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Nomenclature

Symbol Explanation

C Instantaneous scalar concentration

c′ Instantaneous scalar concentration fluctuation

Cϵ Dissipation coefficient of the turbulent kinetic energy

Cs−u′v′ Co-spectra for the Reynolds stress

Cs−v′c′ Co-spectra for the scalar flux

f Frequency

F (x,Mode) Cumulative distribution function

Fth Cumulative energy rate (over 60 %)

K Local average of turbulent kinetic energy

K1-K6 Ratio of the mean-squared velocity derivatives

k wavenumber (= 2πf/U)

L Height of the computational domain

Lb bulk length

Lcycle Length of the large-scale energy-containing structure

Lmax
cycle Maximum value of Lcycle

Lu Integral length scale (streamwise integral length scale)

L(Ui) Discretization approximations for the viscous term

Lx, Ly, Lz Computational domain of the streamwise, vertical,

and spanwise direction

N(Ui) Discretization approximations for the convection term

Nx, Ny, Nz Grid points of the streamwise, vertical, and spanwise

direction

P Instantaneous pressure

p′ Instantaneous pressure fluctuation

PrT Turbulent Prandtl number

PrT cs Conditional turbulent Prandtl number

Reλ Turbulent Reynolds number (= (2K/3)
1
2λ/ν)

Sc Schmidt number (Sc = 1)

Su Power spectrum for the streamwise velocity fluctuation

Sp Power spectrum for the pressure fluctuation

U Local mean streamwise velocity

U0 Inlet mean streamwise velocity ((= U1 + U2)/2)

U1, U2 Upper and Lower inlet streamwise velocity (U1 = 2.0

and U2 = 1.0)
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Ui Instantaneous velocity component in the i (= x, y,

and z) direction

u′, v′, w′ Streamwise, vertical, and spanwise velocity fluctuation

x, y, z Streamwise, vertical, and spanwise directions

x0 Virtial origin

ymax Vertical location where the maximum of each variable

exists

αT Turbulent scalar diffusivity coefficient

αT cs Conditional turbulent scalar diffusivity coefficient

∆U Difference in the inlet streamwise velocity between U1

and U2

(= U1 − U2)

δU Normalized momentum thickness

δU0 Initial momentum thickness

∆t Time step span

η Kolmogorov length scale (= (ν3η−1)1/4)

ϵ Dissipation rate of the turbulent kinetic energy

λ Taylor’s microscale

ν Kinematic viscosity

νT Eddy diffusivity coefficient

νT cs Conditional eddy diffusivity coefficient

ωnor Vorticity magnitude normalized by ∆U/δU

ωT Threshold value determined from the volume fraction of

the turbulent region in the specific area

τ time lag

Cu′v′ Convection term in the momentum transport equation

Cv′c′ Convection term in the scalar transport equation

Pu′v′ Production term in the momentum transport equation

Pv′c′ Production term in the scalar transport equation

ϵu′v′ Dissipation term in the momentum transport equation

ϵv′c′ Dissipation term in the scalar transport equation

Πu′v′ Pressure-strain correlation term in the momentum

transport equation

Πv′c′ Pressure-strain correlation term in the scalar transport

equation

Du′v′ Diffusion term in the momentum transport equation

(= DT
u′v′ +Dν

u′v′ +DP
u′v′)

iv



Dv′c′ Diffusion term in the scalar transport equation

(= DT
v′c′ +Dν

v′c′ +DP
v′c′)

DT
u′v′ Turbulent diffusion term in the momentum transport

equation

DT
v′c′ Turbulent diffusion term in the scalar transport equation

Dν
u′v′ Viscous diffusion term in the momentum transport

equation

Dν
v′c′ Viscous diffusion term in the scalar transport equation

DP
u′v′ Pressure diffusion term in the momentum transport

equation

DP
v′c′ Pressure diffusion term in the scalar transport equation

□ Averaged value of each statistic (e.g., u and uv )

