

sentation {Φt}t≥0 of {E(t)}t≥0 on H and dilate {Φt}t≥0 to the minimal isometric
dilation ({Vt}t≥0, u0,K). Here, a contractive covariant representation {Φt}t≥0 is a
set of completely contractive continuous linear maps Φt : E(t) → B(H) with re-
spect to the σ-topology ([5]) on E(t) and the σ-weak topology on B(H) such that
Φ0 : M ′ → B(H) is a normal ∗-homomorphism and we have Φs ⊗ Φt = Φs+t for
all s, t ≥ 0. Let E(t) ⊗Φ0 H be the completion of E(t) ⊗alg H with respect to the
inner product defined by ⟨X ⊗ ξ, Y ⊗ η⟩ = ⟨ξ,Φ0(⟨X, Y ⟩)η⟩ for each X,Y ∈ E(t)
and ξ, η ∈ H. {Φt}t≥0 is said to be fully coisometric if Φ̃tΦ̃

∗
t = idH for all t ≥ 0,
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where Φ̃t : E(t) ⊗Φ0 H ∋ X ⊗ ξ 7→ Φt(X)ξ ∈ H. A dilation ({Vt}t≥0, u0,K) in
the sense of [17, Section 3] consists of a Hilbert space K, an isometry u0 : H → K
and a fully coisometric completely contractive covariant representation {Vt}t≥0 of
{E(t)}t≥0 on K satisfying that Φt(X) = u∗0Vt(X)u0 and Vt(X)∗ leaves u0(H) invari-
ant for all X ∈ E(t) and t ≥ 0. If Vt(X)∗Vt(Y ) = V0(⟨X, Y ⟩) for all X, Y ∈ E(t) and
t ≥ 0, and the smallest subspace K0 of K containing u0(H) and Vt(X)K0 = K0 for
all X ∈ E(t) and t ≥ 0, is K, then ({Vt}t≥0, u0,K) is called the minimal isometric
dilation of {Φt}t≥0.
For t ≥ 0 and p ∈ P′

t, we define ιp : H ∋ ξ 7→ 1M ⊗ · · · 1M ⊗ ξ ∈ Hp,t. Then we
have

ι∗p(a1 ⊗ · · · ⊗ anξ) = (Ttn−tn−1(Ttn−1−tn−2(· · · (Tt1(a1)a2) · · · )an−1)an)ξ

for all a1, · · · , an ∈ M and ξ ∈ H. Put v∗p = ιq when p ≻ q. By the universality
of inductive limits there is a unique map ι∗t : Ht → H such that ι∗tv0,p,∞ = ι∗p.
We define {Φt}t≥0 by Φt(X) = ι∗tX for each X ∈ Hom(MH,MHt) ∼= E(t). Then
{Φt}t≥0 is a fully coisometric completely contractive covariant representation {Φt}t≥0

of {E(t)}t≥0 on H and satisfies Tt(x) = Φ̃t(idE(t) ⊗ x)Φ̃∗
t for all x ∈ M and t ≥ 0

([17, Theorem 3.9]).
For 0 ≤ t < s, we denote the isomorphism from E(t)⊗M ′ E(s− t) to E(s) by Ut,s

and define a left M ′-linear isometry

ut,s = (Ut,s ⊗ idH)(idE(t) ⊗ Φ̃∗
s−t) : E(t)⊗Φ0 H → E(s)⊗Φ0 H.

Then the pair ({E(t) ⊗Φ0 H}t≥0, {ut,s}t<s) is an inductive system. Let K∞ be the
inductive limit of ({E(t) ⊗Φ0 H}t≥0, {ut,s}t<s) and ut : E(t) ⊗Φ0 H → K∞ the
canonical embeddings. We can get a well-defined map Vt : E(t) → B(K∞) by
Vt(X)us(Y ⊗ ξ) = ut+s(Ut,t+s(X ⊗ Y ) ⊗ ξ) for each s, t ≥ 0, X ∈ E(t), Y ∈ E(s)
and ξ ∈ H. If we define a subspace K of K∞ as the smallest subspace containing
u0(H), then the triplet ({Vt}t≥0, u0,K) is the minimal isometric dilation of {Φt}t≥0.

Moreover, if we put N = V0(M
′)′ ⊂ B(K) and θt(x) = Ṽt(idE(t) ⊗ x)Ṽ ∗

t for each
x ∈ N and t ≥ 0, we get the minimal dilation of {Tt}t≥0 ([17, Theorem 3.11]).

4.2. Relative product systems from CP0-semigroups. In this section, we in-
troduce a notion of relative product system and construct a relative product system
from a given CP0-semigroup. The following definition of relative product systems
is inspired by the definitions of Arveson’s and Bhat-Skeide’s product systems in
Definition 2.4.7 and Definition 4.1.1. Also, units of relative product systems will be
defined in Definition 5.1.1.

Definition 4.2.1. Let M be a von Neumann algebra and H⊗ = {Ht}t≥0 a family
of W ∗-M-M-bimodules with H0 = L2(M). If there exist bimodule unitaries Us,t :
Hs ⊗M Ht → Hs+t with the associativity

Ur,s+t(idHr ⊗M Us,t) = Ur+s,t(Ur,s ⊗M idHt)(4.2)

for all r, s, t ≥ 0 such that Us,0 and U0,t are the canonical identifications, then the
pair (H⊗, {Us,t}s,t≥0) is called a relative product system over M , where the notation
⊗M denotes the relative tensor product over M
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Remark 4.2.2. Precisely speaking, associativity (4.2) means that the following di-
agram commutes.

Hr+s+t

Hr+s ⊗M Ht

(Hr ⊗M Hs)⊗M Ht Hr ⊗M (Hs ⊗M Ht)

Hr ⊗M Hs+t

Ur,s+t

eeLLLLLLLLLLLLL

Ur+s,t

99rrrrrrrrrrrrr

Ur,s⊗idHt

OO

a //

idHr⊗Us,t

OO

Here, the morphism a is the associativity isomorphism discussed in Section 3. By
Theorem 3.1.2, we can choose either the left or the right relative tensor product. We
will construct a relative product system from a given CP0-semigroup by left relative
tensor products.

Now, we provide a formula related to the relative tensor products and normal
UCP-maps for the convenience in later arguments.

Proposition 4.2.3. Let M be a von Neumann algebra and T a normal UCP-map
on M and ϕ a faithful normal state on M . For x, y ∈ M , x ⊗ yϕ 1

2 is a ϕ-bounded
vector in M ⊗T L2(M). For x1, x2, y1, y2 ∈M , we have

πϕ(x1 ⊗ y1ϕ
1
2 )∗πϕ(x2 ⊗ y2ϕ

1
2 ) = y∗1T (x

∗
1x2)y2 ∈M.

Proof. For x′, y′, z ∈M , we can compute as

⟨πϕ(x1 ⊗ y1ϕ
1
2 )ϕ

1
2 z, x′ ⊗ y′ϕ

1
2 z′⟩ = ⟨x1 ⊗ y1ϕ

1
2 z, x′ ⊗ y′ϕ

1
2 z′⟩

= ⟨y1ϕ
1
2 z, T (x∗1x

′)y′ϕ
1
2 z′⟩ = ⟨ϕ

1
2 z, y∗1T (x

∗
1x

′)y′ϕ
1
2 z′⟩,

and hence πϕ(x1 ⊗ y1ϕ
1
2 )∗(x′ ⊗ y′ϕ 1

2 z′) = y∗1T (x
∗
1x

′)y′ϕ
1
2 z′. Thus, we have

πϕ(x1 ⊗ y1ϕ
1
2 )∗πϕ(x2 ⊗ y2ϕ

1
2 )ϕ

1
2 z = y∗1T (x

∗
1x2)y2ϕ

1
2 z.

2

Now, we fix a CP0-semigroup T = {Tt}t≥0 on a von Neumann algebra M with a
faithful normal state ϕ. We shall construct a relative product system from T .
For t > 0 and p = (t1, · · · , tn) ∈ Pt, we denote the W ∗-M -M -bimodule

(M ⊗Tt1 L
2(M))⊗M · · · ⊗M (M ⊗Ttn L

2(M))

by H̃(p, t) and M ⊗Tt L2(M) by M ⊗t L2(M). We shall define an inductive system
structure on the set {H̃(p, t)}p∈Pt . Suppose p ≻ q with p = (t1, · · · , tn), q =
(s1, · · · , sm) ∈ Pt and p = q(s1) ∨ · · · ∨ q(sm) with q(si) = (si,1, · · · , si,k(i)) ∈ Psi .

We define an M -bilinear map αq(si) :M ⊗si L2(M)→ H̃(q(si), si) by

αq(si)(x⊗si yϕ
1
2 )

= (x⊗si,1 ϕ
1
2 )ϕ− 1

2 (1M ⊗si,2 ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (1M ⊗si,k(i)−1

ϕ
1
2 )ϕ− 1

2 (1M ⊗si,k(i) yϕ
1
2 )
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for each x, y ∈M (we can check that αp(si) is an isometry by Proposition 4.2.3), and
an isometry

αp,q = αq(s1) ⊗M · · · ⊗M αq(sm) : H̃(q, t)→ H̃(p, t).(4.3)

Then the pair ({H̃(p, t)}p∈Pt , {αp,q}p≻q) is an inductive system ofW ∗-M -M -bimodules.

Let H̃t be the inductive limit and κp,t : H̃(p, t)→ H̃t the canonical embedding. Put

H̃0 = L2(M).
The following theorem is an analogue of Theorem 4.1.3 and the proof is essentially

the same.

Theorem 4.2.4. The family H̃⊗ = {H̃t}t≥0 is a relative product system over M .

