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Abstract

We lift the infinite tensor product construction of representations of the quan-

tum toroidal gl1 algebra to the construction of the trivalent intertwiners. This

enables us to obtain the intertwiner for the vertical MacMahon representation, i.e.

the MacMahon intertwiner. To this end we introduce the definition of the trivalent

intertwiner in a more general setting than existing one, and observe that the reg-

ularization procedures also work well at the operator level. As an application we

can compute the R-matrix for the MacMahon representation from the commutator

of two MacMahon intertwiners.
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1 Introduction

Quantum toroidal gl1 algebra

Since a discovery of the AGT correspondence [1], the quantum toroidal gl1 algebra

and its degenerate algebras have played important roles in mathematical physics. In

[1] they claimed the correspondence between the generating function of the instanton

counting for the four dimensional super Yang-Mills gauge theory and the correlation

function of the two dimensional conformal field theory. The generating function of the

instanton counting is known as the Nekrasov function [2], and it is expressed in a certain

combinatorial way. On the other hand, the conformal correlation function is formulated

by making use of the representation theory of the conformal algebra, and it is typically

decomposed into more fundamental building blocks called conformal blocks [3]. From

a standpoint of the conformal field theory, the original AGT correspondence is related

to the conformal block associated with the Virasoro algebra, and its generalizations

have been also developed, for example the WN -algebra
1 version [4] and the q-deformed

version [5, 6] are well known. Since the quantum toroidal gl1 algebra is obtained as a

deformation of the W1+∞ algebra [13], it is a universal W-algebra of A-type in the sense

that any (deformed) WN -algebras are realized as certain representations of the quantum

toroidal gl1 algebra [21, 15]. Therefore we can understand the above correspondences

by constructing an action of the quantum toroidal gl1 algebra on cohomologies (or its

K-theory lift) of the instanton moduli spaces [7] (see also [8] as for the Yangian limit

version).

Mathematically the quantum toroidal gln algebra for n ≥ 3 was introduced along

the geometric Langrands duality [9] and an analogue of the Schur duality [10]. Then its

vertex operator representation was considered in [11]. After a while [12] and [13] revealed

fundamental properties of the quantum toroidal gl1 algebra2, then [14, 15, 16, 17] have

worked out its representation theory exhaustively. In this thesis we only deal with the

quantum toroidal gln=1 algebra. This algebra has two deformation parameters. It is

convenient to arrange these parameters into three dependent parameters qi (i = 1, 2, 3);

q1q2q3 = 1. qi enters the algebra symmetrically, however a choice of the representation

may break this symmetry (see Section 2).

Tensor product representation

From the viewpoint of representation theory, the existence of the (formal) coproduct

1We mean theW-algebra of AN−1-type byWN -algebra. TheW2-algebra is just the Virasoro algebra.
2Therefore the same algebra is also called Ding-Iohara-Miki algebra (DIM algebra for short).
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Figure 1: Each state of the vector, Fock and MacMahon representation corresponds to

an integer number, partition and plane partition respectively, see Section 2.2 for details.

structure is quite important. In general, if we have a coproduct ∆ : A → A ⊗ A for

the algebra A, then we can naturally take the tensor product representation as follows.

Let (ρV , V ), (ρW ,W ) be representations of A. Then the tensor product representation

(ρV⊗W , V ⊗W ) is defined as

ρV⊗W (a) := ρV ⊗ ρW (∆(a)), a ∈ A. (1.1)

In [14, 16] they have introduced three kinds of representations of the quantum toroidal

gl1 algebra: the vector, Fock and MacMahon representations. Roughly speaking these

representation spaces are spanned by one, two and three dimensional Young diagrams

respectively, see Figure 1. In their constructions the vector representation is the funda-

mental ingredient. One can construct the Fock representation by infinite tensor poduct

of the vector representations. Furthermore, one can construct the MacMahon represen-

tation in a similar manner from the Fock representations. Note, however, that we need

regularization procedures in order to obtain the stability conditions for validity of these

infinite tensor products (see Section 2.2). These procedures are not only involved but also

giving depth to the theory. For example, the process from the Fock representation to the

MacMahon one allows the action to have an extra parameter, denoted by K ∈ C×, which

is out of the algebra itself, though the physical interpretation of this new parameter is

not clear yet.

We would also like to mention that the MacMahon representation has a visually

salient trait that the permutation of the parameters q1, q2, q3 corresponds to the three

dimensional transposition of coordinate axes. For example, see Figure 2. This symme-

try shows the triality symmetry which is thought of the nature of W-algebras [18, 19].

Therefore the MacMahon representation seems to be a natural setting to consider the

relation with W-algebras.

Intertwiner
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↔ ↔
q3

q1q2 ↔

q2

q3q1 ↔

q1

q2q3

Figure 2: The three dimensional transposition corresponding to the cyclic permutation.

The intertwining operator is an operator Ψ : V → W between two representation

spaces such that it commutes with the action of the algebra A;

ρW (a)Ψ = ΨρV (a), a ∈ A. (1.2)

Since we have the notion of the coproduct, we can ask the existance of the intertwiner

between tensor product representations. For example, the existence of the R-matrix

R : V ⊗W → W ⊗ V , which is a solution to the Yang-Baxter equation, indicates the

almost cocommutativity of the bialgebra A.
Among other things it is important to understand the following trivalent intertwining

operator of the quantum toroidal algebra U (we call it intertwiner for short) from both

mathematical and physical points of view:

Ψ : V ⊗H → H′, ρH′(a)Ψ = Ψ ρV ⊗ ρH(∆(a)), a ∈ U , (1.3)

where V is a vertical representation and H,H′ are horizontal representations. The ver-

tical representation is a representation in which the Cartan like part of the algebra acts

diagonally such as the vector, Fock and MacMahon representations (see Section 2.2),

while the horizontal representation is a vertex operator representation like [11] (see Sec-

tion 2.3). The importance of such an intertwiner was recognized in [20] for the first

time. Then, when the vertical representation is the Fock one, [22] eventually identified
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the intertwiner with the refined topological vertex [23, 24], which is a computational tool

for the topological string theory. Because the Nekrasov function is reproduced by ap-

propriately gluing the refined topological vertices, we can identify the Nekrasov function

with the certain combination of the intertwiners. This realizes another aspect of the

AGT correspondence, between the super Yang-Mills theory, conformal field theory and

topological string theory, and we can understand that the algebraic structure of them is

governed by the same quantum toroidal algebra. This is the reason why we concentrate

on the theory of the intertwiner in this thesis.

Many important objects in representation theory are naturally related to the in-

tertwiner; for example, R-matrix [25], (q, t)-KZ equation [27] and qq-character [28] are

investigated by making use of the intertwiner. Furthermore, by considering the inter-

twiner for the quantum toroidal gln algebra (n ∈ N) instead of the quantum toroidal

gl1 algebra, we can obtain a natural generalization of the refined topological vertex and

identify the combination of these intertwiners with the function of instanton counting on

the ALE space [29]. As another direction of a generalization, one might expect to replace

the representation space of the intertwiner; then, this is the subject in this thesis. In

what follows, we state the question, idea and result.

Systematic construction of intertwiner

Originally, in [22], they considered the trivalent intertwiner for a triple of the Fock

representations and constructed it by making use of the vertex operator formalism (see

Section 3.1 for details). Each state of three Fock representations was labeled by a partition

(or a Young diagram)[14], and each partition corresponded to one of three labels of the

refined topological vertex. However, we know that there are also a lot of representations

other than the Fock representation. Then it is natural to consider whether there always

exists an intertwiner for arbitrary representation or not. This thesis aims to answer this

question partly. Now we would like to replace one of the Fock representations of the

intertwiner [22] with another one and to discuss its properties, though we do not know

the physically clear meaning of the resultant vertex.

Here we explain the strategy to construct a new intertwiner from given intertwiners

in a general setting. To this end we identify the intertwiner with a trivalent vertex

graphically in the following way:

,Ψ = a a
(2)
i , a ∈ A,=

∑
i

a
(1)
i
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where we have used the notation ∆(a) =
∑

i a
(1)
i ⊗ a

(2)
i and we often omit arrow signs

from diagrams. Note that we will associate the vertical and the horizontal representations

to the vertical and the horizontal edges, respectively. If we have two intertwiners Ψi :

Vi ⊗ Hi → H ′
i (i = 1, 2) with H1 = H ′

2, then we can obtain the intertwiner for the

tensor product V1 ⊗ V2 by simply composing two intertwiners Ψ12 = Ψ1 ◦ (id ⊗ Ψ2) :

V1 ⊗ V2 ⊗H2 → H ′
1. The intertwining relation can be checked graphically as follows:

=Ψ12 = ,

=a a
(2)
i

a
(1)
i∑

i

a
(1)
i

=
∑
i,j

a
(22)
ij

a
(21)
ij

where we have used the notation ∆(a
(2)
i ) =

∑
j a

(21)
ij ⊗ a

(22)
ij . For this construction, what

we have to do is only to check the consistency condition for the composite operator to

exist.

Since the Fock representation of the quantum toroidal gl1 algebra can be constructed

by infinite tensor product of the vector representations, one might expect that the inter-

twiner for the Fock representation can be obtained by infinitely many times composition

of the intertwiners for the vector representation:

,
· · ·

ΨFock
?
= := Ψvect.

Actually taking the infinite tensor product requires some regularization procedure. Ac-

cordingly we have to take this effect into account and attach some modification operator

to the composition of the intertwiners in order to stabilize the infinite composition. As

concerns the intertwiner for the Fock representation, we obtain the following theorem

(see Proposition 3.10 for details):

Theorem 1.1 ([30, Section 4.2.2]). There exists a unique intertwiner for the Fock repre-

sentation up to normalization if and only if a pair of horizontal representations satisfies

the matching condition for the zero mode sector. Furthermore, for the suitable choice of

horizontal representations, this intertwiner agrees with that of [22].
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It is the main part of this thesis to show how to construct the intertwiner in a systematic

way along the above idea. Furthermore, by applying the same method, we can newly

construct the intertwiner for the MacMahon representation [30], though we have to define

the horizontal representation in a more abstract way compared to [22]. The following

existence and uniqueness theorem of the intertwiner for the MacMahon representation is

the main theorem of this thesis (see Proposition 3.13 for details):

Theorem 1.2 ([30, Section 4.3.2]). There exists a unique intertwiner for the MacMahon

representation up to normalization if and only if a pair of horizontal representations

satisfies the matching condition for the zero mode sector.

Here we sketch the explicit form of the intertwiner Ξ(K; v) for the MacMahon represen-

tation (note that we express the intertwiner as an operator between a pair of horizontal

representations (H,H′), the Λ-component, see Definition 3.2):

ΞΛ(K; v) = zΛΞ̃Λ(K; v) : H → H′,

Ξ̃Λ(K; v) =M[n](K) · Φ̃[n]
Λ (v) ◦ Γn(K; v), n > h(Λ),

where Φ̃
[n]
Λ (v) denotes the finite composition of the intertwiners for the Fock representa-

tion, Γn(K; v) denotes the above mentioned modification operator,M[n](K) denotes the

coefficient which is required for the well-definedness of the operator Ξ̃Λ(K; v), and zΛ is

the contribution from the zero mode sector which is characteristic of the vertex operator

formalism and there is no counterpart at the representation level.

In order to obtain an arbitrary web diagram by composition of the intertwiners, one

needs the notion of the dual intertwiner [22]. We can also construct it in almost the

same way as the original intertwiner by merely reversing the ordering of the composition.

Hence we can obtain the counterparts of the above theorems (see Propositions 4.9 and

4.12). However, we should pay some attention to the dual basis. We know that the dual

basis of the Fock representation corresponds to the dual Macdonald function, while we

do not know what is the dual basis of the MacMahon representation. This thesis only

suggests what should be the normalization factors, see Section 5.2; we do not have any

insights into the relation with the theory of symmetric function.

Further direction

Strictly speaking we only deal with the vacuum MacMahon representation in this

thesis. One can define the representation whose highest weight state has infinitely many

boxes consistently, which is called MacMahon representaion with boundary condition

[16]. This highly nontrivial representation can also be constructed as the infinite tensor
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product in somewhat peculiar way. Therefore we expect that the intertwiner for this

representation can also be constructed in a spirit of this thesis.
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Organization

In Section 2 we review the definition and the representations of the quantum toroidal

gl1 algebra. In Section 3 we make a detailed explanation of how to construct the inter-

twiners, which is the main part of this thesis. In Section 3.1 we state the definition of the

intertwiner in somewhat more general settings than [22]. In Section 3.2 we construct the

intertwiner for the vector representation by lifting the generating function of the vector

representation to the vertex operator. In Section 3.3 we construct the intertwiner for the

Fock representation as the composition of the vector intertwiners and the modification

operator. In the same way, we construct the intertwiner for the MacMahon representa-

tion in Section 3.4. Section 4 is devoted to the construction of the dual intertwiner which

is defined by exchanging the source and the target representation spaces in the definition

of the original intertwiner. Section 5 is devoted to a few supplementary properties of

the MacMahon intertwiner. In Section 5.1 we confirm the agreement of two ways to

compute the R-matrix as an application of the MacMahon intertwiner. In Section 5.2

we discuss the relation between the normalization factor for the dual basis and the OPE

factor arising from the certain arrangement of the intertwiners.

Most of parts of this thesis, particularly Sections 3 and 5.1, are based on [30], while

Sections 4 and 5.2 are based on [31].

Notation

Geometric series: a
1−z
∈ C[[z]] denotes

∑
n≥0 az

n.

Delta function: δ(z) =
∑

n∈Z z
n.

q-integer: [r] := qr−q−r

q−q−1 (r ∈ Z).
Partition: λ = (λi)i≥1 where λi ≥ λi+1 for arbitrary i ∈ Z>0 and λi = 0 for sufficiently

large i.

∅ := (0)i≥1.

(i, j) ∈ λ :⇐⇒ λi ≥ j (i, j ∈ Z>0).

ℓ(λ) := min{ℓ ≥ 0|(ℓ+ 1, 1) ̸∈ λ}.
|λ| :=

∑ℓ(λ)
i=1 λi.

λ+ 1j := (λ′i)i≥1 where λ′j = λj + 1 and λ′i = λi except for i = j.
tλ := (λ′i)i≥1 where λ′i = |{k ≥ 1|λk ≥ i}|.
aλ(i, j) := λi − j, lλ(i, j) :=

tλj − i.
Plane partition: Λ = (Λ(k))k≥1 where each Λ(k) is a partition, Λ

(k)
i ≥ Λ

(k+1)
i for arbitrary

i, k ∈ Z>0 and Λ(k) = ∅ for sufficiently large k.

∅∅∅ := (∅)k≥1.
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(i, j, k) ∈ Λ :⇐⇒ Λ
(k)
i ≥ j (i, j, k ∈ Z>0).

h(Λ) := min{k ≥ 0|(1, 1, k + 1) ̸∈ Λ}.
|Λ| :=

∑h(Λ)
k=1 |Λ(k)| =

∑h(Λ)
k=1

∑ℓ(Λ(k))
i=1 Λ

(k)
i .

Λ + 1
(a)
j := (Λ′(k))k≥1 where Λ′(a) = Λ(a) + 1j and Λ′(k) = Λ(k) except for k = a.

Coordinate: xij := qj−1
1 qi−1

2 , xijk := qj−1
1 qi−1

2 qk−1
3 .

q-Pochhammer symbol: (z; q)∞ :=
∏∞

k=0(1− qkz).
Theta function: θp(z) := (z; p)∞(p/z; p)∞ = (1− z)

∏∞
k=1(1− pkz)(1− pk/z).
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2 Representation of quantum toroidal gl1 algebra

2.1 Definition of quantum toroidal gl1 algebra

The quantum toroidal gl1 algebra, denoted by U , has two deformation parameters q, d ∈ C
and we follow the following convention:

q1 = dq−1, q2 = d−1q−1, q3 = q2, q1q2q3 = 1. (2.1)

In this thesis we assume that qi is generic, that is, q
a
1q

b
2q

c
3 = 1 for a, b, c ∈ Z if and only

if a = b = c. We introduce the structure function

g(z, w) = (z − q1w)(z − q2w)(z − q3w). (2.2)

Definition 2.1. Let U be a unital associative algebra over C generated by the currents

E(z) =
∑
k∈Z

Ekz
−k, F (z) =

∑
k∈Z

Fkz
−k, K±(z) = K± +

∞∑
r=1

K±
r z

∓r, (2.3)

and the central element C. These generators satisfy the following defining relations:

K±(z)K±(w) = K±(w)K±(z), (2.4)

g(C−1z, w)

g(Cz,w)
K−(z)K+(w) =

g(w,C−1z)

g(w,Cz)
K+(w)K−(z), (2.5)

g(z, w) K±(C(1∓1)/2z)E(w) + g(w, z) E(w)K±(C(1∓1)/2z) = 0, (2.6)

g(w, z) K±(C(1±1)/2z)F (w) + g(z, w) F (w)K±(C(1±1)/2z) = 0, (2.7)

[E(z), F (w)] = g̃
{
δ(C

w

z
) K+(z)− δ(C z

w
) K−(w)

}
, (2.8)

g(z, w) E(z)E(w) + g(w, z) E(w)E(z) = 0, (2.9)

g(w, z) F (z)F (w) + g(z, w) F (w)F (z) = 0, (2.10)

where δ(z) =
∑
n∈Z

zn is the delta function.