(□)max Maximum value of the vertical distribution of each

statistic at a certain streamwise location x

(e.g., (uv)max and (u2)max )

Acronyms

CGMT Counter gradient momentum transport

CG method Conjugate gradient method

DNS Direct numerical simulation

GMT Gradient momentum transport

JPDF Joint probability density function

LES Large eddy simulation

MPI Message passing interface

POD Proper orthogonal decomposition
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Chapter 1

Introduction

1.1 Background

This thesis is about a free shear layer formed by the merging of two streams

with different flow velocities. These two streams repeatedly mix and diffuse

complicatedly as it proceeds toward the downstream direction. Such a flow

field is often called a “turbulent mixing layer.” The turbulent mixing layer

has been used for various research because its geometric shape is very simple.

One of the significance of these studies is to clarify the quasi-deterministic

development mechanism of the large-scale structure (coherent structure)

which is the main constituent element of the turbulent mixing layer [1, 2,

3, 4, 5, 6, 7, 8]. Various shear flows including the mixing layer are known

to contain large-scale structures and it is known that this structure per-

sists permanently. The discovery of the deterministic mechanism in this

organizational large-scale structure is expected to greatly contribute to the

elucidation of the elementary process of turbulent development. Hence, nu-

merous studies on mixing layers have been focused on the vortex dynamics of

the large-scale structure and its inner structure and their statistical prop-

erties. In the following sections of this chapter, the research background

related to the large-scale structure is introduced and the open questions

which are still related to this research are explained.

1.1.1 Large-scale structure in the shear mixing layer

After the discovery of a large-scale (coherent vortex) structure in the shear

mixing layer (Fig. 1.1) by Brown and Roshko [9], various experimental and

numerical studies have carried out in order to find the origin and universality
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CHAPTER 1. INTRODUCTION

Figure 1.1: Large-scale coherent vortex structure in shear mixing layer

(from Brown and Roshko [9]).

related to the large-scale structure. These many studies on the large-scale

structure focused on the dynamical behavior of the vortex and have revealed

their developmental mechanism by tracking and observing the large-scale

vortices. For instance, numerical simulation of Corcos and Sherman [10]

shows the details of the two-dimensional behavior of the mixing layer, later

extended to three-dimensional behaviors [11,12]. Lasheras et al. [13] pointed

out that the position of the transition to the three-dimensionalization of the

mixing layer depends on the initial conditions. Furthermore, it was clarified

that the generation of the spanwise vortex contributes to the entrainment

process in the initial stage of mixing layer development. In the follow-up to

Lasheras and Choi [14], they described the detailed process until the shear

mixing layer has a three-dimensional structure. In an experimental study

by using the dye films of Winlant and Browand [15], it was claimed that

a continuous merger is responsible for the main process of diffusion of the

mixing layer. This suggests that the turbulent transition process depends

on large-scale structure.

Characteristics of turbulence statistics in the coexisting field of a large-

scale structure were shown by Brown and Troutt [16]. They examined the

correlation between streamwise and spanwise velocities and clarified the

relation between the irregularity of the vortex structure and the vortex

scale. Moser and Rogers [17] observed the development of the large-scale

structure focusing on vortex pairing and made a connection with statistical

properties. Researches related to Moser and Roger’s point of view [17] can

be found in various papers [18,19,20,21,22,23,24,25]. Ovidio and Coats [26]

showed statistical evidence that the merging characteristic of large-scale

vortices is changed even in the region where the average and fluctuation
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CHAPTER 1. INTRODUCTION

velocity distributions have already reached self-similar state. Same results

were obtained in large eddy simulation (LES) by Mcmullan et al. [27], which

means that the structure of the large-scale vortex structure is still changing

even if some statistics reached self-similar state. Here, it is worth noting

that the state of development of the shear mixing layer can be classified

into the three regions, “developing region,” “semi-developed region,” and

“fully-developed region,” which are defined as follows:

• The developing region means the upstream region where all the statis-

tics are non-similar states. In this region, large-scale vortex structure

is induced by Kelvin-Helmholtz instability, and the development of

three-dimensional structure such as longitudinal vortex structure is

prominent. This region does not have much small-scale structure yet,

that is, it is not turbulent.