Proof. For s, t > 0, we define a map Us,t : H̃s ⊗M H̃t → H̃s+t by

Us,t((κq,sξq)ϕ
− 1

2 (κp,tηq)) = κq∨p,s+t(ξqϕ
− 1

2ηp).

for each q = (s1, · · · , sm) ∈ Ps, p = (t1, · · · , tn) ∈ Pt, ξq ∈ D(H̃(q, s);ϕ) and

ηp ∈ H̃(p, t) Here, note that κq,sξq is ϕ-bounded. We shall show that Us,t is an
isometry, i.e. the equation

⟨(κq,sξq)ϕ− 1
2 (κp,tηp), (κq′,sξ

′
q′)ϕ

− 1
2 (κp′,tη

′
p′)⟩ = ⟨κq∨p,s+t(ξqϕ− 1

2ηp), κq′∨p′,s+t(ξ
′
q′ϕ

− 1
2η′p′)⟩

holds for all q, q′ ∈ Ps, p, p′ ∈ Pt, ξq ∈ D(H̃(q, s);ϕ), ξ′q′ ∈ D(H̃(q′, s);ϕ), ηp ∈
H̃(p, t) and η′p′ ∈ H̃(p′, t). If q = q′ and p = p′, we have

⟨(κq,sξq)ϕ− 1
2 (κp,tηp), (κq,sξ

′
q)ϕ

− 1
2 (κp,tη

′
p)⟩ = ⟨κp,tηp, πϕ(κq,sξq)∗πϕ(κq,sξ′q)κp,tη′p⟩

= ⟨κq,tηp, κp,t(πϕ(κq,sξq)∗πϕ(κq,sξ′q))η′)⟩ = ⟨ηp, πϕ(κq,sξq)∗πϕ(κq,sξ′q)η′p⟩

= ⟨ηp, πϕ(ξq)∗πϕ(ξ′q)η′p)⟩ = ⟨κq∨p,s+t(ξqϕ− 1
2ηp), κq∨p,s+t(ξ

′
qϕ

− 1
2η′p)⟩.

In general case, since κs,s = κs′,sαs′,s for all s, s′ ∈ Ps with s′ ≻ s, if we take
q̂ ∈ Ps, p̂ ∈ Pt, such that q̂ ≻ q, q′ and p̂ ≻ p, p′, then

⟨(κq,sξq)ϕ− 1
2 (κp,tηp), (κq′,sξ

′
q′)ϕ

− 1
2 (κp′,tη

′
p′)⟩

= ⟨(κq̂,sαq̂,qξq)ϕ
− 1

2 (κp̂,tαp̂,pηp), (κq̂,sαq̂,q′ξ
′
q′)ϕ

− 1
2 (κp̂,tαp̂,p′η

′
p′)⟩

= ⟨κq̂∨p̂,s+t((αq̂,qξq)ϕ
− 1

2 (αp̂,pηp)), κq̂∨p̂,s+t((αq̂,q′ξ
′
q′)ϕ

− 1
2 (αp̂,p′η

′
p′))⟩

= ⟨(αq̂,qξq)ϕ
− 1

2 (αp̂,pηp), (αq̂,q′ξ
′
q′)ϕ

− 1
2 (αp̂,p′η

′
p′)⟩

= ⟨(αq̂,q ⊗M αp̂,p)(ξqϕ
− 1

2ηq), (αq̂,q′ ⊗M αp̂,p′)(ξ
′
q′ϕ

− 1
2η′q′)⟩

= ⟨αq̂∨p̂,q∨p(ξqϕ
− 1

2ηq), αq̂∨p̂,q′∨p′(ξ
′
q′ϕ

− 1
2η′q′)⟩

= ⟨κq̂∨p̂,s+tαq̂∨p̂,q∨p(ξqϕ
− 1

2ηq), κq̂∨p̂,s+tαq̂∨p̂,q′∨p′(ξ
′
q′ϕ

− 1
2η′q′)⟩

= ⟨κq∨p,s+t(ξqϕ− 1
2ηp), κq′∨p′,s+t(ξ

′
q′ϕ

− 1
2η′p′)⟩.

In particular, we conclude that Us,t is well-defined and can be extended to an isom-

etry from H̃s ⊗M H̃t to H̃s+t, and also denote the isometry by Us,t again. The
surjectivity and the two-sides linearity of Us,t are obvious.
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The isomorphisms U0,t and Us,0 are defined as the canonical maps giving the

isomorphisms L2(M)⊗M H̃s and H̃t ⊗M L2(M), respectively.

To show (4.2), it is enough to check it for a vector (κp,rξp)ϕ
− 1

2 (κq,sηq)ϕ
− 1

2 ζ with
the forms {

ξp = (x1 ⊗r1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗rm ymϕ

1
2 ),

ηq = (z1 ⊗s1 w1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (zn ⊗sn wnϕ

1
2 )

for some xi, yi, zj, wj ∈M and ζt ∈ H̃t. 2

Example 4.2.5. Let M be a von Neumann algebra acting on a separable Hilbert
space H and {vt}t≥0 a family of isometries in M satisfying vsvt = vs+t for each
s, t ≥ 0. We define a CP0-semigroup T = {Tt}t≥0 by Tt(x) = v∗t xvt for each x ∈M
(Example 2.4.1). For each t ≥ 0, we can identify M ⊗t L2(M) with L2(M) by a

bilinear unitary U t(x ⊗t yϕ
1
2 ) = xvtyϕ

1
2 for x, y ∈ M . For t ≥ 0 and p ∈ Pt, the

unitaries induce a bilinear unitary U p : H̃(p, t)→ L2(M) such that U pαp,q = U q for
all p ≻ q.

Example 4.2.6. We consider the CP0-semigroup generated by a family of stochastic
matrices. Let M = C ⊕ C be a von Neumann algebra regarded as a von Neumann
subalgebra of M2(C). Then L2(M) = C⊕C. Let T = {Tt}t≥0 be the CP0-semigroup

on M associated with stochastic matrices

{(
e−t 1− e−t
0 1

)}
t≥0

, that is, each Tt is

defined by
Tt(a⊕ b) = (e−ta+ (1− e−t)b)⊕ b

for each a, b ∈ C. By using the normalized canonical trace on M2(C), for t ≥ 0 and
p = (t1, · · · , tn) ∈ Pt, it turns out that H̃(p, t) is Cn ⊕ C on which M acts as

(a⊕ b)(x1 ⊕ · · · xn ⊕ y ⊕ z) = ax1 ⊕ bx2 ⊕ · · · ⊕ bxn ⊕ by ⊕ bz
(x1 ⊕ · · ·xn ⊕ y ⊕ z)(a⊕ b) = ax1 ⊕ · · · ⊕ axn ⊕ ay ⊕ bz

for a, b, x1, · · · , xn, y, z ∈ C. Thus, H̃(p, t) depends on only the number n of the
partition p.

Example 4.2.7. We consider the W ∗-B(H)-bimodule H̃(p, t) associated with the
CCR heat flow in Example 2.4.2 for t ≥ 0 and p ∈ Pt.
Let H = L2(R) and M = B(H). Then the standard space L2(B(H)) of M is

isomorphic to H⊗H∗ ∼= C2(H). For t ≥ 0, x, x′ ∈M and ξ⊗ η∗, ξ′⊗ η′∗ ∈ H⊗H∗,
the inner product on M ⊗t L2(M) is given by

⟨x⊗ (ξ ⊗ η∗), x′ ⊗ (ξ′ ⊗ η′∗)⟩ = ⟨η′, η⟩
∫
R2

⟨xW ∗
x√
2
ξ, x′W ∗

x√
2
ξ′⟩dµt(x).

Let p = (t1, · · · , tn) ∈ Pt. Fix a faithful normal state ϕ onM and suppose ρ ∈ C1(H)
is associated with ϕ by ϕ(x) = tr(ρx) for all x ∈ M . In terms of C2(H), the inner
product on H̃(p, t) is

⟨(x1 ⊗t1 a1ρ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xn ⊗tn anρ

1
2 ), (y1 ⊗t1 b1ρ

1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (yn ⊗tn bnρ

1
2 )⟩

=

∫
R2n

⟨x1W ∗
x1√
2

a1 · · · xnW ∗
xn√
2
anρ

1
2 , y1W

∗
x1√
2

b1 · · · ynW ∗
xn√
2
bnρ

1
2 ⟩dµt1(x1) · · · dµtn(xn)
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for each x1, · · · , xn, y1, · · · , yn, a1, · · · , an, b1, . . . , bn ∈ M . The properties (2.1) and
µs ∗ µt = µs+t ensure the fact that αp,q defined by (4.3) is isometry for p, q ∈ Pt.
For example, for s, t ≥ 0 and x, y, a, b ∈M , we have

⟨α(s,t),(s+t)(x⊗s+t aρ
1
2 ), α(s,t),(s+t)(y ⊗s+t bρ

1
2 )⟩

= ⟨(x⊗s ρ
1
2 )ϕ− 1

2 (1M ⊗t aρ
1
2 ), (y ⊗s ρ

1
2 )ϕ− 1

2 (1M ⊗t bρ
1
2 )⟩

=

∫
R2

∫
R2

⟨xW ∗
x√
2
W ∗

y√
2
aρ

1
2 , yW ∗

x√
2
W ∗

y√
2
bρ

1
2 ⟩dµt(x)dµs(y)

=

∫
R2

∫
R2

⟨xW ∗
x+y√

2

aρ
1
2 , yW ∗

x+y√
2

bρ
1
2 ⟩dµt(x)dµs(y)

=

∫
R2

⟨xW ∗
z√
2
aρ

1
2 , yW ∗

z√
2
bρ

1
2 ⟩d(µt ∗ µs)(z)

=

∫
R2

⟨xW ∗
z√
2
aρ

1
2 , yW ∗

z√
2
bρ

1
2 ⟩dµs+t(z) = ⟨(x⊗s+t aρ

1
2 ), (y ⊗s+t bρ

1
2 )⟩.

We have considered the three examples of CP0-semigroups, however it seems to be
difficult to concretely realize their relative product systems and minimal dilations
which will be constructed by the method in the next subsection. This also is so
for Bhat-Skeide’s and Muhly-Solel’s constructions. Remark that in Example 4.2.5
we identified H̃(p, t) with the standard space L2(M), however the relative product
system associated with T is not always isomorphic to the trivial system {L2(M)}t≥0

in the sense of Definition 5.1.5.