Strictly speaking, U is defined by the above defining relations with the Serre relation

[16, 13]. However, we adopt one without the Serre relation because we do not use it in

this thesis and also it has been already known that the representations which we use

in this thesis satisfy it [16]. Note that the coefficient g̃ in (2.8) only affects the relative

normalization of currents E(z), F (z) and K±(z). In this thesis we choose

g̃ =
(1− q1)(1− q2)

1− q−1
3

(2.11)
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in order to make the coefficients for the right hand sides of (2.78)–(2.80) unit, while

we need nontrivial multiplication factors in (2.22) and (2.23). In addition we impose

K− = (K+)−1, hence there are essentially two central elements C and K−.

Definition 2.2. Let γ1,2 ∈ C×. A representation of U is called level (γ1, γ2) representa-

tion if C = γ1 and K− = γ2.

Following [25], we call C = 1 or C = q representation vertical or horizontal represen-

tation respectively in this thesis. In particular we use the vector, Fock and MacMahon

representations as the vertical representation (see Section 2.2), while the vertex operator

representation as the horizontal representation (see Section 2.3). We need a coproduct

structure of U in order to define the tensor product of two representations and we use

the following one.

Proposition 2.3 ([12, Theorem 2.2]). The following coproduct ∆ defines a quasi-Hopf

structure on U :

∆(K+(z)) = K+(z)⊗K+(C−1
1 z), (2.12)

∆(K−(z)) = K−(C−1
2 z)⊗K−(z), (2.13)

∆(E(z)) = E(z)⊗ 1 +K−(C1z)⊗ E(C1z), (2.14)

∆(F (z)) = F (C2z)⊗K+(C2z) + 1⊗ F (z), (2.15)

∆(C) = C ⊗ C, (2.16)

where C1 = C ⊗ 1 and C2 = 1⊗ C.

Note that the right hand sides of (2.14) and (2.15) may not be inside U ⊗ U in general.

However, they make sense on any tensor product representations which we consider in

this thesis.

When one checks the defining relations of U , the following formula is useful.

Proposition 2.4 ([14, Lemma 3.3]). Let f(u) be a rational function which is regular at

u = 0,∞ and has at most simple poles. Let f±(u) be the Taylor expansion of f(u) in

u∓1. Then we have

f+(u)− f−(u) =
∑
α

δ(α/u)

(
Res
u=α

f(u)
du

u

)
, (2.17)

where the summation runs over all poles α of f(u) and Res
u=α

denotes the residue at the

point u = α.
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F (z)
↶

E(z)
↷

· · · x−2x−1 x0 x1 x2 x3 · · ·
−→ q1 ⟲

K±(z)

Figure 3: The vector [v]i−1 corresponds to the position of xi. It is convenient to assign

the coordinate qi−1
1 to xi, then the action of the vector representation can be written in

terms of this coordinate. E(z) shifts the vector to the right and F (z) does to the left

while K±(z) acts diagonally.

2.2 Vertical representation

In this section we summarize vertical representations which have the trivial first level

γ1 = C = 1. In particular we review the idea of the infinite tensor product construction

worked out in [14, 16]. In these representations we can find a basis which simultane-

ously diagonalizes K±
r due to the commutation relation (2.5). In [14, 16] three kinds of

vertical representations have been introduced: the vector, Fock and MacMahon repre-

sentations. In these representations the basis on which K±
r acts diagonally is roughly

speaking one, two and three dimensional Young diagrams respectively. Accordingly, we

can define the Fock representation as an irreducible subrepresentation within the infinite

tensor product of the vector representations [14]. In a similar manner, we can construct

the MacMahon representation from the Fock representations [16]. The second level of the

vector representation is γ2 = K− = 1. However, the regularization procedure required

in the above procedure makes γ2 nontrivial. Consequently, the Fock representation has

a quantized level γ2 = q, where q is one of the parameters of U . Moreover, quite inter-

estingly, the MacMahon representation allows continuous level γ2 = K1/2 ∈ C×, where

K is independent of the definition of U . We can find a natural regularization for the

Fock representation, while that for the MacMahon representation somehow looks am-

biguous and leads to an arbitrary value K1/2, which we can interpret formally as a limit

of qN (N → ∞). In summary, the explicit actions of the vector, Fock and MacMahon

representations are given by (2.20)–(2.23), (2.33)–(2.36) and (2.58)–(2.60), respectively.

2.2.1 Vector representation

Graphically, the vector representation is spanned by integral points of one dimensional

line, see Figure 3.
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We introduce the following generating function,

ψ̃(z) =
(1− q−1

2 z)(1− q−1
3 z)

(1− z)(1− q1z)
∈ C[[z]], (2.18)

ψ̃(z)ψ̃(q−1
1 z)−1 = G(z) := −g(z, 1)

g(1, z)
=

(1− q−1
1 z)(1− q−1

2 z)(1− q−1
3 z)

(1− q1z)(1− q2z)(1− q3z)
. (2.19)

One can confirm the following proposition by making use of Proposition 2.4.

Proposition 2.5 ([14, Proposition 3.1]). Let V (v) be the vector space over C generated

by the basis {[v]i}i∈Z, where v ∈ C is the spectral parameter. Then the following action

on V (v) defines a level (1, 1) representation of U :

K+(z)[v]i = ψ̃(qi1v/z)[v]i, (2.20)

K−(z)[v]i = ψ̃(q−i−1
1 z/v)[v]i, (2.21)

E(z)[v]i = E · δ(qi+1
1 v/z)[v]i+1, (2.22)

F (z)[v]i+1 = F · δ(qi+1
1 v/z)[v]i, (2.23)

where the multiplication factors E and F are determined from the choice of g̃:

E · F = g̃
(1− q−1

2 )(1− q−1
3 )

1− q1
= (1− q2)(1− q−1

2 ). (2.24)

This representation is called vector representation and denoted by (ρv, V (v)).

In this thesis we choose

E = 1− q2, F = 1− q−1
2 , (2.25)

in order to write down the intertwiner concisely, for example see (3.34) and (3.36). Note

that we choose q1 as the special direction, hence the symmetry of the parameters q1,2,3,

which exists at the level of algebra, is broken at the level of representation.

In general we can consider the tensor product of the vector representations by making

use of the coproduct of Proposition 2.3. However, this procedure may become false if

the spectral parameter takes the special value. As concerns this problem, we have the

following sufficient condition for the well-definedness of the tensor product.

Proposition 2.6 ([14, Lemma 3.6]). If w ̸= qn1 v for any n ∈ Z, then the coproduct of

Proposition 2.3 define the tensor product representation on V (v)⊗ V (w).
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Proof. Let us evaluate the action on [v]i ⊗ [w]j ∈ V (v) ⊗ V (w) (i, j ∈ Z). The parts in

question are as follows:

K−(z)[v]i ⊗ E(z)[w]j = E · ψ̃(q−i−1
1 z/v)δ(qj+1

1 w/z)[v]i ⊗ [w]j+1, (2.26)pole : w = qi−j
1 v, qi−j−1

1 v,

zero : w = qi−j
1 q2v, q

i−j
1 q3v,

(2.27)

F (z)[v]i+1 ⊗K+(z)[w]j = F · ψ̃(qj1w/z)δ(qi+1
1 v/z)[v]i ⊗ [w]j, (2.28)pole : w = qi−j

1 v, qi−j+1
1 v,

zero : w = qi−j+1
1 q2v, q

i−j+1
1 q3v.

(2.29)

We have elucidated the poles and zeros by substituting the support of the delta functions

for the function ψ̃. Therefore the assumption w ̸= qn1 v is nothing but the condition in

order for the action to avoid poles.

Actually the Fock representation F(v) which we will consider in the next subsection

only has tensor components of type V (v) ⊗ V (qn2 v), hence there is no problem at least

for the finite tensor product
⊗N

i=1 V (qi−1
2 v). On the other hand the tensor product of

the Fock representations
⊗N

k=1F(q
k−1
3 v) cannot be defined even if N is finite due to the

specialization of the spectral parameters. However, we can define the representation of U
consistently by taking the certain subspace in it, which is the MacMahon representation

[16].

2.2.2 Fock representation

Graphically, the Fock representation is spanned by (ordinary) Young diagrams, see Figure

4. Let F(v) be the subspace generated by the basis {|λ)}λ:partition:

∞⊗
i=1

V (qi−1
2 v) ⊃ F(v) ∋ |λ) :=

∞⊗
i=1

[qi−1
2 v]λi−1. (2.30)

In [14], they introduced the level (1, q) representation of U on F(v) by considering a

certain limit of the tensor product of the vector representations. We introduce the coor-

dinate xs = xsλs , xij = qj−1
1 qi−1

2 . It is also onvenient to decompose ψ̃(z) into a ratio of

more fundamental function ψ(z) with shifted variable as follows:

ψ̃(z) = ψ(z)ψ(q−1
2 z)−1, ψ(z) = q

1− q−1
3 z

1− z
∈ C[[z]]. (2.31)
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−→ q1
j

↓
[v]i−1 · · · xj · · ·

−→ q1
j

↓
[v]λ1−1 ↓ · · · · · ·
⊗[q2v]λ2−1 q2 · · · xij · · ·← i

⊗[q22v]λ3−1 · · · · · · deform−→
⊗[q32v]λ4−1 · · · · · ·
⊗[q42v]λ5−1 · · · · · ·

−→ q1
j

↓
[v]λ1−1 ↓ × ◦ · · ·
⊗[q2v]λ2−1 q2 xij ◦ · · ·← i

⊗[q22v]λ3−1 × · · ·
⊗[q32v]λ4−1 × ◦ · · ·
⊗[q42v]λ5−1 ◦ · · ·
⊗ ...

...
...

...
...

...
. . .

Figure 4: The basis vector of the vector representation looks a row of boxes. The tensor

product of these vectors looks a perpendicular arrangement of these rows. The Young

diagram results from taking the infinite tensor product and cutting the left half side. It is

convenient to assign the coordinate qj−1
1 qi−1

2 to the box xij. E(z) adds the box to concave

positions (denoted by ◦) and F (z) removes the box from convex positions (denoted by

×) while K±(z) picks up the energy from each of boxes. The above example is the case

of λ = (4, 3, 3, 2).

Note that, as rational functions, we have

ψ̃(u) = ψ̃(q−1
1 /u), ψ(u) = ψ(q3/u)

−1. (2.32)

Proposition 2.7 ([14, Theorem 4.3, Corollary 4.4]). The following action on F(v) de-

fines a level (1, q) representation of U :

K+(z)|λ) =
ℓ(λ)∏
s=1

ψ̃(xsv/z) β
+
ℓ(λ)(v/z)|λ) =

ℓ(λ)∏
s=1

ψ(xsv/z)

ℓ(λ)+1∏
s=1

ψ(q−1
2 xsv/z)

−1|λ), (2.33)

K−(z)|λ) =
ℓ(λ)∏
s=1

ψ̃(q−1
1 x−1

s z/v) β−
ℓ(λ)(z/v)|λ) =

ℓ(λ)∏
s=1

ψ(q3x
−1
s z/v)−1

ℓ(λ)+1∏
s=1

ψ(q−1
1 x−1

s z/v)|λ),

(2.34)

E(z)|λ) = (1− q2)
ℓ(λ)+1∑
j=1

j−1∏
s=1

ψ̃(q−1
1 xs/xj)δ(q1xjv/z)|λ+ 1j)

= (1− q2)
ℓ(λ)+1∑
j=1

j−1∏
s=1

ψ(q−1
1 xs/xj)ψ(q3xs/xj)

−1δ(q1xjv/z)|λ+ 1j), (2.35)
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F (z)|λ) = (1− q−1
2 )

ℓ(λ)∑
j=1

ℓ(λ)∏
s=j+1

ψ̃(xs/xj)δ(xjv/z) β
+
ℓ(λ)(1/xj)|λ− 1j)

= (1− q−1
2 )

ℓ(λ)∑
j=1

ℓ(λ)∏
s=j+1

ψ(xs/xj)

ℓ(λ)+1∏
s=j+1

ψ(q−1
2 xs/xj)

−1δ(xjv/z)|λ− 1j), (2.36)

where

β+
N(v/z) := q−11− qN2 q3v/z

1− qN2 v/z
, β−

N(z/v) := q
1− q−N

2 q−1
3 z/v

1− q−N
2 z/v

. (2.37)

This representation is called Fock representation and denoted by (ρF,F(v)).

In [14] they proved that the actions (2.33)–(2.36) are indeed closed in the subspace

F(v) ⊂
⊗∞

i=1 V (qi−1
2 v). This fact is assured by the q2-shift of spectral parameters among

adjacent vector representations in the tensor product. The Fock representation is the

highest weight representation with |∅) being the highest weight state. The generating

function of eigenvalues of the vacuum is

ψ∅(v/z) := (∅|K+(z)|∅) = ψ(q3v/z)
−1, (2.38)

where we have defined the bra operator (λ| by the condition (λ|µ) := δλµ. By making

use of the relation (2.19), one can rewrite (2.33) in a symmetric way

(λ|K+(z)|λ) = ψ∅(v/z)
∏

(i,j)∈λ

G(xijv/z). (2.39)

Note that the finite tensor product of the vector representations has the trivial level (1, 1)

as well as the vector representation itself does. Now, however, the Fock representation

has the nontrivial level (1, q) due to the regularization (2.51) we will choose.

At first following [14], we outline the idea to obtain the Fock representation (ρF,F(v)).
One can construct a natural tensor product of the vector representations by making use

of the coproduct (2.12)–(2.16) of U . We would like to define an infinite tensor product

of the vector representations and find an irreducible subrepresentation whose basis is

spanned by partitions, that is, the Fock representation. Let us consider the following

finite tensor product with q2-shifted spectral parameters:

N⊗
i=1

V (qi−1
2 v) ∋ |λ) :=

N⊗
i=1

[qi−1
2 v]λi−1, λ = (λ1, . . . , λN) ∈ ZN . (2.40)
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The tensor product representation is defined by ρvN(X(z)) = ρvv1⊗· · ·⊗ρ
v
vN
(∆N−1(X(z))),

where ρvvi denotes the vector representation with the spectral parameter vi = qi−1
2 v. Since

C = 1 for vector representations, the coproduct (2.12)–(2.15) gives

∆N−1(K±(z)) = K±(z)⊗ · · · ⊗K±(z)︸ ︷︷ ︸
N

, (2.41)

∆N−1(E(z)) =
N∑
k=1

K−(z)⊗ · · ·K−(z)︸ ︷︷ ︸
k−1

⊗E(z)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−k

, (2.42)

∆N−1(F (z)) =
N∑
k=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗F (z)⊗K+(z)⊗ · · · ⊗K+(z)︸ ︷︷ ︸
N−k

. (2.43)

One can naturally consider λ ∈ ZN also as λ ∈ ZN+1 with λN+1 = 0. However, (ρvN ,⊗N
i=1 V (qi−1

2 v)) does not form an inductive system because actions of ρvN and ρvN+1 on

|λ) (λ ∈ ZN) are different. For this reason one cannot take a limit N → ∞ naively.

In order to settle this problem, we modify the action of (ρvN ,
⊗N

i=1 V (qi−1
2 v)) to some

(ρ̄vN ,
⊗N

i=1 V (qi−1
2 v)) so that it forms an inductive system of U -modules. Then one can

take the inductive limit ρ̄v∞ = limN→∞ ρ̄vN to find the Fock representation (ρF,F(v)) as
an irreducible subrepresentation of (ρ̄v∞,

⊗∞
i=1 V (qi−1

2 v)).

In the following, instead of giving a full account of the proof for Proposition 2.7, we

describe the idea of modification in detail and reveal the role of β±
N (2.37) in Proposition

2.7. Let us modify the action of ρvN to ρ̄vN so as to obtain the condition

ρ̄vN(X(z)) = ρ̄vN+M(X(z)) on |λ), λ ∈ ZN−1, ∀M ∈ Z>0, (2.44)

for X = K±, E and F . Then we can define the action of ρ̄v∞(X(z)) on |λ) (λ ∈ ZN−1) as

ρ̄vN(X(z)). Therefore, we should search for a modified action which satisfies the condition

(2.44). Actually, we have to modify only ρvN(K
±(z)) and ρvN(F (z)) keeping ρvN(E(z))

intact. To begin with, let us see that the action ρ̄vN(E(z)) can be the same as ρvN(E(z)).

This action satisfies the condition (2.44) due to the vanishing property:

(K−(z)⊗ E(z))([qN−1
2 v]−1 ⊗ [qN2 v]−1) = ψ̃(q−N+1

2 z/v)δ(qN2 v/z) [q
N−1
2 v]−1 ⊗ [qN2 v]0 = 0.

