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Abstract

Many asteroids exist between the orbits of Mars and Jupiter in the present solar system.

Asteroids are the remnants of minor bodies that existed in the primordial environment, and

they are fossils holding information of the planet formation era since they do not experience

significant melting thanks to those small sizes. Thus the detailed researches of asteroids lead

to clarify the history of the solar system.

As we notice from the elongated shape of the asteroid Itokawa observed by the spacecraft

Hayabusa, asteroids have not only spherical shapes but also variety of shapes. Now we know

the shapes of about the 1,600 asteroids owing to the detailed light-curve observations. Since the

shapes of asteroids are mainly formed through asteroidal collisions, we can statistically discuss

the collisional history of asteroids if we clarify the relationship between impact conditions

and the shapes of impact outcomes. Previous studies investigated the impact conditions of the

collisions that produce the several asteroidal shapes, but they do not provide the comprehensive

relationship between impact conditions and the shapes of impact outcomes. Thus, we conducted

numerical simulations of impacts between rocky asteroids with various impact conditions and

investigated the shapes of impact outcomes.

Firstly, we developed the numerical simulation code that treats rocky body impact phe-

nomena. We developed the numerical simulation code based on the Smoothed Particle Hydro-

dynamics (SPH) method for elastic dynamics since particle methods are suitable for problems

involving large deformation such as impacts. The SPH method for elastic dynamics has diffi-

culty to treat tension dominated regions due to a numerical instability. We developed a new

method to solve the numerical instability using the knowledge provided by the Godunov SPH

method (Inutsuka 2002). To reproduce collisional destruction of rocky bodies and gravitational

reaccumulation of fragments, we also introduced the self gravity, the model of fracture of rocky

material (Benz and Asphaug 1995), and the model of friction of completely damaged rock (Jutzi

2015). Moreover, we parallelized our simulation code utilizing Framework for Developing Parti-

cle Simulator developed by RIKEN (Iwasawa et al. 2015, 2016), which enables massive parallel

computing or wide parameter survey using supercomputers.

Secondly, to compare with the shapes of actual asteroids with diameters larger than 100 km,

we reproduced the impacts with the target rocky asteroids with the diameter of 100 km. We

conducted the impact simulations with the impact velocities of several 100m/s that are realized

in the planet formation era. As a result, we found that the similar-mass impacts with the mass
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ratios of two impacting bodies larger than 0.5 produce various shapes including extremely flat

shapes of the largest remnants, while those with the mass ratios smaller than 0.5 produce only

spherical shapes with the ratio of the minor to major axis lengths larger than 0.5. Next, we

conducted the impact simulations with the impact velocities of several km/s that are realized

in the present solar system. As a result, we found that the impacts with the mass ratio of 1/64,

which result in non-destructive impacts, only produce spherical shapes of the largest remnants

with the ratio of the minor to major axis lengths larger than 0.7, and the similar-mass impacts

with the mass ratios larger than 1/8, which mainly result in destructive impacts, only produce

spherical or bilobed shapes. Therefore, we expect that flat shapes are produced only by low-

velocity and similar-mass impacts in the primordial environment. To verify our prediction, we

analyzed the shape models of actual asteroids obtained from Database of Asteroid Models from

Inversion Technique, and investigated the shapes of family asteroids and non-family asteroids

separately. Note that family asteroids are mainly produced by recent destructive impacts. We

found that there are no flat family asteroids with the diameter larger than 100 km, while there

are several flat non-family asteroids. We also found that the fraction of flat non-family asteroids

larger than 10 km is more than twice as large as that of family asteroids. This suggests that flat

asteroids are likely to be formed in the primordial environment, and especially flat asteroids

larger than 100 km were formed in the planet formation era and remain the same until today.

Thirdly, we investigated impact conditions of collisions that produce the extremely elongated

shape of 1I/′Oumuamua, which was found on October 2017. 1I/′Oumuamua has the mean

radius of about 100m, and the large light-curve amplitude of 1I/′Oumuamua suggests that this

object has the elongated shape with the ratio of the intermediate to major axis lengths less

than 0.3. To reproduce the extremely elongated shape of 1I/′Oumuamua, we conducted the

impact simulations with the 50m-sized rubble pile targets with various impact velocities, impact

angles, mass ratios of two impacting bodies, and friction angles. As a result, we found that the

formation of the extremely elongated shapes with the axis ratio less than 0.3 roughly requires

the impact velocity less than 40 cm/s, the impact angle less than 30◦, the mass ratio larger than

0.5, and the friction angle larger than 40◦. This impact velocity is realized in the extremely

primordial protoplanetary disks without the planetesimals with the radius larger than 7 km.

Thus, 1I/′Oumuamua might have been formed in such an extremely primordial protoplanetary

disk, then might have been ejected from the planetary system due to, for example, a stellar

encounter, and then visited our solar system.
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Chapter 1

Introduction

1.1 Asteroids in the Solar System

Our solar system is mainly composed of the planets orbiting around the sun. The solar system

has eight planets, that is, Mercury, Venus, the Earth, Mars, Jupiter, Saturn, Uranus, and

Neptune. They are the major bodies orbiting around the sun and account for the almost all

mass of the solar system. However, not only the planets but also other minor bodies are orbiting

around the sun. The minor objects include asteroids, comets, and trans-neptunian objects.

The number of the minor bodies in the solar system is clearly much larger than that of the

major bodies. Especially, great number of asteroids are found so far. According to Small Body

Database Search Engine of Jet Propulsion Laboratory1, the number of all asteroids with known

orbits is about 800,000. Even the number of the asteroids with the diameters larger than 1 km

is more than 100,000. The largest asteroid (1) Ceres, which was discovered by Giuseppe Piazzi

on 1801, has the diameter of about 1, 000 km (Note that (1) Ceres is no longer the asteroid but

now classified to the dwarf planet). Thus more than 100,000 asteroids with the diameters of

1−1, 000 km are observed, and we can achieve statistical information regarding to the properties

of the solar system from asteroids.

Figure 1.1 shows the positions of the inner six planets and the asteroids with the diameter

larger than 1 km. It is clear at a glance that asteroids mainly exist between the orbits of Mars

and Jupiter. The region where asteroids mainly exist is called the main belt, and the asteroids in

this region are called main-belt asteroids. We also notice that there are two groups of asteroids

existing in the Lagrange points of Jupiter. These asteroids are called Jupiter trojans. There

are some asteroids that have the orbits close to that of the Earth. These asteroids are called

1https://ssd.jpl.nasa.gov/sbdb query.cgi#x

6



CHAPTER 1. INTRODUCTION 7

-10

-5

 0

 5

 10

-10 -5  0  5  10

Y
[A

U
]

X[AU]

Figure 1.1: Positions of the inner six planets and the asteroids with the diameters larger than
1 km at 00:00:00 on 1st January, 2018. The orbits of the planets are indicated by the solid
curves. The orbit of the Earth is on the XY plane, and X axis is in the direction of the
vernal equinox. The positions and the orbits are calculated from the orbital elements of the
planets and the asteroids obtained from Small Body Database Search Engine of Jet Propulsion
Laboratory. The blue point and solid curve show the position and orbit of Mercury, the yellow
ones show those of Venus, the brown ones show those of the Earth, the red ones show those of
Mars, the green ones show those of Jupiter, and the gray ones show those of Saturn. The black
dots show the positions of the asteroids.

near-Earth asteroids, which include the asteroids Itokawa and Ryugu visited by the spacecraft

Hayabusa and Hayabusa 2. Almost all near-Earth asteroids have the diameters less than 10 km,

and they are considered to be originated from the main belt through the migration due to the

Yarkovsky effect or the scattering due to the planets (e.g., Binzel et al. 1992; Michel et al. 2005).

Figure 1.2 shows the incremental mass distribution of asteroids estimated using the diame-

ters of asteroids obtained from Small Body Database Search Engine of Jet Propulsion Labora-

tory. From Fig. 1.2, we notice that the total mass of the asteroids with the diameters in each

diameter bin increases with increasing the diameters of asteroids. We also notice that there

is a peak of the mass around the diameter ≈ 100 km (see also Bottke et al. 2005; Kobayashi

et al. 2016). Note that the two diameter bins with the diameter > 500 km in Fig. 1.2 include

only three asteroids (Ceres, Pallas, and Vesta), and these points are statistically insignificant.

Thus, the asteroids with the diameter ≈ 100 km account for large fraction of the total mass of
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Figure 1.2: Incremental mass distribution of asteroids calculated from the diameters of the
asteroids obtained from Small Body Database Search Engine of Jet Propulsion Laboratory.
Here, we assume that the density of asteroids is 3 g/cm3. The horizontal axis represents the
diameters of asteroids. Each point shows the diameter of the center of each diameter bin Dc,
and each bin has the width of Dc(10

0.05 − 10−0.05). The vertical axis represents the total mass
of the asteroids with the diameter in each diameter bin.
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Figure 1.3: Axis ratios of asteroids obtained from the shape models stored in Database of
Asteroid Models from Inversion Technique. The horizontal axis represents the diameters of
asteroids, and the vertical axis represents the ratio of the minor to major axis lengths of
asteroids. The axis ratios are measured through the bottom-up method (see Section 3.2).
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The shapes of the planets or large satellites such as the moon are almost complete spheres.

However, as we notice from the sea-otter shape of the asteroid Itokawa, many asteroids have

irregular shapes that are different from spherical shapes. This is because material strength

is dominant rather than the self gravity for small bodies such as asteroids (Hughes and Cole

1995; Lineweaver and Norman 2010). The shapes of asteroids are mainly measured using

light curves, that is, luminosity variation of asteroids in time. The rotations of asteroids vary

the cross section of asteroids with respect to observers, and this causes luminosity changes.

Kaasalainen and Torppa (2001) and Kaasalainen et al. (2001) provide the novel technique

that predicts the shapes of asteroids from the light curves of asteroids. The shape models

of asteroids obtained from light curves are summarized in Database of Asteroid Models from

Inversion Technique2 (Ďurech et al. 2010). The shapes of asteroids are also measured by in-situ

observations (e.g., Fujiwara et al. 2006), radar observations (e.g., Ostro et al. 2000), and the

occultations of background stars due to asteroids (e.g., Satō et al. 2000), but the number of

asteroidal shapes obtained from these methods is much smaller than those obtained from light

curves. Fig. 1.3 shows the axis ratios of asteroids obtained from Database of Asteroid Models

from Inversion Technique, and we notice that about half of asteroids have the irregular shapes

with the ratio of the minor to major axis lengths less than 0.6.

There are several groups of asteroids that have similar proper orbital elements. Here, the

proper orbital elements mean that quasi-invariants of motions of asteroids that are not affected

by short-term perturbations such as the gravity from the gas giants (e.g., Knezevic et al. 2002).

Groups of asteroids with similar proper orbital elements are called asteroid families. Japanese

astronomer Kiyotsugu Hirayama firstly identified several asteroid families (Hirayama 1918), and

thus asteroid families are also called Hirayama families. The asteroids in an asteroid family

usually have similar spectral properties (e.g., Zappalá et al. 1995), so that the asteroids in a

family are considered to be the fragments produced through collisional destruction of a parent

body (e.g., Farinella et al. 1996).

There are several mechanisms that vary the proper orbital elements. One of them is the

Yarkovsky effect (e.g., Farinella et al. 1998). The Yarkovsky effect mainly changes the orbital

semi-major axis due to the torque induced by irradiation and the rotations of asteroids. The

rotations of asteroids make differences between the directions of absorption of irradiation from

the sun and the directions of re-emission of radiation, which exerts the torque on asteroids

and causes the semi-major axis change. The Yarkovsky effect both increases and decreases

2http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php
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Figure 1.4: Ages of asteroid families estimated from the Yarkovsky “V-shape”. The vertical
axis represents the estimated ages of families, and the number nearby each plot indicates minor-
planet designation of the largest member of each family. This figure is taken from Asteroid
Dynamics Site 2 (http : //hamilton.dm.unipi.it/astdys2/fam ages/index.html).

the semi-major axis depending on the direction of rotations, and is more effective for smaller

asteroids, especially for the asteroids smaller than 10 km (Morbidelli and Vokrouhlický 2003).

The Yarkovsky effect dissipates asteroids families for a very long period, and we can utilize this

effect to measure the ages of asteroid families (Spoto et al. 2015). The semi-major axis change

due to the Yarkovsky effect is faster for smaller asteroids, and thus if we plot the diameters and

proper semi-major axes of the asteroids in a family on a graph that has the horizontal axis of

the proper semi-major axis and the vertical axis of the inverse of the diameter, we can achieve

“V-shape” occupied by the plots of asteroids. The opening angles of V-shapes are larger for

older families, and thus the ages of asteroid families are estimated from the opening angles of

V-shapes. Fig. 1.4 shows the estimated ages of asteroid families, and we notice that the most

families have the ages younger than 1 Gyr, which is much shorter than the age of the solar

system. Thus, asteroid families were mainly formed through recent asteroidal collisions.

Note that not all of asteroids were destructed by recent impacts but especially large asteroids

may have the primordial origin. Fig. 1.5 shows the collisional lifetime of asteroids (or the

timescale of the occurrence of destructive impacts) in the present main belt estimated in O’Brien

and Greenberg (2005). From Fig. 1.5, we notice that the asteroids with the diameters larger

than 100 km have the collisional lifetimes of about ten times longer than the age of the solar



CHAPTER 1. INTRODUCTION 11

Figure 1.5: Collisional lifetime of asteroids (or the timescale of catastrophic disruptive impacts)
in the present main belt. The horizontal axis represents the diameter of asteroids, and the
vertical axis represents the collisional lifetime of asteroids with the diameter shown in the
horizontal axis. This figure is taken from O’Brien and Greenberg (2005).

system. Thus these larger asteroids may be “fossils” of the primordial asteroids (Bottke et al.

2005). Fig. 1.5 also shows that the asteroids larger than 10 km have the collisional lifetime

slightly longer than the age of the solar system, which means that some fraction of these

asteroids may also be primordial.

1.2 Solar System Formation Scenario

Standard solar system formation scenarios are based on the model proposed by Safronov (1969)

or the so-called Kyoto model proposed by Hayashi et al. (1985). Fig. 1.6 shows the schematic

picture of the solar system formation scenario based on the Kyoto model. Planets are formed

in a protoplanetary disk, which is composed of gas and solid dust particles. Gas is mainly com-

posed of hydrogen and helium. The typical size of dust particles is considered to be sub micron,

which is the typical size of interstellar dust particles (Mathis et al. 1977; Draine and Lee 1984).

The existence of protoplanetary disks is already proved by many observations (e.g., Kitamura

et al. 2002; Kwon et al. 2011), and nowadays Atacama Large Millimeter/submillimeter Ar-

ray clarified even the spatial structures of the surface density of dust component for several

protoplanetary disks (ALMA Partnership et al. 2015).

Dust particles grow up to be planetesimals, which are the bodies with the typical size
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Figure 1.6: Schematic figure that shows the formation and evolution of the solar system.

of 1 − 100 km, through collisional sticking of dust particles due to the van der Waals force.

There are some difficulties for dust particles to grow to be planetesimals through collisional
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coalescence, although we already found some mechanisms to avoid the difficulties. One of the

difficulties is the radial drift problem. Gas component is orbiting around the sun with sub-

Keplerian velocity because of radial gas-pressure gradient, and dust particles experience head

wind and loose the angular momentum. If dust particles grow with keeping compact density,

the timescale for the radial drift is shorter than the growth timescale when the size of compact

dust reaches about 1m (Weidenschilling 1977), which means that dust particles fall down to

the central star before they grow to be planetesimals. However, collisional sticking of dust

particles produces porous aggregates (e.g., Suyama et al. 2008), which accelerates the growth

of dust particles to be faster than the radial drift (Okuzumi et al. 2012). Sufficiently grown

dust aggregates are compressed through gas compression and self-gravity compression, and then

planetesimals with the size ∼ 1 km are formed (Kataoka et al. 2013). The radial drift problem

is also overcome by the steaming instability (Johansen et al. 2014). The streaming instability

produces overdense filaments composed of dust particles, and gravitational fragmentation of

overdense regions directly produces planetesimals in a short timescale. The size of planetesimals

produced through the streaming instability is estimated to be ∼ 100 km.

Planetesimals grow through collisional coalescence of planetesimals, and here “glue” is the

gravity between planetesimals. There are two types of the growth mode of planetesimals. If

the relative velocity between planetesimals is smaller than the mutual escape velocity of plan-

etesimals, the gravity is effective and collisional cross section is larger for larger planetesimals

(gravitational focusing). This means that larger planetesimals grow faster than smaller ones,

and smaller planetesimals are left behind the growth. This growth mode is called runaway

growth (e.g.,Wetherill and Stewart 1989; Kokubo and Ida 1996). In contrast, if the relative

velocity is larger than the escape velocity, the gravity is not effective. In this case, the dif-

ference of the masses of two planetesimals decreases through the growth, and planetesimals

with different masses grow with the similar growth rate. This growth mode is called orderly

growth (e.g.,Weidenschilling et al. 1997). In the orderly growth mode, the shape of the mass

distribution of planetesimals merely shifts to massive side.

The relative velocity between the planetesimals with the radius larger than 1 km is mainly

increased by the density fluctuation caused by turbulence (Ida et al. 2008; Okuzumi and Ormel

2013; Ormel and Okuzumi 2013), while the relative velocity is decreased by the collisional

damping (e.g., Ohtsuki 1992). The equilibrium relative velocity between the planetesimals

smaller than 100 km is larger than the escape velocity from these planetesimals, and thus the

growth mode for smaller planetesimals is the orderly growth (Kobayashi et al. 2016). Note that
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the relative velocity is surely larger than the escape velocity from the planetesimals smaller

than 100 km but is still less than about ten times of the escape velocity, which does not result

in the collisional destruction but results in the growth.

On the other hand, the escape velocity from the planetesimals larger than about 100 km

is larger than the relative velocity (Kobayashi et al. 2016). Thus the growth mode of the

planetesimals that reach the size of about 100 km changes to the runaway growth. Several

larger planetesimals, or protoplanets, grow much faster than the planetesimals smaller than

100 km, and the runaway growth produces bimodal mass distribution that is composed of

several protoplanets and remnant planetesimals with the radius ∼ 100 km (Kobayashi and

Tanaka 2018). The mass distribution of remnant planetesimals has the peak around the radius

of about 100 km, which probably remains the same until today and produces the peak around

100 km of the mass distribution of the asteroids in the main belt (Kobayashi and Tanaka 2018).

Therefore, the asteroids are considered to be remnant planetesimals and they are essentially

the same objects. Thus, in the explanation of the collisional simulations shown after Chapter

2, we only use the term of asteroid and do not use the term of planetesimal to avoid confusions.

The runaway growth does not continue eternally. Sufficiently grown protoplanets gravita-

tionally scatter surrounding planetesimals and increase the relative velocity between protoplan-

ets and planetesimals. Gravitational focusing is more effective with smaller relative velocity,

and thus the heat up by the protoplanets decreases the growth rate of the protoplanets them-

selves. Eventually, several protoplanets with the similar masses and sufficient separations are

formed, and they grow through coalescence of surrounding planetesimals. This growth mode is

called oligarchic growth (Kokubo and Ida 1998, 2000). The separations between protoplanets

are typically about 10 Hill radii (Kokubo and Ida 1995).

Inner protoplanetary disk is hotter due to the irradiation from the sun, while outer pro-

toplanetary disk is colder. There is the orbital radius where disk temperature is the same

as the water condensation temperature. This radius is called the snow line. Solid water, or

ice, exists outside of the snow line, and thus the amount of solid components outside of the

snow line is larger than that inside of the snow line (Hayashi 1981), which leads to the rapid

growth of protoplanets outside of the snow line. If the mass of protoplanets exceeds about 10

Earth masses, protoplanets accumulate surrounding disk gas in a runaway manner (Mizuno

et al. 1978; Mizuno 1980; Stevenson 1982), which leads to the formation of gas giants. The

protoplanets that eventually become Jupiter and Saturn grow rapidly because of the existence

of icy component outside of the snow line and become heavier than 10 Earth masses before the
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dispersal of gas disk.

Disk gas damps the eccentricity of protoplanets, and protoplanets are orbiting around the

sun with almost circular orbits and sufficient separations. However, after disk gas dissipates,

the eccentricity increases due to the mutual gravitational perturbations between protoplanets,

which leads to the orbital crossing of protoplanets and giant impacts (e.g.,Wetherill 1985;

Kokubo and Ida 1998). The final stage of the terrestrial planet formation is considered to be

the giant impact stage. Giant impacts determine the characteristics of the present terrestrial

planets, such as the number or the orbital elements of the planets (e.g., Agnor et al. 1999;

Kokubo and Genda 2010). The moon is also considered to be formed by a giant impact

(e.g., Ida et al. 1997; Canup 2004).

The total mass of the asteroids in the present main belt is much smaller than that of solid

component of the protoplanetary disk (e.g., Petit et al. 2001; Nagasawa et al. 2002). The sub-

stantial fraction of asteroids are ejected from the solar system due to, for example, the migration

of the gas giants (Walsh et al. 2011), which means that the impacts between planetesimals in

the primordial environment are considered to be more frequent than those between asteroids

in the present environment. Thus collisional deformation of planetesimals larger than 100 km

probably occurs in the primordial environment although collisional destruction of 100 km-sized

asteroids in the present solar system rarely occurs (see Fig. 1.5).

1.3 Planetesimal or Asteroidal Collisions

As we introduced in Section 1.2, impacts between various objects including dust particles,

planetesimals, and protoplanets play the essential role for the formation of the solar system,

that is to say, the impact is the most important physical process for the planet formation.

Collisional merging of these objects leads to the growth of objects. However, impacts do not

always result in merging but also result in destruction or other types of collisions depending

mainly on the impact velocity and also the impact angle and the mass ratio of impacting two

bodies. Therefore, the detailed understanding of impact outcomes is very important to discuss

the details of the solar system formation scenario. Here, we especially focus on planetesimal or

asteroidal impacts.

Numerical simulation is one of the most powerful tools to investigate the results of impacts,

since the scale of planetesimals or asteroids (larger than km) is too large to be treated in

laboratory experiments. Moreover, the self gravity of bodies plays important role, which is
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also difficult to be investigated by room experiments. Certainly, laboratory experiments of

impacts for m-sized targets (e.g., Fujiwara et al. 1989; Kato et al. 1995) are applicable not only

to impacts between m-sized asteroids but also to those between much larger asteroids through

scaling laws (e.g., Housen and Holsapple 1990; Mizutani et al. 1990), but the direct comparison

between laboratory-scale-impacts and asteroid-scale-impacts is still difficult. Moreover, the

recent improvement of computational power through the development of supercomputers such

as K computer enhances the value of numerical simulations.

There are two major frameworks of simulation methods for impacts. One of them is shock

physics codes, or hydrocodes, and the other one is particle based codes, or discrete element

methods. In shock physics codes, we solve continuum equations for hydrodynamics or elastic

dynamics and calculate the time evolution of field variables such as the velocity or density. Some

studies include models for realistic rocky materials (e.g., Benz and Asphaug 1995; Jutzi 2015),

and thus shock physics codes can treat the impacts between rocky bodies. Shock physics codes

are roughly classified to particle methods and mesh methods depending on how to discretize

continuum bodies. Particle methods, which include Smoothed Particle Hydrodynamics (SPH)

method, utilize Lagrangian particles that mimic bulk of continuum bodies and move with

the motion of continuum bodies (e.g., Jutzi and Asphaug 2015), while mesh methods utilize

Eulerian meshes that are usually fixed to computational domain (e.g., Kraus et al. 2011). Impact

phenomena accompany with large deformation, so that particle methods are more preferable

than mesh methods. On the other hand, in particle based codes, we represent bodies as

collection of particles with finite radii and rigid boundaries, and we directly assume interactions

between particles. Particle based codes are also roughly classified to hard sphere models and

soft sphere models. In hard sphere models, we assume the coefficient of restitution and only

solve repulsion between particles (e.g., Richardson et al. 2000). In soft sphere models, we take

into account finite interaction times and interactions are governed by elastic forces and frictional

dissipation (e.g., Schwartz et al. 2018).

Both shock physics codes and particle based codes have merits and demerits. Shock physics

codes can solve shock waves, so that they can treat hypervelocity impacts. However, time steps

in shock physics codes are determined by the Courant condition and are much smaller than the

timescale of gravitational reaccumulation especially for the impacts with bodies smaller than

100 km, so that it is difficult for shock physics codes to complete gravitational reaccumulation

phases. On the other hand, particle based codes do not have the strict restriction for time

steps especially for hard sphere models, so that the simulations of gravitational reaccumulation
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phases are relatively easy. However, they can treat neither shock waves nor heats generated by

shock waves. Recently, some studies conduct impact simulations with hybrid codes that utilize

both shock physics codes and particle based codes; they calculate initial fragmentation phases

using shock physics codes and subsequent gravitational reaccumulation phases using particle

based codes (e.g.,Michel et al. 2001).

Various impacts are investigated in various researches so far (e.g.,Michel et al. 2011; Genda

et al. 2012; Ballouz et al. 2014). In this section, we introduce the impact simulations in previous

works in terms of the classification of impact outcomes based on Benz and Asphaug (1999) and

Leinhardt and Stewart (2012) and asteroidal shapes formed through impacts based on Leinhardt

et al. (2000), Jutzi and Asphaug (2015), Jutzi and Benz (2017), Schwartz et al. (2018), and

Leleu et al. (2018).

1.3.1 Types of Collisional Outcomes

One of the most important measures of impact results is the mass of the largest remnants.

If the mass of the largest remnants are larger than target bodies, impacts result in merging

and bodies grow. Here, a target body means the larger body among two impacting objects,

and an impactor body means the smaller one. Generally speaking, impacts with larger kinetic

energy result in more destructive impacts. However, the degree of destruction also depends on

the mass of target bodies. The larger target bodies are, the lesser the degree of destruction

becomes with the same impact kinetic energy. Thus, the following total kinetic energy per unit

mass QR will be a good measure of the degree of destruction:

QR =
(1/2)µimpv

2
imp

Mtot

, (1.1)

where vimp is the impact velocity, µimp = MiMtarget/Mtot is the reduced mass, Mtot = Mi +

Mtarget is the total mass, and Mi and Mtarget are masses of impactor and target bodies, respec-

tively. If the mass difference of two bodies is too large Mi ≪ Mtarget, QR is simply written

as

Q =
(1/2)Miv

2
imp

Mtarget

. (1.2)

The specific kinetic energy QR when the mass of the largest remnant becomes just half of

that of a target body is called the catastrophic disruption threshold Q∗
RD. If QR is much smaller

than Q∗
RD, the impacts result in non-destructive or merging collisions. If QR is comparable to
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or larger than Q∗
RD, the impacts result in catastrophic destruction. Therefore, Q∗

RD is one

of good thresholds to judge that impacts become destructive or non-destructive. Destruction

of larger bodies is prevented by the gravity (gravity-dominated regime), while destruction of

smaller bodies is prevented by material strength (strength-dominated regime).

Benz and Asphaug (1999) derived the size dependence of Q∗
D, which is the catastrophic

disruption threshold for Q in Eq (1.2), through SPH impact simulations with the material

strength of intact rocks. They conducted impact simulations with various impact angles, mass

ratios of two impacting bodies, and radii of target bodies but with fixed impact velocities of

3 km/s or 5 km/s, which are the typical impact velocities in the main belt, and they derived

the impact-angle-averaged Q∗
D for various target radii, which is expressed as

Q̄∗
D = Q0

( Rt

1 cm

)apow
+B0ρ0

( Rt

1 cm

)bpow
, (1.3)

where Rt is the radii of targets, ρ0 is the mean density, andQ0, B0, apow, and bpow are parameters

depending on the impact velocity and target material. The detailed parameters are listed in

Benz and Asphaug (1999), and the two exponents have the values of apow ≈ −0.4 and bpow ≈ 1.3.

Thus there is a radius that has minimum Q̄∗
D and this radius is the transition radius between

strength- and gravity-dominated regimes. They found that the transition diameter of target

bodies is about 300m. Note that Q∗
D depends on the friction coefficient of completely damaged

rock (Jutzi 2015) and also the resolution of numerical simulations (Genda et al. 2015). Q∗
D

is used in theoretical works to assess how impacts are destructive (e.g., Bottke et al. 2005;

Kobayashi and Tanaka 2018).

The comparison between Q∗
RD and QR roughly determines whether impacts result in de-

structive or non-destructive ones. However, there are other types of impacts such as hit-and-run

collisions (e.g., Genda et al. 2012). Moreover, Q∗
RD depends not only on the sizes of target bodies

as in Eq (1.3) but also on the impact angle or the mass ratio of two impacting bodies. Leinhardt

and Stewart (2012) extended Q∗
RD in gravity-dominated regime to represent the dependence of

the impact angle and the mass ratio as follows:
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Q∗
RD =

( µimp

µimp,α

)(3µ̄mat/2−2)(1
4

(q + 1)2

q

)(2/(3µ̄mat)−1)

Q∗
RD,q=1,θimp=0,

q = Mi/Mtarget,

µimp,α =
αimpMiMtarget

αimpMi +Mtarget

,

αimp =
3Ril

2 − l3

4R3
i

,

l =

{
(Ri +Rt)(1− sin θimp) Rt < Ri + (Ri +Rt) sin θimp

2Ri Rt > Ri + (Ri +Rt) sin θimp
, (1.4)

where Ri is the radii of impactors, θimp is the impact angle, Q∗
RD,q=1,θimp=0 is the catastrophic

disruption threshold for equal-mass and head-on collisions, and µ̄mat is the material depen-

dent scaling parameter with 1/3 ≤ µ̄mat ≤ 2/3. Leinhardt and Stewart (2012) determined

Q∗
RD,q=1,θimp=0 using scaling laws, but it can also be determined by numerical simulations as

done in Benz and Asphaug (1999). For detailed classification of impact types, they also set the

following critical impact angle (see also Asphaug 2010):

θimp,crit = sin−1
( Rt

Rt +Ri

)
. (1.5)

Using Q∗
RD, θimp,crit, and two-body escape velocity vesc, we can roughly classify impact types as

follows: merging collisions for vimp ≤ vesc, partial accretion for θimp ≤ θimp,crit and QRD < Q∗
RD,

hit-and-run collisions for θimp > θimp,crit and QRD < Q∗
RD, and catastrophic destruction for

QRD ≥ Q∗
RD.

1.3.2 Collisions as the Origin of Asteroidal Shapes

In Section 1.3.1, we focused on the types of impacts and the mass of the largest remnants, or

the ejected masses. There are many other interesting features of the results of impacts such

as the rotation of impact outcomes. In this dissertation, we especially focus on the shapes of

impact outcomes, because the shapes of impact outcomes are sensitive to the impact conditions

(e.g., Jutzi and Asphaug 2015) and we already know the shapes of many actual asteroids (see

Fig. 1.3).