4.3. Construction of dilations by relative product systems. We shall con-
struct the minimal dilation (N, p, θ) of T . The von Neumann algebra N acts on the
inductive limit of the relative product system H̃⊗ associated with T . We shall in-
troduce an inductive system structure on H̃⊗. For s ≤ t, we define a right M -linear
isometry α̃t,s : H̃s → H̃t by

α̃t,s(ξ) = Ut−s,s(κ(t−s),t−s(1M ⊗t−s ϕ
1
2 )ϕ− 1

2 ξ)

for each ξ ∈ H̃r. Note that for s, t ≥ 0, we have

Us,t(κ(s),s(1M ⊗s ϕ
1
2 )ϕ− 1

2κ(t),t(1M ⊗t ϕ
1
2 ))

= κ(s,t),s+t((1M ⊗s ϕ
1
2 )ϕ− 1

2 (1M ⊗t ϕ
1
2 )) = κ(s,t),s+tα(s,t),(s+t)(1M ⊗s+t ϕ

1
2 )

= κ(s+t),s+t(1M ⊗s+t ϕ
1
2 ).(4.4)

The following lemma shows that the couple (H̃⊗, {α̃t,s}s≤t) is an inductive system.

Lemma 4.3.1. For r ≤ s ≤ t, we have α̃t,r = α̃t,s ◦ α̃s,r.
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Proof. For all ξ ∈ H̃r, we can calculate as

α̃t,s ◦ α̃s,r(ξ)
= Ut−s,s(κ(t−s),t−s(1M ⊗t−s ϕ

1
2 )ϕ− 1

2Us−r,r(κ(s−r),s−r(1M ⊗s−r ϕ
1
2 )ϕ− 1

2 ξ))

= Ut−s,s(idH̃t−s
⊗M Us−r,r)(κ(t−s),t−s(1M ⊗t−s ϕ

1
2 )ϕ− 1

2κ(s−r),s−r(1M ⊗s−r ϕ
1
2 )ϕ− 1

2 ξ)

= Ut−r,r(Ut−s,s−r ⊗M idH̃r
)(κ(t−s),t−s(1M ⊗t−s ϕ

1
2 )ϕ− 1

2κ(s−r),s−r(1M ⊗s−r ϕ
1
2 )ϕ− 1

2 ξ)

= Ut−r,r(Ut−s,s−r(κ(t−s),t−s(1M ⊗t−s ϕ
1
2 )ϕ− 1

2κ(s−r),s−r(1M ⊗s−r ϕ
1
2 ))ϕ− 1

2 ξ)

= Ut−r,r(κ(t−r),t−r(1M ⊗t−r ϕ
1
2 )ϕ− 1

2 ξ) = α̃t,r(ξ)

by the associativity and (4.4). 2

Remark 4.3.2. If we denote κ(t),t(1M ⊗t ϕ
1
2 ) by ξ̃(t) for each t > 0 and ξ̃(0) =

κ(0),0ϕ
1
2 , then the family ξ̃⊗ = {ξ̃(t)}t≥0 is a unital unit in the sense of Definition

4.4 by (4.4). Clearly, we have ϕ(Tt(x)) = ⟨ξ̃(t), xξ̃(t)⟩ for all t ≥ 0 and x ∈M . The

unit {ξ̃(t)}t≥0 is comparable with the unit {Zt}t≥0 in Bhat-Skeide’s construction (see
Remark 5.1.3).

We denote the inductive limit of the inductive system (H̃⊗, {α̃t,s}s≤t) by H̃ and the

canonical embedding from H̃t into H̃ by κt. Note that H̃ is a right W ∗-M -module.

Theorem 4.3.3. For t ≥ 0, we can define a right M-linear unitary Ut : H̃⊗M H̃t →
H̃ by

Ut(ξϕ
− 1

2ηt) = κs+tUs,t(ξsϕ
− 1

2ηt)

for ξ = κsξs ∈ H̃ and ηt ∈ H̃t, where ξs ∈ H̃s is a ϕ-bounded vector.

Proof. We shall show that Ut is an isometry. For s ≥ 0, ξs, ξ
′
s ∈ H̃s and ηt, η

′
t ∈ H̃t,

we have

⟨Ut((κsξs)ϕ− 1
2ηt), Ut((κsξ

′
s)ϕ

− 1
2η′t)⟩ = ⟨ξsϕ− 1

2ηt, ξ
′
sϕ

− 1
2η′t⟩

= ⟨ηt, πϕ(ξs)∗πϕ(ξ′s)η′t⟩ = ⟨ηt, πϕ(κsξs)∗πϕ(κsξ′s)η′t⟩ = ⟨(κsξs)ϕ− 1
2ηt, (κsξ

′
s)ϕ

− 1
2η′t⟩.

This implies that for s ≥ 0, ξs ∈ H̃s, ζr ∈ H̃r and ηt, η
′
t ∈ H̃t, in the general case,

we have

⟨Ut((κsξs)ϕ− 1
2ηt), Ut((κrζr)ϕ

− 1
2η′t)⟩

= ⟨Ut((κs+tβs+r.sξs)ϕ− 1
2ηt), Ut((κs+rβs+r,rζr)ϕ

− 1
2η′t)⟩

= ⟨(κs+tβs+r.sξs)ϕ− 1
2ηt, (κs+rβs+r,rζr)ϕ

− 1
2η′t⟩ = ⟨(κsξs)ϕ− 1

2ηt, (κrζr)ϕ
− 1

2η′t⟩.

We shall check that Ut is surjective. In the case when s ≤ t, for η = κsηs ∈ H̃, we
can conclude that the image of (κ0ϕ

1
2 )ϕ− 1

2κ∗tκsηs by Ut is η. In the case when s > t,

let D be a subspace of H̃s−t ⊗M H̃t spanned by vectors ηs−tϕ
− 1

2ηt for all ϕ-bounded
vectors ηs−t ∈ H̃s−t and ηt ∈ H̃t. For η = κsηs ∈ H̃, ηs can be approximated by
vectors Us−t,tζ for some ζ ∈ D and we have Ut(κs−t ⊗ idH̃t

) = κsUs−t,t on D. 2
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Now, the von Neumann algebraM can be represented faithfully on H̃ by π(x)ξ =
κ0(x(κ

∗
0ξ)) for each x ∈M and ξ ∈ H̃. Note that π(M) ⊂ End(H̃M). For t ≥ 0, we

define a map θt : End(H̃M)→ End(H̃M) by

θt(a) = Ut(a⊗M idH̃t
)U∗

t

for each a ∈ End(H̃M). Since Us+t(idH̃ ⊗ Us,t) = Us(Ut ⊗ idH̃s
) for all s, t ≥ 0,

θ = {θt}t≥0 is a semigroup. Note that π(1M)End(H̃M)π(1M) = π(M) since we have

π(1M)aκ0 = κ0πϕ(κ0ϕ
1
2 )πϕ(aκ0ϕ

1
2 ) for a ∈ End(H̃M).

It will be proved that the semigroup θ = {θt}t≥0 is a dilation in Theorem 4.3.5.
The following proposition will ensure that θ is an E0-semigroup.

Proposition 4.3.4. We have

Ut(ξϕ
− 1

2 ξ̃(t))→ ξ (t→ 0)(4.5)

for all ξ ∈ D(H̃;ϕ), where recall that ξ̃(t) = κ(t),t(1M ⊗t ϕ
1
2 ).

Proof. Suppose that ξ has a form

κsκq,s((x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 ))(4.6)

for some s ≥ 0, q = (s1, · · · , sm) ∈ Ps, x1, · · · , xm, y1, · · · , ym ∈ M , and t <
min{s1, · · · , sm}. Let p′ = (t, s1 − t, t, s2 − t, t, · · · , sm − t, t) ≻ (t)∨ p, p∨ (t). Then
ξ coincides with

κs+tα̃s+t,s((x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 ))

= κs+tκ(t)∨p,s+t((1M ⊗t ϕ
1
2 )ϕ− 1

2 (x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 ))

= κs+tκp′,s+tαp′,(t)∨p((1M ⊗t ϕ
1
2 )ϕ− 1

2 (x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 ))

= κs+tκp′,s+t((1M ⊗t ϕ
1
2 )ϕ− 1

2 ((x1 ⊗s1−t ϕ
1
2 )ϕ− 1

2 (1M ⊗t y1ϕ
1
2 ))ϕ− 1

2

· · ·ϕ− 1
2 ((xm ⊗sm−t ϕ

1
2 )ϕ− 1

2 (1M ⊗t ymϕ
1
2 ))).

On the other hand, Ut(ξϕ
− 1

2 ξ̃(t)) is

κs+tκq∨(t),s+t((x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 )ϕ− 1

2 (1M ⊗t ϕ
1
2 ))

= κs+tκp′,s+tαp′,p∨(t)((x1 ⊗s1 y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm ⊗sm ymϕ

1
2 )ϕ− 1

2 (1M ⊗t ϕ
1
2 ))

= κs+tκp′,s+t(((x1 ⊗t ϕ
1
2 )ϕ− 1

2 (1M ⊗s1−t y1ϕ
1
2 ))ϕ− 1

2

· · ·ϕ− 1
2 ((xm ⊗t ϕ

1
2 )ϕ− 1

2 (1M ⊗sm−t ymϕ
1
2 ))ϕ− 1

2 (1M ⊗t ϕ
1
2 )).

By calculations of inner products and [30, A.2 Lemma], when t tend to 0, we conclude

that Ut(ξϕ
− 1

2 ξ̃(t)) converges to ξ. 2

Theorem 4.3.5. The triple (End(H̃M), π(1M), θ) is a dilation of T . Moreover, if
we denote by N the von Neumann algebra generated by

∪
t≥0 θt(π(M)), the triplet

(N, π(1M), θ|N) is the minimal dilation of T .
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Proof. We shall show that π(Tt(x)) = pθt(π(x))p for all t ≥ 0 and x ∈ M . For all
y, z ∈M , we have

⟨ϕ
1
2y, κ∗0θt(π(x))κ0ϕ

1
2 z)⟩ = ⟨U∗

t κ0ϕ
1
2y, (π(x)⊗M idH̃t

)U∗
t κ0ϕ

1
2 z)⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2y, (π(x)⊗M idH̃t

)(κ0ϕ
1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2 z⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2y, (κ0xκ

∗
0κ0ϕ

1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2 z⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2y, κ0(xϕ

1
2 )ϕ− 1

2κ∗tκ0ϕ
1
2 z⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2 α̃t,0ϕ
1
2y, κ0(xϕ

1
2 )ϕ− 1

2 α̃t,0ϕ
1
2 z⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2 α̃t,0ϕ
1
2y, κ0(xϕ

1
2 )ϕ− 1

2 α̃t,0ϕ
1
2 z⟩

= ⟨(κ0ϕ
1
2 )ϕ− 1

2κ(t),t(1M ⊗t ϕ
1
2y), κ0(xϕ

1
2 )ϕ− 1

2κ(t),t(1M ⊗t ϕ
1
2 z)⟩

= ⟨1M ⊗t ϕ
1
2y, x⊗t ϕ

1
2 z⟩ = ⟨ϕ

1
2y, Tt(x)ϕ

1
2 z⟩,

where the fifth equality is implied by the following formula

κ∗tκs =

{
α̃t,s (t ≥ s),
α̃∗
s,t (t < s).