(2.45)

Next, let us focus on the action of K±(z). This time the actions of ρvN and ρvN+M dif-

fer. Let K±
N(z) = ρ̄vN(K

±(z)) = ρvN(K
±(z)) · β±

N = ∆N−1(K±(z)) · β±
N , where β

±
N =

β±
N((v/z)

±1) is a modification factor which satisfies β+
N(u) = β−

N(1/u) as a rational func-

tion. Since

K+(z)[qN2 v]−1 = ψ̃(q−1
1 qN2 v/z)[q

N
2 v]−1, (2.46)
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one gets the recursion relation for the modification factor β+
N :

1 =
(λ|K+

N+1(z)|λ)
(λ|K+

N(z)|λ)
=
β+
N+1

β+
N

ψ̃(q−1
1 qN2 v/z). (2.47)

This is equivalent to

β+
N = ψ̃(q−1

1 qN−1
2 v/z)−1β+

N−1 = ψ(q−1
1 qN−1

2 v/z)−1ψ(q−1
1 qN−2

2 v/z)β+
N−1

= ψ(q−1
1 qN−1

2 v/z)−1ψ(q−1
1 v/z)β+

1 , (2.48)

which determines β±
N up to an appropriate initial condition. Naturally, the initial con-

dition should be related to the regularization problem of the vacuum of the Fock repre-

sentation. To see this let us look at the unmodified representation ρvN on the “ vacuum

state |∅),” ∅ = (0, . . . , 0) ∈ ZN ,

(∅|∆N−1(K+(z))|∅) =
N∏
k=1

ψ̃(q−1
1 qk−1

2 v/z) =
N∏
k=1

ψ(q−1
1 qk−1

2 v/z)ψ(qk−1
2 q3z/v)

−1

=
1− qN2 v/z
1− qN2 q3v/z

1− q3v/z
1− v/z

. (2.49)

This expression makes no sense at the limit of N → ∞, but we can formally regularize

it by specifying the ordering of infinite products:

ψ(q3v/z)
−1
∏
k≥1

(
ψ(q−1

1 qk−1
2 v/z)ψ(qk2q3v/z)

−1
)
= ψ(q3v/z)

−1. (2.50)

Therefore, in the modified representation ρ̄vN , one expects the vacuum expectation value

to be

(∅|K+
N(z)|∅) =

N∏
k=1

ψ̃(q−1
1 qk−1

2 v/z)β+
N(v/z)

= ψ(q3v/z)
−1 = q−11− q3v/z

1− v/z
, ∀N ∈ Z>0. (2.51)

Thus, the problematic factor
1−qN2 v/z

1−qN2 q3v/z
in (2.49) has been replaced by the factor q−1 by

the regularization. Now (2.51) leads to the initial condition

β+
1 (v/z) = ψ(q−1

1 v/z)−1. (2.52)

Hence, the above prescription for the regularization gives

β+
N(v/z) = ψ(q−1

1 qN−1
2 v/z)−1 = ψ(q−N

2 z/v) = β−
N(z/v). (2.53)
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⊗ ⊗ ⊗ ∅ ⊗ · · ·

=

q3

q1q2

Figure 5: The three dimensional Young diagram (or plane partition) is a pile of ordinary

(two dimensional) Young diagrams. Now the extra direction (dimension) corresponds

to the parameter q3, which measures the hight. The above example is the case of Λ =

((4, 4, 2, 1), (4, 3, 1), (2, 1)).

As concerns the action of F (z), we also need some modification factor. This factor should

be precisely the same as β+
N(v/z) for the sake of (2.8). In fact, it satisfies the condition

(2.44) due to the vanishing property,

β+
N+1F (z)[q

N
2 v]−1 = ψ(q−1

1 qN2 v/z)
−1δ(q−1

1 qN2 v/z)[q
N
2 v]−2 = 0. (2.54)

At last, we can find the invariant subspace F(v) which consists only of partitions by

investigating the positions of zeros appearing in the action of the creation operator E(z)

and the annihilation operator F (z). This irreducible subrepresentation generated by the

empty Young diagram ∅ is nothing but what we have wanted.

2.2.3 MacMahon representation

Graphically, the MacMahon representation is spanned by three dimensional Young dia-

grams or plane partitions, see Figure 5.

LetM(v) be the subspace generated by the basis {|Λ)}Λ:plane partition:

∞⊗
k=1

F(qk−1
3 v) ⊃M(v) ∋ |Λ) :=

∞⊗
k=1

|Λ(k)). (2.55)

A plane partition Λ = (Λ(k))k≥1 is a sequence of (ordinary) partitions which satisfy

Λ
(k+1)
i ≤ Λ

(k)
i (∀i, k) and Λ(n) = ∅ for sufficiently large n ∈ Z>0. We also use the

following notations:

h(Λ) := min{k ≥ 0|(1, 1, k + 1) ̸∈ Λ}, (2.56)
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(i, j, k) ∈ Λ :⇐⇒ Λ
(k)
i ≥ j. (2.57)

Let |Λ(k)) ∈ F(qk−1
3 v) unless otherwise mentioned. In [16], they introduced the level

(1, K1/2) representation of U onM(v) in a similar way to the construction of the Fock

representation. We introduce the coordinate xijk = qj−1
1 qi−1

2 qk−1
3 = qj1q

i
2q

k
3 .

Proposition 2.8 ([16, Section 3.1]). The following action on M(v) defines a level

(1, K1/2) representations of U for K1/2 ∈ C×:

K±(z)|Λ) =
h(Λ)∏
k=1

(Λ(k)|K±(z)|Λ(k))|F(qk−1
3 v) γ

±
h(Λ)((v/z)

±1)|Λ)

= ψ±
∅∅∅
(
K1/2; (v/z)±1

) ∏
(i,j,k)∈Λ

G((xijkv/z)
±1)±1|Λ), (2.58)

E(z)|Λ) =
h(Λ)+1∑
k=1

ℓ(Λ(k))+1∑
i=1

k−1∏
s=1

(Λ(s)|K−(q1xijkv)|Λ(s))|F(qs−1
3 v)

× (Λ(k) + 1i|E(z)|Λ(k))|F(qk−1
3 v)|Λ + 1

(k)
i ), (2.59)

F (z)|Λ) =
h(Λ)∑
k=1

ℓ(Λ(k))∑
i=1

(Λ(k) − 1i|F (z)|Λ(k))|F(qk−1
3 v)

×
h(Λ)∏

s=k+1

(Λ(s)|K+(xijkv)|Λ(s))|F(qs−1
3 v) γ

+
h(Λ)(x

−1
ijk)|Λ− 1

(k)
i ), (2.60)

where

γ+N(v/z) = γ+N(K; v/z) :=
K−1/2(1−Kv/z)
q−N(1− qN3 v/z)

,

γ−N(z/v) = γ−N(K; z/v) :=
K1/2(1−K−1z/v)

qN(1− q−N
3 z/v)

,

(2.61)

and we have introduced the generating function of eigenvalues of the vacuum

ψ±
∅∅∅(K

1/2;u) = K∓1/21−K±1u

1− u
. (2.62)

This representation is called MacMahon representation and denoted by (ρM(K),M(v)).

We note that j = Λ
(k)
i is understood at the right hand sides of (2.59) and (2.60). The

action of K±(z) has a manifestly symmetric expression with respect to the permutation

of q1,2,3 but that of E(z) and F (z) do not. The MacMahon representation is the highest
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weight representation with the empty plane partition ∅∅∅ being the highest weight state.

Note that, so far it makes sense, the N -times tensor product of the Fock representations

has the level (1, qN). Now, however, the MacMahon representation has the level (1, K1/2)

with a continuous parameter K, which is outside the algebra U , due to the regularization

(2.67) we will choose. Hereafter we use the notationM(K; v) forM(v) in order to specify

the K dependance. We also use the notationMN(v) for the subspace in
⊗N

k=1F(q
k−1
3 v)

which is spanned by the plane partition whose hight is at most N .

We can obtain the above formulas in almost the same way as the construction of

the Fock representation, while the regularization procedure becomes somehow different.

To see this, let us focus on the action of K±(z) here. Let K±
N(z) = ρ̄FN(K

±(z)) =

∆N−1(K±(z)) · γ±N , where γ±N = γ±N((v/z)
±1) is a modification factor which satisfies

γ+N(u) = γ−N(1/u) as a rational function. Since

(∅|K+(z)|∅)|F(qN3 v) = ψ(qN+1
3 v/z)−1, |∅) ∈ F(qN3 v), (2.63)

one gets the recursion relation for the modification factor γ+N :

1 =
(Λ|K+

N+1(z)|Λ)|MN+1(v)

(Λ|K+
N(z)|Λ)|MN (v)

=
γ+N+1

γ+N
ψ(qN+1

3 v/z)−1, (2.64)

which means

γ+N = ψ(qN3 v/z)γ
+
N−1 = qN−1 1− q3v/z

1− qN3 v/z
γ+1 , (2.65)

and determines γ±N up to an appropriate initial condition. As concerns the initial con-

dition, let us look at the unmodified representation ρFN on the “vacuum state |∅∅∅),”

∅∅∅ = (∅, . . . ,∅),

(∅∅∅|∆N−1(K+(z))|∅∅∅)|MN (v) =
N∏
k=1

ψ(qk3v/z)
−1 = q−N

N∏
k=1

1− qk3v/z
1− qk−1

3 v/z
= q−N 1− qN3 v/z

1− v/z
.

(2.66)

This expression makes no sense at the limit of N → ∞, but we cannot use the same

strategy as in the previous subsection due to the presence of the coefficient q−N . Here we

have to regularize it in another way; we formally substitute qN by an arbitrary parameter

K1/2 ∈ C×. Then, in the modified representation ρ̄FN , one expects the vacuum expectation

value to be

(∅∅∅|K+
N(z)|∅∅∅)|MN (v) =

N∏
k=1

ψ(qk3v/z)
−1 γ+N(v/z) = K−1/21−Kv/z

1− v/z
, (2.67)
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which leads to the initial condition

γ+1 (v/z) =
K−1/2(1−Kv/z)
q−1(1− q3v/z)

. (2.68)

Hence our regularization gives

γ+N(v/z) =
K−1/2(1−Kv/z)
q−N(1− qN3 v/z)

=
K1/2(1−K−1z/v)

qN(1− q−N
3 z/v)

= γ−N(z/v). (2.69)

2.3 Horizontal representation

In this section we summarize horizontal representations which have the unit first level

γ1 = C = q. We introduce the Heisenberg mode H±r (r ∈ Z>0) by

K±(z) = K± exp

(
±(q− q−1)

∞∑
r=1

H±rz
∓r

)
. (2.70)

When C = q, the Heisenberg mode satisfies the following relation due to (2.5):

[Hr, Hs] = δr+s,0
[r]2

r
qr(1− qr1)(1− qr2), (2.71)

where [r] := (qr − q−r)/(q − q−1) is the q-integer. We define the fundamental vertex

operator V ±(z) as follows:

V ±(z) = exp

(
∓

∞∑
r=1

H±r

[r]
z∓r

)
, (2.72)

then the fundamental OPE (operator product expansion) by the normal ordering is

V +(z)V −(w) = s(w/z) : V +(z)V −(w) :, (2.73)

where the scattering factor s(z) is

s(z) =
(1− qz)(1− q−1z)

(1− dz)(1− d−1z)
∈ C[[z]], (2.74)

and satisfies the following formulas as a rational function:

s(u) = s(1/u), G(u) = s(q−1u)s(qu)−1. (2.75)

The normal ordering is the procedure to carry positive modes to the right, for example,

: HrH−r := H−rHr, : H−rHr := H−rHr, : HrH−s := HrH−s = H−sHr, r, s ∈ Z>0, r ̸= s.

(2.76)

24



The Fock space for the Heisenberg mode, the Heisenberg Fock space, is the vector space

over C generated by the basis |Hλ⟩ = H−λ1H−λ2 · · · |0⟩ where λ = (λs)s≥1 is a partition

and the vacuum state |0⟩ is defined by the annihilation condition

Hr|0⟩ = 0, r > 0. (2.77)

One can confirm the following proposotion by making use of the fundamental OPE (2.73).

Proposition 2.9 ([20, Proposition A.6]). The following vertex operators on the Heisen-

berg Fock space define a level (q, 1) representation of U :

K±(q1/2z)→ φ±(z) = V ±(q±1z)V ±(q∓1z)−1, (2.78)

E(z)→ η(z) = V −(q−
1
2 z)V +(q

1
2 z), (2.79)

F (z)→ ξ(z) = V −(q
1
2 z)−1V +(q−

1
2 z)−1. (2.80)

The shift of the argument in K±(z) is conventional. Furthermore, for any γ2 ∈ C×, we

can employ a more general level (q, γ2) representation with zero modes e(z), f(z) and

k±(z) which are operators acting on the Heisenberg Fock space and commuting with non-

zero modes H±r. We assume that the zero modes commute with one another,3 namely

the zero modes are C[[z±1]]-valued.

Proposition 2.10 ([30, Section 2.3]). When the zero modes satisfy the following conditions:

k±(0) = γ∓1
2 , (2.81)

e(z)f(q∓1z) = k±(q∓1/2z), (2.82)

the following vertex operators on the Heisenberg Fock space define a level (q, γ2) repre-

sentation of U :

K±(q1/2z)→ φ±(z) k±(z), (2.83)

E(z)→ η(z) e(z), (2.84)

F (z)→ ξ(z) f(z). (2.85)

This representation is called horizontal representation and denoted by H = H(k±(z),

e(z), f(z)).

3In the case of general quantum toroidal gln>1 algebra, the zero modes do not commute with one

another.
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Proof. To begin with, the second level is fixed by K−(0) = k−(0) = γ2 (= (K+(0))−1 =

(k+(0))−1). Then it suffices to show that the above assignments (2.83)–(2.85) solve the

defining relations (2.4)–(2.10). Since we have already known that the Heisenberg parts

(2.78)–(2.80) themselves solve the defining relations, the nontrivial check is only for (2.8).

We can check this from (2.82) by substituting the support of the delta function.

Note that e(z) can be uniquely determined from f(z) and k±(z) as

e(z) =
√

(k+(q−1/2z)k−(q1/2z)) / (f(q−1z)f(qz)). (2.86)

Furthermore, we make an ansatz that k±(z) is independent of z:

k±(z) = k±(0) = γ∓1
2 , (2.87)

so that we can lift the modification factors (2.37) and (2.69) of vertical representations

to vertex operators uniquely later. As we will see, we need nontrivial zero modes for the

existence of the intertwiner.

For example, the level (q, qN) representation used in [22] is defined by

k±(z) = q∓N , e(z) = (q/z)Nu, f(z) = (q/z)−Nu−1, (2.88)

where u is the spectral parameter of the representation. We can express this horizontal

representation as F (q,qN )
u := H(q∓N , (q/z)Nu, (q/z)−Nu−1).

It is also useful to introduce the dual vertex operator Ṽ ±(z) which satisfies

V +(z)Ṽ −(w) = (1− w/z)−1 : V +(z)Ṽ −(w) :, (2.89)

Ṽ +(z)V −(w) = (1− w/z) : Ṽ +(z)V −(w) : . (2.90)

It is expressed explicitly as

Ṽ ±(z) = exp

(
∓

∞∑
r=1

Λ±rz
∓r

)
, Λr :=

q− q−1

kr
Hr, (2.91)

where

kr =
3∏

i=1

(q
r/2
i − q−r/2

i ) = −
3∏

i=1

(1− qri ) =
3∑

i=1

(qri − q−r
i ), (2.92)

and we have

[Λr, Hs] = δr+s,0
[r]

r
. (2.93)
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,Ψ = a a
(2)
i , a ∈ U .=

∑
i

a
(1)
i

Figure 6: We use the notation ∆(a) =
∑
i

a
(1)
i ⊗ a

(2)
i .

3 Construction of intertwining operator

3.1 Definition of intertwiner

In [22] they introduced the trivalent intertwining operator of U . It was defined for a

triple of representations (F (1,q)
v ,F (q,qN )

u ,F (q,qN+1)
−uv ), where F (1,q)

v = F(v) was the vertical

Fock representation and (F (q,qN )
u ,F (q,qN+1)

−uv ) was a pair of the horizontal representations.

In more general we define the trivalent intertwining operator as follows.

Definition 3.1. Let V be a vertical representation and (H,H′) be a pair of horizontal

representations. The trivalent intertwining operator is a linear operator Ψ : V ⊗H → H′

which satisfies the following intertwining condition:

aΨ = Ψ∆(a), ∀a ∈ U . (3.1)

Note that the coproduct of proposition 2.3 makes sense in the tensor product V ⊗ H
because of the annihilation condition (2.77). Hereafter this trivalent intertwining operator

is called intertwiner simply. The intertwiner Ψ whose vertical representation is the vector,

Fock and MacMahon one is called and denoted as vector, Fock and MacMahon intertwiner

I,Φ and Ξ respectively. Graphically the intertwiner is represented as a trivalent vertex

with a single vertical edge and two horizontal edges, and the intertwining condition (3.1)

is represented as in Figure 6. Actually what we will do is to construct the following

component of the intertwiner.