The shapes of asteroids are mainly determined by asteroidal collisions, although there are

other mechanisms to deform asteroidal shapes such as the spin-up due to the Yarkovsky-

O’Keefe-Radzievskii-Paddack (YORP) effect (e.g., Richardson et al. 2005) or tidal disruption

due to planets (e.g.,Walsh and Richardson 2006). The YORP effect is caused by irradiation
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like the Yarkovsky effect, and the YORP effect changes the rotation rate of asteroids (Rubin-

cam 2000). If the rotation rate becomes too large due to the YORP effect, the centrifugal

force due to the rotation exceeds the self gravity and shapes are deformed (e.g., Pravec et al.

2002). However, the timescale of rotation-rate changes due to the YORP effect for the asteroids

larger than 10 km is much longer than the age of the solar system (Rubincam 2000), and thus

the YORP deformation is not important for the larger asteroids. The deformation due to tidal

disruption is also inefficient, because tidal disruption of asteroids only occurs when the distance

between planets and asteroids is comparable to the radii of planets albeit there are no large

planets in the main belt.

The shapes of impact outcomes are investigated in several previous researches using the

particle based method (Leinhardt et al. 2000), the SPH method (Jutzi and Asphaug 2015;

Jutzi and Benz 2017; Leleu et al. 2018), and the hybrid method (Schwartz et al. 2018). Here,

we briefly introduce each study.

Leinhardt et al. (2000) conducted the impact simulations between km-sized rubble pile

bodies with impact velocities smaller than 10m/s, which are comparable to the two-body

escape velocity of considered rubble pile bodies. They investigated the dependence of impact

outcomes on the impact velocity, the impact angle, the mass ratio of two impacting bodies,

and even the rotation rate of impacting bodies. They found that the equal-mass impacts can

form elongated or bilobed shapes, while all the shapes formed through unequal-mass impacts

are spherical. However, although they investigated the detailed dependence of the shapes of

impact outcomes on the impact velocity and angle, they only conducted simulations with two

values of the mass ratios (1/1 and 1/8) and they also ignored destructive impacts.

Jutzi and Asphaug (2015), Jutzi and Benz (2017), and Schwartz et al. (2018) focus on

how to form the bilobed shape of Comet 67P/Churyumov-Gerasimenko, which has the size of

1 km. Jutzi and Asphaug (2015) investigated similar-mass and low-velocity (≈ 1m/s) impacts,

and showed that the bilobed shapes are formed through the impacts with moderate initial

angular momentum. However, the impacts with the impact velocity ≈ 1m/s occurs only in the

primordial environment, and it is quite unlikely that such shapes of km-sized bodies survive

until today without experiencing destructive collisions. Jutzi and Benz (2017) showed that the

sub-catastrophic destruction of rotating elongated body with the impact velocity of ≈ 300m/s

forms a bilobed shape through the fission of a rotating elongated body into two remnants and

reaccumulation of the remnants. Schwartz et al. (2018) showed that bilobed shapes are also

formed during the reaccumulation phase after catastrophic destruction through the coalescence
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of two spherical remnants.

Leleu et al. (2018) investigated the production procedure of the peculiar shapes of inner and

small Saturnian moons. Among six inner Saturnian moons, there are three irregularly shaped

moons, that is, Pan and Atlas have the flat shapes and Prometheus has the elongated shapes.

Moons produced from the rings of Saturn have similar masses and small orbital eccentricities

due to the oblateness of Saturn, which leads to similar-mass and low-velocity impacts between

Saturnian moons. They investigated the probability distribution of impact conditions at around

Saturn and the shapes formed through the impacts with probable impact conditions, and they

found that similar-mass and low-velocity impacts around Saturn can explain the current fraction

of the irregular shapes of the small Saturnian moons.

Although there are several previous researches investigating shapes formed through impacts,

almost all of them focus on the shapes of specific objects and do not investigated comprehensive

shapes formed through various impacts. Crucially, none of them investigate shapes quantita-

tively, and then we cannot statistically compare the results of simulations with the shape dis-

tribution of actual asteroids. Thus, in this dissertation, we conduct various impact simulations

and investigate the shapes of impact outcomes quantitatively in terms of the axis ratios.



Chapter 2

Method

In this chapter, we introduce the detailed methods necessary for the numerical simulations

of asteroidal collisions and the formation of resultant shapes, which includes the equations

for elastic dynamics, the descretized equations for the SPH method, the equation of state for

impact simulations, the model for fracture of rock, the model for friction of damaged rock, the

parallelization of simulation code, and the time development procedure. Some parts of this

chapter are based on Sugiura and Inutsuka (2016), Sugiura and Inutsuka (2017), and Sugiura

et al. (2018a).

2.1 Elastic Dynamics

2.1.1 Basic Equations for Elastic Dynamics

Elastic bodies mean bodies that always return to those initial shapes under any deformation

owing to internal stresses. Basic equations include not only the equation of motion or the

equation of continuity but also the equation to calculate the stress tensor from the strain. In

this section, detailed equations utilized in elastic dynamics are introduced. Please note that

the SPH method is a particle method, which basically requires Lagrangian formulation, and

thus we introduce equations in Lagrange-type formulation.

The Hooke’s law describes the relationship between the stress and the strain for elastic bod-

ies with small deformation. According to the Hooke’s law, the stress tensor σαβ is proportional

to the strain, which is the displacement per unit length. σαβ means the force per unit area

acting on a surface of a part of elastic bodies, and β indicates the direction of the force and α

indicates the direction perpendicular to the surface. Here, Greek letters of α or β correspond

to each direction x, y, or z. According to the Hooke’s law, the stress tensor is expressed as

22
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σαβ = 2µ

(
ϵαβ − 1

3
ϵγγδαβ

)
+Kϵγγδαβ, (2.1)

where µ is the shear modulus, K is the bulk modulus, and δαβ is the Kronecker delta. We

assume a summation convention over repeated indices of Greek letters. ϵαβ is strain tensor and

written as,

ϵαβ =
1

2

(
∂ζα

∂xβ
+

∂ζβ

∂xα

)
, (2.2)

where ζα = xα−xα
0 , x is the position vector, and x0 is the position vector when bodies are not

deformed. The first term of Eq. (2.1) shows the deviatoric stress tensor, and we define

Sαβ ≡ 2µ

(
ϵαβ − 1

3
ϵγγδαβ

)
. (2.3)

The second term of Eq. (2.1) shows the isotropic stress, i.e., the pressure, and we define P ≡
−Kϵγγ. For numerical simulations, it is convenient to use the relationship between the pressure,

density, and internal energy, i.e., the equation of state. ϵγγ is related to the change of volume,

and the pressure with small deformations is expressed as

P =
K

ρ0
(ρ− ρ0) = C2

s (ρ− ρ0), (2.4)

where ρ is the density, ρ0 is the density when bodies are not deformed, and Cs =
√

K/ρ0 is

the bulk sound speed. Note that positive pressures represent repulsive forces, while negative

pressures represent tensile forces. Thus the stress tensor is represented as

σαβ = −Pδαβ + Sαβ. (2.5)

However, the strain tensor defined as Eq. (2.2) does not become zero for rigid-body rota-

tions, which leads to nonzero deviatoric stress tensor calculated from Eq. (2.3). Note that no

deformation occurs for rigid-body rotations and the strain tensor should be zero. To avoid this

problem, we solve the time-evolution equation of the deviatoric stress tensor (e.g., Libersky and

Petschek 1991). The equation is achieved by differentiating Eq. (2.3) and represented as

dSαβ

dt
= 2µ

(
ϵ̇αβ − 1

3
δαβ ϵ̇γγ

)
+ SαγRβγ + SβγRαγ, (2.6)
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where d/dt represents Lagrangian time derivative and ϵ̇αβ and Rαγ represent strain rate tensor

and rotation rate tensor, respectively. Strain rate tensor and rotation rate tensor are expressed

as

ϵ̇αβ =
1

2

(∂vα
∂xβ

+
∂vβ

∂xα

)
,

Rαβ =
1

2

(∂vα
∂xβ

− ∂vβ

∂xα

)
, (2.7)

where v is the velocity vector. The first term of Eq. (2.6) is achieved straightforwardly by

differentiating Eq (2.3). Eq (2.3) is written for the coordinate system fixed to bodies, but

we utilize the laboratory coordinate system. Thus we need to consider the difference of two

coordinate systems when bodies rotate. The second term of Eq. (2.6) represents this difference

and is derived from the derivative of the bases.

The acceleration of a part of elastic bodies is determined by the space derivative of the

stress tensor. The equation of motion, which determines the acceleration of elastic bodies, is

expressed as

dvα

dt
=

1

ρ

∂σαβ

∂xβ
. (2.8)

The density change is determined by the divergence of the velocity field. The equation of

continuity, which determines the change rate of the density, is expressed as

dρ

dt
= −ρ

∂vα

∂xα
. (2.9)

We can treat the motion of elastic bodies by solving the equation of state (2.4), the time-

evolution equation of the deviatoric stress tensor (2.6), the equation of motion (2.8), and the

equation of continuity (2.9). However, if we want to solve the temperature change, we need to

additionally solve the equation of energy. The change of the specific internal energy u due to

the work done by internal stresses is basically determined by the product of the stress tensor

and the velocity gradient, i.e., the deformation per unit time, and thus the equation of energy

is expressed as,

du

dt
=

1

ρ
σαβ ∂v

α

∂xβ
. (2.10)
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2.1.2 Basic Concept of SPH Method

The SPH method is originally the numerical method for fluid dynamics using Lagrangian “par-

ticles”. The SPH method is firstly developed by Gingold and Monaghan (1977) and Lucy

(1977) to solve hydrodynamics problems in astrophysics fields. Each SPH particle mimics a

fluid element, and we represent a fluid body as swarm of SPH particles. Recently, the SPH

method is extended to elastic dynamics (e.g., Libersky and Petschek 1991; Gray et al. 2001;

Sugiura and Inutsuka 2017), dynamics of brittle solids (Benz and Asphaug 1994, 1995), and

dynamics of granular material (Jutzi 2015).

Each SPH particle is not a point particle but has a kind of finite radius. In the framework

of the SPH method, the density at the position x is represented as

ρ(x) =
∑
j

mjW (|x− xj|, h), (2.11)

where mj is the mass of the j-th SPH particle, xj is the position of the j-th particle, W (|x−
xj|, h) is a kernel function, and h is a smoothing length. Hereafter, subscripts of Roman

letters mean the particle number. The kernel function W (|x − xj|, h) represents shape of a

kind of distribution of the j-th particle, and the smoothing length determines the width of the

broadening of each SPH particle (h is usually set to be comparable to average particle spacing).

In Eq. (2.11), mjW (|x − xj|, h) represents the density distribution contributed from the j-th

particle, and thus the total density distribution is represented by superposition of the density

distribution contributed from nearby SPH particles. Note that the kernel function has following

properties: (I) The kernel function converges to a Dirac δ function when h → 0; (II) The kernel

function is normalized so that the spatial integration of the kernel function becomes unity; (III)

The kernel function W (r, h)becomes 0 for r → ∞. The kernel function has various forms, and

here we introduce two types of the kernel function; Gaussian and cubic spline kernels. The

Gaussian kernel is expressed as

W (r, h) =
[ 1

h
√
π

]ddim
e−r2/h2

, (2.12)

where ddim is a spatial dimension, and the cubic spline kernel for three dimensional problems

is expressed as
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W (r, h) =
1

πh3


1− 3

2

(
r
h

)2
+ 3

4

(
r
h

)3
0 ≤ r

h
< 1

1
4

(
2− r

h

)3
1 ≤ r

h
< 2

0 2 ≤ r
h

. (2.13)

Smoothing lengths should be comparable to local average particle spacing. Thus if the

particle spacing, or the density, largely varies in space and in time, we need to adjust smoothing

lengths to be local average particle spacing. However, all simulations in this dissertation do

not accompany with large density variation. Thus we use constant smoothing lengths in space

and in time, and we set smoothing lengths to be the initial particle spacing.

A physical quantity fi at the position of the i-th particle xi is approximated by the convo-

lution of f at vicinity points, which is given by

fi =

∫
f(x)W (|x− xi|, h)dx. (2.14)

In the same manner, the convolution of the spatial derivative of the physical quantity is given

by

∂fi
∂xα

i

=

∫
∂f(x)

∂xα
W (|x− xi|, h)dx

=

∫
f(x)

∂

∂xα
i

W (|x− xi|, h)dx. (2.15)

Here, we have integrated by parts and used the relation W (r, h) = W (−r, h). From Eq. (2.11),

we achieve the following identity:

∑
j

mj

ρ(x)
W (|x− xj|, h) = 1. (2.16)

By using the identity Eq (2.16), we further modify Eq. (2.15) as

∂fi
∂xα

i

=
∑
j

∫
mj

f(x)

ρ(x)

∂

∂xα
i

W (|x− xi|, h)W (|x− xj|, h)dx. (2.17)

Basically, the spatial derivatives in Eqs. (2.6), (2.8), (2.9), and (2.10) are evaluated as

Eq. (2.17). However, Eq. (2.17) includes the spatial integral and we cannot directly evaluate

the gradients using Eq. (2.17).
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2.1.3 Equations for Standard SPH Method

In the widely-used SPH method, the approximation of W (|x− xj|, h) ≈ δ(|x− xj|) is utilized
in the evaluation of Eq. (2.17), where δ(|x − xj|) is the Dirac δ function. This approximation

leads to

∂fi
∂xα

i

≈
∑
j

mj
fj
ρj

∂

∂xα
i

W (|xi − xj|, h). (2.18)

Then spatial gradients are straightforwardly evaluated using information of neighbor SPH par-

ticles as Eq. (2.18).

There are several types of the final forms of Eqs. (2.6), (2.8), (2.9), and (2.10) for the

standard SPH method with small differences. Although the final forms are depending on the

detailed procedure how to transform the equations, the final forms of the equations can be

basically derived by replacing the spacial derivatives in Eqs. (2.6), (2.8), (2.9), and (2.10) with

those in Eq. (2.18).

For example, Sugiura et al. (2018a) use the following types of the equation of continuity,

motion, and energy:

dρi
dt

= −
∑
j

mj
ρi
ρj
(vαj − vαi )

∂

∂xα
i

W (|xi − xj|, h), (2.19)

dvαi
dt

=
∑
j

mj

[σαβ
i

ρ2i
+

σαβ
j

ρ2j
− Πijδ

αβ
] ∂

∂xβ
i

W (|xi − xj|, h), (2.20)

dui

dt
= −

∑
j

1

2
mj

[ pi
ρ2i

+
pj
ρ2j

+Πij

]
(vαj − vαi )

∂

∂xα
i

W (|xi − xj|, h)

+
∑
j

1

2
mj

Sαβ
i

ρiρj

[
(vαj − vαi )

∂

∂xβ
i

+ (vβj − vβi )
∂

∂xα
i

]
W (|xi − xj|, h), (2.21)

where Πij is the artificial viscosity term, which is necessary to treat shock waves and stabilize

numerical simulations. There are many forms of the artificial viscosity term, but the most

common form of Πij is as follows (Monaghan 1992):

Πij =

{
−αvisµij(Cs,i+Cs,j)/2+βvisµ

2
ij

(ρi+ρj)/2
(vi − vj) · (xi − xj) < 0

0 (vi − vj) · (xi − xj) > 0
,

µij =
h(vi − vj) · (xi − xj)

(xi − xj)2 + 0.01h2
. (2.22)
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Here, αvis and βvis are the parameters for the artificial viscosity, and throughout this dissertation

we use αvis = 1.0 and βvis = 2.0.

Sugiura et al. (2018a) also use the following form of the time-evolution equation of the

deviatoric stress tensor:

dSαβ
i

dt
= 2µ

(
ϵαβi − 1

3
ϵγγi δαβ

)
+ Sαγ

i Rβγ
i + Sβγ

i Rαγ
i , (2.23)

where

ϵαβi =
1

2

(∂vαi
∂xβ

i

+
∂vβi
∂xα

i

)
, (2.24)

Rαβ
i =

1

2

(∂vαi
∂xβ

i

− ∂vβi
∂xα

i

)
, (2.25)

and the velocity gradients are evaluated as

∂vαi

∂xβ
i

=
∑
j

mj

ρj
(vαj − vαi )L

βγ
i

∂

∂xγ
i

W (|xi − xj|, h),

Li =
(∑

j

mj

ρj

∂

∂xi

W (|xi − xj|, h)⊗ (xj − xi)
)−1

. (2.26)

Here, Li is the correction matrix necessary to describe rigid body rotations correctly (Bonet

and Lok 1999), and ⊗ represents the tensor product. We leave the detailed explanation of the

correction matrix to Section 2.1.7.

The density is calculated using both Eqs. (2.11) and (2.19). However, Eq. (2.11) causes

problems around surfaces of solid bodies. The density around free surfaces calculated through

Eq. (2.11) is smaller than the uncompressed density, and the pressure is negative through the

equation of state. Thus such unphysical pressure around free surfaces deforms solid bodies

(Monaghan 1988). The problem is prevented by setting the initial density of all SPH particles

to undeformed density and calculating the density using Eq. (2.19), which represents the time-

evolution equation for the density.

2.1.4 Equations for Godunov SPH Method and Tensile Instability

Now we have the complete set of the equations for elastic dynamics in the standard SPH

method listed in Section 2.1.3. However, the SPH method has one serious problem especially
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in simulations of pure elastic dynamics; the tensile instability (e.g., Swegle et al. 1995). The

tensile instability is a numerical instability that is prominent in tension-dominated regions, or

negative pressure regions and produces unphysical clustering of SPH particles, which leads to

unphysical fracturing of elastic bodies (see Swegle et al. 1995 and Gray et al. 2001). Thus, we

need to suppress the tensile instability for the correct treatment of pure elastic bodies.

Several methods have been proposed to solve the tensile instability (e.g., Randles and Liber-

sky 1996; Chen et al. 1999; Sigalotti and López 2008). The most common way to remove the

tensile instability is the method utilizing an artificial stress (Monaghan 2000; Gray et al. 2001).

The artificial stress is an additional repulsive force. Perturbations with longer wavelengths are

not affected by the artificial stress, and thus it safely removes the tensile instability, which is

the instability with short wavelength of 2h.

We also develop another way to remove the tensile instability based on the Godunov SPH

(Inutsuka 2002), which utilizes so-called Riemann solver to accurately resolve extremely strong

shock waves. Another prominent feature of the Godunov SPH method is that they evaluate

the convolution Eq. (2.17) more correctly by interpolating the distribution of the density and

other physical quantities. Let us briefly introduce the equations and the properties of the

Godunov SPH method according to Sugiura and Inutsuka (2016, 2017). We only introduce

how to formulate the equation of motion. See Appendix A.1 for the detailed formulations of

the equation of energy and the equation for time development of the deviatoric stress tensor.

We use the Gaussian kernel Eq. (2.12) for the Godunov SPH method. We formulate the

equation of motion for the Godunov SPH method through the convolution of Eq. (2.8), which

is represented as

dvαi
dt

≡
∫

dvα(x)

dt
W (|x− xi|, h)dx =

∫
1

ρ(x)

∂

∂xβ
σαβ(x)W (|x− xi|, h)dx. (2.27)

We further transform Eq. (2.27) using the identity Eq. (2.16) and integration by parts, and then

we achieve

dvαi
dt

=
∑
j

mj

∫
σαβ(x)

ρ2(x)

[ ∂

∂xβ
i

− ∂

∂xβ
j

]
W (|x− xi|, h)W (|x− xj|, h)dx, (2.28)

which is similar to Eq. (2.17). To evaluate the integral in Eq. (2.28), we interpolate the distri-

bution of the density and the stress tensor around the i-th and j-th particles. The interpolated

distributions are constructed from the density, the stress tensor, and the gradients of the den-

sity at the i-th and j-th particles. The gradients are calculated using, for example, Eq. (2.18).
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Then we approximate the distribution of the stress tensor as constant for the direction perpen-

dicular to xi − xj and linear for the direction parallel to xi − xj. Similarly, we approximate

the distribution of ρ−2 as linear for the direction perpendicular to xi −xj and the distribution

of ρ−1 as linear, cubic spline, and quintic spline for the direction parallel to xi − xj. This

approximation leads to

dvαi
dt

=
∑
j

2mjσ
αβ∗
ij V 2

ij

∂

∂xβ
i

W (|xi − xj|,
√
2h), (2.29)

σαβ∗
ij = −P ∗

ijδ
αβ + Sαβ∗

ij , (2.30)

Sαβ∗
ij =

Sαβ
i + Sαβ

j

2
+ s∗ij

Sαβ
i − Sαβ

j

|ri − rj|
. (2.31)

Here, the formulas of V 2
ij and s∗ij depend on the interpolation method of ρ−1 for xi−xj direction,

i.e., linear, cubic spline, and quintic spline interpolation. See Sugiura and Inutsuka (2016) or

Appendix A.1 for the detailed equations of V 2
ij and s∗ij. Moreover, the pressure resulted from

the Riemann solver is used for P ∗
ij. The way to calculate P ∗

ij using the quantities at the i-th and

j-th particles is described in Appendix A.2. Note that P ∗
ij is close to (Pi + Pj)/2 for smooth

pressure distributions.

Sugiura and Inutsuka (2016) investigated the stability of Eq. (2.29) through the linear sta-

bility analysis. As a result, we found that the stability depends on the spatial dimensions, the

sign of pressure, and the interpolation method of ρ−2. See Appendix B for the detailes of the

linear stability analysis. We summarize the stability in Table 2.1. According to the columns

of Table 2.1 for two- and three-dimensions, the equation for the linear interpolation is stable

in positive pressure regions, and that for the cubic spline interpolation is stable in negative

pressure regions. Thus we can conduct numerical simulations of elastic dynamics stably if we

use the linear interpolation in regions with positive pressure and the cubic spline interpolation

in those with negative pressure.

2.1.5 Time Development Method

Now, we have the time development equations for the velocity (2.20) or (2.29), the density

(2.19), the specific internal energy (2.21), and the deviatoric stress tensor (2.23). There are

several time advancing schemes such as Euler, Runge-Kutta, and leapfrog integrator. In this

dissertation, we utilize the leapfrog integrator shown in Sugiura et al. (2018a), which has the

second-order accuracy in time.
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P > 0, ddim = 1 P < 0, ddim = 1 P > 0, ddim = 2 or 3 P < 0, ddim = 2 or 3

Linear ⃝ × ⃝ ×
Cubic ⃝ × × ⃝
Quintic × ⃝ × ⃝

Table 2.1: Dependence of the stability on the spatial dimension, the interpolation methods,
and the sing of pressure. Circles (⃝) show stable interpolations and crosses (×) show unstable
interpolations. ddim shows the number of dimensions and P shows the pressure. This table is
the same as Table 1 of Sugiura and Inutsuka (2016).

The detailed procedures of the leapfrog integrator are as follows: At the n-th step we update

the position of the i-th particle xn
i and other quantities of the i-th particle qni as

xn+1
i = xn

i + vn
i ∆t+

1

2

(dvi

dt

)n
∆t2,

qn+1
i = qni +

1

2

[(dqi
dt

)n
+
(dqi
dt

)n+1]
∆t, (2.32)

where ∆t is the timestep and q = ρ, u,v, Sαβ.

In Eq. (2.32), for example, vn+1
i is determined by (dvi/dt)

n+1. However, to calculate

(dvi/dt)
n+1 with the equation of motion (2.20), we need vn+1

i and we cannot directly de-

rive vn+1
i . Thus we update physical quantities as following procedure: Firstly, we predict the

quantities of the (n+ 1)-th step only using the quantities of the n-th step as

q∗i = qni +
(dqi
dt

)n
∆t. (2.33)

At the same time we update the positions as Eq. (2.32). Then we calculate (dqi/dt)
n+1 using q∗i

and xn+1
i , and we obtain qn+1

i from Eq. (2.32). We can reuse (dqi/dt)
n+1 at the next step, so that

we calculate the derivatives of the variables only once at every step. Moreover, if all variables

vary linearly in time, this procedure does not produce any integration error. Therefore, this

integration scheme has second-order accuracy in time.

According to the Courant condition, the timestep ∆t is given by

∆t = min
i

CCFL
h

Cs,i

, (2.34)

where Cs,i is the local bulk sound speed at the i-th particle. Bulk sound speed for elastic

dynamics is defined as in Eq. (2.4). Even for other equation of state, Cs,i is expressed as
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Cs,i =
√
dPi/dρi and is calculated using ρ, u, and P of the i-th particle. We adopt the value

of CCFL = 0.5.

2.1.6 Test Simulations of SPH Method for Elastic Dynamics

We implemented both the standard SPH method and the Godunov SPH method in our simula-

tion code of elastic dynamics. We validate the Godunov SPH method through test simulations

for elastic bodies as shown in following subsections. These tests are also shown in Sugiura and

Inutsuka (2017). The standard SPH method cannot treat elastic dynamics problems stably

due to the tensile instability, but it only needs a low computational cost. Note that the tensile

instability is insignificant for asteroidal collisions because fractures of rocky material quickly

release negative pressure, and we can still utilize the standard SPH method for such problems.

Elastic Rings Collision

Firstly, let us introduce the test simulation that reproduces the collision of two elastic rings in

a two-dimensional configuration. We use the following unit system: The density is scaled using

undeformed density ρ0, the velocity is scaled using the bulk sound speed Cs, and the length is

scaled using the widths of rings w. Initially two rings are put with the distance between the

centers of two rings of 9w. The rings have the inner radii of 3w and the outer radii of 4w. We

put particles on square lattices within two rings with the smoothing length of h = 0.1w. The

shear modulus is set to µ = 0.22C2
sρ0. The rings are not deformed initially, so that all the

densities are set to undeformed density ρ0, and all the deviatoric stress tensors are set to 0.

These rings collide with the relative velocity of 0.118Cs.

Figure 2.1 shows the behavior of the elastic rings calculated using the Godunov SPH method,

which validates the stability of the Godunov SPH method for the simulation of bounce off of

the two rings. The configurations of the colliding two rings are similar to those of Gray et al.

(2001).

Elastic Plate Oscillation

Secondly, to validate the Godunov SPH method in three-dimensional configurations, we simu-

late the oscillation of elastic plate with fixed end. The similar simulation but in two dimensions

was conducted by Gray et al. (2001). Lifshitz et al. (1986) provide the analytical solution for

extremely-thin-plate oscillations.
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Figure 2.1: Rubber rings collision calculated by the Godunov SPH method. This figure is the
same as Fig. 3 of Sugiura and Inutsuka (2017).

The same unit system as in the previous subsection is used except for the unit of length,

which is scaled by the thickness of the plate H. The plate has the length of L = 11H and the

width of W = 2H. We put particles on square lattices within the plate with h = 0.1w. µ is set

to 0.5C2
sρ0. The positions of particles that exist within 1H from left end of the plate are fixed

to represent fixed end of the plate. As in the previous subsection, we set initial densities to ρ0

and initial deviatoric stress tensors to 0.

y component of the velocity vy at the initial condition is given as

vy
Cs

= Vf
[M(cos(kx)− cosh(kx))−N(sin(kx)− sinh(kx))]

Q
, (2.35)

where x is the x position, Vf is the velocity normalized by the bulk sound speed at the free

edge of the plate,

M = sin(kL) + sinh(kL),

N = cos(kL) + cosh(kL),

Q = 2(cos(kL) sinh(kL)− sin(kL) cosh(kL)), (2.36)

and k is a kind of the wave number, which is given by the solution of
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cos(kL) cosh(kL) = −1, (2.37)

kL = 1.875 for a fundamental mode. In this simulation, we set Vf = 0.05.

Figure 2.2: Oscillation of plate calculated by the Godunov SPH method. This figure is taken
from Fig. 5 of Sugiura and Inutsuka (2017).

Figure 2.2 shows the result of the simulation using the Godunov SPH method, which shows

that our method calculates the oscillation stably.

According to Lifshitz et al. (1986), the angular frequency (=2π/oscillation period) of an

extremely thin plate is written as

ω2 =
EH2k4

12ρ(1− ν2)
, (2.38)

where E represents the Young’s modulus and ν represents the Poisson’s ratio, which are ex-

pressed using the bulk modulus K and the shear modulus µ as

E =
9Kµ

3K + µ
,

ν =
3K − 2µ

2(3K + µ)
. (2.39)

The angular frequency using the parameters utilized in our simulation then becomes ω =

0.01201Cs/H, which leads to the analytical period of the oscillation of the extremely thin plate
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Ttheo =
2π

ω
= 523.2H/Cs. (2.40)

Our simulation gives the period of Tsim ≈ 665H/Cs. The difference between the analytical and

simulated periods is expected to decrease with decreasing the ratio of the width to length of

the plate W/L. We also conduct the same simulations but with L = 15H and L = 20H. The

oscillation periods with L = 15H and L = 20H are 1406H/Cs and 2353H/Cs, respectively. The

errors between simulated and theoretical results (=(Ttheo − Tsim)/Ttheo) is 27.3% for L = 10H,

19.5% for L = 15H, and 12.5% for L = 20H, respectively: The errors significantly decrease

with decreasing W/L.

2.1.7 Correction Matrix and Rigid Body Rotation

In this section, we will explain why we need the correction matrix Li in the calculation of the

velocity gradient Eq. (2.26).

The velocity gradient is also calculated without the correction matrix as follows (Libersky

and Petschek 1991):

∂vαi

∂xβ
i

=
∑
j

mj

ρj
(vαj − vαi )

∂

∂xβ
i

W (|xi − xj|, h). (2.41)

However, this equation leads to the erroneous velocity gradient around surfaces of bodies. To

show this, we consider a body doing a rigid body rotation with an angular velocity vector

ω = (ωx, ωy, ωz) and the center of the rotation at the origin of a coordinate. The velocity at

the position x is expressed as

v = ω × x. (2.42)

Here, we define the velocity gradient matrix W so that αβ component of W has ∂vα/∂xβ. For

the rigid body rotation, W is expressed as

W =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.43)

We also notice the following relationship:

v = Wx. (2.44)
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The velocity gradient evaluated by SPH approximation Eq. (2.41) becomes

WSPH =
∑
j

mj

ρj
(Wxj −Wxi)⊗

∂

∂xi

W (|xi − xj|, h)

= W
(∑

j

mj

ρj
(xj − xi)⊗

∂

∂xi

W (|xi − xj|, h)
)
, (2.45)

where ∂/∂xi = (∂/∂xi, ∂/∂yi, ∂/∂zi). The velocity gradient obtained from SPH approximation

WSPH matches the correct velocity gradient W only when

∑
j

mj

ρj
(xj − xi)⊗

∂

∂xi

W (|xi − xj|, h) = I, (2.46)

where I is an identity matrix. However, Eq. (2.46) is not satisfied around surfaces of bodies,

which leads to the incorrect treatment of rigid body rotations.

To solve this problem, Bonet and Lok (1999) introduced the correction matrix Li and they

replaced (∂/∂xi)W (|xi − xj|, h) with Li(∂/∂xi)W (|xi − xj|, h). This replacement modifies

Eq. (2.46) as

∑
j

mj

ρj
(xj − xi)⊗ Li

∂

∂xi

W (|xi − xj|, h)

=
(∑

j

mj

ρj
(xj − xi)⊗

∂

∂xi

W (|xi − xj|, h)
)
LT

i = I. (2.47)

To satisfy Eq. (2.47), Li should be determined as in Eq. (2.26). Introduction of Li leads to the

equation of the velocity gradient Eq. (2.26) and we can correctly describe rigid body rotations.