Thus we have Tt(x) = κ∗0θt(π(x))κ0.
Now, we discuss the continuity of the semigroup θ. For each a ∈ End(H̃M) and

each ϕ-bounded vector ξ ∈ H̃, by Proposition 4.3.4,

θt(a)ξ − aξ = θt(a)ξ − Ut(aξϕ− 1
2 ξ̃(t)) + Ut(aξϕ

− 1
2 ξ̃(t))− aξ

= θt(a)(ξ − Ut(ξϕ− 1
2 ξ̃(t))) + Ut(aξϕ

− 1
2 ξ̃(t))− aξ → 0

when t tend to 0. Thus, the map t 7→ θt(a) is σ-weakly continuous for each a ∈
End(H̃M), i.e. θ is an E0-semigroup on End(H̃M).
For t ≥ 0, p = (t1, · · · , tn) ∈ Pt, x1, · · · , xn, y ∈M , we can check that

θt(π(x1))θt−t1(π(x2)) · · · θtn−1+tn(π(xn−1))θtn(π(xn))κ0ϕ
1
2y

= κtκp,t((x1 ⊗t1 ϕ
1
2 )ϕ− 1

2 (x2 ⊗t2 ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xn−1 ⊗tn−1 ϕ

1
2 )ϕ− 1

2 (xn ⊗tn ϕ
1
2y)).

Hence, we have span(Nπ(1M)H̃) ⊃ span(Nκ0L
2(M)) = H̃. Since the central

support c(π(1M)) of π(1M) in N is the projection onto spanNπ(1M)H̃, we have
c(π(1M)) = 1N . We conclude that the triplet (N, π(1M), θ) is the minimal dilation
of T . 2

4.4. Relation between the two constructions. In this section, we provide a
relation between Bhat-Skeide’s and Muhly-Solel’s constructions of the minimal dila-
tion of a given CP0-semigroup T acting on a von Neumann algebraM by the relative
product system associated with T . A common point of the two ways is to establish
the product systems of von Neumann bimodules by the inductive limits with respect
to refinements of partitions, and to dilate T to an E0-semigroup on the inductive
limits of the product systems (see Subsection 4.1). However, Bhat-Skeide’s prod-
uct system {Et}t≥0 consists of von Neumann M -bimodule and Muhly-Solel’s one
{E(t)}t≥0 consists of von Neumann M ′-bimodules. A concrete aim in this section is
to find the relation between Et and E(t) for each t ≥ 0.



W ∗-BIMODULES AND THE DILATION THEORY RELATED TO PRODUCT SYSTEMS 37

First, we provide some general results related to tensor product with respect to
finite numbers of normal UCP-maps and relative tensor product.

Definition 4.4.1. Let T1, T2, · · · , Tn be normal UCP-maps on a von Neumann al-
gebra M . We define a Hilbert space

H(T1, · · · , Tn) =M ⊗T1 (M ⊗T2 (· · · (M ⊗Tn L2(M)) · · · ),

and a W ∗-M-M-bimodule structure by

x(a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ ξ) = (xa1)⊗ a2 ⊗ · · · ⊗ an ⊗ ξ,
(a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ ξ)x = a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ (ξx)

for each x, a1, a2, · · · , an ∈M and ξ ∈ L2(M).

Proposition 4.4.2. For normal UCP-maps T and S on a von Neumann algebra
M and a W ∗-M-M-bimodule H, we have an isomorphisms

H(T )⊗M H(S) ∼= H(T, S), H(T )⊗M H ∼= M ⊗T H

as W ∗-bimodules.

Proof. If we define maps by

H(T )⊗M H(S) ∋ (x⊗T yϕ
1
2 )ϕ− 1

2 (z ⊗S ϕ
1
2w) 7→ x⊗T ((yz)⊗S (ϕ

1
2w)) ∈ H(T, S),

H(T )⊗M H ∋ (x⊗T yϕ
1
2 )ϕ− 1

2 ξ 7→ x⊗T yξ ∈M ⊗T H

for each x, y, z, w ∈ M and ξ ∈ H, then they give isomorphisms H(T ) ⊗M H(S) ∼=
H(T, S) and H(T )⊗M H ∼= M ⊗T H as W ∗-bimodules, respectively. 2

Corollary 4.4.3. Let T1, · · · , T2 be normal UCP-maps on a von Neumann algebra
M and H a W ∗-M-M-bimodule. We have an isomorphisms

H(T1)⊗M · · · ⊗M H(Tn) ∼= H(T1, · · · , Tn),
H(T1)⊗M · · · ⊗M H(Tn)⊗M H ∼= M ⊗T1 (M ⊗T2 (· · · (M ⊗Tn H) · · · )

as W ∗-bimodules.

Proof. For example we consider the case of n = 3. (In general case, we can prove
by an induction.) By Proposition 4.4.2, we have W ∗-bimodule isomorphisms

H(T1)⊗M H(T2)⊗M H(T3) ∼= H(T1)⊗M H(T2, T3)
∼= M ⊗T1 H(T2, T3) = H(T1, T2, T3),

H(T1)⊗M H(T2)⊗M H(T3)⊗M H ∼= H(T1)⊗M H(T2)⊗M (M ⊗T3 H)
∼= H(T1)⊗M (M ⊗T2 (M ⊗T1 H))
∼= M ⊗T1 (M ⊗T2 (M ⊗T1 H)).

2

We fix a CP0-semigroup T = {Tt}t≥0 on a von Neumann algebra M which acts
on a separable Hilbert space H, and we will use the notation in Subsection 4.1 and
4.2.
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For each t ≥ 0 and p = (t1, · · · , tn) ∈ Pt, the left W
∗-M -module Hp,t is defined as

(4.1). By the second assertion in Corollary 4.4.3, we have the following isomorphism
as von Neumann M ′-modules.

Hom(MH,MHp,t) ∼= Hom(MH,MH̃(p, t)⊗M H)
∼= Hom((M ′)◦H∗ ⊗M H, (M ′)◦H∗ ⊗M H̃(p, t)⊗M H)
∼= Hom(H∗ ⊗M HM ′ ,H∗ ⊗M H̃(p, t)⊗M HM ′)

∼= Hom(L2(M ′)M ′ ,H∗ ⊗M H̃(p, t)⊗M HM ′).(4.7)

Now, for a von Neumann algebra N , we recall the correspondence between von
Neumann N -bimodules and W ∗-N -bimodules by the relations

F ∼= Hom(L2(N)N , F ⊗N L2(N)N), K ∼= Hom(L2(N)N ,KN)⊗N L2(N).

up to isomorphism. We refer the reader to [27, Section 2] for details. The corre-
spondence implies that the tensor category of von Neumann M -M -bimodules and
the tensor category of W ∗-M -M -bimodules are tensor equivalent.
Hence, by (4.7), the von Neumann M ′-bimodule Hom(MH,MHp,t) corresponds to

H∗ ⊗M H̃(p, t)⊗M H.

Theorem 4.4.4. For normal UCP-maps T1, · · · , Tn on a von Neumann algebra M ,
we have a W ∗-(M ′)◦-(M ′)◦-bimodules isomorphism

H∗ ⊗M H(T1)⊗M · · · ⊗M H(Tn)⊗M H
∼= (H∗ ⊗M H(T1)⊗M H)⊗(M ′)◦ · · · ⊗(M ′)◦ (H∗ ⊗M H(Tn)⊗M H).

Thus, the set {H∗ ⊗M H̃t ⊗M H}t≥0 is a relative product system of W ∗-(M ′)◦-
bimodules.

On the other hand, by using Proposition 2.3.5 repeatedly, we have Ep,t ⊗M
L2(M) ∼= H̃(p, t) as W ∗-M -bimodule. Thus, the above correspondence implies that
Ep,t corresponds to H̃(p, t). Note that we also have the direct identification via a

unitary vp,t : Ep,t ⊗M L2(M)→ H̃(p, t) defined by

vp,t((x1 ⊗ y1)⊗ · · · ⊗ (xn ⊗ yn)⊗ ϕ
1
2 z)

= (x1 ⊗ y1ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xn−1 ⊗ yn−1ϕ

1
2 )ϕ− 1

2 (xn ⊗ ynϕ
1
2 z)

for each xi, yi, z ∈ M and a faithful normal state ϕ on M . Now, we have such
correspondences between the inductive limits E(t) and the left W ∗-M ′-modules
H∗ ⊗M H̃t ⊗M H, and between the inductive limits Et and the left W ∗-M -modules
H̃t as the following theorem.

Theorem 4.4.5. Fix t ≥ 0. We have an isomorphism Et ⊗M L2(M) ∼= H̃t as
W ∗-M-bimodule by an M-bilinear unitary Vt : Et ⊗M L2(M)→ H̃t by

Vt(ιp,tX ⊗ ϕ
1
2 z) = κp,tvp,t(X ⊗ ϕ

1
2 z)

for each p ∈ Pt, X ∈ Ep,t, where recall that ιp,t : Ep,t → Et and κp,t : H̃(p, t)→ H̃t

are the canonical embeddings. We have also E(t) ⊗M ′ L2(M ′) ∼= H∗ ⊗M H̃t ⊗M H
as W ∗-M ′-bimodules.
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Proof. It is clear that Ut is isometry, and hence Ut is well-defined. The bilinearity
and the surjectivity is obvious. We also have the following isomorphisms

H∗ ⊗M H̃t ⊗M H ∼= lim−→
p

(H∗ ⊗M H̃(p, t)⊗M H)

∼= lim−→
p

(Hom(MH,MHp,t)⊗M ′ L2(M ′))

∼= (lim−→
p

(Hom(MH,MHp,t))⊗M ′ L2(M ′)

= E(t)⊗M ′ L2(M ′).

as W ∗-M ′-bimodules, where each lim−→
p

means the inductive limits of the inductive

system which is defined canonically with respect to refinements of partitions. 2

We conclude that there is a one-to-one correspondence

Et ←→ H̃t, E(t)←→ H∗ ⊗M H̃t ⊗M H
between von Neumann bimodules and W ∗-bimodules for each t ≥ 0.