Definition 3.2. Let {|α)}α be a basis of the vertical representation V, which simultane-

ously diagonalizes the action of K±(z). The α-component of the intertwiner Ψ : V⊗H →
H′ is a linear operator Ψα : H → H′ defined by

Ψα(•) = Ψ(|α)⊗ •), • ∈ H. (3.2)

We can use the following proposition as a definition of the component of the intertwiner.
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Proposition 3.3 ([30, Section 4]). Let Ψα be the α-component of the intertwiner Ψ :

V ⊗H → H′. Then Ψα is characterized by the following intertwining relations:

K+(z)Ψα = (α|K+(z)|α) ΨαK
+(z), (3.3)

K−(qz)Ψα = (α|K−(z)|α) ΨαK
−(qz), (3.4)

E(z)Ψα =
∑
β

(β|E(z)|α) Ψβ + (α|K−(z)|α) ΨαE(z), (3.5)

F (z)Ψα =
∑
β

(β|F (qz)|α) ΨβK
+(qz) + ΨαF (z), (3.6)

where operators on the right side of Ψα act on the source horizontal representation H,
while operators on the left side of Ψα act on the target one H′. The matrix elements

(β|X|α) are computed in the vertical representation V.

Proof. It suffices to check the intertwining condition (3.1) for the generators of U : K±(z),

E(z), F (z) and C. (3.1) for the central element C is automatically satisfied by definition

because C = 1 and C = q for the vertical and the horizontal representations respectively.

As concerns the other generators, we can obtain (3.3)–(3.6) by making (3.1) act on

|α)⊗ • ∈ V ⊗H and using the notation 1 =
∑

β |β)(β|.

By evaluating the matrix elements in each of vertical representations, we can summarize

definitions of the intertwiners as follows.

Proposition 3.4 ([30, Section 4.1.1]). Let {[v]n−1}n∈Z be the basis of the vertical vector

representation V (v). The n-component of the vector intertwiner defined by

In(v)(•) = I([v]n−1 ⊗ •) : H → H′, • ∈ H, (3.7)

is characterized by the following intertwining relations:

K+(z)In(v) = ψ̃(qn−1
1 v/z) In(v)K+(z), (3.8)

K−(qz)In(v) = ψ̃(q−n
1 z/v) In(v)K−(qz), (3.9)

E(z)In(v) = (1− q2)δ(qn1 v/z) In+1(v) + ψ̃(q−n
1 z/v) In(v)E(z), (3.10)

F (z)In(v) = (1− q−1
2 )δ(q−1qn−1

1 v/z) In−1(v)K
+(qz) + In(v)F (z). (3.11)

Proof. It follows from Propositions 2.5 and 3.3.

Proposition 3.5 ([22, Lemma 3.2], [30, Section 4.2.1]). Let {|λ)}λ:partition be the basis of

the vertical Fock representation F(v). The λ-component of the Fock intertwiner defined

by

Φλ(v)(•) = Φ(|λ)⊗ •) : H → H′, • ∈ H, (3.12)
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is characterized by the following intertwining relations:

K+(z)Φλ(v) = (λ|K+(z)|λ) Φλ(v)K
+(z), (3.13)

K−(qz)Φλ(v) = (λ|K−(z)|λ) Φλ(v)K
−(qz), (3.14)

E(z)Φλ(v) =

ℓ(λ)+1∑
k=1

(λ+ 1k|E(z)|λ) Φλ+1k(v) + (λ|K−(z)|λ) Φλ(v)E(z), (3.15)

F (z)Φλ(v) =

ℓ(λ)∑
k=1

(λ− 1k|F (qz)|λ) Φλ−1k(v)K
+(qz) + Φλ(v)F (z), (3.16)

where matrix elements can be read from (2.33)–(2.36).

Proof. It follows from Propositions 2.7 and 3.3.

Proposition 3.6 ([30, Section 4.3.1]). Let {|Λ)}Λ:plane partition be the basis of the vertical

MacMahon representation M(K; v). The Λ-component of the MacMahon intertwiner

defined by

ΞΛ(K; v)(•) = Ξ(|Λ)⊗ •) : H → H′, • ∈ H, (3.17)

is characterized by the following intertwining relations:

K+(z)ΞΛ(v) = (Λ|K+(z)|Λ) ΞΛ(v)K
+(z), (3.18)

K−(qz)ΞΛ(v) = (Λ|K−(z)|Λ) ΞΛ(v)K
−(qz), (3.19)

E(z)ΞΛ(v) =

h(Λ)+1∑
k=1

ℓ(Λ(k))+1∑
i=1

(Λ + 1
(k)
i |E(z)|Λ) ΞΛ+1

(k)
i
(v) + (Λ|K−(z)|Λ) ΞΛ(v)E(z),

(3.20)

F (z)ΞΛ(v) =

h(Λ)∑
k=1

ℓ(Λ(k))∑
i=1

(Λ− 1
(k)
i |F (qz)|Λ) ΞΛ−1

(k)
i
(v)K+(qz) + ΞΛ(v)F (z), (3.21)

where the matrix elements can be read from (2.58)–(2.60).

Proof. It follows from Propositions 2.8 and 3.3.

Note that, as shown in [22], the intertwiner cannot exist for an arbitrary pair of

horizontal representations, and the existance requires some relative condition between

them, which can be seen as the charge conservation law. In the following, we will construct

the above component of intertwiner in the vertex operator formalism and specify the
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admissible pair of horizontal representations. Note that we can typically specify just the

relative conditions between H and H′, but there seemingly remains some freedom for

each of them.

We use the notation x(z),x′(z) and x′′(z) for the zero modes of the horizontal repre-

sentation H,H′ and H′′ respectively, where x = e, f ,k±. We also write the second level

γ2 of H,H′ and H′′ as γ, γ′ and γ′′ respectively unless otherwise mentioned.

3.2 Construction of vector intertwiner

Proposition 3.7 ([30, Section 4.1.2]). There exists a unique vector intertwiner I(v) :

V (v) ⊗ H → H′ up to normalization if and only if a pair of horizontal representations

(H,H′) satisfies γ′ = γ on the second level and e′(z) = q−1
2 e(z), f ′(z) = q2f(z) for the

zero mode sector. The n-component is written explicitly as

In(v) = znĨn(v), Ĩn(v) = Ĩ0(qn1 v), n ∈ Z, (3.22)

Ĩ0(v) = exp

(
−

∞∑
r=1

H−r

[r]

(q−1/2v)r

1− qr1

)
exp

(
−

∞∑
r=1

Hr

[r]

(q1/2q−1
1 v)−r

1− qr1

)
, (3.23)

where zn = zn(v) is a stack of zero modes:

z0 = 1, zn = q−n
2

n∏
j=1

e(qj−1
1 v) (n > 0), zn = q−n

2

−1∏
j=n

e(qj1v)
−1 (n < 0). (3.24)

If we choose the horizontal representation as H = F (q,qN )
u (2.88) like [22], then H′ =

F (q,qN )

q−1
2 u

and the zero mode stack zn = zn(N ;u|v) is

zn = (u/q2)
n

n∏
j=1

(
q

qj−1
1 v

)N

(n > 0), zn = (u/q2)
n

−1∏
j=n

(
q

qj−1
1 v

)N

(n < 0).

(3.25)

Before proving Proposition 3.7, we summarize properties of the Heisenberg part of

the zero component Ĩ0.

Proposition 3.8 ([30, Section 4.1.2]). The Heisenberg part of the zero component (3.23)

satisfies the following OPE relations:

φ+(q−1/2z)Ĩ0(v) = ψ̃(q−1
1 v/z) Ĩ0(v)φ+(q−1/2z), (3.26)

Ĩ0(v)φ−(q1/2z) = ψ̃(z/v)−1 φ−(q1/2z)Ĩ0(v), (3.27)
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ξ(z)Ĩ0(v) =
1− qv/z

1− qq2v/z
: ξ(z)Ĩ0(v) :, Ĩ0(v)ξ(z) =

1− qq−1
3 z/v

1− qq1z/v
: Ĩ0(v)ξ(z) :, (3.28)

η(z)Ĩ0(v) =
1− q2v/z
1− v/z

: η(z)Ĩ0(v) :, Ĩ0(v)η(z) =
1− q1z/v
1− q−1

3 z/v
: Ĩ0(v)η(z) : . (3.29)

Proof. By definitions (2.71), (2.72) and (3.23), we have

V +(z)Ĩ0(v) =
1− q1/2q2v/z

1− q1/2v/z
: V +(z)Ĩ0(v) :, Ĩ0(v)V −(z) =

1− q1/2q1z/v

1− q1/2q−1
3 z/v

: Ĩ0(v)V −(z) : .

(3.30)

Since φ±(z), η(z) and ξ(z) are written in terms of the fundamental vertex operator V ±(z),

we can check (3.26)–(3.29) from (3.30) immediately.

Incidentally one can understand the relation (3.26) as follows. (The same is true of the

relation (3.27).) By making use of the relation

φ+(q−1/2z)η(w) = G(w/z) : φ+(q−1/2z)η(w) :, G(u) = ψ̃(u)ψ̃(q−1
1 u)−1, (3.31)

one notices that

φ+(q−1/2z) :
N∏
j=1

η(qj−1
1 v)−1 := ψ̃(qN−1

1 u)−1ψ̃(q−1
1 u) : φ+(q−1/2z)

N∏
j=1

η(qj−1
1 v)−1 : . (3.32)

Therefore the equation (3.26) is a formal limit N →∞ of the equation (3.32). In other

words, we can say that Ĩ0(v) is just a regularized expression of the infinite product

:
∞∏
j=1

η(qj−1
1 v)−1 : (3.33)

through the geometric series of q1.

Proof of Proposition 3.7. To begin with, (3.26) and (3.27) imply that, in order to satisfy

the intertwining relation (3.8) and (3.9), the Heisenberg part of the vector intertwiner

must be proportional to Ĩn(v) and the second levels of intertwined horizontal represen-

tations must coincide; γ′ = γ. Note that we have assumed the constant condition (2.87)

for the zero mode of K±(z). In the next we should check whether the already fixed Ĩn(v)
solves the intertwining relations (3.10) and (3.11) up to contributions from zero modes.

Let us check (3.11) for the zero-component. In order to obtain (3.11) from (3.28) by
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making use of Proposition 2.4, one finds that the additional factor q2 is necessary for

F (z) on the left compared to F (z) on the right, namely,

q2ξ(z)f(z)I0(v)− I0(v)ξ(z)f(z) = (1− q−1
2 )δ

(
q−1
1 v

qz

)
q2e(q

−1
1 v)−1Ĩ−1(v)φ

+(q1/2z)γ−1,

(3.34)

where we have used the relation (2.82) for the source horizontal representation H and

δ

(
q−1
1 v

qz

)
ξ(z) = δ

(
q−1
1 v

qz

)
η(q−1

1 v)−1φ+(q1/2z). (3.35)

At the same time the required additional factor for E(z) is automatically determined due

to the relation (2.82) for the target horizontal representation H′. In summary we have

obtained the constraint e′(z) = q−1
2 e(z), f ′(z) = q2f(z) for the intertwined horizontal

representations, and the zero mode part of the vector intertwiner zn (3.24) have been

also determined now. At the last, we should confirm that the operator In(v) (3.22) we
have obtained solves the relation (3.10) consistently. This can be checked from (3.29) as

follows:

q−1
2 η(z)e(z)I0(v)− ψ̃(z/v)I0(v)η(z)e(z) = (1− q2)δ(v/z)q−1

2 e(v)Ĩ1(v). (3.36)

Now we have proven Proposition 3.7.

Essentially the same vector intertwiner was given in [20], though the expression for

the vector representation there might look different from ours. We can see that the

generating function of the intertwiner in [20, (A.5)] corresponds to the zero component

I0(v) of the intertwiner in this thesis by appropriate redefinition of the parameters.

In what follows we would like to consider the composition of the vector intertwiners

whose spectral parameters take relatively special values. Such a composition is not

always allowed, and we should check that we can take the normal ordered product safely.

Note that this argument corresponds to Proposition 2.6 at the representation level. The

following condition for well-definedness results from OPE computations.

Proposition 3.9. Let v, w ∈ C× be the spectral parameters of the vector representations.

By making use of the coefficient Ã(w/v):

Ã(w/v)Ĩ0(v) ◦ Ĩ0(w) =: Ĩ0(v) ◦ Ĩ0(w) :, (3.37)

Ã(w/v) = exp

(∑
r≥1

1

r

1− qr2
1− qr1

(q1w/v)
r

)
, (3.38)
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we define the OPE factor Amn(w/v) as follows:

Ã(w/v)Ĩm(v) ◦ Ĩn(w) = Amn(w/v)
−1 : Ĩm(v) ◦ Ĩn(w) : . (3.39)

Then we have

Amn(w/v) =


∏m−n

i=1
1−qn−m+i

1 q2w/v

1−qn−m+i
1 w/v

(m > n),

1 (m = n),∏n−m
i=1

1−qi1w/v

1−qi1q2w/v
(m < n).

(3.40)

In particular if m > n and w ̸= qi−1
1 q−1

2 v (1 ≤ i ≤ m − n) or m < n and w ̸= q−i
1 v

(1 ≤ i ≤ n−m), then the composite operator Ã(w/v)Ĩm(v) ◦ Ĩn(w) is well-defined.

Proof. Let us decompose Ĩn(v) into the negative and the positive modes:

Ĩn(v) = Ĩ−n (v)Ĩ+n (v), (3.41)

Ĩ−n (v) = exp

(
−

∞∑
r=1

H−r

[r]

(q−1/2qn1 v)
r

1− qr1

)
, Ĩ+n (v) = exp

(
−

∞∑
r=1

Hr

[r]

(q1/2qn−1
1 v)−r

1− qr1

)
.

(3.42)

Then we have

Ĩ+m(v)Ĩ−n (v) = exp

(∑
r≥1

1

r

1− qr2
1− qr1

(qn−m+1
1 w/v)r

)
: Ĩ+m(v)Ĩ−n (v) : . (3.43)

Therefore

Amn(w/v) = exp

(∑
r≥1

1

r

1− qr2
1− qr1

(1− qr(n−m)
1 )(q1w/v)

r

)
. (3.44)

One can obtain (3.40) taking into account the equations

1− qN

1− q
=

N∑
i=1

qi (N > 0),
1− qN

1− q
= −

−1∑
i=N

qi (N < 0). (3.45)

Note that, when we construct the Fock and MacMahon intertwiners, the above well-

definedness conditions are kept.
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3.3 Construction of Fock intertwiner

We construct the Fock intertwiner in a parallel way to the construction of the Fock rep-

resentation (Section 2.2.2) in contrast to the rather direct way of [22]. In our approach,

taking the tensor product of the vertical representations is realized merely by the com-

position of the corresponding vector intertwiners. The essential work that we have to do

is to find the modification operator Bn(v) : H → H′′ corresponding to the modification

factor β±
n (2.37), where H is the same horizontal representation as the source of the Fock

intertwiner while H′′ is some intermediate horizontal representation whose zero mode

sector we should specify.

Proposition 3.10 ([30, Section 4.2.2]). There exists a unique Fock intertwiner Φ(v) :

F(v) ⊗ H → H′ up to normalization if and only if a pair of horizontal representa-

tions (H,H′) satisfies γ′ = qγ on the second level and e′(z) = (−qv/z)e(z), f ′(z) =

(−qv/z)−1f(z) for the zero mode sector. The λ-component is written as

Φλ(v) = zλΦ̃λ(v) : H → H′, (3.46)

Φ̃λ(v) = G [n] · Ĩ[n]λ (v) ◦Bn(v), n > ℓ(λ), (3.47)

where Ĩ[n]λ (v) = Ĩλ1(v) ◦ · · · ◦ Ĩλn(q
n−1
2 v) and the coefficient G [n] is defined by the normal

ordering4

Ĩ[n]∅ (v)Bn(v) = (G [n])−1 : Ĩ[n]∅ (v)Bn(v) : . (3.48)

The modification operator Bn(v) is defined by making use of the dual vertex operator

(2.91) as

Bn(v) = Ṽ −(q1/2qn2 v)Ṽ
+(q3/2qn2 v)

−1, (3.49)

and zλ = zλ(v) is a stack of zero modes:

zλ(v) =

ℓ(λ)∏
i=1

λi∏
j=1

(
−qqi−1

2 x−1
ij

)
e(xijv) = q

n(λ)
2 (−q)|λ|

∏
(i,j)∈λ

x−1
ij e(xijv). (3.50)

Before proving Proposition 3.10, we summarize properties of the modification operator

Bn(v).

4Let λn = 0 for n > ℓ(λ).
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Proposition 3.11 ([30, Section 4.2.2]). When a pair of horizontal representatins (H,H′′)

satisfies

γ′′ = qγ, e′′(z) = (−qqn2 v/z)e(z), f ′′(z) = (−qqn2 v/z)−1f(z), (3.51)

the modification operator Bn(v) : H → H′′ satisfies the following relations:

K+(z)Bn(v) = β+
n (v/z) Bn(v)K

+(z), (3.52)

Bn(v)K
−(qz) = β−

n (z/v)
−1 K−(qz)Bn(v), (3.53)

F (z)Bn(v)−Bn(v)F (z) = 0, (3.54)

E(z)Bn(v)− β−
n (z/v)Bn(v)E(z) = −qδ(qn2 v/z) : η(z)Bn(v) : . (3.55)

Proof. By making use of the OPE relations (2.89) and (2.90), one can check the following

relations for Bn(v):

φ+(q−1/2z)Bn(v) = qβ+
n (v/z) Bn(v)φ

+(q−1/2z), (3.56)

Bn(v)φ
−(q1/2z) = qβ−

n (z/v)
−1 φ−(q1/2z)Bn(v), (3.57)

ξ(z)Bn(v) = (1− qqn2 v/z) : ξ(z)Bn(v) :, Bn(v)ξ(z) = (1− q−1q−n
2 z/v) : ξ(z)Bn(v) :,

(3.58)

η(z)Bn(v) = (1− qn2 v/z)−1 : η(z)Bn(v) :, Bn(v)η(z) = (1− q−n
2 q−1

3 z/v)−1 : η(z)Bn(v) : .