To show the validity of the correction matrix, we conduct a simple test simulation of the

rotation of an elastic sphere. We utilize the standard SPH method, and model the elastic

sphere using about 500 SPH particles. Here, we use the following unit system: The density

is scaled using undeformed density ρ0, the velocity is scaled using the bulk sound speed Cs,

and the length is scaled using the radius of the sphere Rs. The shear modulus is set to

µ = 1.0C2
sρ0. We initially put a rigid body rotation around z-axis with an angular frequency of

ωz = (2π/100)(Cs/Rs) to the sphere, and calculate the motion of the sphere until one rotation.

Figure 2.3 shows the results of the simulations with and without the correction matrix. As

we notice from Fig. 2.3, in the simulation without the correction matrix, the rotation speed

decreases with time and the sphere finally does a counter rotation. This nonconservation of the
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Figure 2.3: Time evolution of the angular frequency of the rotating elastic sphere calculated
using the standard SPH method. The horizontal axis represents the elapsed time normalized by
the initial rotation period, and the vertical axis represents the angular frequency of the sphere.
The red solid curve shows the simulation with the correction matrix (Eq. (2.26)), and the blue
dashed curve shows the simulation without the correction matrix (Eq. (2.41)).

rotation speed or angular momentum is caused by unphysical torque due to the error of the

velocity gradient. In contrast, in the simulation with the correction matrix, the rotation speed

of the sphere is well conserved at least until one rotation. Thus the correction matrix is valid

for rigid body rotation problems.

2.2 Tillotson Equation of State

For elastic dynamics, we use the simple equation of state Eq. (2.4) where the pressure is pro-

portional to the density. However, Eq. (2.4) cannot treat the states caused by hypervelocity

impacts such as melting, vaporization, and extreme pressure produced by shock waves.

The tillotson equation of state is one of the most frequently used equation of states for

numerical simulations of celestial body impacts (e.g., Genda et al. 2012; Jutzi and Asphaug

2015; Leleu et al. 2018). Tillotson (1962) developed the tillotson equation of state for metallic

materials through laboratory experiments of impacts. For low-energy and low-deformation

states, the tillotson equation of state converges to elastic equation of state Eq. (2.4), and for

high-energy states, i.e., vaporized states, this converges to the ideal-gas equation of state.

Thus the tillotson equation of state can treat both low-energy elastic solids and high-energy
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vaporized gas. The tillotson equation of state has ten material dependent parameters. Later,

these material dependent parameters for basalt and ice are derived (O’Keefe and Ahrens 1982a;

O’Keefe and Ahrens 1982b; Lange and Ahrens 1983; Nakamura and Fujiwara 1991; Benz and

Asphaug 1999).

The tillotson equation of state has three different forms depending on the values of the

density and the specific internal energy. For ρ > ρ0 or u < uiv, where ρ0 is the uncompressed

density and uiv is the specific internal energy for incipient vaporization, the equation is

P = Ps(ρ, u) =

[
atil +

btil
(u/(u0,tilη2) + 1)

]
ρu+ Atilµ+Btilµ

2, (2.48)

where η = ρ/ρ0 and µ = η−1. Eq. (2.48) is for compressed or cold expanded states. For ρ < ρ0

and u > ucv, where ucv is the specific internal energy for complete vaporization, the equation is

P = Pg(ρ, u) = atilρu+

[
btilρu

(u/(u0,tilη2) + 1)
+ Atilµe

−βtil(ρ0/ρ−1)

]
e−αtil(ρ0/ρ−1)2 . (2.49)

Eq. (2.49) is for expanded and completely vaporized states. Finally, for ρ < ρ0 and uiv < u <

ucv, the equation is

P =
(u− uiv)Pg(ρ, ucv) + (ucv − u)Ps(ρ, uiv)

ucv − uiv

. (2.50)

Eq. (2.50) is for expanded and partially vaporized states. Here, ρ0, uiv, ucv, u0,til, Atil, Btil, atil,

btil, αtil, and βtil are the material dependent tillotson parameters.

Eq. (2.48) converges to elastic equation of state Eq. (2.4) if u → 0 and ρ ≈ ρ0. We also notice

that Atil is corresponding to the bulk modulus for low-temperature and nearly-uncompressed

states, and thus the bulk sound speed of the tillotson equation of state for such state is calculated

as

Cs,til =

√
Atil

ρ0
. (2.51)

Eq. (2.49) converges to the ideal gas equation of state if u → ∞, and αtil and βtil control the

speed of the convergence to the ideal gas equation of state.
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2.3 Self Gravity

2.3.1 Self Gravity for SPH Method

The SPH method uses particles that mimic small fractions of fluid or elastic bodies, and each

SPH particle has its own mass. Thus, as in the case of N -body orbital simulations, the self-

gravity between the i-th and j-th SPH particles is directly calculated as

gij,simple = −Gmj
xi − xj

|xi − xj|3
, (2.52)

where G is the gravitational constant.

However, Eq. (2.52) is not correct especially for close pairs of particles, because Eq. (2.52) is

derived using the assumption that all particles are point masses. As we introduced in Section

2.1.2, SPH particles are not point masses but have a kind of radii. We cannot ignore the

broadening of SPH particles especially for the calculation of the self gravity between close pairs

of particles. Crucially, Eq. (2.52) diverges if two particles are completely overlapped, but this

does not occur if we correctly treat the broadening of SPH particles.

Here, for the calculation of the self gravity between a pair of SPH particles, we only consider

the broadening of one particle of the pair. This seems to break the action-reaction principle,

which leads to nonconservation of the momentum, but our simulations do not have such problem

since we use the same broadening radius, or the smoothing length, for all SPH particles. Then

Eq. (2.52) is modified as

gij = −Gm̂j
xi − xj

|xi − xj|3
,

m̂j =

∫ |xi−xj |

0

4πr2mjW (r, h)dr. (2.53)

Eq. (2.53) converges to zero if |xi − xj| → 0.

The detailed expression of m̂j in the case of the Gaussian kernel is

m̂j

mj

=
[
erf
( |xi − xj|

h

)
− 2|xi − xj|

h
√
π

exp
(
−|xi − xj|2

h2

)]
, (2.54)

where erf is the error function, while that in the case of the cubic spline kernel is
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m̂j

mj

=


4
3
(∆ij)

3 − 6
5
(∆ij)

4 + 1
2
(∆ij)

5 0 ≤ ∆ij < 1

8
3
(∆ij)

3 − 3(∆ij)
4 + 6

5
(∆ij)

5 − 1
6
(∆ij)

6 − 1
15

1 ≤ ∆ij < 2

1 2 ≤ ∆ij

, (2.55)

where ∆ij = |xi − xj|.
If we want to calculate the self gravity, the equation of motion Eq. (2.20) is modified as

dvαi
dt

=
∑
j

mj

[σαβ
i

ρ2i
+

σαβ
j

ρ2j
− Πijδ

αβ
] ∂

∂xβ
i

W (|xi − xj|, h) +
∑
j

gαij. (2.56)

2.3.2 Acceleration Scheme of Computation of Self Gravity

If we directly compute the self gravity between all pairs of SPH particles, the computational cost

increases with O(N2), where N is the total number of SPH particles. Thus the computational

cost is proportional to N2, which means that the direct computation of the self gravity is

difficult especially for large number of particles (typically more than 100,000).

Barnes and Hut (1986) developed a novel technique that utilizes a tree structured subdivision

of space, which enables us to reduce the computational cost to O(N logN). In this technique,

firstly we divide whole space that includes all SPH particles (root cell) into eight subcells, and

then we recursively divide each subcell into eight subcells whenever more than several particles

occupy the same cell. Then we calculate the total mass and the center of mass of SPH particles

that are included in each subcell. Finally we calculate the self gravity on an SPH particle from

all other particles as the following recursive procedure:

• We assess whether a subcell is sufficiently faraway from the particle or not with inequality

l/d < θ, where l is the side length of this subcell, d is the distance from the particle to

the center of mass of this subcell, and θ determines the accuracy and has 0.3− 1.0 (A).

- If yes, we calculate the self gravity on the particle from the center of mass of this subcell

as the representative gravity from all particles in this subcell.

- If no, we do the same assessment (A) for direct subcells of this subcell.

The assessment (A) is firstly done for the root cell. If leaf cells do not satisfy the condition

l/d < θ, then we directly calculate the gravity from the particles in leaf cells. Following this

procedure, we can reduce the computational cost to O(N logN).
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2.4 Fracture Model

In Section 2.1, we introduced how to simulate the dynamics of elastic bodies. Asteroids are

certainly elastic bodies if deformation is small. However, asteroids are rocky material, which

is fractured under large deformation. Thus we need an appropriate model for the fracture to

describe collisional destruction. In this section, we will explain the fracture model for the SPH

method introduced by Benz and Asphaug (1995), who follow the fracture model of brittle solids

developed by Grady and Kipp (1980).

2.4.1 Concept of Fracture Model

Rock is fractured under large tensile forces. Rocks do not have uniform strength, but there are

some weak parts and also some strong parts. Fractures are typically generated at weak parts

and extended to other parts.

Benz and Asphaug (1995) assume the existence of explicit incipient flaws in rocky material.

The probability distribution of the strength of incipient flaws is expressed as Weibull distribu-

tion (Weibull 1939). The probable number of flaws per unit volume that have the failure strain

smaller than ϵ is expressed as a power law form

n(ϵ) = kwϵ
mw , (2.57)

where kw and mw are the Weibull parameters, which can be determined from laboratory exper-

iments. The parameter kw determines the number of flaws per unit volume and widely varies

between various rock types. The parameter mw determines the dispersion of strengths; small

mw means rocks with widely varying strengths, while large mw means homogeneous rocks. mw

typically has the value from 6 to 12. Note that the Weibull distribution itself does not have

the information about the position or direction of flaws. Using Eq. (2.57), we can also derive a

flaw’s activation threshold of strain ϵ for a flaw.

Here, we consider a part of a rock. When local tensile strain has exceeded a threshold of

strain for a flaw, a crack is generated and allowed to grow. According to Lawn (1993), the

speed of crack extension is a constant Cg, which is about 0.4 times the speed of a longitudinal

sound wave. Thus the length of the growing crack lc is expressed as

lc = Cg(t− t0), (2.58)
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where t0 is the time of crack generation. Grady and Kipp (1980) introduced a damage parameter

D that has the range of 0 − 1. D = 0 represents an intact rock, while D = 1 represents a

completely damaged rock that does not feel any tensile stress. A rock with D = 0.5 feels only

half of the original tensile stress calculated from elastic dynamics equations. Benz and Asphaug

(1995) defined D as the local fraction of volume that has relieved stress by cracks. According

to Walsh (1965), the volume that has relieved stress by a crack approximately equals to the

volume of the sphere with the radius of the crack length. Thus D is expressed as

D =
(4/3)πl3c

Vs

, (2.59)

where Vs = (4/3)πR3
s is the volume of the part of a rock that we consider now. Using Eqs. (2.58)

and (2.59), we can derive the differential equation for D as

dD1/3

dt
=

Cg

Rs

. (2.60)

Tensile force, that is, negative pressure is relieved by fractures. According to the definition

of D, the pressure is modified as

PD =

{
(1−D)P P < 0
P P > 0

. (2.61)

PD is used in the equation of motion and so on as the pressure. Shear force, that is, the

deviatoric stress is also affected by fractures. However, the deviatoric stress in a part with

D = 1 is mainly determined by the friction between completely destructed rock. Thus we leave

the explanation of the treatment of the deviatoric stress for damaged rock to Section 2.5.

2.4.2 SPH Implementation of Fracture Model

According to Benz and Asphaug (1995), we explicitly assign threshold strains for crack acti-

vation to each SPH particle when we prepare initial conditions. We consider an asteroid with

total volume of V . The weakest flaw has the threshold strain of

ϵact1 =
[ 1

kwV

]1/mw

. (2.62)

In the same manner, the p-th weakest flaw has the threshold strain of

ϵactp =
[ p

kwV

]1/mw

. (2.63)
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We randomly choose an SPH particle and assign a threshold ϵactp with p = 1 to this particle,

and next we choose another SPH particle randomly and assign a threshold ϵactp with p = 2, and

next we choose another one and assign that with p = 3 · · · . We continue this procedure until

all SPH particles have at least one activation threshold. Each SPH particle has, on average,

lnN flaws, where N is the number of SPH particles. Hereafter, we represent the threshold

strain for the p-th weakest flaw assigned to the i-th SPH particle as ϵacti,p .

According to Melosh et al. (1992) or Benz and Asphaug (1995), the local strain at the i-th

SPH particle is calculated from the damage-relieved stress tensor σαβ
D,i = −PD,iδ

αβ+Sαβ
D,i, where

Sαβ
D,i is the damage-relieved deviatoric stress tensor and will be introduced in Section 2.5. We

firstly calculate the three principal stresses σ1
D,i, σ

2
D,i, and σ3

D,i, which are the eigenvalues of the

damage-relieved stress tensor. Then we find the maximum principal stress σm
D,i, which is the

maximum tensile stress among the three principal stresses. The local strain at the i-th SPH

particle ϵi is calculate as

ϵi =
σm
D,i

(1−Di)E
, (2.64)

where E = 9Kµ/(3K + µ) is the Young’s modulus.

If at least one of the flaws inside of the i-th particle is activated, i.e, at least one of ϵacti,p is

smaller than ϵi, the damage parameter Di increases according to

dD
1/3
i

dt
=

Cg

Rs

. (2.65)

Here, Rs = 4h for the Gaussian kernel and Rs = 2h for the cubic spline kernel. However, Di is

only allowed to accumulate to a maximum value given by

Dmax
i =

( ni

ntot
i

)1/3
, (2.66)

where ntot
i is the total number of flaws inside of the i-th particle, and ni is the number of

activated flaws inside of the i-th particle. If multiple flaws are activated, the damage parameter

will increase faster, and thus we multiply ni to the right hand side of Eq. (2.65). According to

Eq. (2.61), the pressure of the i-th particle is modified as

PD,i =

{
(1−Di)Pi Pi < 0
Pi Pi > 0

. (2.67)
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2.5 Pressure Dependent Failure Model and Friction Model

Benz and Asphaug (1995) set Sαβ
D,i = (1−D)Sαβ

i for damaged SPH particles. This means that

completely damaged SPH particles with D = 1 behave like fluid that does not feel any tensile

and shear stresses. However, completely damaged rocks, or granular material, have the friction

between granular particles. The frictional forces are shear forces and play the crucial role for

the shape formation of rubble pile bodies. Jutzi (2015) introduced the friction model to the

SPH method, and he also introduced the pressure dependent failure model for intact rocks. In

this section, we will introduce these models. We also show the results of the test simulations

using our SPH code with the friction model, since the friction is the most important effect for

the formation of the shapes of rubble pile bodies.

2.5.1 Description of Models

Actual metals are not perfect elastic bodies but plastic deformation occurs under large defor-

mation. It is called as yielding, and the criterion of yielding for metallic material is described

by the pressure independent von Mises yield criterion. However, yielding criterion of rocky

material is pressure dependent, and the shear strength of intact rocks increases with increasing

confining pressure. According to Collins et al. (2004) or Jutzi (2015), the pressure dependent

yielding strength for the intact rock at the i-th SPH particle Yi is expressed as

Yi = YI,i =
(
Y0 +

µIPpos,i

1 + µIPpos,i/(YM − Y0)

)(
1− u

′
i

umelt

)
,

Ppos,i = max[Pi, 0],

u
′

i = min[ui, umelt], (2.68)

where Y0 and YM are the yielding strength at zero pressure and infinite pressure, respectively,

µI is the coefficient of internal friction, and umelt is the specific internal energy for melting.

For completely damaged rocks, the yielding strength is determined by the friction. As we

know, the friction is proportional to confined pressure. Thus the yielding strength for the

completely damaged rock at the i-th SPH particle is expressed as

Yi = YD,i = µdPi,pos, (2.69)
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where µd is the friction coefficient, which is the most important parameter for our study. The

angle of friction is defined as ϕd = arctan(µd) and generally the same as the angle of repose.

Note that µd here merely determines the ratio of frictional stress to confined pressure.

For partially damaged rocks, we use the following yielding strength that allows a smooth

transition between Eqs. (2.68) and (2.69) according to Jutzi (2015):

Yi = (Di − 1)YI,i +DiYD,i. (2.70)

Here, we use the following limitations YD,i ≤ YI,i and Yi ≤ YI,i.

To implement the yielding, we usually utilize the second invariant of the deviatoric stress

tensor J2,i, which is computed as

J2,i =
1

2
Sαβ
i Sαβ

i . (2.71)√
J2,i is a kind of the magnitude of the deviatoric stress tensor Sαβ

i , and Sαβ
i /
√

J2,i represents a

kind of the unit vector of this deviatoric stress tensor. Thus YiS
αβ
i /
√
J2,i has the magnitude of

Yi and the direction of Sαβ
i ; YiS

αβ
i /
√
J2,i represents the shear stress under the yielding. If the

magnitude
√

J2,i is larger than Yi, the yielding occurs and the deviatoric stress tensor should

be modified to YiS
αβ
i /
√

J2,i. Thus we modify the deviatoric stress tensor as

Sαβ
D,i = fSαβ

i , (2.72)

f = min
[ Yi√

J2,i
, 1
]
.

In each time step, we also modify Sαβ
i as Sαβ

i = Sαβ
D,i.

2.5.2 Test Simulations for Friction Model

To confirm the validity of the friction model implemented in our simulation code, we conduct

the test simulations that reproduce cliff collapse experiments following the test simulations in

Jutzi (2015). Lajeunesse et al. (2005) conducted the laboratory experiments of the cliff collapse

of glass beads in a two-dimensional configuration. They conducted the experiments with grass

beads with diameters of 1.15mm and 3mm, various initial height of cliff H0, and various initial

ratios of length of cliff L0 to height of cliff H0. As a result, they found that final configurations

are only depending on the friction angle of granular material and the initial aspect ratio L0/H0.
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They also found that the profiles of cliffs at different times and different experiments are barely

distinguishable when the profiles are scaled by L0 and the times are scaled by the characteristic

time τ =
√

H0/g, where g is the gravitational acceleration on surfaces of the Earth.

For the simulation of the cliff collapse, we use the standard SPH method and the cubic

spline kernel. The damage parameters of all SPH particles are initially set to unity, and

thus SPH particles mimic granular material. The friction coefficient is set to µd = tan(20.9◦)

according to Jutzi (2015). We use the simple equation of state Eq. (2.4) with Cs = 500m/s

and ρ0 = 1500 kg/m3, which are the typical values for granular material. We do not calculate

the self gravity, but add the downward gravitational acceleration g to the equation of motion

of SPH particles. To mimic the wall and floor in the experiments, we put several layers of SPH

particles with fixed positions on just outside of the simulation space. We set L0 = 1, 000m to

avoid too small time steps (see Eq. (2.34)). Although the length of cliff is much larger than the

experimental scale, this is not the problem because results can be scaled by L0 and τ .

(a) (b)

Figure 2.4: The profiles of collapsing cliff with H0/L0 = 3.2 at (a) t = τ and (b) t = ∞. The
red solid curves show the results of our simulations, the blue dashed curves show the results of
the simulations of Jutzi (2015), and the cyan shaded regions show the results obtained from the
experiments of Lajeunesse et al. (2005). The results of the experiments are shown in shaded
regions because we describe the profiles obtained from several experiments with the same L0/H0

and the friction angle together, which have small scatters.

Figure 2.4 shows the comparison between our simulations, the simulations of Jutzi (2015),

and the experiments of Lajeunesse et al. (2005), and we notice that these results agree well with

each other. Therefore, our simulation code can well reproduce behaviors of granular bodies.
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2.6 Parallelization of Simulation Code Using FDPS

In this dissertation, we reproduce the three-dimensional shapes of asteroids through numerical

simulations using the SPH method. Three-dimensional simulations require larger number of

SPH particles compared to one- or two-dimensional simulations. Especially, to investigate

the shapes of smaller remnants produced through disruptive impacts, we need much larger

number of SPH particles of about several millions. We cannot complete such high-resolution

simulations with a normal laptop PC within acceptable computational time, and we need to

utilize supercomputers. This means that we have to parallelize our simulation code to utilize

many CPU cores.

Usual supercomputers are composed of PC clusters with distributed memories. Thus for

efficient parallelization, we have to consider the amount of sending/receiving data and load

balancing between CPU cores. If the amount of sending/receiving data is too large or workload

balance is not good, the parallelization efficiency becomes significantly low, which means that it

is meaningless to utilize many CPU cores. However, in general, it is very difficult to parallelize

particle-based simulation codes so that they achieve high parallelization efficiency, because

particles move from one CPU domain to the other. Thus we need to reassign SPH particles

to other CPU cores so as to keep good workload balance. Moreover, the simulation codes that

calculate the self gravity using the tree method (see Section 2.3.2) are so complex that usual

researchers cannot parallelize such codes with acceptable efforts.

To support the parallelization of codes based on particle methods, the particle simulator

research team, AICS, RIKEN developed Framework for Developing Particle Simulator (FDPS:

Iwasawa et al. 2015, 2016). FDPS is a framework to support developing efficiently-parallelized

simulation codes that are based on particle methods. FDPS provides functions for exchanging

information of particles between CPUs and those for load balancing. FDPS also provides

a function to calculate the self gravity using the tree method shown in Section 2.3.2. We

parallelize our simulation code using FDPS. Therefore, thanks to FDPS, we effectively use

parallel computers for our simulations.

We checked the parallelization efficiency of our simulation code. We calculated the paral-

lelization efficiency through the strong scaling, i.e., we measured the elapsed times needed to

simulate the problem with fixed number of SPH particles but with various number of CPU

cores. We used the standard SPH method with the cubic spline kernel. We used about 108

SPH particles and solved an elastic problem for 10 time steps. We utilized XC30 system of
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Center for Computational Astrophysics, National Astronomical Observatory of Japan.
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Figure 2.5: Parallelization efficiency of our simulation code. The red solid line shows elapsed
times and the blue dashed line shows parallelization efficiency defined as Eq. (2.73). The hor-
izontal axis represents the number of utilized CPU cores, the left vertical axis represents the
elapsed time, and the right vertical axis represents the parallelization efficiency.

We vary utilized CPU cores from 192 to 2,064. The parallelization efficiency is calculated

based on the elapsed time when we use 192 cores as

efficiency = 192T (192)/(nT (n)), (2.73)

where n is the number of utilized CPU cores and T (n) shows the elapsed time to simulate

the elastic problem when we use n CPU cores. From Fig. 2.5, we notice that the elapsed time

decreases linearly with increasing the number of utilized CPU cores. We also notice that the

parallelization efficiency when we use 2,064 CPU cores is about 0.8, which is the quite high

efficiency. This means that the elapsed time with 2064 CPU cores is about nine times shorter

than that with 192 CPU cores. Thus, our simulation code is well efficiently parallelized thanks

to FDPS.

2.7 Summary of Utilized Methods and Parameters

As we explain in Section 2.1.6, the tensile instability is insignificant for simulations of asteroidal

impacts. Thus hereafter, we utilize the standard SPH method that needs low computational
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costs to conduct detailed parameter surveys or high-resolution simulations. We also utilize the

following methods or models: the leap-frog integrator (Section 2.1.5), the correction matrix for

rigid body rotations (Section 2.1.7), the tillotson equation of state (Section 2.2), the self gravity

(Section 2.3), the fracture model (Section 2.4), the pressure dependent failure model (Section

2.5), and the friction model (Section 2.5).

µ(Pa) K(Pa)

2.27× 1010 2.67× 1010

Table 2.2: Parameters for elastic dynamics. µ shows the shear modulus and K shows the bulk
modulus.

ρ0(kg/m
3) uiv(J/kg) ucv(J/kg) u0,til(J/kg) Atil(Pa) Btil(Pa) atil btil αtil βtil

2.7× 103 4.72× 106 1.82× 107 4.87× 108 2.67× 1010 2.67× 1010 0.5 1.5 5.0 5.0

Table 2.3: Tillotson parameters for basalt. These values are listed in Benz and Asphaug (1999).

kw(m
−3) mw

4.0× 1035 9.0

Table 2.4: Parameters for the fracture model, or Weibull parameters. These values are listed
in Benz and Asphaug (1999).

Y0(Pa) YM(Pa) µI umelt(J/kg)

1.0× 108 3.5× 109 1.5 3.4× 106

Table 2.5: Parameters for the pressure dependent failure model. The values for Y0, YM , and µI

are taken from Jutzi (2015). The value for umelt is listed in Benz and Asphaug (1999).

Throughout this dissertation, we assume the material of asteroids as basalt. There are many

material dependent parameters required for the simulations of asteroidal collisions such as the

shear modulus or tillotson parameters. Here, we summarize the parameters utilized for the

simulations in following sections. These parameters are summarized in Table 2.2 - 2.5. Note

that we vary the friction angle in Chapter 5 and we do not list the value of the friction angle

here.



Chapter 3

Results: Shapes of Impact Outcomes

In this chapter, we introduce the results of our simulations that investigate the shapes of

asteroids formed through various impacts. DAMIT database provides almost all of the shapes

of the asteroids with the diameters larger than 100 km. Thus, throughout this chapter, the

radius of target asteroids is fixed to 50 km to allow us to directly compare the results of our

simulations with the shapes of actual asteroids. We vary the impact angle, the impact velocity,

and the ratio of the mass of impactor asteroids to that of target asteroids, and we conduct

various impact simulations. Some parts of this chapter are based on Sugiura et al. (2018a).

3.1 Initial Conditions of Impacts

For simplicity, we use a sphere of basalt with zero rotation as an initial asteroid. The radius

of target asteroids is set to Rt = 50 km, and thus the mass of target asteroids is Mtarget =

4πρ0R
3
t /3, where ρ0 is the uncompressed density of basalt, which is the same as ρ0 of the

tillotson parameter.

For a basaltic asteroid with the radius of 50 km or smaller, the density at the center in hy-

drostatic equilibrium is almost the same as uncompressed density. Thus we set initial asteroids

to be uniform spheres with the mean density of basalt. To do so, an isotropic SPH particle

distribution is more preferable than, for example, particles placed on cubic lattices, so that we

prepare a particle distribution with uniform disposition from a random distribution. Detailed

procedures to produce the uniform and isotropic particle distribution are as follows: Firstly we

put SPH particles within a cubic domain with periodic boundary conditions randomly so that

desired resolution and desired mean density are achieved. Secondly we let the particles move

under the forces anti-parallel to density gradients that make the particle distribution uniform

until the standard deviation of density becomes less than 0.1% of the mean density. Finally,

50



CHAPTER 3. RESULTS: SHAPES OF IMPACT OUTCOMES 51

we remove particles outside a shell with the desired radius, and then a uniform and isotropic

sphere is obtained.

Figure 3.1: Impact geometry, coordinate system, and the definition of the impact velocity vimp

and angle θimp.

We define the impact velocity vimp as the relative velocity between two asteroids at the

time of impact, and the impact angle θimp as the angle between the line joining centers of two

asteroids and the relative velocity vector at the time of impact. Thus the impact angle of 0◦

means a head-on collision, and that of 90◦ means a grazing collision. We also define the mass

ratio q = Mi/Mtarget, where Mi = (4/3)πR3
i ρ0 is the mass of impactor asteroids and Ri is the

radius of impactor asteroids. Fig. 3.1 schematically shows the definition of the impact velocity

and angle. At the beginning of simulations, centers of two asteroids are apart at a distance of

2(Rt +Ri).

We assume the friction coefficient for completely damaged material of µd = tan(40◦) =

0.839, which corresponds to a material with the angle of friction of ϕd = 40◦. Note that the

angle of friction of lunar sand is estimated to be 30◦ − 50◦ (e.g., Heiken et al. 1991), which

is consistent with the angle of friction estimated from surface slopes of the asteroid Itokawa

(Fujiwara et al. 2006).
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3.2 Analysis of Results

We conduct simulations of impacts and subsequent gravitational reaccumulation over a period

of 1.0 × 105 s. The typical timescale of reaccumulation is estimated as tacc = 2Rt/vesc,t, where

vesc,t is the escape velocity from target asteroids. The value of tacc is calculated as

tacc =
2Rt

vesc
=

√
3

2πGρ0
≃ 1600 s. (3.1)

Thus 1.0 × 105 s is about 100 times longer than the typical timescale of reaccumulation, and

we also confirmed that gravitational reaccumulation is sufficiently finished after 1.0× 105 s.

After collisional simulations, we identify remnants using a friends-of-friends algorithm (e.g.,

Huchra and Geller 1982). We find swarms of SPH particles with spacing less than 1.5h and

swarms are identified with remnants. Then we evaluate the shapes of remnants. To do so,

we quantitatively measure the axis lengths of remnants using the inertia moment tensor. We

approximate a remnant as an ellipsoid that has the same inertia moment tensor and mass, and

then we identify the axis lengths of the ellipsoid with those of the remnant. The inertia moment

tensor of a remnant composed of k SPH particles is calculated as

Iαβ =
∑
k

mk

[
(xγ

k − xγ
CoM)(x

γ
k − xγ

CoM)δ
αβ − (xα

k − xα
CoM)(x

β
k − xβ

CoM)
]
, (3.2)

where xCoM is the position vector at the center of mass of the remnant. Then, three principal

moments of inertia I1, I2, and I3 are obtained from Iαβ. Here, I1 > I2 > I3. For a uniform

ellipsoid with the length of major axis a, intermediate axis b, and minor axis c, the three

principal moments of inertia are represented as

I1 =
1

20
(a2 + b2)M,

I2 =
1

20
(a2 + c2)M,

I3 =
1

20
(b2 + c2)M, (3.3)

where M is the mass of this ellipsoid. Eq. (3.3) is rewritten as
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a =

√
10(I1 + I2 − I3)

M
,

b =

√
10(I1 − I2 + I3)

M
,

c =

√
10(−I1 + I2 + I3)

M
. (3.4)

Therefore, we obtain I1, I2, I3, and M of remnants through simulations, and then derive those

a, b, and c from Eq. (3.4).

It should be noted that the bodies resulting from simulations are not perfect ellipsoids. The

obtained axis ratios are thus different from those measured in, e.g., the bottom-up method

that is usually used in laboratory experiments (e.g., Fujiwara et al. 1978). In this method,

the axis lengths of a remnant are defined as distances between a pair of parallel plates that

contact with the remnant. The detailed procedure to measure the axis lengths in the bottom-up

method is as follows: Firstly, we identify the minor axis length c with the minimum distance

among distances between parallel plates, and define the direction normal to the plates when

the distance is minimum as the minor axis. Secondly, we identify the intermediate axis length

b with the minimum distance among distances between parallel plates when the directions

normal to the plates are perpendicular to the minor axis, and also define the intermediate axis.

Finally, we identify the major axis length a as the distance between the parallel plates when

the direction normal to the plates is perpendicular to both the minor and intermediate axes.

As shown in Appendix A of Michikami et al. (2018), the difference of axis ratios obtained

from different methods is at most about 0.1; the axis ratios include measurement errors of

∼ 0.1. If the difference of the axis ratios of two different remnants are larger than 0.1, these

remnants have quantitatively different shapes.