Remark 4.4.6. Skeide have provided the notion of commutant duality for (concrete)
von Neumann bimodules in [27] and [28] (or see [29, Section 6]). For a von Neumann
M-M-bimodule E, a von Neumann M ′-M ′-bimodule E ′ called the commutatnt of E
is defined as the intertwiners space with respect to the left action of E. We have
the duality (E ′)′ = E and it is known that the product system in Muhly-Solel’s
construction is the commutant of the one in Bhat-Skeide’s construction.

4.5. The discrete case. Let T be a normal UCP-map on a von Neumann algebra
M . For n ∈ N, we define a W ∗-M -bimodule

H̃n = (M ⊗T L2(M))⊗M · · · ⊗M (M ⊗T L2(M))︸ ︷︷ ︸
n times

.

Of course, the set H̃d⊗ = {H̃n}n∈Z≥0
satisfies H̃m⊗M H̃n

∼= H̃m+n for all n,m ∈ Z≥0

with the associativity, and hence it can be regarded as a discrete relative product
system. By a similar way of Subsection 4.3, H̃d⊗ has a inductive system structure,
and if we denote the inductive limit by H̃d with the canonical embeddings κdn :
H̃n → H̃d, then for each n ∈ Z≥0, we have an isomorphism H̃d⊗M H̃n

∼= H̃d as right
W ∗-M -modules by a right M -linear unitary Ud

n defined by

Ud
n(κ

d
m(ξm)ϕ

− 1
2ηn) = κdm+n(ξmϕ

− 1
2ηn)

for each m ∈ Z≥0, ξ ∈ D(H̃m;ϕ) and ηn ∈ H̃n. We have Um(Un⊗ idH̃n
) = Um+n for

all n ∈ Z≥0. In this case, we also have a faithful representation πd ofM on H̃d. Thus,

a ∗-homomorphism θ on End(H̃d
M) defined by θ(a) = U∗

1 (a⊗ idH̃n
)U1 gives a dilation

of {T n}n∈Z≥0
, that is, {θn}n∈Z≥0

is a semigroup, π(M) = πd(1M)End(H̃d
M)πd(1M)

and πd(T n(x)) = πd(1M)θn(π(x))πd(1M) for all x ∈M .
Now, suppose M acts in a separable Hilbert space H. Bhat-Skeide’s and Muhly-

Solel’s constructions of minimal dilations can apply to {T n}n∈Z≥0
. The (discrete)
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product systems {En}n∈Z≥0
and {E(n)}n∈Z≥0

associated with {T n}n∈Z≥0
which ap-

pear in Bhat-Skeide’s and Muhly-Solel’s constructions, are defined by

En = ET ⊗M · · · ⊗M ET︸ ︷︷ ︸
n times

, E0 =M

E(n) = Hom(MH,M M ⊗T (M ⊗T (· · · (M ⊗T H) · · · )︸ ︷︷ ︸
n times

), E(0) =M ′

for each n ∈ Z≥0, respectively. Thus, we have similar correspondences

En ←→ H̃n, E(n)←→ H∗ ⊗M H̃n ⊗M H.
This subsection is based on [21].
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5. E0-semigroups and relative product systems

In this section, we develop the classification theory of E0-semigroup in terms of
relative product systems. In Subsection 5.1, we will find a one-to-one correspondence
between algebraic CP0-semigroups and unital units of relative product systems and
consider the continuities of CP0-semigroups by the ones of units. In Subsection
5.2, we will give a one-to-one correspondence between cocycles and units, and the
correspondence will make the classification of E0-semigroups possible. The corre-
spondences and the classification are analogous to Bhat-Skeide’s observation in [8],
however they considered algebraic CP0-semigroups and algebraic E0-semigroups on
C∗-algebras. One of issues in the future is to find some examples related with the
classification other than Example 5.2.3 and 5.2.4.

5.1. Correspondence between CP0-semigroups and units. We shall define
units of relative product systems similarly with the definitions of units of Arveson’s
and Bhat-Skeide’s product systems in Definition 2.4.8 and Definition 4.1.2, respec-
tively. A unit in the sense of Bhat-Skeide is a family of vectors in Hilbert modules,
however our unit is a family of vectors in Hilbert spaces like a unit in the sense of
Arveson.

Definition 5.1.1. Let M be a von Neumann algebra with a faithful normal state
ϕ and (H⊗ = {Ht}t≥0, {Us,t}s,t≥0) a relative product system over M . A family
ξ⊗ = {ξ(t)}t≥0 of ξ(t) ∈ D(Ht;ϕ) is called a unit of H⊗ with respect to ϕ if ξ(0) =

ϕ
1
2 and Us,t(ξ(s)ϕ

− 1
2 ξ(t)) = ξ(s + t) for all s, t ≥ 0. If a unit ξ⊗ = {ξ(t)}t≥0

satisfies πϕ(ξ(t))
∗πϕ(ξ(t)) = 1M (∥πϕ(ξ(t))∗πϕ(ξ(t))∥ ≤ 1), it is said to be unital

(contractive).

Now, we fix a faithful normal state ϕ on a von Neumann algebraM . When we say
a unit merely, suppose that it is a unit with respect to ϕ, unless otherwise specified.
Let ξ⊗ = {ξ(t)}t≥0 be a unital unit of a relative product system H⊗ = {Ht}t≥0

with respect to ϕ. We define a unital linear map T ξ
⊗

t on M by

T ξ
⊗

t (x) = πϕ(ξ(t))
∗πϕ(xξ(t)) ∈M(5.1)

for t ≥ 0 and x ∈M .

Lemma 5.1.2. The family T ξ
⊗
= {T ξ

⊗

t }t≥0 is an algebraic CP0-semigroup.

Proof. By the definition, it is clear that each T ξ
⊗

t is normal completely positive map.
For s, t ≥ 0 and x, y, z ∈M , we can compute as

⟨T ξ⊗s (T ξ
⊗

t (x))ϕ
1
2y, ϕ

1
2 z⟩ = ⟨πϕ(ξ(s))∗πϕ(πϕ(ξ(t))∗π(xξ(t))ξ(s))ϕ

1
2y, ϕ

1
2 z⟩

= ⟨πϕ(ξ(t))∗π(xξ(t))ξ(s)y, ξ(s)z⟩ = ⟨xξ(t)ϕ− 1
2 ξ(s)y, ξ(t)ϕ− 1

2 ξ(s)z⟩
= ⟨xUs,t(ξ(t)ϕ− 1

2 ξ(s))y, Us,t(ξ(t)ϕ
− 1

2 ξ(s)z)⟩ = ⟨xξ(t+ s)y, ξ(t+ s)z⟩
= ⟨πϕ(ξ(s+ t))∗πϕ(xξ(s+ t))ϕ

1
2y, ϕ

1
2 z⟩ = ⟨T ξ

⊗

s+t(x)ϕ
1
2y, ϕ

1
2 z⟩,

and hence T ξ
⊗

s ◦ T
ξ⊗

t = T ξ
⊗

s+t. 2
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Remark 5.1.3. In Bhat-Skeide’s[8] observation, for a unit Z⊗ = {Zt}t≥0 of a
product system E⊗ = {Et}t≥0 of Hilbert bimodule over a C∗-algebra A, they defined

an algebraic CP0-semigroup TZ
⊗
on A by TZ

⊗
t (x) = ⟨Zt, xZt⟩ for t ≥ 0 and x ∈ A.

Let ξ⊗ = {ξ(t)}t≥0 be a unital unit of a relative product system (H⊗, {Us,t}s,t).
Similarly for Subsection 4.3, we can define an inductive system structure on H⊗

and have an isomorphism lim−→
s

Hs ⊗M Ht
∼= lim−→

s

Hs for each t ≥ 0 as follows. For

0 ≤ s ≤ t, we define a right M -linear isometry βt,s : Hs → Ht by

βt,s(ξ) = Ut−s,s(ξ(t− s)ϕ− 1
2 ξ)

for each ξ ∈ Hs. Note that βt,s ◦ βs,r = βt,r for 0 ≤ r ≤ s ≤ t by the proof of
Lemma 4.3.1. Let H be the inductive limit of the inductive system (H⊗, {βt,s}s≤t)
and κt : Ht → H the canonical embedding for each t ≥ 0. The right W ∗-M -module
H is called an inductive limit of the pair (H⊗, ξ⊗).
Fix t ≥ 0. By a similar way of Theorem 4.3.3, if we define

Ut((κsξs)ϕ
− 1

2ηt) = κs+tUs,t(ξsϕ
− 1

2ηt).

for s ≥ 0, ξs ∈ D(Ht;ϕ) and ηt ∈ Ht, then Ut can be extended to a unitary from
H⊗M Ht onto H.
We can describe the continuity for the algebraic CP0-semigroup T ξ

⊗
as the one

for the unit ξ⊗ as the following theorem.

Theorem 5.1.4. The semigroup T ξ
⊗
= {T ξ

⊗

t }t≥0 associated with a unital unit ξ⊗ =
{ξ(t)}t≥0, is a CP0-semigroup if and only if

Ut(κ0(xϕ
1
2 )ϕ− 1

2 ξ(t)) = κt(xξ(t))→ κ0(xϕ
1
2 ) (t→ +0)(5.2)

holds for each x ∈M .

Proof. Suppose (5.2) for all x ∈M . For t ≥ 0 and x, y, z ∈M , we have

⟨T ξ
⊗

t (x)ϕ
1
2y, ϕ

1
2 z⟩ = ⟨πϕ(ξ(t))∗πϕ(xξ(t))ϕ

1
2y, ϕ

1
2 z⟩ = ⟨xξ(t)y, ξ(t)z⟩

= ⟨Ut(κ0(xϕ
1
2 )ϕ− 1

2 ξ(t)y), Ut(κ0(ϕ
1
2 )ϕ− 1

2 ξ(t)z)⟩.