(3.59)

Taking into account the relative level shift γ′′ = qγ, one obtains (3.52) and (3.53) from

(3.56) and (3.57) respectively. (3.58) and (3.59) lead to the following relations(q
z
(−qn2 v)

)−1

ξ(z)Bn(v)−Bn(v)ξ(z) = 0, (3.60)

q

z
(−qn2 v)η(z)Bn(v)− β−

n (z/v)Bn(v)η(z) = −qδ(qn2 v/z) : η(z)Bn(v) :, (3.61)

where the contribution of the delta function in (3.61) is due to Proposition 2.4. Then

taking into account the relative shift of the zero modes e′′(z) = (−qqn2 v/z)e(z), f ′′(z) =
(−qqn2 v/z)−1f(z), one obtains (3.54) and (3.55).

It is convenient to identify the modification operator Bn(z) with a single edge (with a

coefficient) so that we can see Proposition 3.11 graphically as in Figure 7. Incidentally,

along the same argument as lifting the function ψ̃(qn−1
1 ) to the operator Ĩn(v) before, one

can understand that Bn(v) is just a regularized expression of the formal infinite product

:
∞∏

i,j=1

η(qj−1
1 qn+i−1

2 v)−1 : . (3.62)
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K+(z) = K+(z),

β+
n (v/z)

K−(qz) = K−(qz),

β−
n (z/v)

F (z) = F (z),

E(z) = E(z)−

β−
n (z/v)

.
η(z)

qδ(qn2 v/z)

Figure 7: The solid line denotes Bn(z), the dashed line denotes the multiplication of

residing function (a blank denotes 1) and the symbol • denotes the normal ordered

product operator such as : η(z)Bn(z) :.

(3.56) and (3.57) mean that the operator Bn(v) exactly corresponds to the modification

factor β±
n up to the factor q, and this discrepancy leads to the relative level shift.

Note that we need the coefficient G [n] in order for Φ̃λ(v) to exist independently of

sufficiently large n > ℓ(λ), this requirement is peculiar to the operator formalism and is

absent at the level of construction of the Fock representation; functions do commute but

operators do not.

Proposition 3.12 ([30, Section 4.2.2]). We define G [n], Ĩ[n]λ (v) and Bn(v) as Proposition

3.10, then the operator Φ̃λ(v) := G [n] · Ĩ[n]λ (v) ◦Bn(v) is independent of n > ℓ(λ).

Proof. As for λ = ∅, by definition of G [n], we have

Φ̃∅(v) = B0(v) := exp

(
−

∞∑
r=1

H−r

[r]
(q−1/2v)r

1

(1− qr1)(1− qr2)

)

× exp

(
∞∑
r=1

Hr

[r]
(q1/2v)−r q−r

3

(1− qr1)(1− qr2)

)
. (3.63)

As for general λ, if we introduce the factor Gλ by

Ĩ[n]λ (v)Bn(v) = (Gλ)−1(G [n])−1 : Ĩ[n]λ (v)Bn(v) :, (3.64)

then we can show that Gλ is independent of n > ℓ(λ) in fact (see Section 5.2.1). Hence
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we have

Gλ · Φ̃λ(v) =: Ĩ[n]λ (v)Bn(v) :=: B0(v)
∏

(i,j∈λ)

η(xijv) :

= exp

 ∞∑
r=1

H−r

[r]
(q−1/2v)r

 ∑
(i,j)∈λ

xrij −
1

(1− qr1)(1− qr2)


× exp

− ∞∑
r=1

Hr

[r]
(q1/2v)−r

 ∑
(i,j)∈λ

x−r
ij −

q−r
3

(1− qr1)(1− qr2)

 , (3.65)

where xij = qj−1
1 qi−1

2 .

The following diagrammatic expression for the composite operator assists us in con-

firming the intertwining relation:

Φ(v) = G [n] · I(v) ◦ · · · ◦ I(qn−1
2 v) ◦Bn(v) = .

· · ·

(3.66)

Note that we can obtain the λ-component Φλ(v) by evaluating (3.66) on the state |λ) =
[v]λ1−1⊗· · ·⊗ [qℓ−1

2 v]λℓ−1 ∈ F(v). For example, if γ′′ = qγ, the Fock intertwining relation

with K+(z) can be seen easily by applying (3.52) and the intertwining relation (3.1) for

I(qi−1
2 v) repeatedly:

K+(z) =
· · ·

K+(z) K+(z)

· · ·

K+(z) β+
n (v/z)

K+(z)
(3.67)

Evaluating this on |λ) yields just (3.13). The relation with K−(z) can be also checked in

the same way.

Proof of Proposition 3.10. To begin with, (3.26), (3.27), (3.52) and (3.53) imply that, in

order to satisfy the intertwining relation (3.13) and (3.14), the Heisenberg part of the

Fock intertwiner must be proportional to Φ̃λ(v) (3.47), and the relative second level shift

of intertwined horizontal representations must satisfy γ′ = qγ. Now let us introduce the

intermediate horizontal representation H′′ and let Bn(v) : H → H′′, I[n]λ (v) : H′′ → H′,

where I[n]λ (v) = Iλ1(v) ◦ · · · ◦ Iλn(q
n−1
2 v) and we fixed n > ℓ(λ). Then the composition

I[n]λ (v) ◦Bn(v) makes sense. Note that the constraint for a pair of horizontal representa-

tions (H′′,H′) is already fixed in order for I[n]λ (v) to make sense, namely e′(z) = q−n
2 e′′(z)
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and f ′(z) = qn2 f
′′(z). Therefore it suffices to check that the constraint for (H,H′′) is

(3.51) and that (3.47) solves the remaining Fock intertwining relation (3.15) and (3.16)

up to normalization between different λ-components; this discrepancy fixes the zero mode

contribution zλ (3.50).

Since the relation (3.52) has been already fixed by the condition γ′ = γ′′ = qγ, F (z)

must commute with Bn(v), namely we need the relation (3.54). Therefore we can see

that the constraint f ′′(z) = (−qqn2 v/z)−1f(z) is necessary from (3.60). Indeed if (3.54) is

satisfied, we have

F (z) =
· · · n∑

i=1

· · ·

F (qz)

↑
i

· · ·

K+(qz) β+
n (q

−1v/z)

K+(qz)+ F (z)
· · ·

(3.68)

and evaluating this on |λ) yields

F (z)Φλ(v)− Φλ(v)F (z)

= zλG [n] ·
n∑

k=1

n∏
s=k+1

ψ̃(qλs−1
1 qs−1

2 v/z) β+
n (v/z)Iλ1(v) · · · Iλk−1

(qk−2
2 v)

× (1− q−1
2 )δ(q−1xkv/z)(−qqk−1

2 v/z)−1Iλk−1(q
k−1
2 v) Iλk+1

(qk2v) · · · Iλn(q
n−1
2 v)Bn(v)K

+(qz)

=
n∑

k=1

(λk − 1|F (qz)|λ)Φλ−1k(v)K
+(qz). (3.69)

This relation is nothing but (3.16). At the same time, the zero mode contribution from

each box in λ, namely zλ+1k/zλ, can be read. At the last let us check that (3.15) is

satisfied. Note that the constraint (3.51) is already imposed due to (2.86), hence we have
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(3.55). Therefore we have

E(z) =
· · · n∑

i=1

K−(z)

· · ·

E(z)

↑
i

· · ·

+

K−(z)

· · ·

K−(z) β−
n (z/v)

E(z)−

K−(z)

· · ·

K−(z) qδ(qn2 v/z)

η(z)

(3.70)

and evaluating this on |λ) yields

E(z)Φλ(v)− (λ|K−(z)|λ) Φλ(v)E(z)

= zλG [n] ·
n∑

k=1

k−1∏
s=1

ψ̃(q−λs
1 q1−s

2 z/v)Iλ1(v) · · · Iλk−1
(qk−2

2 v)

× (1− q2)δ(q1xkv/z)(−qqk−1
2 v/z)Iλk+1(q

k−1
2 v)Iλk+1

(qk2v) · · · Iλn(q
n−1
2 v)Bn(v)

− zλG [n] ·
n∏

s=1

ψ̃(q−λs
1 q1−s

2 z/v)qδ(qn2 v/z)I
[n]
λ (v) : η(z)Bn(v) :

=
n∑

k=1

(λk + 1|E(z)|λ)Φλ+1k(v). (3.71)

This relation is nothing but (3.15). Note that, in the above equation, the coefficient of

: η(z)Bn(v) : vanishes due to the factor ψ̃(q−n+1
2 z/v)δ(qn2 v/z).

One can confirm that the operator Φλ(v) agrees with the one of [22], and the factor

Gλ plays the same role as cλ in [22]. An explicit form of Gλ is

Gλ =
∏
□∈λ

(
1− q−aλ(□)

1 q
lλ(□)+1
2

)
= q

−n(λ′)
1 q

n(λ)+|λ|
2 cλ, (3.72)

cλ =
∏
□∈λ

(1− qaλ(□)
1 q

−lλ(□)−1
2 ). (3.73)

If we choose the horizontal representation as H = F (q,qN )
u , then H′ = F (q,qN+1)

−vu and the

zero mode stack zλ = zλ(N ;u|v) is

zλ(N ;u|v) =
ℓ(λ)∏
i=1

zλi
(N + 1;−qi2vu|qi−1

2 v) =

ℓ(λ)∏
i=1

(−qi−1
2 vu)λi

λi∏
j=1

(
q

qj−1
1 qi−1

2 v

)N+1
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= q
n(λ)
2 (−vu)|λ|

∏
(i,j)∈λ

(
qx−1

ij v
−1
)N+1

, (3.74)

where n(λ) =

ℓ(λ)∑
j=1

(j − 1)λj.

3.4 Construction of MacMahon intertwiner

We construct the MacMahon intertwiner in the same way as the construction of the Fock

intertwiner in previous section. Though the regularization procedure for the construction

of the MacMahon representation was different from that of the Fock representation, the

strategy for the construction of the MacMahon intertwiner is the same as that of the

Fock intertwiner; we have already known the modification factor to consider, namely γ±n
(2.69). Hence the essential work that we have to do is to find the modification operator

Γn(K; v) : H → H′′ corresponding to it in this case too. We introduce the theta function

θp(z) := (z; p)∞(p/z; p)∞ = (1− z)
∞∏
k=1

(1− pkz)(1− pk/z), p ∈ C, |p| < 1, (3.75)

(z; q)∞ :=
∞∏
k=0

(1− qkz). (3.76)

Hereafter we assume |q3| < 1.

Proposition 3.13 ([30, Section 4.3.2]). There exists a unique MacMahon intertwiner

Ξ(K; v) : M(K; v) ⊗ H → H′ up to normalization if and only if a pair of horizontal

representations (H,H′) satisfies γ′ = K1/2γ on the second level and

e′(z) = K1/2 θq3(v/z)

θq3(Kv/z)
e(z), f ′(z) =

θq3(qKv/z)

θq3(qv/z)
f(z) (3.77)

for the zero mode sector. The Λ-component is written as

ΞΛ(K; v) = zΛΞ̃Λ(K; v) : H → H′, (3.78)

Ξ̃Λ(K; v) =M[n](K) · Φ̃[n]
Λ (v) ◦ Γn(K; v), n > h(Λ), (3.79)

where Φ̃
[n]
Λ (v) = Φ̃Λ(1)(v) ◦ · · · ◦ Φ̃Λ(n)(qn−1

3 v) and the coefficientM[n](K) is defined by the

normal oerdering5

Φ̃
[n]
∅∅∅ (v)Γn(K; v) =

(
M[n](K)

)−1
: Φ̃

[n]
∅∅∅ (v)Γn(K; v) : . (3.80)

5Let Λ(n) = ∅ for n > h(Λ).
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The modification operator Γn(K; v) is defined as

Γn(K; v) = exp

(
∞∑
r=1

H−r

[r]

qnr3 −Kr

kr
(q−1/2v)r

)
exp

(
∞∑
r=1

Hr

[r]

q−nr
3 −K−r

kr
(q1/2v)−r

)
,

(3.81)

and zΛ = zΛ(K; v) is a stack of zero modes:

zΛ(K; v) =
∏

(i,j,k)∈Λ

K1/2

qk−1

θq3(q
k−1
3 /xijk)

θq3(K/xijk)
e(xijkv). (3.82)

Before proving Proposition 3.13, we summarize properties of the modification operator

Γn(K; v). Along the same argument as before, one can guess that Γn(K; v) will be the

limit N →∞ of

:
∞∏

i,j=1

N∏
k=n+1

η(qj−1
1 qi−1

2 qk−1
3 v)−1 :=:

∞∏
i,j,k=1

η(qj−1
1 qi−1

2 qn+k−1
3 v)−1η(qj−1

1 qi−1
2 qk−1

3 qN3 v) : .

(3.83)

Here recall that we formally substitute qN3 → K in the regularization procedure for the

construction of the MacMahon representation. Then one can understand that Γn(K; v)

is just a regularized expression of the formal infinite product

:
∞∏

i,j,k=1

η(qj−1
1 qi−1

2 qn+k−1
3 v)−1η(qj−1

1 qi−1
2 qk−1

3 Kv) : . (3.84)

Proposition 3.14 ([30, Section 4.3.2]). When a pair of horizontal representatins (H,H′′)

satisfies

γ′′ = q−nK1/2γ, e′′(z) =
K1/2

qn
θq3(q

n
3 v/z)

θq3(Kv/z)
e(z), f ′′(z) =

θq3(qKv/z)

θq3(qq
n
3 v/z)

f(z), (3.85)

the modification operator Γn(K; v) : H → H′′ satisfies the following relations:

K+(z)Γn(K; v) =γ+n (v/z) Γn(K; v)K+(z), (3.86)

Γn(K; v)K−(qz) =γ−n (z/v)
−1 K−(qz)Γn(K; v), (3.87)

F (z)Γn(K; v)−Γn(K; v)F (z) = 0, (3.88)

E(z)Γn(K; v)− γ−n (z/v) Γn(K; v)E(z) = 0. (3.89)
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Proof. By making use of the OPE relations

V +(z)Γn(K; v) = exp

(
∞∑
r=1

1

r

qnr3 −Kr

1− qr3
(q1/2v/z)r

)
: V +(z)Γn(K; v) :, (3.90)

Γn(K; v)V −(z) = exp

(
−

∞∑
r=1

1

r

q−nr
3 −K−r

1− qr3
(q3/2v/z)−r

)
: Γn(K; v)V −(z) :, (3.91)

one can check the following relations for Γn(K; v):

φ+(q−1/2z)Γn(K; v) =
K1/2

qn
γ+n (v/z) Γn(K; v)φ+(q−1/2z),

(3.92)

Γn(K; v)φ−(q1/2z) =
K1/2

qn
γ−n (z/v)

−1 φ−(q1/2z)Γn(K; v),

(3.93)

ξ(z)Γn(K; v) =
(qqn3 v/z; q3)∞
(Kqv/z; q3)∞

: ξ(z)Γn(K; v) :, Γn(K; v)ξ(z) =
(K−1qz/v; q3)∞
(qq−n

3 z/v; q3)∞
: ξ(z)Γn(K; v) :,

(3.94)

η(z)Γn(K; v) =
(Kv/z; q3)∞
(qn3 v/z; q3)∞

: η(z)Γn(K; v) :, Γn(K; v)η(z) =
(q−n

3 z/v; q3)∞
(K−1z/v; q3)∞

: η(z)Γn(K; v) : .

(3.95)

Taking into account the relative level shift, one obtains (3.86) and (3.87) from (3.92) and

(3.93) respectively. (3.94) and (3.95) lead to the following relations

θq3(qKv/z)

θq3(qq
n
3 v/z)

ξ(z)Γn(K; v)− Γn(K; v)ξ(z) = 0, (3.96)

K1/2

qn
θq3(q

n
3 v/z)

θq3(Kv/z)
η(z)Γn(K; v)− γ−n (z/v) Γn(K; v)η(z) = 0. (3.97)

Then taking into account the relative shift of the zero modes, one obtains (3.88) and

(3.89).

Note that (3.89) vanishes by itself, while the corresponding equation (3.55) does only

after multiplying with the factor ψ̃(q−n+1
2 z/v). (3.92) and (3.93) mean that the operator

Γn(K; v) exactly corresponds to the modification factor γ±n up to the monomial factor.

Note that we need the coefficientM[n](K) in order for Ξ̃Λ(K; v) to exist independently

of sufficiently large n > h(Λ).
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Proposition 3.15 ([30, Section 4.3.2]). We define M[n](K), Φ̃
[n]
Λ (v) and Γn(K; v) as

Proposition 3.13, then the operator Ξ̃Λ(K; v) :=M[n](K)·Φ̃[n]
Λ (v)◦Γn(K; v) is independent

of n > h(Λ).