3.3 Equal-Mass and Non-Destructive Impacts

In this section, we will introduce the results of our simulations of equal-mass and non-destructive

impacts. We set the mass of impactor asteroids to Mi = Mtarget, and we conduct various impact

simulations with various impact velocities and angles. We focus on non-destructive impacts that

have the mass of the largest remnants larger than 0.4Mtarget, and investigate the shapes of the

largest remnants. The total number of SPH particles for each impact simulation is set to

100, 000, which is relatively low resolution but enables to reveal the detailed dependence of
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resultant shapes on impact velocities and angles. The validity of this number of SPH particles

is investigated in Section 3.3.1.

3.3.1 Resolution Dependence on the Resultant Shape

100 km
(a) 0 s (b) 2000 s (c) 6000 s

(d) 20000 s (e) 30000 s (f) 50000 s

Figure 3.2: Snapshots of the impact simulation with the impact angle θimp of 15◦, the impact
velocity vimp of 200m/s and the total number of SPH particles Ntotal of 1 × 105 at 0.0 s(a),
2.0× 103 s(b), 6.0× 103 s(c), 2.0× 104 s(d), 3.0× 104 s(e), and 5.0× 104 s(f). Scale on the panel
(a) is also valid for all the panels (b)-(f). This figure is the same as Fig. 2 of Sugiura et al.
(2018a).

Figure 3.2 represents snapshots of the SPH simulation with the impact angle θimp of 15
◦ and

the impact velocity vimp of 200m/s. In Fig. 3.2b, the collision induces shattering of asteroids.

Then two asteroids are stretched in the direction perpendicular to the line joining centers of

two contacting asteroids and fragments are ejected (Fig. 3.2c). Ejected materials are mainly

reaccumulated from the direction of the long axis of the largest remnant (Fig. 3.2d). Finally

a very elongated shape with the ratio b/a of about 0.2 is formed (Fig. 3.2f). The accretion on

the largest body is mostly done within t ∼ 5.0× 104 s.

Figure 3.3 shows the shapes of the largest remnants at 5.0 × 104 s with three different

resolutions (the total number of SPH particles Ntotal of 5× 104(a), 2× 105(b), and 8× 105(c)).

Even if Ntotal becomes ten times larger, the characteristic of elongated shapes does not change.

Figure 3.4 shows the dependence of the mass and axis ratios of the largest remnants on the

number of SPH particles Ntotal. The mass of the largest remnants slightly decreases with
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100 km

(a) Ntotal = 5.0×104 (b) Ntotal = 2.0×105 (c) Ntotal = 8.0×105

Figure 3.3: Shapes of the largest remnants at 5.0 × 104 s for the impact simulations with
vimp = 200m/s, θimp = 15◦, and Ntotal = 5 × 104(a), 2 × 105(b), and 8 × 105(c), respectively.
This figure is the same as Fig. 3 of Sugiura et al. (2018a).
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Figure 3.4: Dependence of the mass and axis ratios of the largest remnants on the number of
SPH particles Ntotal for the impact with θimp = 15◦ and vimp = 200m/s. The red solid line
shows the ratio b/a, the green dashed line shows the ratio c/a, and the blue dotted line shows
the mass of the largest remnants Mlr normalized by the mass of an initial asteroid Mtarget. The
left vertical axis represents the axis ratios, and the right vertical axis represents the mass of
the largest remnant. This figure is the same as Fig. 4 of Sugiura et al. (2018a).

increasing Ntotal because the numerical dissipation by the artificial viscosity decreases for higher

resolutions. This tendency is the same as the results of Genda et al. (2015). The axis ratios

slightly increase with increasing Ntotal, and the difference of b/a between Ntotal of 5× 104 and

8 × 105 is about 0.03. Difference of axis ratios less than 0.1 is unimportant for the analysis

of asteroidal shapes because difference of axis measurements also causes such minor errors as

discussed above. Therefore, the number of SPH particles of 105 is sufficient to capture at least

the feature of shapes for non-destructive impacts.
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3.3.2 Mass of the Largest Remnants

Hereafter, we use 105 SPH particles for a simulation, and we measure the mass and axis ratios

of the largest remnants at 1.0× 105 s after impacts.

Figure 3.5: Dependence of the mass of the largest remnants on the impact velocity vimp and the
impact angle θimp. The upper horizontal axis represents vimp normalized by two-body escape
velocity vesc. The color shows the mass of the largest remnants Mlr normalized by the mass
of an initial asteroid Mtarget. Thus Mlr/Mtarget = 2.0 means complete merging. The hatched
region apploximately shows the transitional parameters from merging collisions to hit-and-run
or elosive collisions. This figure is the same as Fig. 5 of Sugiura et al. (2018a).

Figure 3.5 shows the mass of the largest remnants Mlr formed through collisions with vimp =

50m/s − 400m/s and θimp = 5◦ − 45◦. The increment of the velocity is 25m/s, and that of

the angle is 5◦. For θimp ≤ 15◦, Mlr ∼ 2Mtarget due to collisional merging for low vimp, and Mlr

gradually decreases with increasing vimp because of erosive collisions. The impact parameters

for the transition between merging and erosive collisions are highlighted in Fig. 3.5. On the

other hand, for θimp ≥ 20◦, sharp variation in Mlr from ∼ 2Mtarget to ∼ Mtarget is seen around

vimp ∼ 100m/s. This is because collisions with high vimp result in a “hit-and-run” process where

two asteroids moving apart after the collision. The transition parameters between merging

and hit-and-run collisions are also highlighted in Fig. 3.5. Erosive nature for low θimp and

merging/hit-and-run nature for high θimp are also observed in previous collisional simulations

(Agnor and Asphaug 2004; Leinhardt and Stewart 2012).

For vimp > 300m/s, Mlr has a minimum value at θimp ≈ 15◦ (see Fig. 3.5). For head-on
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collisions, the most of the impact energy is dissipated and not transformed to the ejection

processes, which results in large Mlr. For slightly higher θimp, the impact energy is more

effectively used for ejection, and thus the mass of the largest remnant Mlr becomes smaller.

However, for much higher θimp, the velocity component normal to colliding bodies is small, so

that the impact energy is not effectively used for destruction and ejection, which results in

larger Mlr. Therefore, an intermediate θimp yields smallest Mlr.

We note that collisions with vimp > 400m/s and low θimp result in Mlr ≤ 0.1Mtarget. The

largest remnants resulting from such impacts are composed of less than about 5,000 SPH

particles, and resolved by less than 20 SPH particles along each axis direction. Thus axis

ratios obtained from such a small number of SPH particles are not measured accurately. Our

simulations of impacts with parameters outside those of Fig.3.5 show that impacts with vimp =

500m/s and θimp = 5 − 25◦ result in Mlr/Mtarget = 0.01 − 0.07. For θimp > 45◦, only edges of

asteroids are destroyed by collisions rather than overall deformation, so that the investigation of

such impact angles is not interesting. For example, our impact simulations with θimp = 60◦ and

vimp = 100−500m/s result inMlr/Mtarget = 0.91−0.99, which means merely partial destruction.

Therefore, we investigate the collisions with 50m/s ≤ vimp ≤ 400m/s and 5◦ ≤ θimp ≤ 45◦,

because in this parameter range the resolution of the largest remnants is mainly sufficient and

significant shape deformation occurs.

3.3.3 Characteristic Shapes Formed by Collisions

As a result of impact simulations with 50m/s ≤ vimp ≤ 400m/s and 5◦ ≤ θimp ≤ 45◦, we find

that resultant shapes of the largest remnants are roughly classified into five categories. Here, we

introduce the results of typical impacts to form five different characteristic shapes, catastrophic

collisions, and the impacts with the second collision.

Bilobed Shapes

If the impact velocity is very small, the initial spherical shapes of colliding bodies are preserved

and collisional merging forms bilobed shape. Fig. 3.6 shows impact snapshots with vimp =

50m/s and θimp = 30◦. The impact forms a bilobed shape (Fig. 3.6). The two-body escape

velocity vesc is about 60m/s, which is slightly larger than the impact velocity of this simulation.

For vimp < vesc, the impact energy is too small to largely deform the initial spherical shapes (see

Fig. 3.6b,c), and colliding bodies are gravitationally bound. Thus the bilobed shapes resulting

from such low velocity impacts are independent of θimp.
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100 km
(a) 0 s (b) 3500 s

(c) 10000 s (d) 50000 s

Figure 3.6: Snapshots of the impact simulation with θimp = 30◦ and vimp = 50m/s at 0.0 s(a),
3.5 × 103 s(b), 1.0 × 104 s(c), and 5.0 × 104 s(d). This figure is the same as Fig. 6 of Sugiura
et al. (2018a).

Spherical Shapes

100 km
(a) 0 s (b) 2000 s

(c) 10000 s (d) 50000 s

Figure 3.7: Snapshots of the impact simulation with θimp = 10◦ and vimp = 100m/s at 0.0 s(a),
2.0 × 103 s(b), 1.0 × 104 s(c), and 5.0 × 104 s(d). This figure is the same as Fig. 7 of Sugiura
et al. (2018a).
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The initial spherical shape is sufficiently deformed with vimp ∼ 100m/s, which results in a

single sphere due to merging of two asteroids. Fig. 3.7 shows an impact producing a spherical

shape with vimp = 100m/s and θimp = 10◦. Collisional deformation (Fig. 3.7b) and gravitational

reaccumulation (Fig. 3.7c,d) results in a spherical shape.

It should be noted that a relatively low speed collision with θimp ≥ 40◦ results in local

destruction due to hit-and-run, whose outcome is also close to two spheres.

Flat Shapes

100 km

(a) 0 s (b) 6000 s (c) 12000 s

(d) 16000 s (e) 20000 s (f) 100000 s

Figure 3.8: Snapshots of the impact simulation with θimp = 5◦ and vimp = 200m/s at 0.0 s(a),
6.0× 103 s(b), 1.2× 104 s(c), 1.6× 104 s(d), 2.0× 104 s(e), and 1.0× 105 s(f). This figure is the
same as Fig. 8 of Sugiura et al. (2018a).

Figure 3.8 shows impact snapshots with vimp = 200m/s and θimp = 5◦. The initial spherical

shapes are completely deformed (Fig. 3.8b,c), and the resultant shape is flat (Fig. 3.8d-f). The

flat bodies are close to oblate shapes. The minor axis is formed in the direction perpendicular

to the angular momentum vector.

Elongated Shapes

A collision forming extremely elongated shape is shown in Fig. 3.2. The collision results in

Mlr ∼ 2Mtarget; collisional merging mainly occurs.

Some hit-and-run collisions also produce elongated shapes. Fig. 3.9 shows snapshots of

the impact with vimp = 250m/s and θimp = 20◦, and Fig. 3.10 shows a zoom out view of
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100 km

(a) 0 s (b) 2000 s (c) 10000 s

(d) 20000 s (e) 50000 s (f) 100000 s

Figure 3.9: Snapshots of the impact simulation with θimp = 20◦ and vimp = 250m/s at 0.0 s(a),
2.0× 103 s(b), 1.0× 104 s(c), 2.0× 104 s(d), 5.0× 104 s(e), and 1.0× 105 s(f). This figure is the
same as Fig. 9 of Sugiura et al. (2018a).

Fig. 3.9f. The impact results in significant destruction and deformation (Fig. 3.9b,c). Although

two asteroids do not merge (Fig. 3.10), the reaccretion of surrounding fragments produces two

elongated shapes (Fig. 3.9d-f and Fig. 3.10). Note that the largest and second largest objects

in hit-and-run collisions have almost the same shape (Fig. 3.10).

Hemispherical Shapes

In Fig. 3.11, we show an impact forming hemispherical shapes. Significant destruction oc-

curs around the impact point and a large amount of fragments is ejected straightforwardly

(Fig. 3.11b). This collisional truncation results in hemispherical shapes (Fig. 3.11c-e).

Super-Catastrophic Destruction

Figure 3.12 represents the result of the impact simulation with vimp = 400m/s and θimp = 5◦.

The impact of very high vimp produces a large curtain of ejected fragments (Fig. 3.12b), and the

gravitational fragmentation of the curtain forms many clumps (Fig. 3.12c). Then the largest

remnant is formed through the coalescence of clumps (Fig. 3.12d-f).

In collisions with Mlr < 0.4Mtarget, the largest bodies are formed through significant reaccre-

tion of ejecta. Even small difference of initial conditions produces significant difference of the

distribution of ejecta, which leads to variety of shapes. Therefore, high-resolution simulations
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1000 km

100 km

Figure 3.10: Zoom out view of the impact simulation with vimp = 250m/s and θimp = 20◦ at
1.0×105 s. Two enlarged figures represent the shape of the largest and second largest remnant,
respectively. This figure is the same as Fig. 10 of Sugiura et al. (2018a).

are required. We will introduce the results of high-resolution simulations of destructive impacts

in Section 3.5. Here, we just call impacts with Mlr < 0.4Mtarget super-catastrophic destruction,

and do not classify shapes for such destructive impacts.

Elongated-Shape-Forming Impacts with the Second Collision

Figure 3.13 represents a collision with vimp = 175m/s and θimp = 20◦, which results in the

second collision of two elongated objects. As in Fig 3.2, the first collision produces two elongated

objects (Fig 3.13b,c). However, the energy dissipation by the collision makes colliding bodies

gravitationally bounded (Fig. 3.13d), and the resultant body formed by the merging is no longer

elongated object (Fig. 3.13e). Although the resultant body is not elongated, this impact is a

kind of elongated-shape-forming collision.
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100 km

(a) 0 s (b) 2000 s

(c) 10000 s (d) 20000 s (e) 100000 s

Figure 3.11: Snapshots of the impact simulation with θimp = 45◦ and vimp = 350m/s at 0.0 s(a),
2.0× 103 s(b), 1.0× 104 s(c), 2.0× 104 s(d), and 1.0× 105 s(e). This figure is the same as Fig. 11
of Sugiura et al. (2018a).

100 km

(a) 0 s (b) 2000 s (c) 26000 s

(d) 50000 s (e) 80000 s (f) 100000 s

Figure 3.12: Snapshots of the impact simulation with vimp = 400m/s and θimp = 5◦ at 0.0 s(a),
2.0× 103 s(b), 2.6× 104 s(c), 5.0× 104 s(d), 8.0× 104 s(e), and 1.0× 105 s(f). This figure is the
same as Fig. 12 of Sugiura et al. (2018a).

3.3.4 Summary of Shapes Formed by Collisions

Figure 3.14 shows the axis ratios of the largest remnants formed through impacts with various

impact velocities and angles. For hit-and-run collisions, the largest and second largest bodies
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100 km

(a) 0 s (b) 4000 s

(c) 30000 s (d) 70000 s (e) 100000 s

Figure 3.13: Snapshots of the impact simulation with vimp = 175m/s and θimp = 20◦ at 0.0 s(a),
4.0×103 s(b), 3.0×104 s(c), 7.0×104 s(d), and 1.0×105 s(e). This figure is the same as Fig. C.1
of Sugiura et al. (2018a).

have similar shapes as shown in Fig. 3.10. Thus if the mass ratio of the first to second largest

bodies is smaller than 2.0, we use the averaged values among two bodies for b/a and c/a. Note

that sharp variation of axis ratios at the hatched regions in Fig. 3.14 is caused by the transition

between merging and erosive or hit-and-run collisions.

Figure 3.15 shows the summary of the axis ratios of the largest remnants produced through

the non-destructive impacts with 50m/s ≤ vimp ≤ 400m/s, 5◦ ≤ θimp ≤ 45◦, and Mlr >

0.4Mtarget. From Fig. 3.15, we notice that the equal-mass and non-destructive impacts produce

extremely elongated shapes with b/a < 0.4 and extremely flat shapes with b/a > 0.8 and

c/a < 0.6.

We categorize shapes of collisional outcomes into bilobed, spherical, flat, elongated, hemi-

spherical, and super-catastrophic destruction as shown in Table 3.1. The classification given

by Table 3.1 mainly corresponds to the shapes formed via the processes shown in Section

4.3. Fig. 3.16 shows impact parameters producing the classified shapes, which indicates vimp ∼
50m/s or vimp ∼ 100m/s and θimp > 25◦ (bilobed shapes), vimp ∼ 100m/s and θimp < 25◦

(spherical shapes), vimp > 100m/s and vimp sin θimp < 30m/s (flat shapes), vimp > 100m/s,

vimp sin θimp > 30m/s, and θimp < 30◦ (elongated shapes), and vimp > 100m/s and θimp > 30◦

(hemispherical shapes).

Note that two impacts resulting in flat shapes are in the elongated-shape region (vimp =
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(a)

(b)

Figure 3.14: Dependence of the ratios b/a and c/a of the largest remnants on vimp and θimp. The
color represents (a) the ratio b/a, (b) the ratio c/a, respectively. For impacts in cross-hatched
region, we do not measure the axis ratios of the largest remnants, because the mass of the
largest remnants is too small (smaller than 0.15 Mtarget). The meaning of the hatched regions
is the same as in Fig. 3.5. Two parameters surrounded by green boxes represent impacts with
the second collision as shown in Fig 3.13. This figure is the same as Fig. 13 of Sugiura et al.
(2018a).

175m/s, θimp = 20◦ and vimp = 300m/s, θimp = 10◦). These impacts correspond to elongated-

shape-forming collisions with the second collision as shown in Fig. 3.13. We consider these

impacts as elongated-shape-forming collisions from the shapes observed in the simulations.

Based on the classification in Fig 3.16, we find the specific conditions to determine the

shapes, which are written as
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Figure 3.15: Axis ratios of the largest remnants with Mlr > 0.4Mtarget produced through equal-
mass and non-destructive impacts. The horizontal axis represents the ratio c/a, and the vertical
axis represents the ratio b/a. Each point shows the axis ratios of the largest remnant produced
through a non-destructive impact.

Shape Thresholds

Bilobed b/a < 0.7 c/a < 0.7 Mlr/Mtot = 1.0
Spherical b/a > 0.7 c/a > 0.7 · · ·

Flat b/a > 0.7 c/a < 0.7 Mlr/Mtarget > 1.0
Elongated b/a < 0.7 c/a < 0.7 Mlr/Mtot < 1.0

Hemispherical b/a > 0.7 c/a < 0.7 Mlr/Mtarget < 1.0
Super-catastrophic · · · · · · Mlr/Mtarget < 0.4

Table 3.1: Thresholds of b/a, c/a, Mlr/Mtarget, and Mlr/Mtot of the largest remnants for the
categorization of shapes, where Mtot = Mtarget +Mi shows the total mass used in each impact
simulation. All impacts with Mlr/Mtarget < 0.4 are classified to super-catastrophic destruction
regardless of the values of b/a and c/a of the largest remnants.

• bilobed and spherical shapes: vimp < 1.6vesc,

• flat shapes: vimp > 1.6vesc and vimp sin θimp < 0.5vesc,

• hemispherical shapes: vimp > 1.6vesc and θimp > 30◦,

and

• elongated shapes: vimp > 1.6vesc, θimp < 30◦, vimp sin θimp > 0.5vesc, and Mlr > 0.4Mtarget,
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Figure 3.16: Summary of the classification of resultant shapes. The blue squares represent the
impact parameters, vimp and θimp, producing bilobed shapes, the gray triangles represent those
of spherical shapes, the orange inverted triangles represent those of flat shapes, the red circles
represent those of elongated shapes, the light green diamonds represent those of hemispherical
shapes, and the black crosses represent those for super-catastrophic destruction. The dotted
line shows vimp = 1.6vesc = 100m/s, the dashed line shows θimp = 30◦, the chain curve shows
vimp sin θimp = 0.5vesc = 30m/s, and the solid curve shows Mlr = 0.4Mtarget. The meanings of
the hatched region and green boxes are the same as in Fig. 3.5 and Fig. 3.14. This figure is the
same as Fig. 14 of Sugiura et al. (2018a).

where two-body escape velocity vesc ≈ 60m/s. The hatched region in Fig. 3.16 divides the

elongated-shape region into two parts. Elongated shapes formed with parameters in the left

part of the hatched region are formed by merging collisions (see Fig. 3.2), and those in the right

part are formed by hit-and-run collisions (see Fig. 3.9).

3.3.5 Discussion: Four Conditions Required for the Formation of
Elongated Shapes

The threshold of vimp > 1.6vesc is required for significant deformation. We estimate necessary

impact velocity to deform asteroids as follows. Frictional force of µdP acts on the area of ∼ πR2
t

and the energy dissipation occurs due to frictional deformation on the length scale of ∼ 4Rt.

The dissipated energy Edis is estimated as

Edis = 4πR3
tµdP. (3.5)
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The timescale for deformation of whole bodies is estimated to be 2Rt/vimp, which is much longer

than the shock passing time ∼ 2Rt/Cs, where Cs ≈ 3 km/s is the sound speed. High pressure

states caused by shocks are already relaxed before the end of the deformation, and shocks do

not contribute to the pressure for frictional force given in Eq. (3.5). Therefore, the pressure is

mainly determined by the self-gravity and estimated to be central pressure of an asteroid with

the radius of Rt and uniform density of ρ0, given by

P =
2

3
πGρ20R

2
t . (3.6)

Equating the total initial kinetic energy for two equal-mass bodies (1/4)Mtargetv
2
imp to Edis, we

obtain the critical deformation velocity as

vimp,crit =
√
4Edis/Mtarget =

√
3µdvesc

= 1.587
( µd

tan(40◦)

)
vesc. (3.7)

The impact velocity obtained in Eq. (3.7) well agrees with vimp = 1.6vesc in spite of rough

estimation of the dissipated energy Edis.

The condition of θimp < 30◦ is needed for the avoidance of hemispherical shapes caused

by hit-and-run collisions. For θimp ≥ 30◦ half or smaller of a target is directly interacted by

an impactor, resulting in hit-and-run collisions (Asphaug 2010; Leinhardt and Stewart 2012).

To form elongated shapes, it is necessary for almost whole volume of two asteroids to be

deformed. For θimp < 30◦ most of two asteroids are directly affected by collisions, which leads

to deformation to be elongated shapes.

Collisional elongation requires large shear velocity vimp sin θimp > 0.5vesc, while impacts

with vimp sin θimp < 0.5vesc produce flat shapes. Elongated shapes are formed through stretch

of asteroids in the direction of shear velocity (see Figs. 3.2 and 3.9). However, the self-gravity

prevents deformation, which occurs if vimp sin θimp ≪ vesc. We find that elongation needs

vimp sin θimp > vesc/2.

Super-catastrophic destruction with Mlr < 0.4Mtarget produces many small remnants, which

mainly have spherical shapes as shown in Fig. 3.12. Elongated shapes may not be formed

through super-catastrophic destruction. Thus for certain formation of elongated shapes, Mlr >

0.4Mtarget is required.

Distribution of pressure is determined by the self-gravity unless the impact velocity is com-

parable to or larger than the sound speed. Since frictional force is proportional to the pressure,
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the friction is also determined by the self-gravity. Thus, unless the material strength is dom-

inant, force on bodies (the right hand side of the equation of motion) is solely determined by

the self-gravity, so that results of impacts are characterized by dimensionless velocity vimp/vesc

regardless of the scale or size of asteroids. For rocky asteroids with Rt ≥ 0.5 km, the friction

is dominant rather than the material strength. For Rt ≤ 200 km, vesc is smaller than 0.1Cs.

Therefore, the conditions to form elongated shapes and the shape classification of Fig. 3.16 with

upper horizontal axis are also valid for equal-mass impacts with the angle of friction of 40◦ and

100 km ≲ Rt ≲ 102 km.

3.4 Unequal-Mass and Non-Destructive Impacts

In this section, we will introduce the asteroidal shapes formed through non-destructive impacts,

but we consider the cases that the mass of impactor asteroids is different from that of target

asteroids. We again focus on non-destructive impacts with Mlr > 0.4Mtarget and investigate

the shapes of the largest remnants. Except for the impact simulations with the mass ratio

q = 1/64, the number of SPH particles for target asteroids is fixed to 50, 000, which is the

same resolution as that in Section 3.3. For the simulations with q = 1/64, we use 100, 000 SPH

particles for target asteroids to use sufficient number of SPH particles for impactor asteroids.

3.4.1 Similar-Mass Impacts

Firstly, we will introduce the simulation results of impacts between two asteroids that have

relatively similar masses. We conduct the simulations with the mass ratios of q = 0.75, 0.50,

and 0.25. We vary the impact angle from 5◦ to 45◦ with the increment of 5◦. We also vary

the impact velocity from 50m/s to 600m/s with the increment of 50m/s, which is the wider

range but the larger increment of the impact velocity compared to the parameter survey for

the equal-mass impacts in Section 3.3.

Figure 3.17 shows the summary of the mass and axis ratios of the largest remnants. From

the panels of Mlr/Mtarget in Fig. 3.17, we observe clear boundaries between merging collisions

and erosive/hit-and-run collisions for all of three mass ratios. We also notice that the impacts

with vimp = 600m/s and θimp = 5◦ result in Mlr < 0.4Mtarget, i.e., catastrophic disruption,

even with q = 0.25. Thus the impacts with 50m/s ≤ vimp ≤ 600m/s include various types of

collisions, namely, merging collisions, hit-and-run collisions, and catastrophic disruptions.

From panels of b/a and c/a in Fig. 3.17, we observe the entire tendency that the axis ratios
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(a) q = 0.75

(b) q = 0.50

(c) q = 0.25

Mlr / Mtarget b / a                                                           c / a

Mlr / Mtarget b / a                                                           c / a

Mlr / Mtarget b / a                                                           c / a

Figure 3.17: Summary of the mass and axis ratios of the largest remnants produced through
the impacts with three different mass ratios. Each row shows the results of the impacts with
(a) q = 0.75, (b) q = 0.50, and (c) q = 0.25, respectively. Each color of contour shows
Mlr/Mtarget (red), b/a (blue), and c/a (green) of the largest remnants, respectively. In the
panels that show Mlr/Mtarget, black regions show the impacts with Mlr ≈ Mtot, i.e., the impacts
resulting in merging collisions. In each panel, the horizontal axis represents the impact velocity,
and the vertical axis represents the impact angle. The impacts in cross-hatched region have
Mlr < 0.15Mtarget, and we do not measure the axis ratios.

increase with decreasing the mass ratios. This means that the impacts with high-mass ratios

are difficult to produce irregular shapes. Especially, this tendency is clear for b/a; b/a ≈ 1 for

almost all of impacts with q = 0.25. Thus, non-destructive impacts with high-mass ratios do

not produce elongated shapes of the largest remnants.

The left panels of Fig. 3.18 show the shape classification of the largest remnants for similar-

mass impacts. We use the same threshold in Table 3.1 for the classification as that for the
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(a) q = 0.75

(b) q = 0.50

(c) q = 0.25

Figure 3.18: Summary of the classification of resultant shapes and the shape distribution of
the largest remnants produced through the impacts with three different mass ratios. Each row
shows the results of the impacts with (a) q = 0.75, (b) q = 0.50, and (c) q = 0.25, respectively.
The left panels show the results of shape classification according to Table 3.1 with the horizontal
axis of the impact velocity and the vertical axis of the impact angle. The meanings of symbols
are the same as those of Fig. 3.16. The right panels show the axis ratios with the horizontal
axis of c/a and the vertical axis of b/a.

equal-mass impacts. From Fig 3.18a and b, we notice that the results of the classification

for q = 0.75 and q = 0.50 are similar to that of the equal-mass impacts (Fig. 3.16): In the

impact velocity-angle diagram, the left parts are for bilobed shapes, the left-bottom parts are

for spherical shapes, the bottom parts are for flat shapes, the middle parts are for elongated
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shapes, the upper parts are for hemispherical shapes, and the right parts are for catastrophic

disruptions 1. However, the result of the shape classification for q = 0.25 is distinctly different

from that of the equal-mass impacts. There is no clear region for bilobed shapes and elongated

shapes. This is because the impacts with high-mass ratios tend to result in partial destruction

rather than overall deformation. Thus the various shapes of the largest remnants are only

formed through the impacts with q ≥ 0.5.

The right panels of Fig. 3.18 show the shape distribution of the largest remnants produced

through the similar and non-destructive impacts with Mlr > 0.4Mtarget. From these panels,

we observe clearly that the number of elongated shapes of impact outcomes decreases with

decreasing the mass ratio q. Especially for q = 0.25, even flat shapes with c/a ≈ 0.5 are not

found. Thus, to produce extreme shapes, we need non-destructive impacts with q ≥ 0.5.

3.4.2 Impacts with Large Mass Ratios

Secondly, we will introduce the results of the impacts between two asteroids that have large

mass differences. We investigate asteroidal collisions with the mass ratios of q = 1/8 and 1/64,

i.e., even the ratio of the radius Ri/Rt is smaller than 0.5. For q = 1/8, we vary the impact

velocity from 125m/s to 2, 500m/s with the increment of 125m/s and the impact angle from

0◦ to 45◦ with the increment of 5◦. For q = 1/64, we vary the impact velocity from 500m/s

to 3, 000m/s with the increment of 250m/s and the impact angle from 0◦ to 40◦ with the

increment of 10◦.

Figure 3.19 summarizes the mass and the axis ratios of the largest remnants produced

through the high-mass-ratio impacts. From the panels of Mlr/Mtarget in Fig. 3.19, we notice that

our investigation of the high-mass-ratio impacts covers various impacts from non-destructive

impacts to destructive impacts especially for q = 1/8. The parameter survey for q = 1/64 also

includes destructive impacts with Mlr < 0.4Mtarget.

Figure 3.19 shows that the shapes of the largest remnants produced through the high-mass-

ratio impacts are only spherical and hemispherical shapes. The minimum b/a of the largest

remnants produced through the impacts with q = 1/8 is about 0.8. All largest remnants

produced through the impacts with q = 1/64 have b/a > 0.9. Thus, high-mass-ratio and

non-destructive impacts do not produce elongated shapes.

From the panels of c/a in Fig. 3.19, we also notice the tendency that c/a increases with

1We notice that there are some exceptions, but these exceptions are mainly caused by the thresholds we
determined for the equal-mass impacts. If we could find better thresholds, we might remove the exceptions.
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(a) q = 1/8

(b) q = 1/64

Mlr / Mtarget b / a                                                           c / a

Mlr / Mtarget b / a                                                           c / a

Figure 3.19: Summary of the mass and axis ratios of the largest remnants produced through
the high-mass-ratio impacts. Each row shows the results of the impacts with (a) q = 1/8 and
(b) q = 1/64, respectively. Each color of contour shows Mlr/Mtarget (red), b/a (blue), and c/a
(green) of the largest remnants, respectively. In each panel, the horizontal axis represents the
impact velocity, and the vertical axis represents the impact angle. The impacts in cross-hatched
region have Mlr < 0.15Mtarget, and we do not measure the axis ratios.

decreasing q. The minimum c/a resulted from the impacts with q = 1/8 is about 0.6, while

that resulted from the impacts with q = 1/64 is about 0.7. This is because high-mass-ratio

and non-destructive impacts mainly result in cratering. High-mass-ratio impacts do not pro-

duce largely irregular shapes even if the impacts result in relatively destructive impacts with

Mlr ≈ 0.5Mtarget, because such impacts mainly eject materials around impact cites rather

than overall deformation. Therefore, our simulations suggest that high-mass-ratio and non-

destructive impacts with q ≤ 1/64 do not produce irregular shapes of the largest remnants.