Thus, when t→ +0, the inner product ⟨T ξ
⊗

t (x)ϕ
1
2y, ϕ

1
2 z⟩ tends to

⟨κ0(xϕ
1
2 )y, κ0(ϕ

1
2 )z⟩ = ⟨xϕ

1
2y, ϕ

1
2 z⟩.

We conclude that for every x ∈ M , T ξ
⊗

t (x) → x weakly when t → +0, and hence

T ξ
⊗
is a CP0-semigroup by the boundedness of {∥T ξ

⊗

t (x)∥}t≥0.

Conversely, we assume that T ξ
⊗
is a CP0-semigroup. We can compute as

⟨xξ(t), xξ(t)⟩ = ⟨xUt,0(ξ(t)ϕ− 1
2ϕ

1
2 ), xUt,0(ξ(t)ϕ

− 1
2ϕ

1
2 )⟩

= ⟨ξ(t)ϕ− 1
2ϕ

1
2 , x∗xξ(t)ϕ− 1

2ϕ
1
2 ⟩

= ⟨ϕ
1
2 , πϕ(ξ(t))

∗πϕ(x
∗xξ(t))ϕ

1
2 ⟩ = ⟨ϕ

1
2 , T ξ

⊗

t (x∗x)ϕ
1
2 ⟩,
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⟨κt(xξ(t)), κ0(xϕ
1
2 )⟩ = ⟨κt(xξ(t)), κtβt,0κ0(xϕ

1
2 )⟩

= ⟨xξ(t), Ut,0(ξ(t)ϕ− 1
2κ0(xϕ

1
2 ))⟩

= ⟨Ut,0(xξ(t)ϕ− 1
2ϕ

1
2 ), Ut,0(ξ(t)ϕ

− 1
2κ0(xϕ

1
2 ))⟩

= ⟨ϕ
1
2 , πϕ(ξ(t))

∗πϕ(x
∗ξ(t))xϕ

1
2 ⟩ = ⟨ϕ

1
2 , T ξ

⊗

t (x∗)xϕ
1
2 ⟩.

Thus, when t→ +0, we have ∥κt(xξ(t))− κ0(xϕ
1
2 )∥2 → 0. 2

We have constructed the algebraic CP0-semigroup T ξ from a given unital unit ξ⊗

of a relative product system H⊗. Conversely, in Subsection 4.3, we constructed the
relative product system H̃⊗ = {H̃t}t≥0 from a CP0-semigroup T = {Tt}t≥0 on M

and the unital unit ξ̃⊗ = {ξ̃(t)}t≥0 satisfying the condition (5.2) for all x ∈ M in
Remark 4.3.2. Note that we can apply the method to algebraic CP0-semigroups,
and then the unital unit ξ̃⊗ = {ξ̃(t)}t≥0 does not necessarily satisfy (5.2) for all
x ∈M . The main aim in this subsection is to show that the correspondence

(H⊗, ξ) 7→ T ξ
⊗
, T 7→ (H̃, ξ̃⊗)

is one-to-one up to isomorphisms. As the corollary of the result, we will show that a
unit with (5.2) for all x ∈M satisfies Ut(ξϕ

− 1
2 ξ(t))→ ξ (t→ +0) for all ξ ∈ D(H;ϕ)

in Corollary 5.1.8.
For an algebraic CP0-semigroup T = {Tt}t≥0, it turns out that the algebraic CP0-

semigroup T ξ̃
⊗
= {T ξ̃

⊗

t }t≥0 associated with ξ̃⊗ as (5.1) coincides to T = {Tt}t≥0. To
show the converse, we introduce the natural notion of isomorphism between relative
product systems and a generating property for units as the following.

Definition 5.1.5. Let (H⊗, {Us,t}s,t≥0) and (K⊗, {Vs,t}s,t≥0) be relative product sys-
tems over M . An isomorphism is a family u⊗ = {ut}t≥0 of M-bilinear unitaries
ut : Ht → Kt satisfying

Vs,t((usξs)ϕ
− 1

2 (utηt)) = us+tUs,t(ξsϕ
− 1

2ηt)(5.3)

for all s, t ≥ 0, ξs ∈ D(Hs;ϕ) and ηt ∈ Ht. Then H⊗ is said to be isomorphic to K⊗

and we denote as H⊗ ∼= K⊗.

We introduce the notion of generating for units. Let H⊗ = {Ht}t≥0 be a relative
product system over M with M -bilinear unitaries {Us,t}s,t≥0. For t ≥ 0 and p =
(t1, · · · , tn) ∈ Pt, we denote the M -bilinear unitary

U(p) = Ut1,t′1(idt1 ⊗ Ut2,t′2)(idt1,t2 ⊗ Ut3,t′3) · · · (idt1,··· ,tn−2 ⊗ Utn−1,t′n−1
)

fromHt1⊗M · · ·⊗MHtn ontoHt, where t
′
i = ti+1+· · ·+tn and idt1,··· ,ti = idt1⊗· · ·⊗idti .

A unital unit ξ⊗ = {ξ(t)}t≥0 is said to be generating when the set

{U(p)(x1ξ(t1)ϕ− 1
2 · · ·ϕ− 1

2xn−1ξ(tn−1)ϕ
− 1

2xnξ(tn)y) | p ∈ Pt, x1, · · · , xn, y ∈M}

is dense in Ht for all t ≥ 0.
Note that the unital unit ξ̃ associated with an algebraic CP0-semigroup T is

generating.
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Proposition 5.1.6. Let (H⊗, ξ⊗) be a pair of a relative product system H⊗ =
{Ht}t≥0 and a unital unit ξ⊗ = {ξ(t)}t≥0, and u = {ut}t≥0 an isomorphism from
H⊗ = {Ht}t≥0 to a relative product system K⊗ = {Kt}t≥0. We denote η(t) = utξ(t)
for each t ≥ 0 and η⊗ = {η(t)}t≥0.

(1) η⊗ = {η(t)}t≥0 is a unital unit.
(2) If ξ⊗ is generating, η⊗ = {η(t)}t≥0 is so.
(3) Let H and K be the inductive limits of (H⊗, ξ⊗) and (K⊗, η⊗), respectively. If

ξ⊗ satisfies (5.2) for all x ∈M , so is η⊗.

Proof. (1) and (2) are clear by the definitions.
We shall show (3). We denote unitaries associated with the relative product

systems H⊗ and K⊗ by Us,t and Vs,t, respectively. Suppose βt,s and γt,s give the
inductive system structures on H⊗ and K⊗. For each x ∈M , we have

utβt,0(xϕ
1
2 ) = utUt,0(ξ(t)ϕ

− 1
2xϕ

1
2 ) = Vt,0(utξ(t)ϕ

− 1
2u0xϕ

1
2 )

= Vt,0(η(t)ϕ
− 1

2xϕ
1
2 ) = γt,0(xϕ

1
2 ).

Thus, ∥λt(xη(t)) − λ0(xϕ
1
2 )∥ = ∥κt(xξ(t)) − κ0(xϕ

1
2 )∥, where κt : Ht → H and

λt : Kt → K are the canonical embeddings. 2

Theorem 5.1.7. Let (H⊗, {Us,t}s,t≥0) be a relative product system over M with a

generating unital unit ξ⊗ = {ξ(t)}t≥0, T
ξ⊗ = {T ξ

⊗

t }t≥0 the algebraic CP0-semigroup

associated with ξ⊗ and (H̃⊗, {Ũs,t}s,t≥0) the relative product system associated with

T ξ
⊗
with the unit ξ̃⊗ defined in Remark 4.3.2. Then, there is an isomorphism from

H̃⊗ onto H⊗ preserving the unit.

Proof. For t ≥ 0 and a partition p = (t1, · · · , tn) ∈ Pt, we define a map ut : H̃t → Ht

by

ut(κ̃p,t((x1 ⊗t1 ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xn−1 ⊗tn−1 ϕ

1
2 )ϕ− 1

2 (xn ⊗tn ϕ
1
2y)))

= U(p)(x1ξ(t1)ϕ
− 1

2 · · ·ϕ− 1
2xn−1ξ(tn−1)ϕ

− 1
2xnξ(tn)y)

for each x1, · · · , xn, y ∈ M , where κ̃p,t : H̃(p, t) → H̃t is the canonical embedding.
It is proved that ut is an isometry by the similar way of the proof of Theorem 4.3.3.
Since ξ⊗ is generating, ut can be extended as unitary from H̃t onto Ht.
We must show that Us,t((usξs)ϕ

− 1
2 (utηt)) = us+tŨs,t(ξsϕ

− 1
2ηt) for all ξs ∈ D(H̃s;ϕ)

and all ηt ∈ H̃t. It enough to show it for

ξs = κ̃q,s((x1 ⊗s1 ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (xm−1 ⊗sm−1 ϕ

1
2 )ϕ− 1

2 (xm ⊗sm ϕ
1
2 )),

ηt = κ̃p,t((z1 ⊗t1 ϕ
1
2 )ϕ− 1

2 · · ·ϕ− 1
2 (zn−1 ⊗tn−1 ϕ

1
2 )ϕ− 1

2 (zn ⊗tn ϕ
1
2w)),

where q = (s1, · · · , sm) ∈ Ps, p = (t1, · · · , tn) ∈ Pt and x1, · · · , xm, z1, · · · , zn,
w ∈M . If we put

ζ1 = x1ξ(s1)ϕ
− 1

2 · · ·ϕ− 1
2xmξ(sm),

ζ2 = z1ξ(t1)ϕ
− 1

2 · · ·ϕ− 1
2 zn−1ξ(tn−1)ϕ

− 1
2 znξ(tn)w,
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then we have

us+tŨs,t(ξsϕ
− 1

2ηt) = Us1,s′1+t(ids1 ⊗ Us2,s′2+t) · · · (ids1,··· ,sm−1 ⊗ Usm,t)(ids1,··· ,sm ⊗ Ut1,t′1)

· · · (ids1,··· ,sm ⊗ idt1,··· ,tn−2 ⊗ Utn−1,t′n−1
)(ζ1ϕ

− 1
2 ζ2)

= Us1,s′1+t(ids1 ⊗ Us2,s′2+t)(ids1,s2 ⊗ Us3,s′3+t)

· · · (ids1,··· ,sm−1 ⊗ Usm,t)(ζ1ϕ− 1
2U(p)ζ2).(5.4)

Also, we have

Us,t((usξs)ϕ
− 1

2 (utηt)) = Us,t(U(q)(ζ1)ϕ
− 1

2U(p)(ζ2))

= Us,t(Us1,s′1 ⊗ idt)(ids1 ⊗ Us2,s′2 ⊗ idt)(ids1,s2 ⊗ Us3,s′3 ⊗ idt)

· · · (ids1,··· ,sn−2 ⊗ Usn−1,s′n−1
⊗ idt)(ζ1ϕ

− 1
2U(p)(ζ2)).