Proof. As for Λ = ∅∅∅, by definition ofM[n](K), we have

Ξ̃∅∅∅(K; v) = Γ0(K; v) := exp

(
∞∑
r=1

H−r

[r]

1−Kr

kr
(q−1/2v)r

)

× exp

(
∞∑
r=1

Hr

[r]

1−K−r

kr
(q1/2v)−r

)
. (3.98)

As for general Λ, if we introduce the factor CΛ by

Φ̃
[n]
Λ (v)Γn(K; v) = (Cλ)−1(M[n](K))−1 : Φ̃

[n]
Λ (v)Γn(K; v) :, (3.99)

then we can show that Cλ is independent of n > h(Λ) in fact (see Section 5.2.2). Hence

we have

CΛ · Ξ̃Λ(K; v) =: Φ̃
[n]
Λ (v)Γn(K; v) :=: Γ0(K; v)

∏
(i,j,k∈Λ)

η(xijkv) :

= exp

 ∞∑
r=1

H−r

[r]
(q−1/2v)r

 ∑
(i,j,k)∈Λ

xrijk +
1−Kr

kr


× exp

− ∞∑
r=1

Hr

[r]
(q1/2v)−r

 ∑
(i,j,k)∈Λ

x−r
ijk −

1−K−r

kr

 . (3.100)

where xijk = qj−1
1 qi−1

2 qk−1
3 .

Proof of Proposition 3.13. We can prove it in the same way as Proposition 3.10, in par-

ticular the MacMahon intertwining relation almost automatically follows from the Fock

intertwining relation and Proposition 3.14. Here let us check the constraint for the zero

mode sector:

f ′(z) = q
n
2
(n−1)

3 (−qv/z)−nf ′′(z)

= q
n
2
(n−1)

3 (−qv/z)−n θq3(qKv/z)

θq3(qq
n
3 v/z)

f(z) =
θq3(qKv/z)

θq3(qv/z)
f(z), (3.101)

e′(z) = q
−n

2
(n−1)

3 (−qv/z)ne′′(z)

= q
−n

2
(n−1)

3 (−qv/z)nK
1/2

qn
θq3(q

n
3 v/z)

θq3(Kv/z)
e(z) = K1/2 θq3(v/z)

θq3(Kv/z)
e(z), (3.102)
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where we have used the formula for the theta function

θp(zp
n) = (−z)−np−

n
2
(n−1)θp(z), n ∈ Z. (3.103)

4 Construction of dual intertwining operator

4.1 Definition of dual intertwiner

We define the dual intertwiner by exchanging the source and the target representation

spaces of the original intertwiner as follows.

Definition 4.1. Let V be a vertical representation and (H,H′) be a pair of horizontal

representations. The dual intertwiner is a linear operator Ψ∗ : H′ → H⊗V which satisfies

the following dual intertwining condition:

∆(a)Ψ∗ = Ψ∗a, ∀a ∈ U . (4.1)

Note that the ordering of the tensor product of V and H is also exchanged compared with

Definition 3.1. Graphically the dual intertwiner is represented by reversing the directions

of arrows in Figure 6, and the dual intertwining condition (4.1) is represented as in Figure

8.

,Ψ∗ = =

a
(2)
i

∑
i

a
(1)
i a, a ∈ U .

Figure 8: We use the notation ∆(a) =
∑
i

a
(1)
i ⊗ a

(2)
i .

Definition 4.2. Let {|α)}α be a basis of the vertical representation V, which simul-

taneously diagonalizes the action of K±(z). The α-component of the dual intertwiner

Ψ∗ : H′ → H⊗ V is a linear operator Ψ∗
α : H′ → H defined by

Ψ∗(•) =
∑
α

Ψ∗
α(•)⊗ |α), • ∈ H′. (4.2)
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We can use the following proposition as a definition of the component of the dual inter-

twiner.

Proposition 4.3 ([31]). Let Ψ∗
α be the α-component of the dual intertwiner Ψ∗ : H′ →

H⊗ V. Then Ψ∗
α is characterized by the following dual intertwining relations:

Ψ∗
αK

+(qz) = (α|K+(z)|α) K+(qz)Ψ∗
α, (4.3)

Ψ∗
αK

−(z) = (α|K−(z)|α) K−(z)Ψ∗
α, (4.4)

Ψ∗
αE(z) = K−(qz)

∑
β

(α|E(qz)|β) Ψ∗
β + E(z)Ψ∗

α, (4.5)

Ψ∗
αF (z) =

∑
β

(α|F (z)|β) Ψ∗
β + (α|K+(z)|α) F (z)Ψ∗

α, (4.6)

where operators on the right side of Ψ∗
α act on the source horizontal representation H′,

while operators on the left side of Ψ∗
α act on the target one H. The matrix elements

(β|X|α) are computed in the vertical representation V.

Proof. We can obtain (4.3)–(4.6) by making (4.1) act on • ∈ H and using the notation

1 =
∑

α |α)(α|.

By evaluating the matrix elements in each of vertical representations, we can summarize

definitions of the components of the dual intertwiners as follows.

Proposition 4.4 ([31]). Let {[v]n−1}n∈Z be the basis of the vertical vector representation

V (v). The n-component of the dual vector intertwiner defined by

I∗(v)(•) =
∑
n∈Z

(I∗n(v)(•))⊗ [v]n−1, • ∈ H′, (4.7)

is characterized by the following dual intertwining relations:

I∗n(v)K+(qz) = ψ̃(qn−1
1 v/z) K+(qz)I∗n(v), (4.8)

I∗n(v)K−(z) = ψ̃(q−n
1 z/v) K−(z)I∗n(v), (4.9)

I∗n(v)E(z) = (1− q2)δ(q−1qn−1
1 v/z)K−(qz) I∗n−1(v) + E(z)I∗n(v), (4.10)

I∗n(v)F (z) = (1− q−1
2 )δ(qn1 v/z) I∗n+1(v) + ψ̃(qn−1

1 v/z) F (z)I∗n(v). (4.11)

Proof. It follows from Propositions 2.5 and 4.3.
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Proposition 4.5 ([22, Lemma 3.5], [31]). Let {|λ)) := cλ/c
′
λ|λ)}λ:partition be the dual basis

of the vertical Fock representation F(v). (See (5.43) and (5.44) for the definition of c′λ
and cλ.) The λ-component of the dual Fock intertwiner defined by

Φ∗(v)(•) =
∑
λ

(Φ∗
λ(v)(•))⊗ |λ)), • ∈ H′, (4.12)

is characterized by the following dual intertwining relations:

Φ∗
λ(v)K

+(qz) = (λ|K+(z)|λ) K+(qz)Φ∗
λ(v), (4.13)

Φ∗
λ(v)K

−(z) = (λ|K−(z)|λ) K−(z)Φ∗
λ(v), (4.14)

Φ∗
λ(v)E(z) = K−(qz)

ℓ(λ)∑
k=1

((λ|E(qz)|λ− 1k)) Φ
∗
λ−1k

(v) + E(z)Φ∗
λ(v), (4.15)

Φ∗
λ(v)F (z) =

ℓ(λ)+1∑
k=1

((λ|F (z)|λ+ 1k)) Φ
∗
λ+1k

(v) + (λ|K+(z)|λ) F (z)Φ∗
λ(v). (4.16)

Proof. It follows from Propositions 2.7 and 4.3.

Proposition 4.6 ([31]). Let {|Λ)) := CΛ/C ′Λ|Λ)}Λ:plane partition be the dual basis of the

vertical MacMahon representation M(K; v). (See section 5.2.2 for the definition of CΛ
and C ′Λ.) The Λ-component of the dual MacMahon intertwiner defined by

Ξ∗(K; v)(•) =
∑
Λ

(Ξ∗
Λ(K; v)(•))⊗ |Λ)), • ∈ H′, (4.17)

is characterized by the following dual intertwining relations:

Ξ∗
Λ(v)K

+(qz) = (Λ|K+(z)|Λ) K+(qz)Ξ∗
Λ(v), (4.18)

Ξ∗
Λ(v)K

−(z) = (Λ|K−(z)|Λ) K−(z)Ξ∗
Λ(v), (4.19)

Ξ∗
Λ(v)E(z) = K−(qz)

h(Λ)∑
k=1

ℓ(Λ(k))∑
i=1

((Λ|E(qz)|Λ− 1
(k)
i )) Ξ∗

Λ−1
(k)
i

(v) + E(z)Ξ∗
Λ(v), (4.20)

Ξ∗
Λ(v)F (z) =

h(Λ)+1∑
k=1

ℓ(Λ(k))+1∑
i=1

((Λ|F (z)|Λ + 1
(k)
i )) Ξ∗

Λ+1
(k)
i

(v) + (Λ|K+(z)|Λ) F (z)Ξ∗
Λ(v).

(4.21)

Proof. It follows from Propositions 2.8 and 4.3.

Note that, as concerns the Fock representation, |λ) is identified with the Macdonald

symmetric function, while |λ)) is identified with the dual basis of it with respect to the
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Macdonald inner product [32], see [22]. However, as concerns the MacMahon represen-

tation, we do not have the corresponding theory of the orthogonal symmetric function.

Therefore we assume the existence of such a system of orthogonal function in Proposition

4.6, and the terminology “the dual basis” for {|Λ))} is merely an imitation of that for

{|λ))}, see Section 5.2 for details. Note also that we can rewrite the dual matrix elements

((α|X|β)) in terms of ordinary matrix elements (α|X|β), see Section 5.2.

Roughly speaking, we can construct the dual intertwiner by exchanging the roles of

E(z) and F (z) compared with the original intertwiner.

4.2 Construction of dual vector intertwiner

Proposition 4.7 ([31]). There exists a unique dual vector intertwiner I∗(v) : H′ →
H⊗ V (v) up to normalization if and only if a pair of horizontal representations (H,H′)

satisfies γ′ = γ on the second level and e′(z) = q−1
2 e(z), f ′(z) = q2f(z) for the zero mode

sector. The n-component is written explicitly as

I∗n(v) = z∗nĨ∗n(v), Ĩ∗n(v) = Ĩ∗0(qn1 v), n ∈ Z, (4.22)

Ĩ∗0(v) = exp

(
∞∑
r=1

H−r

[r]

(q1/2v)r

1− qr1

)
exp

(
∞∑
r=1

Hr

[r]

(q−1/2q−1
1 v)−r

1− qr1

)
, (4.23)

where z∗n = z∗n(v) is a stack of zero modes:

z∗0 = 1, z∗n = qn2

n∏
j=1

f(qj−1
1 v) (n > 0), z∗n = qn2

−1∏
j=n

f(qj1v)
−1 (n < 0). (4.24)

As concerns the vector case, the proof is the same as the original vector intertwiner.

The relations corresponding to proposition 3.8 are as follows.

Proposition 4.8 ([31]). The Heisenberg part of the zero component (4.23) satisfies the

following OPE relations:

φ+(q1/2z)I∗0(v) = ψ̃(q−1
1 v/z)−1 I∗0(v)φ+(q1/2z), (4.25)

I∗0(v)φ−(q−1/2z) = ψ̃(z/v) φ−(q−1/2z)I∗0(v), (4.26)

η(z)I∗0(v) =
1− qv/z

1− qq2v/z
: η(z)I∗0(v) :, I∗0(v)η(z) =

1− qq−1
3 z/v

1− qq1z/v
: I∗0(v)η(z) :, (4.27)

ξ(z)I∗0(v) =
1− q−1

1 v/z

1− q3v/z
: ξ(z)I∗0(v) :, I∗0(v)ξ(z) =

1− q−1
2 z/v

1− z/v
: I∗0(v)ξ(z) : . (4.28)
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Proof. By definitions (2.71), (2.72) and (4.23), we have

V +(z)I∗0(v) =
1− q3/2v/z

1− q3/2q2v/z
: V +(z)I∗0(v) :, I∗0(v)V −(z) =

1− q3/2q−1
3 z/v

1− q3/2q1z/v
: I∗0(v)V −(z) :,

(4.29)

then (4.25)–(4.28) follow from (4.29) immediately.

One can understand that Ĩ∗0(v) is just a regularized expression of the infinite product

:
∞∏
j=1

ξ(qj−1
1 v)−1 : (4.30)

through the geometric series of q1.

Proof of Proposition 4.7. We can prove it in the same way as Proposition 3.7 by making

use of proposition 4.8.

4.3 Construction of dual Fock intertwiner

Proposition 4.9 ([31]). There exists a unique dual Fock intertwiner Φ∗(v) : H′ →
H⊗F(v) up to normalization if and only if a pair of horizontal representations (H,H′)

satisfies γ′ = qγ on the second level and e′(z) = (−qv/z)e(z), f ′(z) = (−qv/z)−1f(z) for

the zero mode sector. The λ-component is written as

Φ∗
λ(v) = z∗λΦ̃

∗
λ(v) : H′ → H, (4.31)

Φ̃∗
λ(v) = G [n]∗ ·B∗

n(v) ◦ Ĩ
[n]∗
λ (v), n > ℓ(λ), (4.32)

where Ĩ[n]∗λ (v) = Ĩ∗λn
(qn−1

2 v) ◦ · · · ◦ Ĩ∗λ1
(v) and the coefficient G [n]∗ is defined by the normal

ordering

B∗
n(v)Ĩ

[n]∗
∅ (v) =

(
G [n]∗

)−1
: B∗

n(v)Ĩ
[n]∗
∅ (v) : . (4.33)

The modification operator B∗
n(v) is defined by making use of the dual vertex operator

(2.91) as

B∗
n(v) = Ṽ −(q3/2qn2 v)

−1Ṽ +(q1/2qn2 v), (4.34)

and z∗λ = z∗λ(v) is a stack of zero modes:

z∗λ(v) = q−|λ|
ℓ(λ)∏
i=1

λi∏
j=1

(
−qqi−1

2 x−1
i,j

)−1
f(xi,jv) = q

−n(λ)
2 (−q3)−|λ|

∏
(i,j)∈λ

xi,jf(xi,jv). (4.35)
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The difference from the original Fock intertwiner is that the ordering of the operator

composition here is opposite to there. Furthermore the factor q−|λ| in z∗λ is not from the

zero modes, but due to the change of basis |λ)→ |λ)).
The relations corresponding to proposition 3.11 are as follows:

Proposition 4.10 ([31]). When a pair of horizontal representatins (H,H′′) satisfies

γ′′ = qγ, e′′(z) = (−qqn2 v/z)e(z), f ′′(z) = (−qqn2 v/z)−1f(z), (4.36)

the modification operator B∗
n(v) : H′′ → H satisfies the following relations:

B∗
n(v)K

+(qz) = β+
n (v/z) K

+(qz)B∗
n(v), (4.37)

K−(z)B∗
n(v) = β−

n (z/v)
−1 B∗

n(v)K
−(z), (4.38)

B∗
n(v)E(z)− E(z)B∗

n(v) = 0, (4.39)

B∗
n(v)F (z)− β+

n (v/z)F (z)B
∗
n(v) = −q−1δ(qn2 v/z) : F (z)B

∗
n(v) : . (4.40)

Proof. By making use of the OPE relations (2.89) and (2.90), one can check the following

relations for B∗
n(v):

φ+(q1/2z)B∗
n(v) = q−1β+

n (v/z)
−1 B∗

n(v)φ
+(q1/2z), (4.41)

B∗
n(v)φ

−(q−1/2z) = q−1β−
n (z/v) φ

−(q−1/2z)B∗
n(v), (4.42)

η(z)B∗
n(v) = (1− qqn2 v/z) : η(z)B

∗
n(v) :, B∗

n(v)η(z) = (1− q−1q−n
2 z/v) : η(z)B∗

n(v) :,

(4.43)

ξ(z)B∗
n(v) = (1− qn2 q3v/z)−1 : ξ(z)B∗

n(v) :, B∗
n(v)ξ(z) = (1− q−n

2 z/v)−1 : ξ(z)B∗
n(v) :,

(4.44)

(−qqn2 v/z) B∗
n(v)η(z)− η(z)B∗

n(v) = 0, (4.45)

(−qqn2 v/z)
−1B∗

n(v)ξ(z)− β+
n (v/z)ξ(z)B

∗
n(v) = −q−1δ(qn2 v/z) : B

∗
n(v)ξ(z) : . (4.46)

Taking (4.36) into account, (4.37)–(4.40) follow from the above relations.