3.5 Destructive Impacts

To investigate the shapes of small remnants produced through destructive impacts, we conduct

high-resolution simulations of catastrophic destruction. We use about 4 million SPH particles

for each impact simulation and conduct four simulations with the following conditions: q = 1,

θimp = 15◦, vimp = 350m/s; q = 1/4, θimp = 15◦, vimp = 700m/s; q = 1/8, θimp = 0◦,
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vimp = 1, 000m/s; and q = 1/16, θimp = 15◦, vimp = 1, 700m/s.

Figure 3.20 shows the snapshots of the impacts with q = 1, θimp = 15◦, vimp = 350m/s

and q = 1/8, θimp = 0◦, vimp = 1, 000m/s. We notice that the catastrophic destruction

produces large ejecta curtains regardless of the detailed impact conditions such as the mass

ratio (Fig. 3.20a-2 and c-2). The destructive impacts produce thin ejecta curtains (Fig. 3.20b-2

and d-2), and the gravitational instability and fragmentation of the curtains produce many

filamentary structures (Fig. 3.20a-4 and c-4). The gravitational reaccumulation of fragments

in the filamentary structures (Fig. 3.20a-5 and c-5) eventually leads to the formation of many

small remnants (Fig. 3.20a-6 and c-6). Note that these processes do not depend on the detailed

impact conditions as long as impacts result in catastrophic destruction.

Figure 3.21 shows the cumulative mass distributions of the remnants produced through

four destructive impacts. From Fig. 3.21, we notice that the masses of the largest remnants

produced through the impacts with q = 1, θimp = 15◦ vimp = 350m/s; q = 1/4, θimp = 15◦,

vimp = 700m/s; and q = 1/16, θimp = 15◦, vimp = 1, 700m/s are about 0.1Mtarget, while that

with q = 1/8, θimp = 0◦, vimp = 1, 000m/s is about 0.01Mtarget. We also notice that the ratios

of the mass of the largest to that of the second largest for the impacts with q = 1, θimp = 15◦,

vimp = 350m/s and q = 1/8, θimp = 0◦, vimp = 1, 000m/s are about unity, while those with

q = 1/4, θimp = 15◦, vimp = 700m/s and q = 1/16, θimp = 15◦, vimp = 1, 700m/s are less than

0.1. We do not investigate the dependence of the feature of cumulative mass distributions on

the impact conditions in more detail, but it should be noted that not only the mass of the

largest remnants but also the ratios of the mass of the largest to the second largest probably

have important information to reveal impact conditions to form asteroid families.

If a remnant is composed of 5,000 SPH particles, this remnant is resolved by about 20 SPH

particles along axis directions. This number of SPH particles is considered to be sufficient to

measure the shape of such remnant. Thus, we measure the axis ratios of remnants composed of

5,000 or more SPH particles. From Fig. 3.21, we notice that the number of the remnants with

5,000 or more SPH particles for the impacts with q = 1, θimp = 15◦ vimp = 350m/s is 69, that

with q = 1/4, θimp = 15◦, vimp = 700m/s is 24, that with q = 1/8, θimp = 0◦, vimp = 1, 000m/s

is 30, and that with q = 1/16, θimp = 15◦, vimp = 1, 700m/s is 13. Thus the total number of

the remnants with measured shapes is sufficient to statistically discuss the shape distribution

of remnants produced through destructive impacts.

Figure 3.22 shows the snapshots of the main remnants produced through the impact with

q = 1, θimp = 15◦ vimp = 350m/s. From Fig. 3.22, we notice that the most remnants have
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the rounded shapes rather than irregular shapes. This is because the remnants are produced

through violent reaccumulation of fragments; strong gravitational effect tends to produce spher-

ical bodies. However, we also notice that some remnants have the characteristic shapes with

two lobes. These bilobed shapes are formed through coalescence of two rounded remnants.

Fig. 3.22 shows the tendency that the smaller remnants have more rounded shapes. This may

be caused by the weak mutual gravity between smaller remnants; they do not coalesce each

other due to the weak mutual gravity, which leads to let these shapes remain spherical ones.

Figure 3.23 shows the dependence of
√
bc/a on the mass of the remnants. As shown in

Schwartz et al. (2018),
√
bc/a represents the shape irregularity of remnants, and smaller

√
bc/a

means more irregular shapes. From Fig. 3.23, we notice the tendency that the smaller remnants

have more rounded shapes for all the impacts, especially for the equal-mass impact as we already

notice in Fig. 3.22. Schwartz et al. (2018) also investigated the shape distribution of remnants

produced through several catastrophic impacts through simulations using the particle based

code of the soft sphere model. However, they do not observe the tendency of
√
bc/a on the

mass of the remnants. This discrepancy may be caused by the difference of simulation methods.

Thus, in our future works, we will investigate the detailed dependence of shape distribution of

produced remnants on simulation methods.

Figure 3.24 shows the shape distribution of the remnants produced through the destructive

impacts. From Fig. 3.24, we notice that all the destructive impacts mainly produce the spherical

shapes and also the irregular shapes with b/a ≈ c/a ≈ 0.5 that are mainly the bilobed shapes.

We also notice that the destructive impacts are difficult to produce flat shapes. Among the

remnants produced through the four impacts investigated here, there are only two flat shapes

with b/a > 0.8 and c/a < 0.6, and these flat shapes are produced by the equal-mass and

relatively low-velocity impact. Therefore, destructive impacts, especially high-velocity impacts,

do not produce flat shapes of asteroids.

In this section, we investigated the shapes of small remnants produce through destructive

impacts. However, small remnants are also ejected by relatively non-destructive impacts (see,

e.g., Fig. 3.11b). The shapes of fine remnants produced through non-destructive impacts are

also determined by the reaccumulation of fragments. Thus we expect that the shapes of such

remnants resemble those formed through destructive impacts.
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Figure 3.20: Snapshots of the simulations of the destructive impacts. The panels (a-1) - (a-6)
and (b-1) - (b-6) show the face on views and the edge on views of the ejecta curtain produced
through the impact with q = 1, θimp = 15◦, vimp = 350m/s, respectively. The panels (c-1)
- (c-6) and (d-1) - (d-6) show the face on views and the edge on views of the ejecta curtain
produced through the impact with q = 1/8, θimp = 0◦, vimp = 1, 000m/s, respectively. Each
row shows the snapshots at 0.0s, 5.0× 103s, 1.5× 104s, 2.5× 104s, 4.0× 104s, and , 1.0× 105s.
In the panels (a-1), (b-1), (c-1), and (d-1), we show the scales and the coordinate systems that
are valid for each column.
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(a) (b)

(c) (d)

Figure 3.21: Cumulative mass distributions of the remnants produced through the destructive
impacts. In each panel, the horizontal axis represents the mass of remnants Mr normalized
by the mass of the target asteroids Mtarget, and the vertical axis represents the cumulative
number of remnants that have the mass larger than Mr. The upper horizontal axis represents
the number of SPH particles that compose a remnant with the mass of Mr. The panel (a)
shows the cumulative mass distribution resulted from the impact with q = 1, θimp = 15◦,
vimp = 350m/s, the panel (b) shows that with q = 1/4, θimp = 15◦, vimp = 700m/s, the panel
(c) shows that with q = 1/8, θimp = 0◦, vimp = 1, 000m/s, and the panel (d) shows that with
q = 1/16, θimp = 15◦, vimp = 1, 700m/s.



CHAPTER 3. RESULTS: SHAPES OF IMPACT OUTCOMES 77

10 km

Figure 3.22: Snapshots of the remnants produced through the impact with q = 1, θimp = 15◦,
vimp = 350m/s. We show the shapes of from the largest remnants (the remnant at the left
upper corner) to the 35th largest remnant (the remnant at the right bottom corner).
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Figure 3.23: Dependence of the shape irregularity on the mass of the remnants. The horizontal
axis represents the mass of the remnants normalized by that of the target asteroids, and the
vertical axis represents

√
bc/a of the remnants. The red circles show the remnants produced

through the impact with q = 1, θimp = 15◦, vimp = 350m/s, the green squares show those
with q = 1/4, θimp = 15◦, vimp = 700m/s, the blue triangles show those with q = 1/8,
θimp = 0◦, vimp = 1, 000m/s, and the brown diamonds show those with q = 1/16, θimp = 15◦,
vimp = 1, 700m/s.
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Figure 3.24: Shape distribution of the remnants produced through the destructive impacts.
The horizontal axis represents c/a of the remnants, and the vertical axis represents b/a of the
remnants. The red circles show the remnants produced through the impact with q = 1, θimp =
15◦, vimp = 350m/s, the green squares show those with q = 1/4, θimp = 15◦, vimp = 700m/s, the
blue triangles show those with q = 1/8, θimp = 0◦, vimp = 1, 000m/s, and the brown diamonds
show those with q = 1/16, θimp = 15◦, vimp = 1, 700m/s.



Chapter 4

Discussion: Collisional History of
Asteroids

In Chapter 3, we investigated shapes of asteroids formed through various impacts and found the

relationship between resultant shapes of collisional outcomes and the impact conditions such as

the impact velocity. The impact velocity is strongly affected by the environments of planetary

systems such as the exsitence of gas components or giant planets. Thus we may connect shapes

of asteroids to the environments or era when asteroids were formed. In this chapter, we discuss

the connection between shapes of asteroids and formation era. We investigate information of

actual asteroids including those shapes obtained from several databases, and we discuss the

suggestions obtained from shapes of actual asteroids.

4.1 Connection Between Shapes of Asteroids and Colli-

sional Environments

4.1.1 Summary of Shapes of Impact Outcomes

In Chapter 3, we investigated asteroidal shapes produced through the impacts with the 100 km

target asteroids. We classified impacts into three categories; equal-mass and non-destructive

impacts, unequal-mass and non-destructive impacts, and destructive impacts. Non-destructive

impacts mean the impacts with the mass of the largest remnants larger than 0.4Mtarget. We

will briefly introduce the shapes of asteroids produced through the three types of impacts.

Equal-mass and non-destructive impacts with vimp ≤ 400m/s produce various shapes in-

cluding extremely elongated shapes (Fig. 3.2) and extremely flat shapes (Fig. 3.8). The shapes

of impact outcomes are depending on the impact conditions. Elongated shapes are formed

through the impacts with 2vesc ≲ vimp ≲ 5vesc and 15◦ ≲ θimp ≲ 30◦, and flat shapes are formed

79
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through the impacts with 2vesc ≲ vimp ≲ 4vesc and θimp ≲ 15◦ (Fig. 3.16). The most elongated

shape produced through the equal-mass and non-destructive impacts has b/a ≈ 0.2 and the

most flat shape has c/a ≈ 0.4 (Fig. 3.15).

Unequal-mass and non-destructive impacts are more difficult to produce irregular shapes

compared to equal-mass impacts. The impacts with q = 0.5 still produce elongated shapes

with b/a ≈ 0.6 (Fig. 3.18b) and those with q = 0.25 still produce flat shapes with c/a ≈ 0.6

(Fig. 3.18c). However, the most irregular shape produced through the impacts with q = 1/8

has b/a ≈ 1 and c/a ≈ 0.6 (Fig. 3.19a), and that produced through the impacts with q = 1/64

has b/a ≈ 1 and c/a ≈ 0.7 (Fig. 3.19b). Thus, the impacts with q < 1/8 do not produce the

irregular shapes with c/a < 0.6.

Destructive impacts mainly produce spherical and bilobed shapes (Fig 3.22). Intense grav-

itational reaccumulation of fragments after destructive impacts produce spherical remnants,

and the coalescence of spherical remnants produce bilobed shapes. We conduct the simulations

of the destructive impacts with various mass ratios and impact velocities up to about 2 km/s

and find that every destructive impact produces spherical and bilobed shapes (Fig. 3.24). Some

bilobed remnants have b/a ≈ 0.4. However, flat shapes are difficult to be formed through de-

structive impacts; among about 100 remnants produced through our destructive impacts, there

are only two flat remnants with c/a ≈ 0.6, and there are no flat remnants with c/a ≤ 0.5.

4.1.2 Impact Velocity and Collisional Environments

Primordial Environment

We will estimate the typical relative velocity between asteroids in the primordial environment.

We consider the era when protoplanets are under oligarchic growth, i.e., several protoplanets

with sufficient separations grow through the accretion of surrounding asteroids. In this era,

gas component of the protoplanetary disk still exists because Jupiter is not yet formed. The

random velocity between asteroids increases through viscous stirring of protoplanets, while the

random velocity decreases through gas drag.

The timescale of the viscous stirring is estimated as (e.g., Ida and Makino 1993)

tvis =
1

nprotoσscatvrel
=

1

nprotovrel

1

πR2
proto

( vrel
vesc,p

)4
, (4.1)

where nproto is the number density of protoplanets, σscat = πR2
proto(vesc,p/vrel)

4 is the scattering

cross section of protoplanets, Rproto is the radius of protoplanets, vesc,p is the escape velocity
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from protoplanets, and vrel is the typical relative velocity between asteroids. We also denote

the mass of protoplanets as Mproto = (4/3)πR3
protoρs, where ρs is solid density. The number

density of protoplanets is estimated as

nproto =
1

2πa · bsep · hast

, (4.2)

where a is the orbital semi-major axis, bsep is the orbital separation between protoplanets, and

hast is the scale height of asteroid disk. hast is estimated as easta, where east is the typical

eccentricity of asteroids. Since eastvK = vrel, where vK is the Keplerian velocity, hast is written

as

hast = avrel/vK. (4.3)

The orbital separations between protoplanets are maintained to be several times of the mutual

hill radius (e.g., Kokubo and Ida 2002), and thus bsep is written as

bsep = b̃sep

(2Mproto

3Ms

)1/3
a, (4.4)

where b̃sep is a factor and typically has b̃sep ≈ 10, and Ms is the mass of the sun.

The timescale of the gas damping is estimated to be stopping time. For large asteroids with

the radius Rast = 50 km, gas drag law is described by Newton law. The stopping time is written

as (e.g.,Whipple 1972; Weidenschilling 1977)

ts =
6ρsRast

ρgasvrel
, (4.5)

where ρgas is the density of gas.

Equating Eq. (4.1) and Eq. (4.5), we achieve the relative velocity between asteroids at the

equilibrium as

vrel =300
( Rast

50 km

)1/5(Mproto

MMars

)1/3( a

3AU

)−7/10

×
( ρgas
2× 10−9 g/cm−3

)−1/5( b̃sep
10

)−1/5( ρs
1 g/cm3

)1/5
m/s, (4.6)

where MMars is the mass of Mars and 2×10−9 g/cm3 is the typical gas density obtained from the

minimum mass solar nebula model (Hayashi 1981). Eq. (4.6) shows that the relative velocity

between asteroids is comparable to the escape velocity from asteroids with the radius 50 km
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until the mass of protoplanets grows to be Mars mass. Thus non-destructive impacts mainly

occur when the planet formation is ongoing.

Present Environment

In the present solar system, the impact velocity between asteroids is comparable to the Keple-

rian velocity because of the existence of the planets. The average relative velocity of asteroids is

roughly estimated as
√

e2ave + i2avevK, where eave and iave are the average orbital eccentricity and

inclination, respectively. In the main belt, the Keplerian velocity is vK ≈ 20 km/s. We achieve

the orbital elements of all observed asteroids from Jet Propulsion Laboratory (JPL) Small-

Body Database 1, and the average eccentricity and inclination are calculated as eave = 0.15 and

iave = 0.13 (cf. Ueda et al. 2017). Thus, the average relative velocity is calculated as ≈ 4 km/s.

We will also estimate the distribution of impact velocities between main-belt asteroids ac-

cording to the method for obtaining the relative velocity at the orbital crossing described in

Whitmire et al. (1998) and Kobayashi and Ida (2001). We consider two asteroids 1 and 2

orbiting around the sun. The orbital elements of asteroid 1 and 2 have subscripts of 1 and 2,

respectively. r, f , a, e, i, Ω, and ω represent orbital radius, true anomaly, semi-major axis,

eccentricity, inclination, longitude of ascending node, and argument of pericenter, respectively,

and p = a(1− e2). ∆ω̃ shows the difference of longitude of pericenters of two asteroids and is

defined as ∆ω̃ = ω̃2 − ω̃1 = (Ω2 + ω2)− (Ω1 + ω1).

We assume the inclinations of two asteroids are small and set i1 = i2 = 0, which leads to

the simple condition of the orbital crossing of r1 = r2. Thus the orbital crossing occurs when

( 1

r1
− 1

r2

)
f2=f2,c

= 0 =
1

p1
− 1

p2
+

e1 cos(f2,c −∆ω̃)

p1
− e2 cos f2,c

p2
, (4.7)

where f2,c is the true anomaly of asteroid 2 at the orbital crossing. Note that we have the

relation of f1 = f2 − ∆ω̃ when two asteroids are located on the same line connecting the

asteroids and the sun. The solution for f2,c of Eq (4.7) is given by

cos f2,c =
−AB ± C

√
C2 +B2 − A2

B2 + C2
, (4.8)

where

1https://ssd.jpl.nasa.gov/sbdb query.cgi#x
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A = p2 − p1,

B = e1p2 cos∆ω̃ − e2p1,

C = e1p2 sin∆ω̃. (4.9)

If the orbits of two asteroids intersect each other, Eq. (4.8) has physical solutions, which requires

C2 +B2 − A2 ≥ 0. (4.10)

Note that Eq. (4.8) has two solutions, and thus f2,c has two values if Eq. (4.10) is satisfied.

If Eq. (4.10) is satisfied, the orbits of two asteroids are crossing under the assumption of

i1 = i2 = 0. Then, we assess whether two asteroids collide each other or not in three-dimensional

space when f2 = f2,c and f1 = f2,c − ∆ω̃. The heights of two asteroids from the equatorial

plane of the sun are

z1 = rc sin(f2,c −∆ω̃ + ω1)i1,

z2 = rc sin(f2,c + ω2)i2, (4.11)

where rc is the orbital radius at the orbital crossing given by

rc =
p2

1 + e2 cos f2,c
. (4.12)

Note that we still assume i1 and i2 are small, which leads to sin i1 ≈ i1, cos i1 ≈ 0, sin i2 ≈ i2,

and cos i2 ≈ 0. The collision occurs if |z1 − z2| is smaller than (D1 +D2)/2, where D1 and D2

are the diameters of asteroid 1 and 2, respectively. Here, to increase the number of samples,

we use the more loose condition of

|z1 − z2| < 5(D1 +D2). (4.13)

If Eqs (4.10) and (4.13) are satisfied, we calculate the relative velocity between two asteroids

v12 at the orbital crossing as follows:

v212 = GMs

[(e1 sin(f2,c −∆ω̃)
√
p1

− e2 sin f2,c√
p2

)2
+
(√p1

rc
−

√
p2

rc

)2
+
(i1[cos(f2,c −∆ω̃ + ω1) + e1 cosω1]√

p1
− i2[cos(f2,c + ω2) + e2 cosω2]√

p2

)2]
. (4.14)
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Figure 4.1: Cumulative distribution of impact velocities of possible collisions between main-
belt asteroids. The horizontal axis represents estimated impact velocity, and the vertical axis
represents the fraction of the impact velocity that is smaller than the value in the horizontal
axis. Blow-up figure shows the distribution for the lower impact velocity.

We evaluate whether the orbital crossing occurs or not using Eqs (4.10) and (4.13) for each

pair of all observed asteroids in the main belt, and we calculate possible impact velocity as

Eq (4.14) if Eqs (4.10) and (4.13) are satisfied. The orbital elements of asteroids are obtained

from JPL Small-Body Database. Fig. 4.1 shows the distribution of the possible impact velocity

between main-belt asteroids in the present main belt. The average impact velocity is calculated

as 5 km/s, which is consistent with the rough estimation using the average eccentricity and

inclination. The fraction of the impact velocity smaller than 400m/s is only about 0.2%. The

impact simulations in Section 3.3 show that equal-mass and non-destructive impacts require

vimp < 400m/s, and thus similar-mass impacts in the present environment mainly result in

catastrophic destruction.

4.1.3 Shapes Formed in the Primordial and Present Environments

The impact velocity is comparable to the escape velocity from asteroids with the diameter

D = 100 km in the primordial environment before the formation of Mars-mass protoplanets

(see Section 4.1.2). The asteroids with D > 100 km are mainly the largest bodies among aster-

oids (see Fig. 1.2), and thus they mainly collide with similar-mass or smaller asteroids. As we
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investigated in Sections 3.3 and 3.4.1, similar-mass impacts, especially equal-mass impacts, pro-

duce various (bilobed, spherical, flat, elongated, and hemispherical) shapes including extremely

elongated and flat shapes. High-mass-ratio impacts in the primordial environment merely result

in crater formation or coalescence, and such impacts do not deform target asteroids. Although

high-mass-ratio impacts are more frequent than similar-mass impacts, the shapes of 100 km

asteroids are probably determined by the last similar-mass impacts.

In the present environment, the typical impact velocity is much larger than the escape ve-

locity from 100 km asteroids. The impacts with the impact velocity comparable to the escape

velocity may occur, but the fraction of such impacts is about 0.2%; such impacts rarely occur

(see Fig. 4.1). Relatively similar-mass impacts with the impact velocity much larger than the

escape velocity result in destructive impacts. As we investigated in Section 3.5, destructive

impacts mainly produce spherical and bilobed shapes. Larger mass-ratio impacts may result

in non-destructive impacts with overall deformation of target asteroids. However, as we inves-

tigated in Section 3.4.2, such impacts do not produce the irregular shapes of target asteroids

with c/a ≤ 0.6.

4.2 Comparison with Actual Asteroids

4.2.1 Databases Utilized in Our Analysis

DAMIT

Database of Asteroid Models from Inversion Technique2 (DAMIT: Ďurech et al. 2010) is a

database that mainly includes the shape models of asteroids. The shape models of asteroids

stored in DAMIT are mainly obtained from light curves of asteroids through light curve inver-

sion technique (Kaasalainen and Torppa 2001; Kaasalainen et al. 2001). As of November 2018,

DAMIT provides the shape models of 1,609 asteroids.

Light curve inversion technique accurately measures the shapes of asteroids, at least the axis

ratio b/a of elongated asteroids. For example, b/a of the asteroid Itokawa obtained from the

light curve is about 0.5 (Kaasalainen et al. 2003), while that measured by the in-situ observation

is 0.55 (Fujiwara et al. 2006). Thus the shape models obtained from light curves has enough

accuracy to analyze the axis ratios of asteroids.

The shape models in DAMIT are represented as polyhedrons with triangular surface facets.

For each asteroids, DAMIT provides the file that includes the information of coordinates x,

2http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php
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y, and z on the surface of the shape model. We utilize the coordinates of the surface of the

shape model to derive the axis ratios of asteroids. To measure the axis ratios of the shape

models of asteroids, we follow the bottom-up method (Fujiwara et al. 1978, see also Section

3.2). Note that the coordinates x, y, and z for the most shape models are normalized by the

volume of each shape model, so that we cannot achieve the information of the size of asteroids

from DAMIT.
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Figure 4.2: Orbital elements of the asteroids of which shape models are stored in DAMIT. The
horizontal axis represents the orbital semi-major axis of the asteroids, and the vertical axis
represents the orbital eccentricity of the asteroids.

Figure 4.2 shows the orbital semi-major axis and eccentricity of the asteroids of which shape

models are stored in DAMIT. From Fig. 4.2, we notice that the most asteroids in DAMIT are

the main-belt asteroids, but some of them are the near-Earth asteroids, Hilda asteroids, and

Trojan asteroids.

Figure 4.3 shows the ratio of the number of the asteroids that are included in DAMIT to

that of all observed asteroids. We notice that DAMIT includes more than 50% of the asteroids

with the diameter D larger than 100 km, and thus the shapes of the almost all of the asteroids

≥ 100 km are measured. However, the shapes of only about 10% of asteroids with D > 10 km

are measured. For the asteroids ≤ 10 km, the fraction of the asteroids with known shapes is

less than 1%.
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Figure 4.3: The ratio of the number of DAMIT asteroids to that of all observed asteroids.
The vertical axis represents the fraction, and the horizontal axis represents the diameter of
asteroids.

JPL Small-Body Database

Small-Body Database of Jet Propulsion Laboratory (JPL) provides the orbital and physical in-

formation of the asteroids. The physical information includes the diameter, absolute magnitude,

albedo, and rotation period. We utilize the diameters of asteroids listed in JPL Small-Body

Database to distinguish the shapes of larger asteroids and smaller asteroids.

The diameters of asteroids cannot be determined by solely the absolute magnitude in vis-

ible light, because the absolute magnitude depends on both of the diameter and the albedo,

and albedo is not well determined. Thus, the almost all of the diameters of asteroids in JPL

Small-Body Database are obtained from NEOWISE mission. NEOWISE mission was con-

ducted by the spacecraft Wide-field Infrared Survey Explorer (WISE). WISE observed various

objects including asteroids in infrared wavelengths. The magnitude of asteroids in infrared

wavelength is mainly determined by the temperature of asteroids and not strongly depends on

the albedo. Therefore, if we utilize both the magnitudes in visible and infrared wavelength, we

can accurately determine the diameters of asteroids.
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AstDyS-2

Asteroid Dynamics Site-23 (AstDyS-2) summarizes the orbital information of asteroids. The

information in AstDyS-2 includes that of asteroid families. From this database, we can find

that each asteroid is belonging to any family or not and the name of a family that each asteroid

belongs to. Asteroid families were formed through relatively recent impacts, and thus we

distinguish the asteroids that were affected by recent impacts and those are not affected using

the family information obtained from AstDyS-2.

The family classification of AstDyS-2 is based on Milani et al. (2014). Note that the results

of family classification depend on classification method. Throughout this study, we utilize the

family information obtained from AstDyS-2.

4.2.2 Fraction of Family Asteroids

Asteroids in asteroid families were formed in recent impacts. Although asteroid families are

dissipated with the typical timescale of about 1Gyr, the fraction of family asteroids may tell

us how many asteroids were affected by recent destructive impacts. Thus, we will calculated

the dependence of the fraction of family asteroids on the diameters of asteroids. We use the

information of asteroid families obtained from AstDyS-2 and the diameters of asteroids obtained

from JPL Small Body Database.

Shapes of asteroids in asteroid families were mainly formed through recent destructive im-

pacts. However, the largest bodies of cratering families are not the case because those shapes

were not affected by family-forming impacts. To correctly detect the effect of recent destructive

impacts onto shapes of asteroids, we should remove the largest bodies of cratering families from

our analysis. Here, we consider the families with Mlr/Mpb > 0.8 as cratering families, where

Mlr is the mass of the largest bodies among asteroids in each family and Mpb is the total mass

of each family, i.e., the mass of the parent body. We calculate the ratio Mlr/Mpb using the

diameters of member asteroids as follows:

Mlr

Mpb

=
D3

lr∑
n D

3
n

, (4.15)

where Dlr is the diameters of the largest bodies, Dn is the diameters of member asteroids,

and
∑

n denotes the summation for all member asteroids. Here, we assume the density for all

asteroids is the same. Hereafter, family asteroids mean the asteroids in any families except

3http://hamilton.dm.unipi.it/astdys/index.php?pc=0
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for the largest asteroids in the cratering families, and non-family asteroids mean the largest

asteroids in the cratering families in addition to the asteroids that do not belong to any families.
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Figure 4.4: The fraction of family asteroids. The vertical axis represents the fraction, i.e., the
ratio of the number of family asteroids to that of all asteroids, and the horizontal axis represents
the diameters of asteroids.

Figure 4.4 shows the dependence of the fraction of family asteroids on the diameters of

asteroids. As we notice from Fig 4.4, the fraction is less than 10% for the asteroids with

D > 100 km, which is significantly smaller than that for smaller asteroids ≈ 30%. This is

because the larger asteroids are difficult to be disrupted and the collisions that destroy the

larger asteroids are not frequent. Thus about 90% of asteroids with D > 100 km are probably

not affected by the recent destructive impacts. This is consistent with the collisional lifetime

estimated in O’Brien and Greenberg (2005); the collisional lifetimes for the asteroids > 100 km

are estimated to be about ten times longer than the age of the solar system (see Fig. 1.5), which

means that only about one tenth of asteroids are destructed within the timescale comparable

to the age of the solar system. Therefore, the shapes of larger asteroids may keep those formed

in the primordial environment.

We also notice from Fig 4.4 that the fraction decreases with decreasing the diameters for the

asteroids with D < 10 km. The timescale of the Yarkovsky effect for the asteroids with D =

1km is about ten times longer than the collisional lifetime (e.g.,Morbidelli and Vokrouhlický

2003). Thus this tendency is probably not caused by the dissipation due to the Yarkovsky effect.

Although we have not yet specified the reason of this tendency, we assume that this tendency
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is merely caused by the error of orbital elements or incompleteness of family classification due

to the smaller size of asteroids.

4.2.3 Asteroids Larger Than 100 km

As we showed in Section 4.2.2, the fraction of family asteroids with the diameter D ≥ 100 km

is significantly smaller than that with D < 100 km, which means that the shapes of the larger

asteroids may be formed in the primordial environment. We showed in Section 4.1.2 that low-

velocity impacts in the primordial environment mainly result in non-destructive impacts, while

high-velocity impacts in the present environment mainly result in destructive impacts. Thus,

the comparison between the shapes of non-family and family asteroids with D ≥ 100 km may

suggest the difference of the formation era, which leads to constrain when these asteroids were

formed. We also discuss the comparison between the results of our collisional simulations and

the shapes of actual asteroids.
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Figure 4.5: The axis ratio c/a of the asteroids with the diameters D larger than 100 km. The
vertical axis represents c/a, and the horizontal axis represents the diameter. The blue points
show the non-family asteroids, while the red points show the family asteroids.

Figure 4.5 shows the axis ratio c/a of the non-family and family asteroids with the diameters

> 100 km. All family asteroids, which were affected by recent destructive impacts, have the

axis ratio c/a > 0.6, i.e., they have rounded shapes, while some of non-family asteroids have the

irregular shapes with c/a < 0.6. This may suggest the difference of the formation environment.

However, this tendency is not statistically significant. The number of the family asteroids that
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have the irregular shapes with c/a < 0.6 is zero among eight family asteroids, while the number

of the non-family asteroids that have the irregular shapes with c/a < 0.6 is 12 among 107 non-

family asteroids. The fraction of the irregular shapes of family asteroids is not so different from

that of non-family asteroids.

(a) (b)

(c) (d)

Figure 4.6: Shape distributions of the actual asteroids and the remnants produced through our
simulations. In each panel, the horizontal axis represents the axis ratio c/a, and the vertical
axis represents the axis ratio b/a. The panel (a) shows the shape distribution of the actual non-
family asteroids with D > 100 km, and the panel (b) shows that of the actual family asteroids.
The panels (c) and (d) show those of the remnants produced through our non-destructive and
equal-mass impacts (see Fig. 3.15) and destructive impacts (see Fig. 3.24), respectively.