By the associativity of {Us,t}s,t≥0, we have

Us,t((usξs)ϕ
− 1

2 (utηt)) = Us1,s′1+t(ids1 ⊗ Us′1,t)(ids1 ⊗ Us2,s′2 ⊗ idt)(ids1,s2 ⊗ Us3,s′3 ⊗ idt)

· · · (ids1,··· ,sn−2 ⊗ Usn−1,s′n−1
⊗ idt)(ζ1ϕ

− 1
2U(p)(ζ2)),

= Us1,s′1+t(ids1 ⊗ Us′1,t(Us2,s′2 ⊗ idt))(ids1,s2 ⊗ Us3,s′3 ⊗ idt)

· · · (ids1,··· ,sn−2 ⊗ Usn−1,s′n−1
⊗ idt)(ζ1ϕ

− 1
2U(p)(ζ2))

= Us1,s′1+t(ids1 ⊗ Us2,s′2+t(ids2 ⊗ Us′2,t))(ids1,s2 ⊗ Us3,s′3 ⊗ idt)

· · · (ids1,··· ,sn−2 ⊗ Usn−1,s′n−1
⊗ idt)(ζ1ϕ

− 1
2U(p)(ζ2))

= Us1,s′1+t(ids1 ⊗ Us2,s′2+t)(ids1,s2 ⊗ Us′2,t(Us3,s′3 ⊗ idt))(ids1,s2,s3 ⊗ Us4,s′4 ⊗ idt)

· · · (ids1,··· ,sn−2 ⊗ Usn−1,s′n−1
⊗ idt)(ζ1ϕ

− 1
2U(p)(ζ2)).

By repeating the above calculations and (5.4), we have

Us,t((usξs)ϕ
− 1

2 (utηt))

= Us1,s′1+t(ids1 ⊗ Us2,s′2+t)(ids1,s2 ⊗ Us3,s′3+t) · · · (ids1,··· ,sm−1 ⊗ Usm,t)(ζ1ϕ− 1
2U(p)ζ2)

= us+tŨs,t(ξsϕ
− 1

2ηt).

We conclude that {ut}t≥0 gives an isomorphism. 2

We conclude that the correspondence between algebraic CP0-semigroups T and
pairs (H⊗, ξ⊗) of relative product systemsH⊗ and generating unital units ξ⊗, is one-
to-one. By the correspondence, we shall show that a unit with the condition (5.2)
for all x ∈ M has a stronger condition automatically. For this, a few preparations
are required as the following.
Let H⊗ = {Ht}t≥0 and K⊗ = {Kt}t≥0 be relative product systems on a von Neu-

mann algebra M with unital units ξ⊗ = {ξ(t)}t≥0 and η⊗ = {η(t)}t≥0, respectively.
Suppose u⊗ = {ut}t≥0 is an isomorphism from H⊗ onto K⊗. Then, we can define
the canonical right M -linear unitary u from the inductive limit H of H⊗ onto the
one K of K⊗ by

u(κHt (ξt)) = κKt ut(ξt)
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for each t ≥ 0 and ξt ∈ Ht, where κ
H
t means the canonical embedding from Ht into

H and κKt is similar.

Corollary 5.1.8. Let (H⊗, ξ⊗) be a pair of a relative product system H⊗ = {Ht}t≥0

and a generating unital unit ξ⊗ = {ξ(t)}t≥0, and H the inductive limit of (H⊗, ξ⊗).
When ξ⊗ satisfies the condition (5.2) for all x ∈M , we have

Ut(ξϕ
− 1

2 ξ(t))→ ξ (t→ +0)(5.5)

for all ξ ∈ D(H;ϕ). Then the unit ξ⊗ is said to be continuous.

Proof. We use the notations in Theorem 5.1.7 and its proof. By Proposition 4.3.4,
the unit ξ̃⊗ = {ξ̃(t) = κ̃(t),t(1M ⊗t ϕ

1
2 )}t≥0 satisfies

Ut(ξϕ
− 1

2 ξ̃(t))→ ξ (t→ +0)(5.6)

for all ξ ∈ D(H̃;ϕ). Suppose H̃ is the inductive limit of H̃⊗ and κ̃t : H̃t → H̃
is the canonical embedding for each t ≥ 0. Let u be the unitary from H̃ onto H
induced from {ut}t≥0 as the above arguments, and Ũt the unitary giving the right

W ∗-M -module isomorphism H̃ ⊗M H̃t
∼= H̃ for each t ≥ 0. For each ξ̃s ∈ H̃s, we

have

uŨt(κ̃sξ̃sϕ
− 1

2 ξ̃(t)) = uκ̃s+tŨs,t(ξ̃sϕ
− 1

2 ξ̃(t)) = κs+tus+tŨs,t(ξ̃sϕ
− 1

2 ξ̃(t))

= κs+tUs,t((usξ̃s)ϕ
− 1

2utξ̃(t)) = Ut((κsusξ̃s)ϕ
− 1

2utξ̃(t))

= Ut((uκ̃sξ̃s)ϕ
− 1

2utξ̃(t)),

where the third equality is implied from (5.3). Thus, by (5.6) for all ξ ∈ D(H;ϕ),
we have

∥Ut(ξϕ− 1
2 ξ(t))− ξ∥ = ∥Ut(uu∗ξϕ− 1

2utu
∗
t ξ(t))− ξ∥

= ∥uUt(u∗ξϕ− 1
2u∗t ξ(t))− ξ∥

= ∥Ut(u∗ξϕ− 1
2u∗t ξ(t))− u∗ξ∥ → 0

when t→ +0. 2

5.2. Classification of E0-semigroups by relative product systems. In this
subsection, we will show that there is a one-to-one correspondence between contrac-
tive adapted right cocycles and units of relative product systems. By the correspon-
dence, E0-semigroups will be classified by relative product systems up to the unitary
cocycle equivalence.
Let (H⊗, ξ⊗) be a pair of a relative product system H⊗ on a von Neumann algebra

M and a continuous unital unit ξ⊗, and H the inductive limit of (H⊗, ξ⊗). We can
construct an E0-semigroup θ = {θt}t≥0 on End(HM) by

θt(a) = Ut(a⊗M idt)U
∗
t(5.7)

for each a ∈ End(HM), where Ut gives the isomorphism H ⊗M Ht
∼= H. (The

continuity of θ is implied from the one of the unit ξ⊗ and the proof of Theorem
4.3.5.) The E0-semigroup θ is called the maximal dilation of (H⊗, ξ⊗). A right
cocycle w = {wt}t≥0 for θ is called adapted if κtκ

∗
twtκtκ

∗
t = wt for all t ≥ 0, where

κt is the canonical embedding from Ht into H.
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Theorem 5.2.1. Let θ = {θt}t≥0 be the E0-semigroup associated with a pair (H⊗, ξ⊗)
of a relative product system H⊗ = {Ht}t≥0 and a continuous unital unit ξ⊗ =
{ξ(t)}t≥0 by (5.7). There is a one-to-one correspondence between contractive adapted
right cocycles w = {wt}t≥0 on End(HM) and contractive units η⊗ = {η(t)}t≥0 in H⊗

by relations η(t) = κ∗twtκ0ϕ
1
2 and wt = πϕ(κtη(t))πϕ(κ0ϕ

1
2 )∗ for all t ≥ 0.

Proof. Let {Us,t}s,t≥0 be a family giving the relative product system structure of H⊗

and H the inductive limit of (H⊗, ξ⊗).
Let w = {wt}t≥0 be a contractive adapted right cocycle for θ. Note that each

η(t) = κ∗twtκ0ϕ
1
2 is ϕ-bounded. Moreover, for each t ≥ 0, we have

πϕ(η(t))
∗πϕ(η(t))ϕ

1
2x = κ∗0w

∗
twtκ0ϕ

1
2x(5.8)

for each x ∈M , and hence the contractivity of wt implies that ∥πϕ(η(t))∗πϕ(η(t))∥ ≤
1. We shall show that η⊗ is a unit. For s, t ≥ 0, κs+t = Ut(κs ⊗ idt)U

∗
s,t implies the

following calculations.

η(s+ t) = κ∗s+tws+tκ0ϕ
1
2 = κ∗s+tθt(ws)wtκ0ϕ

1
2 = κ∗s+tUt(ws ⊗ idt)U

∗
t wtκ0ϕ

1
2

= κ∗s+tUt(ws ⊗ idt)((κ0ϕ
1
2 )ϕ− 1

2 (κ∗twtκ0ϕ
1
2 ))

= κ∗s+tUt((wsκ0ϕ
1
2 )ϕ− 1

2 (κ∗twtκ0ϕ
1
2 ))

= Us,t(κ
∗
s ⊗ idt)U

∗
t Ut((wsκ0ϕ

1
2 )ϕ− 1

2 (κ∗twtκ0ϕ
1
2 ))

= Us,t(κ
∗
swsκ0ϕ

1
2 )ϕ− 1

2 (κ∗twtκ0ϕ
1
2 )) = Us,t(η(s)ϕ

− 1
2η(t)).