One can understand that B∗
n(v) is just a regularized expression of the formal infinite

product

:
∞∏

i,j=1

ξ(qj−1
1 qn+i−1

2 v)−1 : . (4.47)

Proposition 4.11 ([31]). We define G [n]∗, Ĩ[n]∗λ (v) and B∗
n(v) as Proposition 4.9, then

the operator Φ̃∗
λ(v) := G [n]∗ ·B∗

n(v) ◦ Ĩ
[n]∗
λ (v) is independent of n > ℓ(λ).
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Proof. As for λ = ∅, by definition of G [n]∗, we have

Φ̃∗
∅(v) = B∗

0(v) := exp

(
∞∑
r=1

H−r

[r]
(q1/2v)r

1

(1− qr1)(1− qr2)

)

× exp

(
−

∞∑
r=1

Hr

[r]
(q−1/2v)−r q−r

3

(1− qr1)(1− qr2)

)
. (4.48)

As for general λ, if we introduce the factor G∗λ by

B∗
n(v)Ĩ

[n]∗
λ (v) = (G∗λ)−1(G [n]∗)−1 : B∗

n(v)Ĩ
[n]∗
λ (v) :, (4.49)

then we can show that G∗λ is independent of n > ℓ(λ) in fact (see section 5.2.1). Hence

we have

G∗λ · Φ̃∗
λ(v) =: B∗

n(v)Ĩ
[n]∗
λ (v) :=: B∗

0(v)
∏

(i,j∈λ)

ξ(xijv) :

= exp

− ∞∑
r=1

H−r

[r]
(q1/2v)r

 ∑
(i,j)∈λ

xrij −
1

(1− qr1)(1− qr2)


× exp

 ∞∑
r=1

Hr

[r]
(q−1/2v)−r

 ∑
(i,j)∈λ

x−r
ij −

q−r
3

(1− qr1)(1− qr2)

 , (4.50)

where xij = qj−1
1 qi−1

2 .

Proof of Proposition 4.9. We can prove it in the same way as Proposition 3.10 by making

use of Proposition 4.10 and the dual vector intertwining relation.

4.4 Construction of dual MacMahon intertwiner

Proposition 4.12 ([31]). There exists a unique dual MacMahon intertwiner Ξ∗(K; v) :

H′ → H⊗M(K; v) up to normalization if and only if a pair of horizontal representations

(H,H′) satisfies γ′ = K1/2γ on the second level and

e′(z) =
θq3(qv/z)

θq3(qKv/z)
e(z), f ′(z) = K−1/2 θq3(Kv/z)

θq3(v/z)
f(z) (4.51)

for the zero mode sector. The Λ-component is written as

Ξ∗
Λ(K; v) = z∗ΛΞ̃

∗
Λ(K; v) : H′ → H, (4.52)

Ξ̃∗
Λ(K; v) =M[n]∗(K) · Γ∗

n(K; v) ◦ Φ̃[n]∗
Λ (v), n > h(Λ), (4.53)
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where Φ̃
[n]∗
Λ (v) = Φ̃∗

Λ(n)(q
n−1
3 v) ◦ · · · ◦ Φ̃∗

Λ(1)(v) and the coefficient M[n]∗(K) is defined by

the normal ordering

Γ∗
n(K; v)Φ̃

[n]∗
∅∅∅ (v) =

(
M[n]∗(K)

)−1
: Γ∗

n(K; v)Φ̃
[n]∗
∅∅∅ (v) : . (4.54)

The modification operator Γ∗
n(K; v) is defined as

Γ∗
n(K; v) = exp

(
−

∞∑
r=1

H−r

[r]

qnr3 −Kr

kr
(q1/2v)r

)
exp

(
−

∞∑
r=1

Hr

[r]

q−nr
3 −K−r

kr
(q−1/2v)−r

)
(4.55)

and z∗Λ = z∗Λ(K; v) is a stack of zero modes:

z∗Λ(K; v) = K−|Λ|/2
∏

(i,j,k)∈Λ

(
K1/2

qk−1

θq3(q
k−1
3 /xijk)

θq3(K/xijk)

)−1

f(xijkv). (4.56)

Note that the ordering of the operator composition here is opposite to that for the

ordinary MacMahon intertwiner. One can understand that Γ∗
n(K; v) is just a regularized

expression of the formal infinite product

:
∞∏

i,j,k=1

ξ(qj−1
1 qi−1

2 qn+k−1
3 v)−1ξ(qj−1

1 qi−1
2 qk−1

3 Kv) : . (4.57)

The relations corresponding to proposition 3.14 are as follows:

Proposition 4.13 ([31]). When a pair of horizontal representatins (H,H′′) satisfies

γ′′ = q−nK1/2γ, e′′(z) =
θq3(qq

n
3 v/z)

θq3(qKv/z)
e(z), f ′′(z) =

K−1/2

q−n

θq3(Kv/z)

θq3(q
n
3 v/z)

f(z).

(4.58)

the modification operator Γ∗
n(K; v) : H′′ → H satisfies the following relations:

Γ∗
n(K; v)K+(qz) = γ+n (v/z)K

+(qz)Γ∗
n(K; v), (4.59)

K−(z)Γ∗
n(K; v) = γ−n (z/v)

−1Γ∗
n(K; v)K−(z), (4.60)

Γ∗
n(K; v)E(z)− E(z)Γ∗

n(K; v) = 0, (4.61)

Γ∗
n(K; v)F (z)− γ+n (v/z) F (z)Γ∗

n(K; v) = 0. (4.62)

Proof. By making use of the OPE relations,

V +(z)Γ∗
n(K; v) = exp

(
−

∞∑
r=1

1

r

qnr3 −Kr

1− qr3
(q3/2v/z)r

)
: V +(z)Γ∗

n(K; v) :, (4.63)
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Γ∗
n(K; v)V −(z) = exp

(
∞∑
r=1

1

r

q−nr
3 −K−r

1− qr3
(q1/2v/z)−r

)
: Γ∗

n(K; v)V −(z) :, (4.64)

one can check the following relations for Γ∗
n(K; v):

φ+(q1/2z)Γ∗
n(K; v) =

qn

K1/2
γ+n (v/z)

−1 Γ∗
n(K; v)φ+(q1/2z), (4.65)

Γ∗
n(K; v)φ−(q−1/2z) =

qn

K1/2
γ−n (z/v) φ

−(q−1/2z)Γ∗
n(K; v), (4.66)

η(z)Γ∗
n(K; v) =

(qqn3 v/z; q3)∞
(qKv/z; q3)∞

: η(z)Γ∗
n(K; v) :, Γ∗

n(K; v)η(z) =
(qK−1z/v; q3)∞
(qq−n

3 z/v; q3)∞
: η(z)Γ∗

n(K; v) :,

(4.67)

ξ(z)Γ∗
n(K; v) =

(q3Kv/z; q3)∞

(qn+1
3 v/z; q3)∞

: ξ(z)Γ∗
n(K; v) :, Γ∗

n(K; v)ξ(z) =
(q−n+1

3 z/v; q3)∞
(q3K−1z/v; q3)∞

: ξ(z)Γ∗
n(K; v) : .

(4.68)

Taking (4.58) into account, (4.59)–(4.62) follow from the above relations.

Proposition 4.14 ([31]). We define M[n]∗(K), Φ̃
[n]∗
Λ (v) and Γ∗

n(K; v) as Proposition

4.12, then the operator Ξ̃∗
Λ(K; v) := M[n]∗(K) · Γ∗

n(K; v) ◦ Φ̃[n]∗
Λ (v) is independent of

n > h(Λ).

Proof. As for Λ = ∅∅∅, by definition ofM[n]∗(K), we have

Ξ̃∗
∅∅∅(K; v) = Γ∗

0(K; v) := exp

(
−

∞∑
r=1

H−r

[r]

1−Kr

kr
(q1/2v)r

)

× exp

(
−

∞∑
r=1

Hr

[r]

1−K−r

kr
(q−1/2v)−r

)
. (4.69)

As for general Λ, if we introduce the factor C∗Λ by

Γ∗
n(K; v)Φ̃

[n]∗
Λ (v) = (C∗Λ)−1(M[n]∗(K))−1 : Γ∗

n(K; v)Φ̃
[n]∗
Λ (v) :, (4.70)

then we can show that C∗Λ is independent of n > h(Λ) in a similar manner to Section

5.2.2. Hence we have

C∗Λ · Ξ̃∗
Λ(K; v) =: Γ∗

n(K; v)Φ̃
[n]∗
Λ (v) :=: Γ∗

0(K; v)
∏

(i,j,k∈λ)

ξ(xijkv) :

= exp

− ∞∑
r=1

H−r

[r]
(q1/2v)r

 ∑
(i,j,k)∈Λ

xrijk +
1−Kr

kr


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× exp

 ∞∑
r=1

Hr

[r]
(q−1/2v)−r

 ∑
(i,j,k)∈Λ

x−r
ijk −

1−K−r

kr

 , (4.71)

where xijk = qj−1
1 qi−1

2 qk−1
3 .

Proof of Proposition 4.12. We can prove it in the same way as Proposition 3.13 by making

use of Proposition 4.13 and the dual Fock intertwining relation.

5 Properties of MacMahon intertwiner

5.1 MacMahon R-matrix

In this section we will check that two ways to compute the R-matrix lead to the same

results; one way is to use the formula of the universal R-matrix on two vertical represen-

tations [17] and the other way is to read the commutator of two intertwiners. We can

explicitly check this agreement for the MacMahon case now [30] (the agreement for the

Fock case was checked in [26]).

5.1.1 R-matrix for vertical MacMahon representation

As one way to compute the R-matrix, let us use the formula of the universal R-matrix

in [17].

Definition 5.1. We define the diagonal part of the universal R-matrix by

R0 := (K+ ⊗ 1)1⊗d1(1⊗K+)d1⊗1 exp

(
−

∞∑
r=1

rkr(h−r ⊗ hr)

)
, (5.1)

where hr is the mode of K±(z) introduced by

K±(z) = K± exp

(
∞∑
r=1

krh±rz
∓r

)
, (5.2)

and d1 is the first grading operator of U defined by

[d1, E(z)] = E(z), [d1, F (z)] = −F (z), [d1, K
±(z)] = 0. (5.3)

We would like to evaluate R0 on the tensor product of two MacMahon representations

M(K1; v1)⊗M(K2; v2).
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Proposition 5.2 ([30, Section 3]). hr (r ̸= 0, r ∈ Z) and K± act on the state |Λi) ∈
M(Ki; vi) (i = 1, 2) as follows:

hr|Λi) =
vri
r

[
1−Kr

i

kr
+
∑
□∈Λi

xr□

]
|Λi), x□ = qj1q

i
2q

k
3 for □ = (i, j, k) ∈ Λi, (5.4)

K±|Λi) = K
∓1/2
i |Λi). (5.5)

Proof. Since we can rewrite the ingredients of the action for K±(z) (2.58), which are

(2.62) and (2.19), as follows:

ψ±
∅∅∅(K

1/2;u) = K∓1/2 exp

(
∞∑
r=1

ur

r
(1−K±r)

)
, G(u) = exp

(
∞∑
r=1

ur

r
kr

)
, (5.6)

we can evaluate the action by definition (5.2).

Also note that the grading operator is represented as d1|Λ) = |Λ||Λ). Therefore we can

evaluate R0 as follows.

Proposition 5.3 ([30, Section 3]). Let |Λ)⊗ |Π) ∈M(K1; v1)⊗M(K2; v2). The matrix

element of R0 is defined and evaluated as

RK1,K2

ΛΠ (v2/v1) :=
(Λ| ⊗ (Π|R0 |Λ)⊗ |Π)
(∅| ⊗ (∅|R0 |∅)⊗ |∅)

(5.7)

= K
−|Π|/2
1 K

−|Λ|/2
2

∏
□∈Λ

∏
■∈Π

G(x■v2/x□v1)×
∏
□∈Λ

1− (K2v2)/(x□v1)

1− v2/(x□v1)
∏
■∈Π

1− (x■v2)/v1
1− (x■v2)/(K1v1)

.

(5.8)

Proof. As for Λ = Π = ∅∅∅, by making use of Proposition 5.2, we have

(∅| ⊗ (∅|R0 |∅)⊗ |∅) = exp

(
−

∞∑
r=1

(v2/v1)
r

r

(1−K−r
1 )(1−Kr

2)

kr

)
. (5.9)

As for general Λ and Π, again by making use of Proposition 5.2, we have

(Λ| ⊗ (Π|R0 |Λ)⊗ |Π)

= K
−|Π|/2
1 K

−|Λ|/2
2 exp

(
∞∑
r=1

(v2/v1)
r

r

[
kr
∑
□∈Λ

x−r
□
∑
■∈Π

xr■

+(1−Kr
2)
∑
□∈Λ

x−r
□ − (1−K−r

1 )
∑
■∈Π

xr■ −
(1−K−r

1 )(1−Kr
2)

kr

])
. (5.10)
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By introducing the generating functions

∏
□∈Λ

∏
■∈Π

G(x■v2/x□v1) = exp

(
∞∑
r=1

(v2/v1)
r

r

[
kr
∑
□∈Λ

x−r
□
∑
■∈Π

xr■

])
, (5.11)

∏
□∈Λ

1− (K2v2)/(x□v1)

1− v2/(x□v1)
= exp

(
∞∑
r=1

(v2/v1)
r

r

[
(1−Kr

2)
∑
□∈Λ

x−r
□

])
, (5.12)

∏
■∈Π

1− (x■v2)/v1
1− (x■v2)/(K1v1)

= exp

(
∞∑
r=1

(v2/v1)
r

r

[
−(1−K−r

1 )
∑
■∈Π

xr■

])
, (5.13)

we obtain the expression (5.8).

5.1.2 R-matrix as the commutator of MacMahon intertwiners

As the other way, let us compute the commutator of two MacMahon intertwiners and

check that the arising R-factor is the same as the R-matrix previously computed in

Proposition 5.3.

Definition 5.4. We define the matrix element of the R-factor R by

ΞΠ(K2; v2)ΞΛ(K1; v1) = Υ(+)(K1, K2; v1/v2)RK1,K2

ΛΠ (v2/v1)
−1ΞΛ(K1; v1)ΞΠ(K2; v2),

(5.14)

where Υ(+) denotes the vacuum contribution, explicitly,

Υ(+)(K1, K2; v1/v2) = exp

(
∞∑
r=1

1

r

(1−Kr
1)(1−K−r

2 )

kr(1− qr3)

[(
K1v1
K2v2

)−r

−
(
v1
v2

)r
])

. (5.15)

Proposition 5.5 ([30, Section 3]).

RK1,K2

ΛΠ (v2/v1) = RK1,K2

ΛΠ (v2/v1). (5.16)

Proof. To begin with, let us check the commutator of vacuum components. We can write

the vacuum component of the MacMahon intertwiner as follows:

Ξ∅∅∅(K; v) = Γ0(K; v) := Γ−
0 (K; v)Γ+

0 (K; v), (5.17)

Γ−
0 (K; v) := exp

(
∞∑
r=1

H−r

[r]

1−Kr

kr
(q−1/2v)r

)
, (5.18)

Γ+
0 (K; v) := exp

(
∞∑
r=1

Hr

[r]

1−K−r

kr
(q1/2v)−r

)
. (5.19)
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From the commutation relation of the Heisenberg mode (2.71), we obtain

Γ+
0 (K2; v2)Γ

−
0 (K1; v1) = exp

(
−

∞∑
r=1

(v1/v2)
r

r

(1−Kr
1)(1−K−r

2 )

kr(1− qr3)

)
Γ−
0 (K1; v1)Γ

+
0 (K2; v2),

(5.20)

Γ−
0 (K2; v2)Γ

+
0 (K1; v1) = exp

(
∞∑
r=1

(v1/v2)
−r

r

(1−K−r
1 )(1−Kr

2)

kr(1− qr3)

)
Γ+
0 (K1; v1)Γ

−
0 (K2; v2),

(5.21)

hence we have

Ξ∅∅∅(K2; v2)Ξ∅∅∅(K1; v1) = Υ(+)(K1, K2; v1/v2)Ξ∅∅∅(K1; v1)Ξ∅∅∅(K2; v2). (5.22)

In general, taking into account the shift of the zero mode contribution (3.82), we

obtain the following relations:

Γ0(K2; v2)ΞΛ(K1; v1)

= Υ(+)(K1, K2; v1/v2)
∏
□∈Λ

γ−0 (K2;x□v1/v2)
−1 ΞΛ(K1; v1)Γ0(K2; v2) (5.23)

= Υ(+)(K1, K2; v1/v2)
∏
□∈Λ

K
−1/2
2

1− (x□v1)/v2
1− (x□v1)/(K2v2)

ΞΛ(K1; v1)Γ0(K2; v2), (5.24)

ΞΠ(K2; v2)Γ0(K1; v1)

= Υ(+)(K1, K2; v1/v2)
∏
■∈Π

γ−0 (K1;x■v2/v1) Γ0(K1; v1)ΞΠ(K2; v2) (5.25)

= Υ(+)(K1, K2; v1/v2)
∏
■∈Π

K
1/2
1

1− (x■v2)/(K1v1)

1− (x■v2)/v1
Γ0(K1; v1)ΞΠ(K2; v2), (5.26)

where

γ−0 (K; z) = K1/21− z/K
1− z

(5.27)

is (2.69) for N = 0. By combining the above relations with

η(x■v2)η(x□v1) = G((x□v1)/(x■v2)) η(x□v1)η(x■v2), (5.28)

we can conclude that

ΞΠ(K2; v2)ΞΛ(K1; v1)

= Υ(+)(K1, K2; v1/v2)K
|Π|/2
1 K

|Λ|/2
2

∏
□∈Λ

∏
■∈Π

G((x■v2)/(x□v1))
−1
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×
∏
□∈Λ

1− v2/(x□v1)
1− (K2v2)/(x□v1)

∏
■∈Π

1− (x■v2)/(K1v1)

1− (x■v2)/v1
ΞΛ(K1; v1)ΞΠ(K2; v2). (5.29)

Hence Proposition 5.5 has been proven.