Figure 4.6a and b show the axis ratios of actual non-family and family asteroids, respectively.

Fig. 4.6b again shows that all of the shapes of the family asteroids with D > 100 km are rounded

shapes with c/a > 0.6, while Fig. 4.6a shows that the shapes of the non-family asteroids include

the extremely elongated shape with b/a ≈ 0.4 or the extremely flat shapes with c/a ≈ 0.4. From

the comparison between the shapes of the remnants produced through our simulations of the

destructive impacts (Fig. 4.6d) and those of actual non-family asteroids (Fig. 4.6a), we notice

that the destructive impacts, especially the unequal-mass impacts, are difficult to produce the



CHAPTER 4. DISCUSSION: COLLISIONAL HISTORY OF ASTEROIDS 92

flat shapes of the actual asteroids with c/a ≈ 0.4. Note that the impacts with q = 1 in

Fig 4.6d has the impact velocity of vimp = 350m/s, which is still difficult to occur in the present

environment. In contrast, Fig. 4.6c shows that non-destructive and equal-mass impacts can

produce flat shapes with c/a ≈ 0.4.

As we discussed in Section 4.1.2, the impacts in the present environment mainly result in

destructive impacts, which do not lead to the formation of flat shapes. In contrast, the impacts

in the primordial environment mainly result in non-destructive impacts, so that the similar-

mass impacts in the primordial environment lead to the formation of flat shapes. Therefore, the

flat shapes of non-family asteroids with D > 100 km are likely to be formed in the primordial

environment before the formation of Jupiter, and remain the same until today.

Family asteroids were formed through recent destructive impacts (see Fig. 1.4). However,

non-family asteroids were not necessarily formed in the primordial environment. They may have

been formed through recent destructive impacts, but they are no longer family asteroids due

to, for example, scattering through mean motion resonances with gas giants. The information

of shapes, especially flat shapes of asteroids, tells us they were surely formed in the primordial

environment through low-velocity impacts.

4.2.4 Asteroids Larger Than 10 km

The fraction of the family asteroids with D > 10 km is much higher than that of the asteroids

with D > 100 km (see Fig. 4.4). Thus, it is less likely that the shapes of the asteroids with

D > 10 km also keep those formed in the primordial environment. However, O’Brien and

Greenberg (2005) show that the collisional lifetimes for the asteroids with D = 10 km are

comparable to the age of the solar system, which suggests that about half of such asteroids

may not experience recent destructive impacts. Moreover, Fig. 4.4 shows that about two third

of the asteroids with D ≈ 10 km still do not belong to any family, which means that they may

not be affected by recent impacts. Thus, we may also find the difference of the shapes between

family and non-family asteroids with D > 10 km.

Figure 4.7 is the same as Fig. 4.5, but for the asteroids with D > 10 km. As we notice

from Fig. 4.7, the difference of c/a between the family and non-family asteroids is not apparent

compared to the asteroids with D > 100 km. The fraction of the asteroids with c/a < 0.6

is similar for the family and non-family asteroids. The number of the family asteroids with

c/a < 0.6 is 120 among 237 family asteroids with D > 10 km; the fraction is 50.6%. The

number of the non-family asteroids with c/a < 0.6 is 255 among 591 non-family asteroids
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Figure 4.7: Axis ratio c/a of the asteroids with D > 10 km. The vertical axis represents c/a,
and the horizontal axis represents the diameter. The blue points show the non-family asteroids,
while the red points show the family asteroids.

with D > 10 km; the fraction is 43.1%. Both non-destructive and destructive impacts produce

irregular shapes with smaller c/a; non-destructive impacts produce various irregular shapes

(see Fig. 3.15), and destructive impacts produce bilobed shapes (see Fig. 3.24). This suggests

that we cannot distinguish the family and non-family asteroids only with the ratio c/a.

As we investigated in Section 3.5, the destructive impacts are difficult to produce flat shapes.

Thus the fraction of flat shapes of family asteroids may be different from that of non-family

asteroids. Fig. 4.8 shows the shape distribution of the asteroids with D > 10 km. Here, we

define the flat shapes as the shape with c/a < 0.6 and b/a > 0.8, and count the number of the

flat shapes for non-family and family asteroids. We find 50 non-family asteroids with the flat

shapes among 591 non-family asteroids; the fraction of the flat shapes is 8.5%. In contrast, we

find 9 family asteroids with the flat shapes among 237 family asteroids; the fraction is 3.8%.

Therefore, the fraction of the flat shapes of the non-family asteroids is more than twice as high

as that of the family asteroids; the fraction of the flat shapes of the family asteroids, which are

affected by recent destructive impacts, is significantly small. It is consistence with the result

of our simulations that destructive impacts are difficult to produce flat shapes.

Our simulations predict that destructive impacts do not produce flat shapes, and thus we

expect that the family asteroids do not include flat shapes. However, Fig. 4.8 shows that there

are several family asteroids with flat shapes. This may be caused by observational errors; it
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Figure 4.8: Shape distribution of the asteroids with D > 10 km. The horizontal axis represents
the ratio c/a, and the vertical axis represents the ratio b/a. The blue points show the non-family
asteroids, while red points show the family asteroids.

might be difficult to distinguish flat shapes and elongated shapes solely by light curves because

both flat and elongated shapes cause brightness variations due to rotations, and flat shapes of

the family asteroids may be elongated shapes.

Although we have not yet specified the reason why the family asteroids with D > 10 km

include flat shapes, there is one possible mechanism. The dispersion speed of family asteroids

just after the shattering of parent bodies is estimated to be ∼ 100m/s (e.g.,Michel et al. 2001);

the dispersion speed is comparable to the impact velocity of non-destructive impact in the

primordial environment. Shuttered bodies return to the place where family-forming impacts

occur after one or more revolutions around the sun, and they may collide with each other with

low impact velocities, which may result in the formation of flat shapes of family asteroids if

colliding two bodies have similar masses.

The reason why the family asteroids with D > 100 km do not include flat shapes is expected

to be rack of similar-mass family members. The family asteroids with D > 100 km are mainly

the largest bodies among family members. The number of family members increases with

decreasing the size of members, and thus the number of similar-mass members for D > 100 km

is small: Similar-mass impacts between family members with D > 100 km are difficult to occur,

which may lead to the rack of flat family asteroids. We counted the number of similar-mass

asteroids (the mass ratio is larger than 0.5) among the members in the same families for eight
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family asteroids with D > 100 km ((5) Astraea, (15) Eunomia, (423) Diotima, (85) Io, (104)

Klymene, (24) Themis, (171) Ophelia, and (221) Eos). The number of similar-mass members

is as follows: 1 for (5) Astraea, 0 for (15) Eunomia, 0 for (423) Diotima, 1 for (85) Io, 3 for

(104) Klymene, 0 for (24) Themis, 4 for (171) Ophelia, and 5 for (221) Eos. Thus the number

of similar-mass family members is in fact small for the family asteroids with D > 100 km.

In contrast, the number of similar-mass members for the family asteroids with D > 10 km is

relatively large because they are not the largest bodies among asteroids in the same families. We

also counted the number of similar-mass members for nine family asteroids with the flat shapes

and D > 10 km ((135) Hertha, (355) Gabriella, (1040) Klumpkea, (1286) Banachiewicza, (2962)

Otto, (6905) Miyazaki, (3261) Tvardovskij, (608) Adlfine, and (1836) Komarov). Six asteroids

among them indeed have large number of similar-mass members: 133 for (1286) Banachiewicza,

9 for (2962) Otto, 62 for (6905) Miyazaki, 90 for (3261) Tvardovskij, 151 for (608) Adlfine,

and 8 for (1836) Komarov. Thus the flat shapes of these family asteroids are possible to be

formed through low-velocity and similar-mass impacts between member asteroids. However,

the number of similar-mass members for three of them is very small: 0 for (135) Hertha, 0 for

(355) Gabriella, and 3 for (1040) Klumpkea. We do not know any mechanism to produce the

flat shapes of these family asteroids, and they may be interlopers that were non-family asteroids

in past.

4.2.5 Direction of Rotation Axis

We investigated collisional formation of elongated and flat shapes through equal-mass and low-

velocity impacts in Section 3.3. Our simulations predict that the rotation axis of elongated

bodies are perpendicular to the major axis and those of flat bodies are perpendicular to the

minor axis if these bodies are formed through equal-mass and low-velocity impacts. To verify

our prediction, we investigate the angles between rotation axis and the major or minor axis of

actual asteroids.

Figure 4.9a shows the angles between the rotation axis and the major axis of the elongated

asteroids with b/a < 0.6 and c/a < 0.6. From Fig. 4.9a, we notice that all the elongated

asteroids have the rotation axis almost perpendicular to the major axis, which means that the

rotation axis almost aligns with the minor axis. The directions of the rotation axis of the

elongated asteroids are consistent with those of the elongated remnants formed through our

simulations of the equal-mass and low-velocity impacts (see e.g., Fig. 3.2). From Fig. 4.9b, we

notice that the almost all of the flat asteroids have the rotation axis aligned to the minor axis.
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(a) (b)

Figure 4.9: Angles between rotation axis and the major or minor axis of the elongated or flat
asteroids, respectively. The horizontal axes for two panels show the diameters of the asteroids.
In the panel (a), the vertical axis represents the angles between the rotation axis and the major
axis of the elongated asteroids with b/a < 0.6 and c/a < 0.6. In the panel (b), the vertical axis
represents the angles between the rotation axis and the minor axis of the flat asteroids with
b/a > 0.8 and c/a < 0.6.

The directions of the rotation axis of the flat remnants produced through our simulations of

the equal-mass and low-velocity impacts are perpendicular to the minor axis (see Fig. 3.8), and

thus the directions of the rotation axis of the actual flat asteroids are inconsistent with the

results of our simulations.

In Section 4.2.3, we argued that the flat asteroids with D > 100 km were formed in the

primordial environment before the formation of Jupiter through similar-mass and low-velocity

impacts (see Fig. 3.8). The rotation axis of the produced flat remnants is perpendicular to the

minor axis and they rotate around the major axis. Rotation energy of the rotation around

the major axis is larger than that around the minor axis, and thus internal energy dissipation

causes gradual alignment of the rotation axis with the minor axis. Internal energy dissipation

is mainly caused by the deformation stress due to the gyroscopic torque and the stress due to

the deformation of the centrifugal bulge during wobble motions (Burns and Safronov 1973).

Note that the flat remnant in Fig. 3.8 also does the wobble motion with much longer period

than the duration of the simulation. Burns and Safronov (1973) estimated the timescale of the

alignment as

τalign =
µQ

ρK2
3R

2
astω

3
rot

, (4.16)
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where µ is the rigidity of asteroids, ρ is its density, Rast is its radius, and ωrot is its rotational

angular frequency. Q is the material’s quality factor, which is roughly defined as the ratio of

the total stored strain energy to the energy loss per cycle of wobble motion. K2
3 is a shape

factor, and K2
3 ≈ 10−2 for spherical bodies and K2

3 ≈ 0.1[(a−c)/c]2 for irregular shaped bodies.

With the probable parameters shown in Burns and Safronov (1973), the alignment timescale is

estimated to be

τalign = 1.0× 106
( Rast

50 km

)−2( Trot

8 hour

)3
year, (4.17)

where Trot is the rotation period. Thus, the timescale for the alignment of the rotation axis

with the minor axis is about 1Myr, which is much shorter than the age of the solar system.

Therefore, we suggest that the flat asteroids with D > 100 km were formed in the primordial

environment and initially had the rotation axis perpendicular to the minor axis, but the rotation

axis now aligns with the minor axis due to the internal energy dissipation.



Chapter 5

Application: Extremely Elongated
Shape of 1I/′Oumuamua

As we showed in Section 3.3, equal-mass and non-destructive impacts can produce extremely

elongated shapes of asteroids. Recently, an interstellar object 1I/′Oumuamua that has the

extremely elongated shape was discovered. In this chapter, we will introduce the results of our

simulations that investigate detailed impact conditions to form extremely elongated asteroids.

Almost all parts of this chapter are based on Sugiura et al. (2018b).

5.1 Introduction of 1I/′Oumuamua

1I/′Oumuamua was discovered by Pan-STARRS1 on October 2017 (Meech et al. 2017). It

is recognized to be an interstellar object because of its high orbital eccentricity e ≈ 1.2. A

considerable fraction of planetesimals are ejected from planetary systems during the planet

formation stage (Bottke et al. 2005; Raymond et al. 2018; Jackson et al. 2018); thus it is

no wonder that interstellar objects exist. Moreover, the velocity at infinity v∞ ≈ 26 km/s of

1I/′Oumuamua is close to relative velocities of stars in the solar neighborhood. Therefore this

object is likely to come from a nearby planetary system (Meech et al. 2017; de la Fuente Marcos

and de la Fuente Marcos 2017).

The absolute magnitude of 1I/′Oumuamua is HV ≈ 22mag, which corresponds to a mean

radius of about 100m with albedo 0.04 (Meech et al. 2017; Bolin et al. 2018; Bannister et al.

2017). The rotation period of 1I/′Oumuamua is about 8 hours (e.g., Bolin et al. 2018). Its

spectral feature is consistent with that of D-type asteroids or comets (Meech et al. 2017).

Although no cometary activity is confirmed through imaging observations (Meech et al. 2017;

Ye et al. 2017; Jewitt et al. 2017), non-gravitational acceleration of 1I/′Oumuamua is measured

98
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later (Micheli et al. 2018), which may be the result of mild cometary activity. Thus the

composition of 1I/′Oumuamua is still under debate.

An interesting characteristic of 1I/′Oumuamua is the large light curve amplitude of about

2.5mag (Meech et al. 2017). If this light curve variation is caused by the change of cross

section due to rotation around the minor axis, 1I/′Oumuamua has an extremely elongated

shape. Although its dimensions are not yet fully specified because of the short observational

period, the ratio of the intermediate axis length b to the major axis length a is estimated in

several studies as follows: b/a < 0.19 (Bannister et al. 2017), 0.10 < b/a < 0.29 (Bolin et al.

2018), b/a < 0.22 (Drahus et al. 2018), b/a < 0.20 (Fraser et al. 2018), b/a < 0.33 (Knight

et al. 2017), and b/a ≈ 0.1 (Meech et al. 2017). Therefore, the ratio b/a is estimated to be

smaller than about 0.3.

Several mechanisms to produce extremely elongated objects were suggested in the past.

Impact experiments in laboratory show that some fragments among several thousands may

have b/a < 0.3 (Michikami et al. 2016). Tidal disruption may also produce elongated objects

(Ćuk 2018). Simulations for the tidal destruction of 3 km-sized rubble piles reproduced with

N -body particles show that about 0.5% of resultant bodies produced in all simulations have

b/a < 0.3 (Walsh and Richardson 2006). Simulations for the spin deformation of rubble piles

show that rubble piles with spin states close to equilibrium limits may evolve to elongated

shapes (Richardson et al. 2005). Recently it is suggested that extremely elongated objects may

be formed through abrasion due to micro particle collisions (Domokos et al. 2009, 2017).

Collisions of bodies can also form elongated objects (e.g., Leinhardt et al. 2000, 2010; Sugiura

et al. 2018a). In this chapter, we will investigate the possibility to form extremely elongated

objects through collisions in more detail. Here, we will focus on impact simulations with

much smaller (50m sized) asteroids to reproduce extremely elongated objects with the size

similar to that of 1I/′Oumuamua, and constrain detailed impact conditions to form shapes

with b/a < 0.3: we focus on the formation of extremely elongated objects. Here, we define

remnants with b/a < 0.3 as extremely elongated remnants (hereafter EERs).

5.2 Initial Conditions of Simulations for 1I/′Oumuamua

We use almost the same methods and initial conditions as in Chapter 3. Here, we describe

different points from Chapter 3.
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To reproduce collisional formation of elongated objects with size similar to 1I/′Oumuamua,

the radius of target asteroids is set to Rt = 50m. We use about 50,000 SPH particles for a

target asteroid because Fig. 3.4 shows that this resolution is sufficient to achieve the converged

value of axis ratios of the largest remnants.

We assume that asteroids have primordial property before they melt due to the decay energy

of 26Al, i.e, they do not have the tensile strength of solid body and shear strength is determined

by the friction of granular material (Richardson et al. 2002). Thus damage parameters D of all

SPH particles are initially set to unity.

We use the tillotson equation of state and the parameter set for basalt described in Benz and

Asphaug (1999) as in Chapter 3. However, there is a problem if we straightforwardly utilize the

original tillotson parameters for basalt. A time step determined by the sound speed of basaltic

body Cs ≈ 3 km/s is calculated to be ∼ 10−3 s, which is much smaller than the time scale of

gravitational reaccumulation ≈ 1, 600 s estimated in Eq. (3.1). Thus it is difficult to complete a

simulation in an acceptable computation time with the original value of Cs for basalt. However,

if impact velocities are much smaller than Cs and shear strength is determined by the friction,

results of simulations do not depend on Cs. The validity of this simplification is explained as

follows: Motion of each SPH particle is determined by the self-gravity, pressure distribution,

and deviatoric stress distribution. If impact velocities are much smaller than the sound speed,

pressure distribution is determined by the self-gravity because pressure induced by the impact

is immediately relaxed. Here, deviatoric stress is determined by the friction, and frictional

force is proportional to the pressure; deviatoric stress distribution is also determined by the

self-gravity. Therefore, motion of each SPH particle is solely determined by the self-gravity,

and thus the sound speed does not affect results of impacts.

We conduct simulations of the impact with the mass ratio of impacting two bodies q = 1,

the impact angle θimp = 15◦, the angle of friction ϕd = 40◦, the impact velocity vimp = 20 cm/s,

and two different values of sound speed, or tillotson parameters of ATil and BTil. Figs. 5.1a and

b show snapshots of the impact outcomes with ATil = BTil = 2.67× 104 Pa and ATil = BTil =

2.67 × 105 Pa, respectively. From Fig. 5.1, we find that the results of the simulations become

almost the same even if we use different values of ATil or BTil.

Thus we set ATil and BTil to 2.67 × 104 Pa, which corresponds to Cs ≈ 3m/s. This sound

speed is still much larger than impact velocities treated in our simulations ≤ 40 cm/s. The

same approach utilizing reduced sound speed is adopted in Jutzi and Asphaug (2015).
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(b)(a)

Figure 5.1: Snapshots of the impact with Rt = 50m, q = 1, ϕd = 40◦, θimp = 15◦, and
vimp = 20 cm/s at t = 1.0 × 105 s. The panel (a) shows the result of the simulation with
ATil = BTil = 2.67 × 104 Pa, and the panel (b) shows that with ATil = BTil = 2.67 × 105 Pa.
This figure is the same as Fig. 9 of Sugiura et al. (2018b).

5.3 Results of Simulations for 1I/′Oumuamua

We will introduce the results of simulations with various mass ratios q, impact angles θimp,

impact velocities vimp, and friction angles ϕd. Table 5.1 summarizes the conditions of the

simulations.

q ϕd(
◦) vimp(cm/s) ∆vimp(cm/s) θimp(

◦) ∆θimp(
◦) Remark

1 40 12− 36 3 5− 30 5 Fig. 5.3a
1 40 15− 30 1 7.5− 20 2.5 Fig. 5.3b
1 50 12.5− 40 2.5 5− 40 5 Fig. 5.5
1 30 12.5− 35 2.5 5− 20 5 Fig. 5.6
0.5 50 15− 35 2 10− 35 5 Fig. 5.9
0.25 50 15− 55 4 10− 35 5 Fig. 5.10

Table 5.1: Conditions of the simulations. ∆vimp and ∆θimp show the increments of vimp and
θimp in the parameter survey, respectively.

5.3.1 Equal-Mass Impacts with ϕd = 40◦

Figure 5.2 shows snapshots of the impact simulation with q = 1, θimp = 15◦, vimp = 20 cm/s,

and ϕd = 40◦. The collision induces elongation of the body (Fig.5.2b,c), which leads to the

formation of an EER (Fig.5.2d,e). The ratio b/a of the largest remnant is 0.24. The rotation

period of the largest remnant is 9.36 hours, which is comparable to that of 1I/′Oumuamua. As

shown in Fig. 5.2, we confirm that the shape of the EER is stable at least until 1.0 × 105 s,

which is correspoding to about three rotations of this object.
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100 m(a) 0 s (b) 2000 s

(c) 6000 s (d) 20000 s (e) 100000 s

Figure 5.2: Snapshots of the impact simulation with q = 1, θimp = 15◦, vimp = 20 cm/s, and
ϕd = 40◦ at 0.0 s(a), 2.0× 103 s(b), 6.0× 103 s(c), 2.0× 104 s(d), and 1.0× 105 s(e). This figure
is the same as Fig. 1 of Sugiura et al. (2018b).

Figure 5.3 shows b/a of the largest remnants, which mainly become the most elongated

objects, formed through impacts with q = 1 and ϕd = 40◦. From Fig. 5.3a, we find that

EERs are formed through impacts with θimp ≈ 15◦ and vimp ≈ 15− 20 cm/s. A more detailed

parameter survey (Fig. 5.3b) shows that impacts with vimp sin θimp ≈ 5.1 cm/s form EERs. Here,

all the largest remnants with b/a < 0.3 have the mass of ≈ 2.0Mtarget, which means almost

complete merging.

According to the results in Section 3.3, the formation of elongated bodies needs large shear

velocity vimp sin θimp, which induces elongation of asteroids. However, impacts with too large

vimp sin θimp result in splitting of colliding bodies and do not lead to the formation of EERs.

vimp sin θimp ≈ 5.1 cm/s is sufficiently large to form extremely elongated objects and sufficiently

small to form bodies with ≈ 2.0Mtarget. Even if vimp sin θimp ≈ 5.1 cm/s, impacts with vimp ≥
25 cm/s mainly result in catastrophic destruction, and those with θimp ≥ 20◦ mainly result in

hit-and-run collisions; both of them are not likely to form elongated objects. Therefore impacts

with θimp ≤ 20◦, vimp ≤ 25m/s and vimp sin θimp ≈ 5.1 cm/s form EERs for q = 1 and ϕd = 40◦.

The impact with θimp = 15◦ and vimp = 24 cm/s produces an EER that is formed from the

third largest remnant as shown in Fig 5.4. The impact with the larger impact velocity compared

to that in Fig. 5.2 produces a large ejecta curtain (Fig. 5.4b), and then a filamentary structure

is formed through reaccumulation of fragments to the direction perpendicular to the impact
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(a)

(b)

Figure 5.3: b/a of the largest remnants resulting from various impact simulations with q = 1
and ϕd = 40◦. The horizontal axis represents vimp, and the vertical axis represents θimp. The
blue regions show parameters forming EERs, which have b/a < 0.3. In the panel (a), we vary
the parameters within 12 cm/s ≤ vimp ≤ 36 cm/s and 5◦ ≤ θimp ≤ 30◦ with the increments of
3 cm/s and 5◦. In the panel (b), we vary the parameters within 15 cm/s ≤ vimp ≤ 30 cm/s and
7.5◦ ≤ θimp ≤ 20◦ with the increments of 1 cm/s and 2.5◦. The black curve in the panel (b)
represents vimp sin θimp = 5.1 cm/s. This figure is the same as Fig. 2 of Sugiura et al. (2018b).

velocity vector (Fig. 5.4c). Gravitational fragmentation of the filament leads to the formation

of an EER (Fig. 5.4d,e), which has the mass of 0.24Mtarget and b/a of 0.27. However, the other

EERs are obtained from the largest remnants.
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100 m

(a) 0 s (b) 2000 s

(c) 10000 s (d) 20000 s (e) 100000 s

Figure 5.4: Snapshots of the third largest remnant formed through the impact with q = 1,
θimp = 15◦, vimp = 24 cm/s, and ϕd = 40◦ at 0.0 s(a), 2.0×103 s(b), 1.0×104 s(c), 2.0×104 s(d),
and 1.0× 105 s(e). This figure is the same as Fig. 3 of Sugiura et al. (2018b).

 15  20  25  30  35  40

impact velocity vimp [cm/s]

 5

 10

 15

 20

 25

 30

 35

 40

im
pa

ct
 a

ng
le

 θ
im

p 
[d

eg
re

e]

 0.1

 0.3

 0.5

 0.7

 0.9

ax
is

 r
at

io
 b

/a

Figure 5.5: b/a of the largest remnants resulting from various impact simulations with q = 1
and ϕd = 50◦. We vary the parameters within 12.5 cm/s ≤ vimp ≤ 40 cm/s and 5◦ ≤ θimp ≤ 40◦

with the increments of 2.5 cm/s and 5◦. The black curve shows vimp sin θimp = 7.4 cm/s. This
figure is the same as Fig. 4 of Sugiura et al. (2018b).

5.3.2 Dependence on the Friction Angle

Figure 5.5 represents b/a of the largest remnants formed through various impacts with q = 1

and ϕd = 50◦. b/a does not seem to be smooth function of vimp and θimp because of a smaller

number of simulations in almost the same parameter space as that of Fig. 5.3b. The formation
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of EERs occurs in a wider parameter space than that for ϕd = 40◦. We find that the parameters

producing EERs concentrate around vimp sin θimp ≈ 7.4 cm/s with θimp ≤ 30◦ and vimp ≤ 35m/s.

Note that EERs are also formed from smaller remnants in four parameters with θimp ≈ 25◦ and

vimp ≈ 20− 30 cm/s in the impacts with ϕd = 50◦.
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Figure 5.6: b/a of the largest remnants resulting from various impact simulations with q = 1
and ϕd = 30◦. We vary the parameters within 12.5 cm/s ≤ vimp ≤ 35 cm/s and 5◦ ≤ θimp ≤ 20◦

with the increments 2.5 cm/s and 5◦. The cross-hatched region shows the impacts with Mlr <
0.15Mtarget, and thus the shapes resulting from these impacts are not measured.

We also conducted impact simulations with q = 1, ϕd = 30◦ as shown in Fig. 5.6. Although

the ranges of impact velocities and angles are almost the same as those in Fig. 5.3 or Fig. 5.5,

no EERs are formed through impacts with ϕd = 30◦. Thus the formation of EERs needs the

friction angle ϕd ≥ 40◦.

Let us roughly estimate the critical friction angle required for the formation of EERs the-

oretically. As shown in Fig. 5.2 or Fig. 5.4, EERs are formed through collisional elongation

of asteroids and reaccumulation of fragments from the direction of the long axis. In reaccu-

mulation phase, if the friction angle is small, the friction cannot stop fragments with small

displacement, and resultant shapes become more round shapes. Total kinetic energy of frag-

ments that compose an EER during reaccumulation phase is estimated as

Ekin =
1

2
Mrv

2
esc,r, (5.1)

where Mr is the mass of this EER and vesc,r is the escape velocity from this EER. According
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to Sugiura et al. (2018a), total dissipated energy due to the friction with displacement L is

estimated as

Edis = πR2
rLµdPc,

Pc =
2

3
πGρ20R

2
r , (5.2)

where G is the gravitational constant and Rr and Pc are the mean radius and the central

pressure of this EER, respectively. Equating Ekin and Edis, we achieve

L

Rr

≈ 1

µd

. (5.3)

If L/Rr ≫ 1, i.e., µd ≪ 1, EERs are not formed because of large deformation due to reaccu-

mulation of fragments. Thus the formation of EERs roughly requires µd larger than unity, or

ϕd larger than 45◦. Interestingly, this condition solely depends on µd, and thus it is applicable

to impacts with different scale.

100 m(a) 0 s (b) 2000 s

(c) 6000 s (d) 20000 s (e) 100000 s

Figure 5.7: Snapshots of the impact simulation with q = 1, θimp = 15◦, vimp = 22.5 cm/s, and
ϕd = 60◦ at 0.0 s(a), 2.0× 103 s(b), 6.0× 103 s(c), 2.0× 104 s(d), and 1.0× 105 s(e).

Impacts with larger friction angles generally form more irregular shapes. We found one

impact simulation that forms the EER with b/a = 0.16. Fig. 5.7 shows the result of the impact

simulation with θimp = 15◦, vimp = 22.5 cm/s, and the friction angle ϕd = 60◦. The snapshots

of this figure are similar to those of Fig. 5.2, and the impact with the slightly larger impact
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velocity and the slightly larger friction angle forms the more elongated shape with b/a = 0.16,

which explains the axis ratio of 1I/′Oumuamua estimated in Bannister et al. (2017) or Fraser

et al. (2018). Although the friction angle of ϕd = 60◦ is too large for usual terrestrial granular

material (Heiken et al. 1991), granular material on small bodies may achieve the angle of repose

of 60◦ owing to the existence of cohesion.

5.3.3 Dependence on the Mass Ratio

100 m(a) 0 s (b) 2000 s

(c) 6000 s (d) 20000 s (e) 100000 s

Figure 5.8: Snapshots of the largest remnant formed through the impact with q = 0.5, θimp =
20◦, vimp = 25 cm/s, and ϕd = 50◦ at 0.0 s(a), 2.0× 103 s(b), 6.0× 103 s(c), 2.0× 104 s(d), and
1.0× 105 s(e). This figure is the same as Fig. 5 of Sugiura et al. (2018b).

Figure 5.8 shows snapshots of the impact with q = 0.5, ϕd = 50◦, θimp = 20◦, and vimp =

25 cm/s. The asymmetric destruction of asteroids occurs because of the unequal-mass impact

(Fig. 5.8b). The collision induces elongation (Fig. 5.8c), which leads to the formation of an EER

(Fig. 5.8d,e). This remnant has the mass of 1.1Mtarget and b/a of 0.27.

Figure 5.9 represents b/a of the largest remnants in various impact simulations with q = 0.5

and ϕd = 50◦. We find that the three impacts with θimp = 20◦ and vimp ≈ 25 cm/s form EERs.

We also conducted impact simulations with q = 0.25 and ϕd = 50◦ as shown in Fig. 5.10.

Although impacts in this parameter range include various types of collisions (merging, hit-and-

run, and catastrophic destruction), no impacts with q = 0.25 form EERs. Overall deformation

of target asteroid requires q ∼ 1 because collisions with small impactors induce local deforma-

tion with the size comparable to that of impactors. Therefore the formation of EERs requires
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Figure 5.9: b/a of the largest remnants resulting from various impacts with q = 0.5 and
ϕd = 50◦. We vary the parameters within 15 cm/s ≤ vimp ≤ 35 cm/s and 10◦ ≤ θimp ≤ 35◦ with
the increments of 2 cm/s and 5◦. This figure is the same as Fig. 6 of Sugiura et al. (2018b).