Conversely, let η⊗ = {η(t)}t≥0 be a contractive unit of H⊗, and for each t ≥ 0,

wt = πϕ(κtη(t))πϕ(κ0ϕ
1
2 )∗ ∈ End(HM). For all ξ ∈ H, the equation

wtξ = κtUt,0(η(t)ϕ
− 1

2κ∗0ξ)(5.9)

is implied from the approximation of κ∗0ξ by vectors as the form of ϕ
1
2x. In particular,

wt(κ0ϕ
1
2x) = κtη(t)x(5.10)

for all t ≥ 0, x ∈M , and hence wt = 0 on the orthogonal complement of the closed
subspace κ0κ

∗
0H. Thus, computations

θt(ws)wt(κ0ϕ
1
2x) = Ut(ws ⊗ idt)U

∗
t πϕ(κtη(t))πϕ(κ0ϕ

1
2 )∗κ0(ϕ

1
2x)

= Ut(ws ⊗ idt)U
∗
t κt(η(t)x) = Ut(ws ⊗ idt)((κ0ϕ

1
2 )ϕ− 1

2η(t))

= Ut((wsκ0ϕ
1
2 )ϕ− 1

2 (ηtx)) = Ut((κsη(s))ϕ
− 1

2 (η(t)x))

= κs+tUs,t(η(s)ϕ
− 1

2 (η(t)x)) = ws+t(κ0ϕ
1
2x)

for every x ∈M , implies that w is a right cocycle. We shall show that w is adapted.
For all t ≥ 0 and all ξ ∈ H, by (5.9), we have

κtκ
∗
twtξ = κtκ

∗
twtκ0κ

∗
0ξ = κtκ

∗
tπϕ(κtη(t))πϕ(κ0ϕ

1
2 )∗κ0κ

∗
0ξ

= κtκ
∗
tκtUt,0(η(t)ϕ

− 1
2 (κ∗0ξ)) = wtκ0κ

∗
0ξ = wtξ.
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By (5.9) again and the fact that the family {κtκ∗t}t≥0 is increasing, we have also

wtκtκ
∗
t ξ = πϕ(κtη(t))κ

∗
0κtκ

∗
t ξ = κtUt,0(η(t)ϕ

− 1
2κ∗0κtκ

∗
t ξ)

= κtUt,0(η(t)ϕ
− 1

2κ∗0ξ) = wtξ.

We conclude that κtκ
∗
twtκtκ

∗
t = wt, that is, the adaptedness.

We can check that the correspondence between contractive adapted right cocycles
and contractive units is one-to-one by (5.9). 2

Note that by (5.8) and (5.9), the unit associated with an adapted unitary right
cocycle is unital, and the contractive adapted right cocycle associated with a unital
unit preserves inner products on κ0κ

∗
0H.

At the beginning of this subsection, we constructed the E0-semigroup from a pair
of a relative product system and a continuous unital unit by (5.7).
Conversely, for E0-semigroup θ = {θt}t≥0 on a von Neumann algebra M , we

can get the relative product system H̃θ⊗ = {H̃θ
t}t≥0 and the continuous (generat-

ing) unital unit ξ̃θ⊗ = {ξ̃θ(t)}t≥0 by the way in Subsection 4.3 as CP0-semigroups.
Suppose Hθ

t is L2(M) as sets and a left and a right actions of M are defined by

xξy = θt(x)ξy for each x, y ∈ M and ξ ∈ Hθ
t , and put ξθ(t) = ϕ

1
2 for each t ≥ 0.

Then, Hθ⊗ = {Hθ
t}t≥0 and ξθ⊗ = {ξθ(t)}t≥0 canonically become a relative product

system and continuous (generating) unital unit, respectively. It turns out that there
is an isomorphism uθ = {uθt}t≥0 from H̃θ⊗ onto Hθ⊗ preserving the units. A family
{f θt }t≥0 of right M -linear unitaries f θt : Hθ

t ∋ ξ 7→ ξ ∈ L2(M) induces the right M -
linear unitary f θ : Hθ → L2(M), where Hθ is the inductive limit of (Hθ⊗, ξθ⊗). Note
that the all canonical embeddings κθt : Hθ

t → Hθ are unitaries and coincide. The
E0-semigroup θ is given by (Hθ⊗, ξθ⊗) in the sense of (5.1), and the E0-semigroup

{(f θ)∗θt(f θ · (f θ)∗)f θ}t≥0 coincides with the maximal dilation θ̃ of (Hθ⊗, ξθ⊗) on
End(Hθ

M).
If w = {wt}t≥0 ⊂ M is a unitary right cocycle for θ and put θ′t(·) = w∗

t θt(·)wt for
each t ≥ 0, then ut : Hθ′

t ∋ xϕ
1
2 7→ wtxϕ

1
2 ∈ Hθ

t gives an isomorphism Hθ′⊗ ∼= Hθ⊗.
Thus, we have H̃θ′⊗ ∼= Hθ′⊗ ∼= Hθ⊗ ∼= H̃θ⊗. Conversely, we have the following
theorem.

Theorem 5.2.2. Let θ = {θt}t≥0 and θ′ = {θ′t}t≥0 be E0-semigroups on a von Neu-

mann algebra M . Suppose (H̃θ⊗, ξ̃θ⊗) and (H̃θ′⊗, ξ̃θ
′⊗) are the pairs of the relative

product systems and the continuous unital units associated with θ and θ′, respectively.
If H̃θ⊗ and H̃θ′⊗ are isomorphic, then θ and θ′ are cocycle equivalent.

Proof. We will use the above notations for θ and θ′.
Suppose a family u = {ut}t≥0 of M -bilinear unitaries gives an isomorphism from

H̃θ′⊗ onto H̃θ⊗. Put η(t) = uθtutξ̃
θ′(t) ∈ Hθ

t for each t ≥ 0 and η⊗ = {η(t)}t≥0.
Then, we have

θ′t(x) = πϕ(ξ̃
θ′(t))∗πϕ(xξ̃

θ′(t)) = πϕ(u
θ
tutξ̃

θ′(t))∗πϕ(xu
θ
tutξ̃

θ′(t))

= πϕ(η(t))
∗πϕ(xη(t))(5.11)
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for all x ∈M , that is, θ′ is given by (Hθ⊗, η⊗) in the sense of (5.1). By Proposition
5.1.6, the unit η⊗ is continuous, generating and unital. We denote the right cocycle
for θ̃ associated with η⊗ by w0 = {w0

t = πϕ(κ
θ
tη(t))πϕ(κ

θ
0ϕ

1
2 )∗}t≥0 as Theorem 5.2.1.

By (5.9), each w0
t is isometry. For all x, y ∈M , we have

⟨η(t)x, η(t)y⟩ = ⟨κθtw0
tκ

θ
0ϕ

1
2x, κθtw

0
tκ

θ
0ϕ

1
2y⟩ = ⟨ϕ

1
2x, ϕ

1
2y⟩,

and hence L2(M) ∋ ϕ 1
2x 7→ η(t)x ∈ span{η(t)x | x ∈ M} is unitary. This implies

that span{η(t)x | x ∈ M} = L2(M). Thus, by (5.10), each w0
t is surjective. Now,

we shall show that w0 is strongly continuous. For s ≥ 0, by the continuity of η⊗,
we can check that κθtη(t)→ κθsη(s) when t→ s. On the other hand, for ξ ∈ Hθ and
t ≥ s, we have

⟨wtξ, wsξ⟩ = ⟨κθtU θ
t,0(η(t)ϕ

− 1
2 (κθ0)

∗ξ), κθsU
θ
s,0(η(s)ϕ

− 1
2 (κθ0)

∗ξ)⟩

= ⟨U θ
t,0(η(t)ϕ

− 1
2 (κθ0)

∗ξ), βθt,sU
θ
s,0(η(s)ϕ

− 1
2 (κθ0)

∗ξ)⟩

= ⟨U θ
t,0(η(t)ϕ

− 1
2 (κθ0)

∗ξ), U θ
t−s,s(idt−s ⊗ U θ

s,0)(ξ(t− s)ϕ− 1
2η(s)ϕ− 1

2 (κθ0)
∗ξ)⟩

= ⟨U θ
t,0(η(t)ϕ

− 1
2 (κθ0)

∗ξ), U θ
t,0(U

θ
t−s,s ⊗ id0)(ξ(t− s)ϕ− 1

2η(s)ϕ− 1
2 (κθ0)

∗ξ)⟩

= ⟨η(t)ϕ− 1
2 (κθ0)

∗ξ, U θ
t−s,s(ξ(t− s)ϕ− 1

2η(s))ϕ− 1
2 (κθ0)

∗ξ⟩

= ⟨η(t)ϕ− 1
2 (κθ0)

∗ξ, βθt,sη(s)ϕ
− 1

2 (κθ0)
∗ξ⟩ = ⟨κθtη(t)ϕ− 1

2 (κθ0)
∗ξ, κθsη(s)ϕ

− 1
2 (κθ0)

∗ξ⟩
= ⟨(κθ0)∗ξ, πϕ(κθtη(t))∗πϕ(κθsη(s))(κθ0)∗ξ⟩.(5.12)

Since πϕ(κ
θ
tη(t))

∗πϕ(κ
θ
sη(s)) → 1M weakly when t → s or s → t, (5.12) tends to

⟨ξ, ξ⟩ when t → s + 0, and by the symmetry, ⟨wtξ, wsξ⟩ also tends to ⟨ξ, ξ⟩ when
t→ s− 0. We conclude that wtξ → wsξ when t→ s.
Put wt = f θw0

t (f
θ)∗ ∈ M . Then w = {wt}t≥0 is a strongly continuous right

cocycle. For all t ≥ 0 and x, y, z ∈M , since

wtϕ
1
2x = f θκθtU

θ
t,0(η(t)ϕ

− 1
2 (κθ0)

∗(f θ)∗ϕ
1
2x) = f θt η(t)x = η(t)x,

and θ′ is given by (Hθ⊗, η⊗) as (5.11), we have θ′t(x) = w∗
t θt(x)wt by equations

⟨w∗
t θt(x)wtϕ

1
2y, ϕ

1
2 z⟩ = ⟨θt(x)f θt η(t)y, f θt η(t)z⟩ = ⟨θt(x)η(t)y, η(t)z⟩

= ⟨πϕ(η(t))∗πϕ(x · η(t))ϕ
1
2y, ϕ

1
2 z⟩ = ⟨θ′t(x)ϕ

1
2y, ϕ

1
2 z⟩.

2

Example 5.2.3. The relative product system associated with the E0-semigroup given
by a semigroup in Example 2.4.1 of unitaries, is isomorphic to the trivial relative
product system {L2(M)}t≥0.

Example 5.2.4. Let θ be an E0-semigroup on a von Neumann algebra M and
u ∈ M a unitary. The inner conjugate of θ by u is an E0-semigroup θ′ defined by
θ′t(x) = uθt(u

∗xu)u∗ for each t ≥ 0 and x ∈ M . Then θ and θ′ have isomorphic
relative product systems and they are cocycle equivalent by a right unitary cocycle w
defined by wt = θt(u)u

∗ for each t ≥ 0.
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