5.2 Normalization factor

When we consider the dual intertwiners, we need the notion of the dual basis for the ver-

tical representation (except for the vector case). As concerns the (dual) Fock intertwiner,

some calculations tell us that the certain OPE factors agree with the normalization fac-

tors cλ and c′λ of the Macdonald function, see (5.43) and (5.44). Therefore, one can

understand that this change of basis of the Fock representation corresponds to reversing

the ordering of the operator composition. This fact causes the exchange between roles of

E(z) and F (z), see (5.48) and (5.49). Hence one can confirm the dual Fock intertwining

relation in Section 4.3.

As concerns the (dual) MacMahon intertwiner, we do not know the counterpart of

the Macdonald function. Therefore we do not have an insight into the notion of the

“dual basis” for the MacMahon representation, however we can define it by imitating

the Fock case. Namely we define the normalization factors CΛ and C ′Λ of the counterpart

of the Macdonald function as the certain OPE factors, see (5.54) and (5.55). Though

we cannot evaluate these factors in closed form, we can confirm that the “dual basis”

|Λ)) = CΛ/C ′Λ|Λ) provides us appropriate formula in order to check the dual MacMahon

intertwining relations in Section 4.4, see (5.62) and (5.63).

We expect that these factors are related to some theory of orthogonal symmetric

function, however we only make a few calculations which we need in Section 4.

5.2.1 Normalization factor for Fock intertwiner

We introduce the normalization factors Gλ,G ′λ,G∗λ and G∗λ′ as follows.

Definition 5.6. We define the normalization factors Gλ,G ′λ,G∗λ and G∗λ′ by

Ĩ[n]λ (v)Bn(v) = G−1
λ

(
G [n]
)−1

: Ĩ[n]λ (v)Bn(v) :, Bn(v)Ĩ[n]′λ (v) = G ′λ
−1 (G [n]′)−1

: Bn(v)Ĩ[n]′λ (v) :,

(5.30)

B∗
n(v)Ĩ

[n]∗
λ (v) = G∗λ

−1
(
G [n]∗

)−1
: B∗

n(v)Ĩ
[n]∗
λ (v) :, Ĩ[n]∗′λ (v)B∗

n(v) = G∗λ
′−1 (G [n]∗′)−1

: Ĩ[n]∗′λ (v)B∗
n(v) :,

(5.31)
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where n > ℓ(λ) and the coefficients G [n],G [n]′,G [n]∗ and G [n]∗′ are defined by the normal

ordering

Ĩ[n]∅ (v)Bn(v) = (G [n])−1 : Ĩ[n]∅ (v)Bn(v) :, Bn(v)Ĩ[n]′∅ (v) = (G [n]′)−1 : Bn(v)Ĩ[n]′∅ (v) :,

(5.32)

B∗
n(v)Ĩ

[n]∗
∅ (v) = (G [n]∗)−1 : B∗

n(v)Ĩ
[n]∗
∅ (v) :, Ĩ[n]∗′∅ (v)B∗

n(v) = (G [n]∗′)−1 : Ĩ[n]∗′∅ (v)B∗
n(v) :,

(5.33)

and

Ĩ[n]λ (v) := Ĩλ1(v) ◦ · · · ◦ Ĩλn(q
n−1
2 v), Ĩ[n]′λ (v) := Ĩλn(q

n−1
2 v) ◦ · · · ◦ Ĩλ1(v), (5.34)

Ĩ[n]∗λ (v) := Ĩ∗λn
(qn−1

2 v) ◦ · · · ◦ Ĩ∗λ1
(v), Ĩ[n]∗′λ (v) := Ĩ∗λ1

(v) ◦ · · · ◦ Ĩ∗λn
(qn−1

2 v). (5.35)

By making use of OPE relations, we obtain the following recursion relations.

Proposition 5.7 ([31]). The normalization factors Gλ,G ′λ,G∗λ and G∗λ′ satisfy the following
recursion relations for Young diagrams:

Gλ
Gλ+1j

=

j−1∏
s=1

1− q1xj/xs
1− q−1

3 xj/xs

ℓ(λ)+1∏
s=j+1

1− q2xs/xj
1− xs/xj

1

1− q2xℓ(λ)+1/xj
, (5.36)

G ′λ
G ′λ+1j

=

j−1∏
s=1

1− q2xs/xj
1− xs/xj

ℓ(λ)+1∏
s=j+1

1− q1xj/xs
1− q−1

3 xj/xs

1

1− q1xj/xℓ(λ)+1

, (5.37)

G∗λ
G∗λ+1j

=

j−1∏
s=1

1− q−1
1 xs/xj

1− q3xs/xj

ℓ(λ)+1∏
s=j+1

1− q−1
2 xj/xs

1− xj/xs
1

1− q−1
2 xj/xℓ(λ)+1

, (5.38)

G∗′λ
G∗′λ+1j

=

j−1∏
s=1

1− q−1
2 xj/xs

1− xj/xs

ℓ(λ)+1∏
s=j+1

1− q−1
1 xs/xj

1− q3xs/xj
1

1− q−1
1 xℓ(λ)+1/xj

. (5.39)

In particular Gλ,G ′λ,G∗λ and G∗λ′ are defined independently of n > ℓ(λ).

Proof. Since we can prove the others in the same way, let us show (5.36). It suffices

to calculate the normal ordering products of Ĩλs(q
s−1
3 v)η(q1xjv), η(q1xjv)Ĩλs(q

s−1
3 v) and

η(q1xjv)Bn(v) because what we want to know is just the ratio between Ĩ[n]λ+1j
(v)Bn(v)

and Ĩ[n]λ (v)Bn(v). As concerns these product, we have

Ĩλs(q
s−1
3 v)η(q1xjv) =

1− q1xj/xs
1− q−1

3 xj/xs
: Ĩλs(q

s−1
3 v)η(q1xjv) :, (5.40)

η(q1xjv)Ĩλs(q
s−1
3 v) =

1− q2xs/xj
1− xs/xj

: η(q1xjv)Ĩλs(q
s−1
3 v) :, (5.41)
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η(q1xjv)Bn(v) =
1

1− xn+1/xj
: η(q1xjv)Bn(v) : . (5.42)

Hence these three contributions sum into (5.36).

Proposition 5.8 ([31]). The recursion relations of Proposition 5.7 are solved by the

followings:

Gλ = cλ(q
−1
1 , q−1

2 ), G ′λ = c′λ(q1, q2), (5.43)

G∗λ = cλ(q1, q2), G∗′λ = c′λ(q
−1
1 , q−1

2 ), (5.44)

where

cλ(q1, q2) :=
∏
□∈λ

(
1− qaλ(□)

1 q
−lλ(□)−1
2

)
, c′λ(q1, q2) :=

∏
□∈λ

(
1− qaλ(□)+1

1 q
−lλ(□)
2

)
. (5.45)

Note that cλ and c′λ is just the normalization factors for the Macdonald function [32].

Proof. Note that the normalization factors are unit for λ = ∅ by definition. Since we can

prove the others in the same way, let us show the proposition about Gλ. Let us focus on
the contributions related to the additional box (j, λj + 1) ∈ λ+ 1j. Firstly let us look at

□ = (s, λj +1) for s = 1, . . . , j− 1; the arm and the leg length are aλ(□) = λs− (λj +1)

and lλ(□) = (j − 1) − s, respectively. Then we can see that these parts contribute to

Gλ/Gλ+1j as

j−1∏
s=1

1− q−λs+λj+1
1 qj−s

2

1− qq−λs+λj+1
1 qj−s+1

2

=

j−1∏
s=1

1− q1xj/xs
1− q−1

3 xj/xs
. (5.46)

Secondly let us look at the s-th row which satisfies λs ̸= λs+1 for s = j, . . . , ℓ(λ); the

arm and the leg length for the disappearing part are aλ(×) = λj − λs and lλ(×) = s− j,
respectively, while those for the appearing part are aλ+1j(◦) = (λj + 1)− (λs+1 + 1) and

lλ+1j(◦) = s − j, see the diagram below. Therefore we can see that these second parts

contribute as

λs+1 + 1
↓

λs
↓

λj + 1
↓

j → ◦ × add

s→

ℓ(λ)+1∏
s=j

1− q−λj+λs

1 qs−j+1
2

1− q−λj+λs+1

1 qs−j+1
2

=

ℓ(λ)+1∏
s=j

1− q2xs/xj
1− xs+1/xj

, (5.47)

note that the s-th row which satisfies λs = λs+1 cancels in the above product. Thirdly

the additoinal box itself contributes as (1− q2)−1. Hence these three contributions sum

into (5.36).
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Proposition 5.9 ([31]). Nontrivial matrix elements for the dual basis |λ)) := cλ/c
′
λ|λ)

in the Fock representation F(v) are evaluated as follows:

((λ|E(z)|λ− 1j)) = −q−1q2(λ− 1j|F (z)|λ), (5.48)

((λ|F (z)|λ+ 1j)) = −qq−1
2 (λ+ 1j|E(z)|λ). (5.49)

Proof. From Proposition 5.7, we have the following equations:

cλ−1j

cλ

c′λ
c′λ−1j

= q−1

j−1∏
s=1

ψ̃(xs/xj)
−1

ℓ(λ)+1∏
s=j+1

ψ̃(xs/xj) β
+
ℓ(λ)+1(1/xj), (5.50)

cλ+1j

cλ

c′λ
c′λ+1j

= q

j−1∏
s=1

ψ̃(q−1
1 xs/xj)

ℓ(λ)+1∏
s=j+1

ψ̃(q−1
1 xs/xj)

−1 β+
ℓ(λ)+1(q

−1
1 /xj)

−1. (5.51)

Hence we have

((λ|E(z)|λ− 1j)) =
c′λ
cλ

cλ−1j

c′λ−1j

(λ|E(z)|λ− 1j)

= q−1(1− q2)
ℓ(λ)+1∏
s=j+1

ψ̃(xs/xj) β
+
ℓ(λ)+1(1/xj) δ(xjv/z)

= −q−1q2(λ− 1j|F (z)|λ), (5.52)

((λ|F (z)|λ+ 1j)) =
c′λ
cλ

cλ+1j

c′λ+1j

(λ|F (z)|λ+ 1j)

= q(1− q−1
2 )

j−1∏
s=1

ψ̃(q−1
1 xs/xj) δ(q1xjv/z)

= −qq−1
2 (λ+ 1j|E(z)|λ). (5.53)

Note that the same formulas as above were also computed in [22, (6.1)].

5.2.2 Normalization factor for MacMahon intertwiner

We introduce the normalization factors CΛ and C ′Λ as follows.

Definition 5.10. We define the normalization factors CΛ and C ′Λ by

Γn(K; v)Φ̃
[n]′
Λ (v) = C ′Λ

−1 (M[n]′(K)
)−1

: Γn(K; v)Φ̃
[n]′
Λ (v) :, (5.54)

Γ∗
n(K; v)Φ̃

[n]∗
Λ (v) = CΛ−1

(
M[n]∗(K)

)−1
: Γ∗

n(K; v)Φ̃
[n]∗
Λ (v) :, (5.55)
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where n > h(Λ) and the coefficients M[n]′(K) and M[n]∗(K) are defined by the normal

ordering

Γn(K; v)Φ̃
[n]′
∅∅∅ (v) =

(
M[n]′(K)

)−1
: Γn(K; v)Φ̃

[n]′
∅∅∅ (v) :, (5.56)

Γ∗
n(K; v)Φ̃

[n]∗
∅∅∅ (v) =

(
M[n]∗(K)

)−1
: Γ∗

n(K; v)Φ̃
[n]∗
∅∅∅ (v) :, (5.57)

and

Φ̃
[n]′
Λ (v) := Φ̃′

Λ(n)(q
n−1
3 v) ◦ · · · ◦ Φ̃′

Λ(1)(v), Φ̃
[n]∗
Λ (v) := Φ̃∗

Λ(n)(q
n−1
3 v) ◦ · · · ◦ Φ̃∗

Λ(1)(v),

(5.58)

Φ̃′
λ(v) := Bm(v)Ĩ[m]′

λ (v), m > ℓ(λ). (5.59)

By making use of OPE relations, we obtain the following recursion relations.

Proposition 5.11 ([31]). The normalization factors CΛ and C ′Λ satisfy the following

recursion relations for plane partitions:

C ′Λ
C ′
Λ+1

(k)
j

=
k−1∏
i=1

ℓ(Λ(i))+1∏
s=1

1− q2xs/x
1− xs/x

1

1− q2xℓ(Λ(i))+1/x


×

j−1∏
s=1

1− q2xs/x
1− xs/x

ℓ(Λ(k))+1∏
s=j+1

1− q1x/xs
1− q−1

3 x/xs

1

1− q1x/xℓ(Λ(k))+1

×
h(Λ)+1∏
i=k+1

ℓ(Λ(i))+1∏
s=1

1− q1x/xs
1− q−1

3 x/xs

1

1− q1x/xℓ(Λ(i))+1

× (q1q
−h(Λ)−1
3 x; q3)∞

(q1K−1x; q3)∞
,

(5.60)

CΛ
C
Λ+1

(k)
j

=
k−1∏
i=1

ℓ(Λ(i))+1∏
s=1

1− q−1
1 xs/x

1− q3xs/x
1

1− q−1
1 xℓ(Λ(i))+1/x


×

j−1∏
s=1

1− q−1
1 xs/x

1− q3xs/x

ℓ(Λ(k))+1∏
s=j+1

1− q−1
2 x/xs

1− x/xs
1

1− q−1
2 x/xℓ(Λ(k))+1

×
h(Λ)+1∏
i=k+1

ℓ(Λ(i))+1∏
s=1

1− q−1
2 x/xs

1− x/xs
1

1− q−1
2 x/xℓ(Λ(i))+1

× (q1q
−h(Λ)
3 x; q3)∞

(q1q3K−1x; q3)∞
, (5.61)

where x = q
Λ
(k)
j −1

1 qj−1
2 qk−1

3 and xs = qΛ
(i)
s −1

1 qs−1
2 qi−1

3 for each 1 ≤ i ≤ h(Λ) + 1. In

particular CΛ and C ′Λ are defined independently of n > h(Λ).
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Proof. We can check in the same way as Proposition 5.7.

Though we do not know the closed forms of CΛ and C ′Λ, we can calculate the matrix

elements for the dual basis.

Proposition 5.12 ([31]). Nontrivial matrix elements for the dual basis |Λ)) = CΛ/C ′Λ|Λ)
in the MacMahon representationM(K; v) are evaluated as follows:

((Λ|E(z)|Λ− 1
(k)
j )) = −K−1/2q2(Λ− 1

(k)
j |F (z)|Λ), (5.62)

((Λ|F (z)|Λ + 1
(k)
j )) = −K1/2q−1

2 (Λ + 1
(k)
j |E(z)|Λ). (5.63)

Proof. From Proposition 5.11, we have the following equations:

C
Λ−1

(k)
j

CΛ
C ′Λ
C ′
Λ−1

(k)
j

= K−1/2

k−1∏
i=1

ℓ(Λ(i))+1∏
s=1

ψ̃(xs/x)
−1β−

ℓ(Λ(i))+1
(q−i+1

3 x)−1


×

j−1∏
s=1

ψ̃(xs/x)
−1

ℓ(Λ(k))+1∏
s=j+1

ψ̃(xs/x)β
+
ℓ(Λ(k))+1

(qk−1
3 /x)

×
h(Λ)+1∏
i=k+1

ℓ(Λ(i))+1∏
s=1

ψ̃(xs/x)β
+
ℓ(Λ(i))+1

(qi−1
3 /x)

 γ+h(Λ)+1(1/x), (5.64)

C
Λ+1

(k)
j

CΛ
C ′Λ
C ′
Λ+1

(k)
j

= K1/2

k−1∏
i=1

ℓ(Λ(i))+1∏
s=1

ψ̃(q−1
1 xs/x)β

−
ℓ(Λ(i))+1

(q1q
−i+1
3 x)


×

j−1∏
s=1

ψ̃(q−1
1 xs/x)

ℓ(Λ(k))+1∏
s=j+1

ψ̃(q−1
1 xs/x)

−1β+
ℓ(Λ(k))+1

(q−1
1 qk−1

3 /x)−1

×
h(Λ)+1∏
i=k+1

ℓ(Λ(i))+1∏
s=1

ψ̃(q−1
1 xs/x)

−1β+
ℓ(Λ(i))+1

(q−1
1 qi−1

3 /x)−1

 γ+h(Λ)+1(q
−1
1 /x)−1,

(5.65)

Hence we have

((Λ|E(z)|Λ− 1
(k)
j )) =

C ′Λ
CΛ

C
Λ−1

(k)
j

C ′
Λ−1

(k)
j

(Λ|E(z)|Λ− 1
(k)
j ) = −K−1/2q2(Λ− 1

(k)
j |F (z)|Λ),

(5.66)

((Λ|F (z)|Λ + 1
(k)
j )) =

C ′Λ
CΛ

C
Λ+1

(k)
j

C ′
Λ+1

(k)
j

(Λ|F (z)|Λ + 1
(k)
j ) = −K1/2q−1

2 (Λ + 1
(k)
j |E(z)|Λ).

(5.67)
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