 15  19  23  27  31  35  39  43  47  51  55

impact velocity vimp [cm/s]

 10

 15

 20

 25

 30

 35

im
pa

ct
 a

ng
le

 θ
im

p 
[d

eg
re

e]

 0.1

 0.3

 0.5

 0.7

 0.9

ax
is

 r
at

io
 b

/a

Figure 5.10: b/a of the largest remnants resulting from various impacts with q = 0.25 and
ϕd = 50◦. We vary the parameters within 15 cm/s ≤ vimp ≤ 55 cm/s and 10◦ ≤ θimp ≤ 35◦ with
the increments of 4 cm/s and 5◦.

q ≥ 0.5.
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5.4 Discussion: Environments for 1I/′Oumuamua For-

mation

In Figs 5.3, 5.5, and 5.9, the parameters forming EERs are limited and the collisional probability

for EER formation is low. However, the formation of extremely elongated objects through other

processes is also difficult. For example, if four spherical asteroids with equal size stick together in

a completely straight line, an object with b/a = 0.25 is formed. To make a body with b/a < 0.25

through this process, it requires at least three times of impacts with very limited collisional

directions and velocities; such probability might be smaller than that of EER formation due

to elongation through single collision. Thus, we focus on EER formation through collisional

elongation, and estimate the dynamical environment for such collisions.

Impact velocities required to produce EERs (15 cm/s ≤ vimp ≤ 40 cm/s) are much smaller

than typical random velocity of objects orbiting around a star ∼ 1 km/s (e.g., the mean im-

pact velocity at the main belt ≈ 5 km/s). To realize such small impact velocities, dynamically

cold environment in protoplanetary disks is necessary. Here, we focus on turbulence and grav-

itational interaction with large bodies as the sources of dynamical excitation of asteroids in

protoplanetary disks, and give some constraints for environment such that vimp ≤ 40 cm/s.

It should be noted that the impact velocity to form extremely elongated objects may be

increased if we additionally consider cohesion of granular material. The cohesion of lunar soil

is estimated to be 1 kPa (Heiken et al. 1991). In contrast, central pressure of an asteroid with

the radius 50m is about 10Pa, which gives the typical value of frictional stress. Thus impact

velocity for collisional elongation may become ten times larger if cohesion is included. However,

cohesion may prevent the elongation due to its large tensile strength. The effect of cohesion

will be investigated in our future works.

5.4.1 Turbulence

We will estimate the relative velocity between asteroids with the radius of s = 100m and the

density of ρs = 1g/cm3 in a protoplanetary disk with a central star that has the same mass

M⊙ and luminosity as the Sun. The sound speed Cs,g, the density at the mid plane ρg, and

the surface density Σg of gas at orbital radius r are given by those of the minimum mass solar

nebula model (Hayashi 1981):
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Cs,g = 1.0× 105
( r

1 au

)−1/4

cm/s,

ρg = 1.4× 10−9
( r

1 au

)−11/4

g/cm3, (5.4)

Σg = 1.7× 103
( r

1 au

)−3/2

g/cm2. (5.5)

Asteroids are dragged by gas. A time scale of velocity variation due to gas drag is called

the stopping time ts and defined by the ratio of momentum to gas drag force. ts for various

gas drag laws is expressed as

ts =



ρss
ρg v̄th

for s < 9
4
λ (Epstein law)

4ρss2

9ρgλv̄th
for Re < 1 (Stokes law 1)

43/5ρss8/5

9ρgλ3/5v̄
3/5
th ∆v3/5

for 1 < Re < 800 (Stokes law 2)
6ρss
ρg∆v

for Re > 800 (Newton law)

, (5.6)

where v̄th =
√
π/8Cs,g is the mean thermal velocity of molecules, λ = mH2/ρgσH2 is the

mean free path of gas particles, Re = 4s∆v/v̄thλ is the Reynolds number, ∆v shows relative

velocity between gas and asteroids, mH2 = 3.4 × 10−24 g is the mass of a hydrogen molecule,

and σH2 = 2.0 × 10−15cm2 is the cross section of a hydrogen molecule (e.g.,Whipple 1972;

Weidenschilling 1977; Birnstiel et al. 2010). In protoplanetary disks, ∆v is mainly determined

by the difference between the Keplerian velocity vK =
√

GM⊙/r and the rotation velocity of

gas with pressure-gradient support. From the relation of isothermal gas pressure P = ρgC
2
s,g

and Eq. (5.5),

∆v =
1

2

r

ρgvK

dP

dr
= 5.4× 103 cm/s, (5.7)

and λ and Re are expressed as

λ = 1.2
( r

1 au

)11/4
cm,

Re = 2.9× 103
( r

1 au

)−5/2

. (5.8)

From Eqs. (5.5), (5.7), and (5.8), r dependence of ts is expressed as
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ts =


2.2× 101

(
r

1AU

)3/2
Ω−1

K for r > 19AU

3.6× 103
(

r
1AU

)−1/4

Ω−1
K for 1.6AU < r < 19AU

1.8× 103
(

r
1AU

)5/4
Ω−1

K for r < 1.6AU

, (5.9)

where ΩK is the Keplerian angular frequency. The gas drag is determined by the Epstein law

for r > 19AU, the Stokes law for 1.6AU < r < 19AU, and the Newton law (high Reynolds

number) for r < 1.6AU. For tsΩK ≫ 1, vrel controlled by turbulent stirring is given by (Cuzzi

et al. 2001; Ormel and Cuzzi 2007)

vrel ≈ Cs,g

√
3α(ΩKts)−1, (5.10)

where α is the strength of turbulence in Shakura-Sunyaev prescription. Figure 5.11 shows

vrel as a function of r and α, and we find that α < 5 × 10−4 for 1AU < r < 20AU and

α < 5× 10−4(r/20AU)2 for r > 20AU are roughly required for vimp ≤ 40 cm/s.
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Figure 5.11: Relative velocity between asteroids with the radius 100m induced by turbulence in
a disk with the minimum mass solar nebula model. The horizontal axis represents the distance
from the central star, and the vertical axis represents the Shakura-Sunyaev α parameter. The
red and blue solid curves show the contours of vrel = 40 cm/s and vrel = 15 cm/s, respectively.
This figure is the same as Fig. 7 of Sugiura et al. (2018b).

Magnetorotational instability (MRI) is a dominant source of turbulence. MRI is active

in vicinities of a central star with high ionized fraction (r < 0.1AU) or sufficiently distant

from a central star with low surface density of gas (r > 10AU), and MRI produces strong
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turbulence with α ∼ 10−2 (e.g., Flock et al. 2017). MRI non-active regions (dead zones) are

roughly considered to be the mid-plane with 0.1AU < r < 10AU (e.g., Kretke et al. 2009).

The strength of turbulence in dead zones is estimated to be 10−6 < α < 10−3 (e.g., Flock et al.

2017; Ilgner and Nelson 2008; Mori et al. 2017). Thus impacts with vimp ≤ 40 cm/s between

100m-sized asteroids could occur in dead zones with 1AU < r < 10AU.

On the other hand, observations of a protoplanetary disk suggest that α for the outer disk is

smaller than values expected from MRI turbulence. Pinte et al. (2016) show that apparent gaps

of HL Tau require α ∼ 10−4. Note that such a small α is favorable for creating the observed

multiple ring-like structure in HL Tau through secular gravitational instability (Takahashi and

Inutsuka 2014, 2016; Tominaga et al. 2018). Thus impact velocities of vimp ≤ 40 cm/s are

realized in protoplanetary disks such as HL Tau.

5.4.2 Size of Larger Bodies

Gravitational stirring by larger bodies increases the relative velocity between surrounding

smaller asteroids. We will estimate the sizes of larger bodies that result in relative veloci-

ties between 100m-sized asteroids less than 40 cm/s.

We consider two groups of bodies: One of them is small asteroids with the radius 100m,

and the other one is large bodies with the radius R. Through viscous stirring of large bodies,

the relative velocity of small asteroids u increases at a rate of (Ida and Makino 1993)

1

u

du

dt

∣∣∣∣
vs

∼ +ΩK
Σ

ρsR

(vesc
u

)4
, (5.11)

where Σ is the surface density of large bodies and vesc is the escape velocity from a large body.

The relative velocity decreases through gas drag at a rate of

1

u

du

dt

∣∣∣∣
gd

∼ − 1

ts
, (5.12)

which is inversely proportional to the stopping time. The balance between the increasing rate

Eq. (5.11) and the decreasing rate Eq. (5.12) gives the relative velocity at a steady state

u =
(tsΩKΣ

ρsR

)1/4
vesc. (5.13)

Figure 5.12 shows the relative velocity in the minimum mass solar nebula. Here, we put 10−2

times the solid surface density for Σ. From Fig. 5.12, we find that R < 2 km for r ≈ 1AU and
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R < 7 km for r > 20AU are required to achieve u < 40 cm/s. Therefore, the formation of the

extremely elongated shape of 1I/′Oumuamua through a collision requires an extremely young

protoplanetary disk without bodies larger than 7 km.
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Figure 5.12: Relative velocity between asteroids with the radius 100m induced by large bodies
with the radius R in a disk with the minimum mass solar nebula model. The horizontal axis
represents the distance from the central star, and the vertical axis represents the radius of
bodies R. The red and blue solid curves show the contours of u = 40 cm/s and u = 15 cm/s,
respectively. This figure is the same as Fig. 8 of Sugiura et al. (2018b).

1I/′Oumuamua is thought to be ejected from another planetary system, and the ejection

requires large scattering sources such as gas giants or central binary stars. However, such scat-

tering sources significantly increase the relative velocity between asteroids. Thus the shape of

1I/′Oumuamua was probably formed in a place without large bodies, which may be in an outer

protoplanetary disk, and then 1I/′Oumuamua drifted inward to the vicinity of gas giants or

central binary stars to be ejected (e.g., Raymond et al. 2011, 2018; Jackson et al. 2018). Ejection

by central binary stars may be favorable to explain lack of cometary activity of 1I/′Oumuamua

because close encounter with binary stars evaporate volatile substances (Jackson et al. 2018).

In contrast, an early stellar encounter ejects asteroids from an outer disk (e.g., Kobayashi et al.

2005).
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5.4.3 Survivability of Extremely Elongated Shapes Through Ejec-
tion Processes

As we discussed in the previous subsection, 1I/′Oumuamua is thought to be ejected from

another planetary system. However, ejection requires close encounter with gas giants or binary

stars, and the extremely elongated shape of 1I/′Oumuamua may be destroyed due to tidal force.

Here, we discuss the survivability of the shape of 1I/′Oumuamua through ejection processes.

Let us estimate the Roche radius for a prolate object with the major axis length a, the inter-

mediate axis length b, and the density ρm. For simplicity, we consider the prolate object orbiting

around a central body with the density ρm, the radius RM , and the mass M = (4/3)πR3
Mρm.

The prolate body is efficiently deformed when the major axis is pointing toward the central

body, and tidal force per unit mass at the surface of the prolate object is

Ft =
GMa

d3
, (5.14)

where d is the distance between the prolate object and the central body. According to Chan-

drasekhar (1969), self-gravitational force per unit mass at the surface on the major axis is

calculated as

Fs = πGρmA1a, (5.15)

where

A1 =
1− e2

e3
ln
(1 + e

1− e

)
− 2

1− e2

e2
,

e =

√
1− b2

a2
. (5.16)

Equating Ft and Fs, we achieve the Roche radius dR as

dR = RM
3

√
4

3
A−1

1 . (5.17)

Even for an extreme shape with b/a = 0.1, dR = 3.2RM ; the Roche radius is comparable to the

radius of the central body.

Binary stars eject asteroids from inside of the critical orbital semi-major axis ac (Holman

and Wiegert 1999). An equal-mass binary with zero orbital eccentricity and orbital separation
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of ab has ac = 2.4ab. Since ab is AU scale, ac is much larger than radii of stars; asteroids are

ejected before they experience tidal disruption.

In protoplanetary disks, asteroids drift inward due to angular momentum loss through gas

drag. The orbital eccentricities of asteroids that drift to the vicinity of gas giants increase

through moderate close encounters with gas giants. The distance of close encounters required

for the increase of the eccentricities is about the Hill radius (Ohtsuki et al. 2002), which is much

larger than the Roche radius. The asteroids with the eccentricities larger than 0.4 are efficietly

ejected by gas giants (Bandermann and Wolstencroft 1971; Higuchi et al. 2006), and the typical

distance of close encounters that eject asteroids is also about the Hill radius (Fernandez 1978;

Ida 1990). In the case of Jupiter, Hill radius is about 760 times larger than the Jupiter radius,

and thus asteroids rarely experience tidal disruption when they are ejected by gas giants.



Chapter 6

Summary and Future Prospects

6.1 Summary

Asteroids in the present solar system are the fossils of planetesimals that existed in the pri-

mordial solar system. Thus the information obtained from asteroids is very useful to reveal the

history of the solar system, and such information is also used to reveal the collisional history of

asteroids themselves, i.e., how impacts they experienced or when they were formed. Asteroids

have variety of shapes and we can directly connect the shapes of asteroids to the collisional

history of asteroids since asteroidal shapes are mainly formed through collisions.

We firstly developed the numerical simulation method for rocky body collisions. Then

we investigated the shapes of asteroids formed through various impacts through numerical

simulations. We also analyzed the shapes of actual asteroids and compare them with the

results of our simulations. Finally we applied our simulations to the formation of the extremely

elongated shapes of 1I/′Oumuamua. In this chapter, we will summarize our study.

6.1.1 Development of the Numerical Simulation Method

Our simulation method is based on elastic dynamics because rocky bodies have elastic properties

when deformation is small. We developed our simulation code for rocky body impacts based

on the SPH method for elastic dynamics because impact phenomena involve large deformation

and particle methods are suitable to compute such phenomena. However, the standard SPH

method has the serious problem in tension dominated regions, which is the tensile instability

and causes numerical instability in tension dominated regions. We developed the new method to

solve the tensile instability based on the Godunov SPH method (Inutsuka 2002). We evaluated

the stability of the Godunov SPH method through the linear stability analysis and clarified
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the stability with several interpolation methods of density distribution as shown in Table 2.1

(Sugiura and Inutsuka 2016, 2017). We also found that we can conduct numerical simulations

without the tensile instability if we select stable interpolation methods, which depend on the

sign of pressure. Our test simulations show that the Godunov SPH method for elastic dynamics

well reproduces the dynamics of elastic bodies (Figs. 2.1, 2.2 or Sugiura and Inutsuka 2017).

However, asteroids are not elastic bodies but rocky bodies and we need appropriate methods

to describe impact phenomena. The equation of state that is appropriate to describe impact

phenomena is different from that of elastic dynamics. Many studies investigating impact phe-

nomena with the SPH method utilize the tillotson equation of state (e.g., Genda et al. 2012;

Jutzi and Asphaug 2015), and thus we also utilize the tillotson equation of state. Large de-

formation of rocky bodies causes the fracturing, which relieves tensile forces of intact rock.

We included the fracture model for brittle solid described in Benz and Asphaug (1995). Fric-

tion between completely fractured rock, or granular material, is very important to describe

the shapes of rubble pile bodies such as the asteroid Itokawa. Thus we included the friction

model for granular material described in Jutzi (2015). Our test simulations show that our

simulation code well reproduces the dynamics of granular material (Fig. 2.4). To reproduce the

collisional formation of the shapes of rubble pile bodies, we also need to describe reaccumulation

of fragments ejected by impacts, and thus we included the self gravity.

Catastrophic collisions produce fine remnants. To reproduce and investigate the shapes

of such fine remnants, we need to conduct high-resolution simulations. To do so, we need to

parallelize our simulation code to utilize supercomputers. Thus we parallelized our simulation

code utilizing FDPS developed by RIKEN. As we notice from Fig. 2.5, our simulation code

successfully achieves the high parallelization efficiency even if we utilize 2,000 CPU cores.

6.1.2 Asteroidal Shapes Formed Through Collisions

DAMIT provides the shape models of asteroids obtained through light curve observations of

asteroids, and almost all of the shapes of the asteroids with the diameters larger than 100 km

are already measured (Fig. 4.3). Moreover, the collisional lifetimes of asteroids larger than

100 km are much longer than the age of the solar system (Fig. 1.5), and many of them are

not probably affected by recent impacts (Fig. 4.4). Therefore, the information of the asteroids

larger than 100 km is desirable to investigate the long collisional history of those asteroids, and

in this study we mainly focus on the shapes of the asteroids larger than 100 km.
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Impact Velocity in the History of the Solar System

In the early planet formation era, planetesimals are under orderly growth until the largest

bodies grow up to be the size of about 100 km. In this stage, the impact velocities between

planetesimals are comparable to or slightly larger than the escape velocity from planetesimals

(Kobayashi et al. 2016). Then, several planetesimals larger than 100 km grow up to be proto-

planets rapidly under runaway growth, and evolutionary stage moves on to oligarchic growth

stage. The impact velocities between planetesimals are controlled by the mass of protoplanets,

and the impact velocity is kept to be as low as several 100m/s until the mass of protoplanets

becomes that of Mars (see Eq. (4.6)). Since the escape velocity from the planetesimal with the

diameter of 100 km is about 100m/s, the impact velocities between 100 km-sized planetesimals

are always comparable to the escape velocity until the mass of protoplanets reaches to that of

Mars. Therefore, the impacts in the primordial environment mainly result in non-destructive

impacts.

In contrast, the impact velocities between asteroids in the present solar system are much

larger than the escape velocities from asteroids because of the existence of gas giants. The

average impact velocity in the main belt is about 5 km/s, and the occurrence rate of the impact

velocity less than 400m/s is only about 0.2% (Fig. 4.1). Therefore, the impacts in the present

environment mainly result in destructive impacts.

Shapes Formed Through Various Impacts

We investigated the shapes of remnants produced through various impacts of asteroids by means

of numerical simulations. We consider the impacts between basaltic asteroids that initially have

spherical shapes and no rotation. The diameter of a target asteroid, i.e., larger asteroid among

impacting two asteroids, is fixed to be 100 km, and we vary the impact velocity, the impact

angle, and the mass ratio of impacting two asteroids.

Firstly, we investigated the shapes of the largest remnants produced through non-destructive

impacts that have the mass of the largest remnants larger than 0.4Mtarget, where Mtarget is the

mass of initial target asteroids. Note that fine remnants other than the largest remnants are

also produced through non-destructive impacts, and we expect that the shapes of such fine

remnants are similar to those produced through destructive impacts because those shapes are

formed through gravitational reaccumulation of fine fragments ejected by impacts, which is the

same mechanism observed in destructive impacts. Our simulations of the equal-mass impacts
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with the impact velocity comparable to the escape velocity show that these impacts produce

various shapes including extremely flat shapes of the largest remnants (Fig. 3.15). However, we

notice that the impacts with smaller mass ratios of impacting two asteroids are more difficult to

produce irregular shapes (Fig. 3.18), and the impacts with the mass ratio of 1/64 only produce

the spherical largest remnants with the ratio of the minor to major axis lengths larger than 0.7

(Fig. 3.19).

Secondly, we investigated the shapes of fine remnants produced through destructive im-

pacts by means of high-resolution simulations. We conducted four simulations of destructive

impacts with various mass ratios and impact velocities. The highest impact velocity among

four simulations is about 2 km/s, which is close to the average impact velocity in the present

solar system. As a result, we found that the destructive impacts mainly produce spherical and

bilobed shapes of fine remnants (Fig. 3.22). We also found that flat shapes are difficult to be

formed through destructive impacts (Fig. 3.24).

Shapes Formed in Primordial and Present Environment

The impact velocities between planetesimals in the planet formation era are comparable to

the escape velocity from planetesimals. Thus similar-mass impacts in the primordial environ-

ment forms various shapes including extremely flat shapes. Although similar mass impacts

between 100 km-sized asteroids in the present solar system are very rare, similar-mass impacts

between planetesimals in the primordial environment are more frequent compared to the present

environment because Jupiter formation depleted planetesimals. Even in the primordial envi-

ronment, impacts with large mass difference of two impacting planetesimals are more frequent

than similar-mass impacts. However, low-velocity impacts with large mass difference do not

result in the deformation of target planetesimals. Since 100 km-sized planetesimals are mainly

the largest bodies among planetesimals in the primordial environment (Kobayashi and Tanaka

2018), the shapes of 100 km-sized planetesimal are mainly determined by similar-mass impacts,

which leads to the formation of various shapes including flat shapes.

The impact velocities between asteroids in the present solar system are much larger than

the escape velocity from asteroids, which mainly result in destructive impacts. Our simulations

of destructive impacts show that these impacts only produce spherical and bilobed shapes.

Even in the present environment, the impacts with large mass difference of impacting two

asteroids may not result in destructive impacts. However, our simulations with the mass ratio

of 1/64 only produce the spherical largest remnants even with the impact velocity realized in
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the present solar system. Therefore, we expect that impacts in the present solar system do not

produce flat shapes of asteroids.

6.1.3 Comparison with Actual Asteroids

From the results of our simulations, we predict that destructive impacts that are realized in

the present solar system are difficult to produce flat shapes. To verify this prediction, we

investigated the shapes of actual asteroids obtained from DAMIT. Asteroid families are mainly

formed by recent destructive impacts, and thus we can assess the effect of destructive impacts

on the asteroidal shapes through the comparison between the shapes of family and non-family

asteroids. The information of asteroid families is obtained from AstDyS-2.

As a result of the investigation, we found that the family asteroids with the diameters larger

than 100 km do not include flat asteroids, while non-family asteroids larger than 100 km include

six flat asteroids with c/a < 0.6 and b/a > 0.8 (Fig. 4.6). This is consistent with the results

of our simulations that the destructive impacts do not produce flat shapes. Thus, the flat

shapes of the asteroids with the diameters larger than 100 km were formed in the primordial

environment and remain the same until today. This conclusion is consistent with the collisional

lifetime estimated in O’Brien and Greenberg (2005).

In contrast, the family asteroids with the diameters larger than 10 km include flat asteroids.

These flat asteroids in asteroid families may be formed through low-velocity collisions between

similar-sized members in the same family. However, the fraction of flat asteroids with c/a < 0.6

and b/a > 0.8 shows the clear difference between the family and non-family asteroids. The

fraction of the flat shapes for the non-family asteroids is 8.5%, while that for family asteroids

is 3.8% (Fig. 4.8); the fraction of the flat shapes for the non-family asteroids is more than twice

as large as that for family asteroids. This difference also suggests that destructive impacts are

difficult to produce flat asteroids.

6.1.4 Formation of Extremely Elongated Shape of 1I/′Oumuamua

As shown in Fig. 5.2, collisions can form extremely elongated shapes of asteroids. Recently,

Meech et al. (2017) discovered the interstellar asteroid 1I/′Oumuamua that has the extremely

elongated shape. Owing to the large amplitude of the light curve of 1I/′Oumuamua, the axis

ratio b/a of this object is estimated to be 0.3 or smaller, and the nominal value of b/a is

considered to be 1/6. To investigate detailed impact conditions to form extremely elongated
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remnants (EERs) with b/a < 0.3 and the size similar to that of 1I/′Oumuamua, we conducted

impact simulations with 50m-sized rubble pile targets. We varied the impact velocity, the

impact angle, the mass ratio of impacting two asteroids, and the friction angle and searched

for the impact conditions to form EERs.

As a result, we found that the formation of EERs roughly requires the impact velocity

smaller than 40 cm/s (Fig. 5.5), the impact angle smaller than 30◦ (Fig. 5.5), the mass ratio

larger than 0.5 (Figs. 5.9 and 5.10), and the friction angle larger than 40◦ (Figs. 5.5 and 5.6).

The most difficult condition to be realized is the impact velocity. The realization of such low

impact velocity requires dynamically extremely cold environment such as in a protoplanetary

disk. We estimated the required condition of such protoplanetary disk in terms of turbulence

and the size of large planetesimals. As a result, we found that the impact velocity smaller

than 40 cm/s is realized in the environments with Shakura-Sunyaev α < 10−4 such as in MRI

dead zones (Fig. 5.11) and without planetesimals larger than 7 km (Fig. 5.12). Small size of

planetesimals requires the environments in an extremely young protoplanetary disk. Thus,

1I/′Oumuamua might have been formed in such an extremely young protoplanetary disk, then

might have been ejected from the planetary system due to, for example, a stellar encounter,

and then visited our solar system.

6.2 Future Prospects

6.2.1 Application to Other Phenomena

Cratering

In this study, we focus on the collisions that deform overall structures of asteroids. However, as

we notice from surfaces of terrestrial objects such as the moon, collisions also produce craters.

Since collisions due to smaller objects are more frequent than those between similar-mass bodies,

craters give us the opportunity to statistically discuss the collisional history in the solar system.

There are various types of craters. Small craters are generally the simple craters that have

bowl-like structures. Large craters have, in contrast, more complex structures such as central

peaks or ring-like structures. Some celestial objects have craters that cover the large fraction

of the surfaces of objects. For example, Phobos, the satellite of Mars, has Stickney crater on

its surface (e.g., Bruck Syal et al. 2016). The size of Stickney crater ≈ 9 km is comparable

to the size of Phobos ≈ 22 km. Craters are not necessarily symmetric but some craters have

asymmetric structures, which are considered to be formed by oblique impacts (Goeritz et al.
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2009) or impacts to surface slopes (Krohn et al. 2014). These variety of crater types give

us more detailed clues to reveal impact conditions that form craters or surface conditions of

celestial bodies.

Although there are numerous works on the formations of craters through experimental

(e.g., Housen and Holsapple 1999; Michikami et al. 2014) or numerical (e.g., Jutzi et al. 2010;

Potter et al. 2018) methods, knowledge for the formations of complex craters or asymmet-

ric craters is limited. In the case of numerical simulations, the investigations of asymmetric

craters need three-dimensional simulations. However, three-dimensional simulations of crater

formations are difficult because of high-computational costs. Since our simulation code can be

applied to the simulations of crater formations and are suitable for high-resolution simulations

owing to the parallelization, the crater formation is a good target of our future works.

Tidal Disruption

Tidal disruption of asteroids due to close encounters with planets also changes asteroidal shapes.

Some studies argue that the extremely elongated shape of 1I/′Oumuamua is formed through

tidal disruption (e.g. Ćuk 2018). Although close encounters that cause tidal disruption are rare

because of the smallness of the Roche radius, the constraint on the shapes of asteroids formed

though tidal disruption leads to more detailed constraint on the origin of asteroids.

Walsh and Richardson (2006) well investigated the properties of tidal disruption in terms

of the formation of binary asteroids through numerous simulations. However, shapes of rem-

nants produced through tidal disruption are not well investigated so far. Since tidal disruption

includes complex processes of approach to planets, disruption, and leaving from planets, nu-

merical simulations are unique method to investigate tidal disruption. Our simulation code is

applicable to tidal disruption problems easily.

Rotational Deformation

The spacecraft Hayabusa 2 recently clarified the diamond-like shape, or the top shape, of the

asteroid Ryugu. There are other examples of asteroids that have top shapes. The target

of OSIRIS-REx mission, the asteroid Bennu, also has the top shape. These top shapes are

considered to be formed by rotational deformation due to the acceleration of rotation caused

by the YORP effect (Walsh et al. 2008). The equatorial ridge of the asteroid Ryugu is also

considered to be formed by the rotation of the asteroid.

Although Walsh et al. (2008) showed that top shapes are formed by rotations, we have not
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yet known the detailed dependence of internal structures or properties such as the friction angle

of granular material on the shapes of asteroids produced by rotations. Since the shapes formed

by rotations may depend on internal structures such as the existence of rigid cores or the values

of the friction angle or cohesion, the detailed investigations of rotational deformation leads to

not only constrain internal structures or properties of granular material but also constrain the

formation processes of asteroids. Thus rotational deformation is one of the targets of our future

works.

6.2.2 Addition of Other Models

Cohesion

The equation for shear strength of granular material is composed of two terms. One of them is

the term that is proportional to confine pressure, and the other one is the constant term that is

corresponding to the shear strength at zero confine pressure. The latter term is corresponding

to the cohesion of granular material. The typical strength of the cohesion is about 1 kPa

(Heiken et al. 1991), which is comparable to the central pressure of 1 km-sized asteroids. For

the simulations of the collisional deformation of asteroids larger than 10 km, the cohesion is

negligible because the confine pressure due to the gravity is so large. However, the cohesion may

play significant roles for the simulations for asteroids smaller than 1 km or small structures such

as mountains on asteroids. Especially, the cohesion probably affects the formation of extreme

shapes of minor bodies such as the extremely elongated shape of 1I/′Oumuamua. We have not

yet introduced the model of the cohesion to our simulation code, and thus we will include the

cohesion referring to, for example, Alduán and Otaduy (2011) in our future works.

Porosity

Some rocky materials such as pumice have the micro porosity, that is, they have void spaces

inside of themselves. The materials that compose asteroids, e.g., chondrites, also have porosity.

The mean value of porosity of chondrites is about 10% (Britt et al. 2002). This porosity may

affect the results of impacts because crushing of porous material also dissipates impact energy.

Jutzi et al. (2008) introduced the effect of crushing of micro porosity to the SPH simulations.

Their porosity model is based on the P-α model (Herrmann 1969; Carroll and Holt 1972), where

distension parameter α, or porosity, is determined by the pressure. Jutzi (2015) showed that

the inclusion of the porosity model increases the catastrophic disruption threshold Q∗
RD by

about factor two. Thus the porosity affects at least how impacts are destructive. We have
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not yet investigated the dependence of the porosity on the shapes of asteroids formed through

impacts, so that we will also introduce the porosity model to our simulation code.

6.2.3 Comparison with Particle Based Codes

We conducted the simulations of catastrophic disruption only with the SPH method. How-

ever, simulation methods for fluid dynamics including the SPH method have a limitation of

time step, that is, the CFL condition. Time step determined by the CFL condition is gener-

ally much smaller than the timescale of gravitational reaccumulation. Thus, some researches

utilize particle based codes to simulate gravitational reaccumulation phase (e.g.,Michel and

Richardson 2013; Schwartz et al. 2018).

Except for the self gravity, the equations utilized in the SPH method and particle based

codes are completely different. Moreover, the SPH method includes additional dissipation due

to the artificial viscosity, while particle based codes do not include such additional dissipation.

Although we expect that the shapes of remnants produced in reaccumulation phase of catas-

trophic disruption are not affected by the difference of simulation methods because the shapes

are mainly controlled by the self gravity, we should take note of the difference of simulation

methods. We also should note that the difference of the definition of the friction angle. The

friction angle in the SPH method means that of granular material, while the friction angle in

particle based codes means that between modeled particles. This difference of the definition

may cause the difference of the shapes of produced remnants. In our future works, we will

directly compare the results of the same impact obtained from both simulation methods.
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Appendix A

Extension of Godunov SPH Method to
Elastic Dynamics

In this chapter, we will summarize the equations for the Godunov SPH method for elastic

dynamics. This chapter is mainly based on Sugiura and Inutsuka (2016) and Sugiura and

Inutsuka (2017).

A.1 Equations for Godunov SPH Method

The equation of continuity is the same as that for the standard SPH method (Eq. (2.19)) because

the difference of the equation of continuity does not affect the stability of the SPH method (see

Sugiura and Inutsuka 2017).

The equation of motion (EoM) is defined by the convolution of Eq. (2.8). Note that we use

the Gaussian kernel (Eq. (2.12)) in the Godunov SPH method. The acceleration of the i-th

particle is expressed as

dvi
dt

α

≡
∫

dvα(x)

dt
W (|x− xi|, h)dx =

∫
1

ρ(x)

∂

∂xβ
σαβ(x)W (|x− xi|, h)dx. (A.1)

The right hand side of Eq. (A.1) is transformed using Eq. (2.16) and integration by parts as

dvαi
dt

=
∑
j

mj

∫
σαβ(x)

ρ2(x)

[ ∂

∂xβ
i

− ∂

∂xβ
j

]
W (|x− xi|, h)W (|x− xj|, h)dx. (A.2)

Similarly, the equation of energy (EoE) is defined by the convolution of Eq. (2.10) and is

expressed as

126
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dui

dt
≡
∫

du(x)

dt
W (|x− xi|, h)dx =

∫
1

ρ(x)
σαβ(x)

∂

∂xβ
vα(x)W (|x− xi|, h)dx. (A.3)

The right hand side of Eq. (A.3) is transformed through integration by parts as

∫
1

ρ(x)
σαβ(x)

∂

∂xβ
vα(x)W (|x− xi|, h)dx

=

∫
1

ρ(x)

∂

∂xβ
(σαβ(x)vα(x))W (|x− xi|, h)dx+

∫
1

ρ(x)
vα(x)

∂

∂xβ
σαβ(x)W (|x− xi|, h)dx.

(A.4)

Here, we use the following approximation:

∫
1

ρ(x)
vα(x)

∂

∂xβ
σαβ(x)W (|x− xi|, h)dx ≈

∫
1

ρ(x)
vαi

∂

∂xβ
σαβ(x)W (|x− xi|, h)dx. (A.5)

Using Eqs. (2.16), (A.5), and integration by parts, we can transform Eq. (A.4) into

dui

dt
=
∑
j

mj

∫
σαβ(x)

ρ2(x)
[vα(x)− vαi ]

[ ∂

∂xβ
i

− ∂

∂xβ
j

]
W (|x− xi|, h)W (|x− xj|, h)dx. (A.6)

Finally, we formulate the time-development equation for Sαβ/ρ according to the formulation

of the induction equation for magnetic field described in Iwasaki and Inutsuka (2011). We

simply differentiate Sαβ/ρ and obtain

d

dt

(Sαβ

ρ

)
=

1

ρ

dSαβ

dt
− Sαβ

ρ2
dρ

dt
. (A.7)

We substitute Eqs. (2.6) and (2.9) into Eq. (A.7) and obtain

d

dt

(Sαβ

ρ

)
= 2µ

( ϵ̇αβ
ρ

− 1

3
δαβ

ϵ̇γγ

ρ

)
+

Sαγ

ρ
Rβγ +

Sβγ

ρ
Rαγ +

Sαβ

ρ
ϵ̇γγ. (A.8)

Note that (∂/∂xγ)vγ = ϵ̇γγ. We again define the time derivative of Sαβ/ρ of the i-th particle

by the convolution of Eq. (A.8):

d

dt

(Sαβ

ρ

)
i
≡
∫ [ d

dt

(Sαβ

ρ

)]
(x)W (|x− xi|, h)dx

=

∫ [
2µ
( ϵ̇αβ(x)

ρ(x)
− 1

3
δαβ

ϵ̇γγ(x)

ρ(x)

)
+

Sαγ(x)

ρ(x)
Rβγ(x) +

Sβγ(x)

ρ(x)
Rαγ(x) +

Sαβ(x)

ρ(x)
ϵ̇γγ(x)

]
W (|x− xi|, h)dx. (A.9)
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The right hand side of Eq. (A.9) is composed of the following terms (ϵ̇αβ and Rαβ are represented

by the sums of velocity gradients):

∫
1

ρ(x)

∂vα(x)

∂xβ
W (|x− xi|, h)dx, (A.10)∫

Sα
′
β
′
(x)

ρ(x)

∂vα(x)

∂xβ
W (|x− xi|, h)dx, (A.11)

where α, β, α
′
, and β

′
show arbitrary direction appearing in each term of Eq. (A.9). We notice

that Eq. (A.11) is almost the same as the right hand side of Eq. (A.3), and thus we can do the

same transformation as Eqs. (A.4), (A.5), and (A.6):

∫
Sα

′
β
′
(x)

ρ(x)

∂vα(x)

∂xβ
W (|x− xi|, h)dx

=
∑
j

mj

∫
Sα

′
β
′
(x)

ρ2(x)
[vα(x)− vαi ]

[ ∂

∂xβ
i

− ∂

∂xβ
j

]
W (|x− xi|, h)W (|x− xj|, h)dx. (A.12)

Using Eq. (2.11), Eq. (2.16), ∂vαi /∂x
β = 0, and the partial integration, Eq. (A.10) is transformed

as

∫
1

ρ(x)

∂vα(x)

∂xβ
W (|x− xi|, h)dx

=

∫
1

ρ(x)

∂

∂xβ
(vα(x)− vαi )W (|x− xi|, h)dx

= −
∫

(vα(x)− vαi )
∂

∂xβ

(W (|x− xi|, h)
ρ(x)

)
dx

=
∑
j

mj

∫
1

ρ2(x)
(vα(x)− vαi )

[ ∂

∂xβ
i

− ∂

∂xβ
j

]
W (|x− xi|, h)W (|x− xj|, h)dx. (A.13)

To evaluate the integrals in Eqs. (A.2), (A.6), (A.12), and (A.13), we make interpolated

functions for physical quantities, especially the density. Here, a new convenient coordinate

system is defined for the integration. We have the origin of the coordinate system at (xi+xj)/2,

and the s-axis is defined to be parallel to the vector xi − xj. s⊥ denotes the component

perpendicular to the s-axis of a vector x. The vector eij ≡ (xi −xj)/|xi −xj| is defined to be

the unit vector parallel to the s-axis, and ∆sij ≡ |xi−xj| as the distance between the i-th and

j-th particles.
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Essentially, Eqs. (A.2), (A.6), (A.12), and (A.13) are composed of the integration shown as

∫
f(x)

ρ2(x)
W (|x− xi|, h)W (|x− xj|, h)dx, (A.14)

where f(x) is an arbitrary physical quantity. Here, the weighted averaged physical quantity f ∗
ij

is defined as

∫
f(x)

ρ2(x)
W (|x−xi|, h)W (|x−xj|, h)dx = f ∗

ij

∫
1

ρ2(x)
W (|x−xi|, h)W (|x−xj|, h)dx. (A.15)

If we interpolate f(x) linearly in the direction parallel to eij and constant in the direction

perpendicular to eij, f
∗
ij is expressed as

f ∗
ij =

fi + fj
2

+ s∗ij
fi − fj
|xi − xj|

, (A.16)

s∗ij =

∫ ∞

−∞

√
2

h
√
π

s

ρ2(s)
exp
(
−2s2

h2

)
ds. (A.17)

Then, ρ−2(r) is expanded linearly in the direction perpendicular to eij as

ρ−2(x) ≈ ρ−2(s) + s⊥ · ∇ρ−2(s). (A.18)

Note that the second term of Eq. (A.18) vanishes through the integration due to the symmetric

property of the kernel function. Eq. (A.15) is transformed using Eq. (A.18) as

∫
f(x)

ρ2(x)
W (|x− xi|, h)W (|x− xj|, h)dx = f ∗

ijV
2
ijW (|xi − xj|,

√
2h), (A.19)

where

V 2
ij =

∫ ∞

−∞

√
2

h
√
π

1

ρ2(s)
exp
(
−2s2

h2

)
ds. (A.20)

To evaluate the integrals of Eqs. (A.17) and (A.20), we interpolate 1/ρ(s) using the density

and its gradients of the i-th and j-th particles. For the convenience, we define the specific

volume as V (s) = 1/ρ(s) and calculate the specific volume and its gradients of the i-th particle

as
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Vi =
1

ρi
,

∂Vi

∂xα
i

= − 1

ρ2i

∂ρi
∂xα

i

= − 1

ρ2i

∑
j

mj
∂

∂xα
i

W (|xi − xj|, h),

∂2Vi

∂xα
i ∂x

β
i

=
∑
j

mj

ρj

∂Vj

∂xα
j

∂

∂xβ
i

W (|xi − xj|, h). (A.21)

We prepare three interpolation methods, that is, the linear, the cubic spline, and the quintic

spline interpolation. For the linear interpolation, V (s) is expressed as

V (s) = Cijs+Dij, (A.22)

where

Cij =
Vi − Vj

∆sij
,

Dij =
Vi + Vj

2
. (A.23)

Then we achieve the expressions of V 2
ij and s∗ij for the linear interpolation as

V 2
ij,linear =

1

4
h2C2

ij +D2
ij,

s∗ij,linear =
h2CijDij

2V 2
ij,linear

. (A.24)

For the cubic spline interpolation, V (s) is expressed as

V (s) = Aijs
3 +Bijs

2 + Cijs+Dij, (A.25)

where
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Aij = −2
Vi − Vj

∆s3ij
+

V
′
i + V

′
j

∆s2ij
,

Bij =
1

2

V
′
i − V

′
j

∆sij
,

Cij =
3

2

Vi − Vj

∆sij
− 1

4
(V

′

i + V
′

j ),

Dij =
1

2
(Vi + Vj)−

1

8
(V

′

i − V
′

j )∆sij,

V
′

i = eαij
∂Vi

∂xα
i

,

V
′

j = eαij
∂Vj

∂xα
j

. (A.26)

Then we achieve the expressions of V 2
ij and s∗ij for the cubic spline interpolation as

V 2
ij,cubic =

15

64
h6A2

ij +
3

16
h4(2AijCij +B2

ij) +
1

4
h2(2BijDij + C2

ij) +D2
ij,

s∗ij,cubic =
(15/32)h6AijBij + (3/8)h4(AijDij +BijCij) + (1/2)h2CijDij

V 2
ij,cubic

. (A.27)

Finally, for the quintic spline interpolation, V (s) is expressed as

V (s) = Aijs
5 +Bijs

4 + Cijs
3 +Dijs

2 + Eijs+ Fij, (A.28)

where

Aij = 6
Vi − Vj

∆s5ij
− 3

V
′
i + V

′
j

∆s4ij
+

1

2

V
′′
i − V

′′
j

∆s3ij
,

Bij = −1

2

V
′
i − V

′
j

∆s3ij
+

1

4

V
′′
i + V

′′
j

∆s2ij
,

Cij = −5
Vi − Vj

∆s3ij
+

5

2

V
′
i + V

′
j

∆s2ij
− 1

4

V
′′
i − V

′′
j

∆sij
,

Dij =
3

4

V
′
i − V

′
j

∆sij
− 1

8
(V

′′

i + V
′′

j ),

Eij =
15

8

Vi − Vj

∆sij
− 7

16
(V

′

i + V
′

j ) +
1

32
(V

′′

i − V
′′

j )∆sij,

Fij =
1

2
(Vi + Vj)−

5

32
(V

′

i − V
′

j )∆sij +
1

64
(V

′′

i + V
′′

j )∆s2ij, (A.29)
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and

V
′′

i = eαije
β
ij

∂2Vi

∂xα
i ∂x

β
i

,

V
′′

j = eαije
β
ij

∂2Vj

∂xα
j ∂x

β
j

. (A.30)

Then we achieve the expressions of V 2
ij and s∗ij for the quintic spline interpolation as

V 2
ij,quintic =

945

1024
h10A2

ij +
105

256
h8(2AijCij +B2

ij) +
15

64
h6(2AijEij + 2BijDij + C2

ij)

+
3

16
h4(2BijFij + 2CijEij +D2

ij) +
1

4
h2(2DijFij + E2

ij) + F 2
ij,

s∗ij,quintic =
(945
512

h10AijBij +
105

128
h8(AijDij +BijCij) +

15

32
h6(AijFij +BijEij + CijDij)

+
3

8
h4(CijFij +DijEij) +

1

2
h2EijFij

)
/V 2

ij,quintic. (A.31)

Here, we introduce the final forms of EoM, EoE, and the time-evolution equation for the

deviatoric stress tensor for the Godunov SPH method. EoM is expressed as

dvαi
dt

=
∑
j

2mjσ
αβ∗
ij V 2

ij

∂

∂xβ
i

W (|xi − xj|,
√
2h), (A.32)

where

σαβ∗
ij = −P ∗

ijδ
αβ + Sαβ∗

ij ,

Sαβ∗
ij =

Sαβ
i + Sαβ

j

2
+ s∗ij

Sαβ
i − Sαβ

j

|xi − xj|
. (A.33)

EoE is expressed as

dui

dt
=
∑
j

2mjσ
αβ∗
ij V 2

ij(v
α∗
ij − vα∗i )

∂

∂xβ
i

W (|xi − xj|,
√
2h), (A.34)

where

vα∗i = vαi +
1

2
∆t

dvαi
dt

, (A.35)

for the conservation of the total energy. The time-evolution equation of the deviatoric stress

tensor is expressed as
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d

dt

(Sαβ

ρ

)
i
=
∑
j

2µ
(
ϵ̇αβρ,ij −

1

3
δαβ ϵ̇γγρ,ij

)
+ Sαγ∗

ij Rβγ
ρ,ij + Sβγ∗

ij Rαγ
ρ,ij + Sαβ∗

ij ϵ̇γγρ,ij, (A.36)

where,

ϵ̇αβρ,ij ≡ mjV
2
ij

[
(vα∗ij − vαi )

∂

∂xβ
i

+ (vβ∗ij − vβi )
∂

∂xα
i

]
W (|xi − xj|,

√
2h),

Rαβ
ρ,ij ≡ mjV

2
ij

[
(vα∗ij − vαi )

∂

∂xβ
i

− (vβ∗ij − vβi )
∂

∂xα
i

]
W (|xi − xj|,

√
2h). (A.37)

Note that the deviatoric stress tensor itself is obtained from (Sαβ/ρ)i as S
αβ
i = (Sαβ/ρ)iρi.

According to Inutsuka (2002), we use the pressure resulted from the Riemann problem

utilizing the physical values associated with the i-th and j-th particles for P ∗
ij. The Riemann

problem is introduced in the next section. Inutsuka (2002) also utilizes the velocity resulted

from the Riemann problem for vα∗ij . The simulations for hydrodynamics work well with the

velocity resulted from the Riemann problem. However, this may cause problems for elastic

dynamics because of the difference of the equation of state, and it is safe to utilize the simple

averaged value for vα∗ij that is expressed as

vα∗ij =
vαi + vαj

2
+ s∗ij

vαi − vαj
|xi − xj|

. (A.38)

If the cubic or quintic spline interpolations are used when the distance between two particles

is much smaller than the smoothing length, V 2
ij may diverge due to the interpolation. However,

V 2
ij should be about 1/ρ2(x). Thus if V 2

ij obtained from the cubic or quintic spline interpolation

is much larger than 1/ρ2(x), we should use linear interpolation. We suggest that the linear

interpolation should be used when V 2
ij becomes larger than V 2

ij,crit written as

V 2
ij,crit = 10

( 1

ρ2ij

)
, (A.39)

where ρij = (ρi + ρj)/2.

A.2 Riemann Solver

In this section, we will introduce how to calculate P ∗
ij using the physical quantities associated

with the i-th and j-th particles through the Riemann problem. We only introduce the Riemann
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solver for the equation of state (EoS) P = C2
s (ρ− ρ0), where Cs and ρ0 are the parameters for

this EoS. Please refer to, for example, van Leer (1979) for the Riemann solver for the ideal gas

EoS.

We consider shock tube problems where the initial state (e.g., pressure or density) of right

hand side is determined by the physical quantities of the i-th particle and the initial state of

left hand side is determined by the physical quantities of the j-th particle. The waves are prop-

agating to both the right and left directions. The waves are the shock wave or the rarefaction

wave. A kind of ”speed” in the mass coordinate for the shock wave and the rarefaction wave is

written as

Ws,D = Cs

√
ρD

(
ρD +

P ∗ − PD

C2
s

)
(P ∗ > PD), (A.40)

Ws,D =
PD − P ∗

Cs

[
ln
( C2

sρD
P ∗ + C2

sρ0

)]−1

(P ∗ < PD), (A.41)

where D represents the direction of wave propagation and is replaced by R or L, and P ∗

represents the pressure around the contact discontinuity after the wave propagation. The

quantities with D represent the quantities of the right or left hand side at the initial condition,

i.e., the quantities of the i-th or j-th particle. If P ∗ > PD, the shock wave propagates and

thus Eq. (A.40) represents the speed of the shock wave, while if P ∗ < PD, the rarefaction wave

propagates and thus Eq. (A.41) represents a kind of speed of the rarefaction wave. Using Ws,L

and Ws,R, the pressure P ∗ and the velocity v∗ at the contact discontinuity are written as

P ∗ =
PL/Ws,L + PR/Ws,R + vL − vR

1/Ws,L + 1/Ws,R

, (A.42)

v∗ =
vLWs,L + vRWs,R + PL − PR

Ws,L +Ws,R

, (A.43)

where PR = Pi, ρR = ρi, vR = vi · eij, PL = Pj, ρL = ρj, and vL = vj · eij. P ∗ and v∗ are

determined through iterative calculations of Eq. (A.40) - Eq. (A.43). Five cycles of iterations

with P ∗ = (PL + PR)/2 as the initial value are sufficient for the convergence. Finally, the

converged P ∗ is used for P ∗
ij in Eqs. (A.32) and (A.34).

However, P ∗ obtained from the above procedures has the first-order accuracy in space. For

the Riemann solver with the second-order accuracy in space, we need to modify PR, ρR, vR, PL,

ρL, and vL using the gradients of these physical quantities of the i-th and j-th particles. We skip
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the explanation of the detailed procedures for this modification, and please refer to Inutsuka

(2002). We just give a note that the gradient of the quantity f utilized for the Riemann solver

should be calculated with

∂fi
∂xα

i

=
∑
j

mj(fj − fi)

ρj

∂

∂xα
i

W (|xi − xj|, h) (A.44)

to avoid unphysical gradients nearby free surfaces.

We explained the Riemann solver for EoS for elastic body P = C2
s (ρ − ρ0). However,

impact simulations with rocky material utilize other EoS such as the tillotson EoS. In spite of

the difference of EoS, usual EoS for rocky bodies behaves like the EoS for elastic body if the

compression and the temperature raise due to impacts are moderate. Thus we can sill utilize

the Riemann solver for P = C2
s (ρ − ρ0) even if we utilize other EoS for rocky material. In

this case, we approximate Cs and ρ0 utilized for the Riemann solver using the physical values

associated with the i-th and j-th particles. A possible way to calculate Cs and ρ0 is as follows:

Cs =
Cs,i + Cs,j

2
,

ρ0 =
1

2
[(ρi − Pi/C

2
s ) + (ρj − Pj/C

2
s )]. (A.45)



Appendix B

Linear Stability Analysis for Godunov
SPH Method

In this chapter, we will summarize the results of the linear stability analysis of the equations

for the Godunov SPH method. This chapter is mainly based on Sugiura and Inutsuka (2016).

In this linear stability analysis, we use the following simplification. We ignore the terms of the

deviatoric stress tensor and set Sαβ
i = 0 because the deviatoric stress tensor generally prevents

the clumping of SPH particles, which leads to prevent the tensile instability. We also ignore

the Riemann solver and set P ∗
ij = (Pi + Pj)/2 because numerical viscosity terms including

the Riemann solver generally prevent numerical instabilities. We consider the cases that SPH

particles are put on cubic lattices, and the smoothing length h is set to be the side length of the

cubic lattices ∆x. We conduct the linear stability analysis for the longitudinal perturbations

because the tensile instability is the instability of compressional waves. We utilize the equation

of state of P = C2
s (ρ− ρ0). Unperturbed states have the uniform density and pressure, and all

SPH particles have the same mass m.

B.1 Derivation of Dispersion Relations

In unperturbed states, particles are placed on the square lattices with the side lengths ∆x.

Unperturbed positions of particles are expressed as,

xi = (xi, yi, zi). (B.1)

We add the perturbation of positions in the x-direction. Then the positions of particles are

represented as

136
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xi = (xi + δxi, yi, zi),

δxi = ϵx exp[I(kxi − ωt)], (B.2)

where ϵx is very small value, k and ω represent the wavenumber and frequency of the pertur-

bation respectively, and I represents the imaginary unit. Hereafter, ϵ shows very small value,

and we ignore second or higher order of ϵ.

From Eq. (B.2) and (d/dt)xi = vi, we can represent the velocity of the i-th particle as

vi = (−Iωδxi, 0, 0). (B.3)

The density in unperturbed states is now defined as ρ, and the density of the i-th particle

is written as

ρi = ρ+ δρi,

δρi = ϵρ exp[I(kxi − ωt)]. (B.4)

From Eq. (2.19), we can write δρi using δxi as,

δρi = −IρDδxi,

D ≡
∑
j

− sin[k(xi − xj)]
∂

∂xi

W (|xi − xj|, h)
m

ρ
. (B.5)

Then we can represent pressure of the i-th particle as

Pi = P + δPi = P + C2
s δρi = P − IC2

sρDδxi, (B.6)

where P = C2
s (ρ− ρ0) represents the pressure in unperturbed states.

From Eq. (A.21), the specific volume is represented as

Vi =
1

ρ
(1 + IDδxi). (B.7)

From Eq. (A.21), the x-component of the specific volume gradient is linearized as
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∂Vi

∂xi

= − 1

ρ2i

∂ρi
∂xi

≈ − 1

ρ2

∑
j

m(δxi − δxj)
∂2

∂xi
2W (|xi − xj|, h) = −1

ρ
Cρδxi,

Cρ ≡
∑
j

(1− cos[k(xi − xj)])
∂2

∂xi
2W (|xi − xj|, h)

m

ρ
. (B.8)

The xx-component of the second derivative of Vi is linearized using Eq. (A.21) as

∂2Vi

∂x2
i

=
∑
j

m

ρj

∂Vj

∂xj

∂

∂xi

W (|xi − xj|, h) ≈ −I

ρ
CρDδxi. (B.9)

We then substitute linearized quantities into Eq. (A.32), and finally we obtain the dispersion

relations (DRs) for the three interpolation methods. DR for the linear interpolation is expressed

as

ω2
linear = −C2

sDa+
P

ρ

[
2Da+ 2b

]
, (B.10)

where

a =
∑
j ̸=i

sin[k(xi − xj)]
∂

∂xi

W (|xi − xj|,
√
2h)

m

ρ
,

b =
∑
j ̸=i

(1− cos[k(xi − xj)])
∂2

∂xi
2W (|xi − xj|,

√
2h)

m

ρ
. (B.11)

DR for the cubic spline interpolation is expressed as

ω2
cubic = −C2

sDa+
P

ρ

[
2Da+ 2b− 1

2
h2Cρc+

1

2
Cρd

]
, (B.12)

where

c =
∑
j ̸=i

xi − xj

|xi − xj|2
(1− cos[k(xi − xj)])

∂

∂xi

W (|xi − xj|,
√
2h)

m

ρ
,

d =
∑
j ̸=i

(xi − xj)(1− cos[k(xi − xj)])
∂

∂xi

W (|xi − xj|,
√
2h)

m

ρ
. (B.13)
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DR for the quintic spline interpolation is expressed as

ω2
quintic =− C2

sDa+
P

ρ

[
2Da+ 2b+

3

8
h4CρB1,4 +

3

16
h4CρDA2,4 −

3

4
h2CρB1,2

− 1

8
h2CρDA2,2 +

5

8
CρB1,0 +

1

16
CρDA2,0

]
, (B.14)

where

An,m =
∑
j

(xi − xj)
n

|xi − xj|m
sin[k(xi − xj)]

∂

∂xi

W (|xi − xj|,
√
2h)

m

ρ
,

Bn,m =
∑
j

(xi − xj)
n

|xi − xj|m
(1− cos[k(xi − xj)])

∂

∂xi

W (|xi − xj|,
√
2h)

m

ρ
. (B.15)

B.2 Results of Linear Stability Analysis

B.2.1 One-Dimensional Case

Here, we introduce the results of the linear stability analysis for the one-dimensional case.

One dimension means that we only put SPH particles on one-dimensional string and use the

Gaussian kernel for one dimension, i.e., we set ddim = 1 in Eq. (2.12).

Figure B.1 shows the DRs for three interpolation methods with the positive unperturbed

pressure (Fig. B.1a) and the negative unperturbed pressure (Fig. B.1b). As we notice from

Fig. B.1a, ω2 for the linear and cubic spline interpolations with the positive pressure is always

positive for all wave numbers k including the Nyquist frequency hk = π, while ω2 for the quintic

spline interpolation with the positive pressure becomes negative around the Nyquist frequency.

Note that the perturbations with negative ω2 are unstable, since ω becomes pure imaginary

and then the perturbations exponentially grow as we notice from Eq. (B.2). Therefore, the

linear and cubic spline interpolations are stable with positive pressure, while the quintic spline

interpolation is unstable with positive pressure. In contrast, Fig. B.1 shows that the linear

and cubic spline interpolation are unstable with negative pressure, while the quintic spline

interpolation is stable with negative pressure.

B.2.2 Two- and Three-Dimensional Case

Here, we introduce the results of the linear stability analysis for the two- and three-dimensional

cases. Again, two dimensions mean that we put SPH particles on two-dimensional plane and
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(a) (b)

Figure B.1: DRs for the Godunov SPH method in a one-dimensional geometry. In both panels,
the horizontal axis represents the wave number k of perturbations normalized by the smoothing
length h, the vertical axis represents the square of the angular frequency ω of perturbations
normalized by the sound speed Cs and the smoothing length h, the red solid curve shows DR
for the linear interpolation, the green dotted curve shows that for the cubic spline interpolation,
and the blue dashed curve shows that for the quintic spline interpolation. The panel (a) shows
the DRs with the positive unperturbed pressure of P = 0.2C2

sρ, and the panel (b) shows those
with the negative unperturbed pressure of P = −0.2C2

sρ.

use the Gaussian kernel for two dimensions, i.e., we set ddim = 2 in Eq. (2.12). Three dimensions

mean usual setup of simulations.

Actually, the terms a and b (Eq. (B.12)) in the DR for the linear interpolation have the

same values independent of the number of the spatial dimension. Thus the stability for the

linear interpolation is the same independent of the number of the spatial dimension; even for

two- and three-dimensional cases, the linear interpolation with positive pressure is stable while

that with negative pressure is unstable.

Figure B.2 shows the DRs for the cubic and quintic spline interpolations in the two- and

three-dimensional geometries with the positive pressure (Fig. B.2a) and the negative pressure

(Fig. B.2b). As we notice from Fig. B.2a both cubic and quintic spline interpolations in both

two- and three-dimensional geometries are unstable with the positive pressure. In contrast,

Fig. B.2b shows that both cubic and quintic spline interpolations in both two- and three-

dimensional geometries are stable with the negative pressure. Therefore, in two- and three-

dimensional cases, the cubic and quintic spline interpolations are unstable with positive pressure

and stable with negative pressure.

Summary of the discussion in Section B.2 leads to Table 2.1.



APPENDIX B. LINEAR STABILITY ANALYSIS FOR GODUNOV SPH METHOD 141

(a) (b)

Figure B.2: DRs for the Godunov SPH method in two- and three-dimensional geometries. In
both panels, the horizontal axis represents the wave number k of perturbations normalized by
the smoothing length h, the vertical axis represents the square of the angular frequency ω of
perturbations normalized by the sound speed Cs and the smoothing length h, the red solid
curve shows the DR for the cubic spline interpolation in the two-dimensional case, the green
dotted curve shows that in the three-dimensional case, the blue dashed curve shows the DR for
the quintic spline interpolation in two-dimensional case, and the magenta chain curve shows
that in the three-dimensional case. The panel (a) shows the DRs with the positive unperturbed
pressure of P = 0.2C2

sρ, and the panel (b) shows those with the negative unperturbed pressure
of P = −0.2C2

sρ.

B.3 Suppression of Tensile Instability with Godunov SPH

Method

As a result of the analysis in above sections, we clarified the stability of the Godunov SPH

method with the three interpolation methods in each dimensional geometry as shown in Table

2.1. This result suggests that if we select appropriate interpolation methods depending on the

sign of pressure, we can avoid the tensile instability. Here, we propose the following way to

select the interpolation methods for V 2
ij in EoM (A.32), EoE (A.34), and the time-evolution

equation for Sαβ (A.36): V 2
ij in one dimension becomes

V 2
ij =

{
V 2
ij,cubic if (Pi + Pj) > 0

V 2
ij,quintic if (Pi + Pj) < 0

, (B.16)

while V 2
ij in two and three dimensions becomes
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V 2
ij =

{
V 2
ij,linear if (Pi + Pj) > 0

V 2
ij,cubic if (Pi + Pj) < 0

. (B.17)

The correct selection of V 2
ij depending on the sign of pressure as shown in Eq. (B.17) leads

to the simulations of elastic bodies without the tensile instability as shown in Figs. 2.1 and 2.2.
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P. Farinella, D. Vokrouhlický, and W. K. Hartmann. Meteorite Delivery via Yarkovsky Orbital

Drift. Icarus, 132:378–387, April 1998. doi: 10.1006/icar.1997.5872.

J. A. Fernandez. Mass removed by the outer planets in the early solar system. Icarus, 34:

173–181, April 1978. doi: 10.1016/0019-1035(78)90134-3.

M. Flock, S. Fromang, N. J. Turner, and M. Benisty. 3D Radiation Nonideal Magnetohydro-

dynamical Simulations of the Inner Rim in Protoplanetary Disks. Astrophys. J., 835:230,

February 2017. doi: 10.3847/1538-4357/835/2/230.

W. C. Fraser, P. Pravec, A. Fitzsimmons, P. Lacerda, M. T. Bannister, C. Snodgrass, and

I. Smoli’c. The tumbling rotational state of 1I/‘Oumuamua. Nature Astron., 2 2018. doi:

10.1038/s41550-018-0398-z.

A. Fujiwara, G. Kamimoto, and A. Tsukamoto. Expected shape distribution of aster-

oids obtained from laboratory impact experiments. Nature, 272:602, April 1978. doi:

10.1038/272602a0.



BIBLIOGRAPHY 147

A. Fujiwara, P. Cerroni, D. R. Davis, E. Ryan, M. di Martino, K. Holsapple, and K. Housen.

Experiments and scaling laws for catastrophic collisions. In R. P. Binzel, T. Gehrels, and

M. S. Matthews, editors, Asteroids II, pages 240–265, 1989.

A. Fujiwara, J. Kawaguchi, D. K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano,

M. Yoshikawa, D. J. Scheeres, O. Barnouin-Jha, A. F. Cheng, H. Demura, R. W. Gaskell,

N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A. M. Nakamura, R. Nakamura, S. Sasaki,

and K. Uesugi. The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science, 312:

1330–1334, June 2006. doi: 10.1126/science.1125841.

H. Genda, E. Kokubo, and S. Ida. Merging Criteria for Giant Impacts of Protoplanets. Astro-

phys. J., 744:137, January 2012. doi: 10.1088/0004-637X/744/2/137.

H. Genda, T. Fujita, H. Kobayashi, H. Tanaka, and Y. Abe. Resolution dependence of disruptive

collisions between planetesimals in the gravity regime. Icarus, 262:58–66, December 2015.

doi: 10.1016/j.icarus.2015.08.029.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics - Theory and applica-

tion to non-spherical stars. Mon. Not. R. Astron. Soc., 181:375–389, November 1977. doi:

10.1093/mnras/181.3.375.
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