• The semi-developed region shows an energy spectrum as seen in tur-

bulence, which has an inertial subrange and a self-similarity. Thus,

the flow in this region seems to have reached the steady state in the

energy distribution but the transition of the dynamic structure is still

continuing. In addition, basic statistics such as first-order statistics

in this area are self-similar, but higher-order statistics such as the

Reynolds shear stress, dissipation rate of the turbulent kinetic energy,

and derivative skewness are non-similar.

• The fully-developed region indicates that most statistics including

above reached the self-similar and steady states.

The details of the spatial characteristics in the semi- and fully-developed

turbulent regions have been investigated by using numerical simulation.

Roger and Moser [28] conducted a direct numerical simulation (DNS) of

the time-evolving free shear mixing layer and got the turbulence charac-

teristics in the fully-developed turbulent region. This simulation got the

turbulence characteristics when the spectrum reached a steady state (i.e.,

semi-developed turbulent region) by using the periodic boundary condition

of the streamwise direction. Later, Balaras et al. [29] got similar results to

Roger and Moser by LES. However, we should note that the time-evolving

field is fundamentally different from the spatial evolving field because the

time evolution of vortices and the entrainment in shear mixing layer is bound

by assuming uniformity of periodic boundary conditions of the streamwise
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CHAPTER 1. INTRODUCTION

direction. As a result, this fact may inhibit the development of large-scale

structures and change the characteristics of this shear mixing layer. Attili

and Bisetti [30] conducted a DNS with a large computational domain of the

spatially developing free shear mixing layer using message passing interface

(MPI) technology. This simulation succeeded in developing turbulence up

to the fully-developed turbulent region. The basic turbulence characteris-

tics obtained by Attili et al. quantitatively agreed with the results of Roger

and Moser et al.

On the other hand, turbulence characteristics of small-scale vortex struc-

ture are known to be dependent on characteristics of large-scale structure,

and these relationships were also investigated. Fiscaletti et al. [31] investi-

gated the interaction between large-scale and small-scale vortices in a mix-

ing layer. They revealed that the small-scale activity appears to be closely

related to large-scale gradients, i.e., the correlation between the small-scale

activity and the large-scale velocity fluctuations is shown to reflect a prop-

erty of the large-scales. This result provided the evidence of the so-called

“scale invariance” by Meneveau and Katz [32] that some of the large-scale

characteristics are not lost at the small-scale. This fact suggests that the

characteristics of the large-scale vortex induced by Kelvin-Helmholtz insta-

bility affect the characteristics of the turbulence that reached a self-similar

state. In fact, it is observed in many studies that small-scale statistics

also change depending on the inflow conditions when the characteristics

of the large-scale structure depend on the inflow condition. Furthermore,

according to recent reports [33, 34, 35, 36], it has been reported that large-

scale structures cause various peculiar phenomena in momentum and scalar

transfer in the well-developed turbulent mixing layer.

In the next section, we present several research examples (e.g., counter-

gradient transfer of momentum and scalar transfer, characteristics of turbu-

lent Prandtl number in large-scale structure coexisting field (dissimilarity of

momentum and scalar flux), and non-equilibrium turbulence) where large-

scale structures cause unique turbulence characteristics.

1.1.2 Counter-gradient momentum and scalar trans-

fer

The counter-gradient transfer means that the momentum and scalar are

transferred against the mean velocity and scalar gradient. This phenomenon
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CHAPTER 1. INTRODUCTION

is often observed in the ocean and atmosphere. This phenomenon was re-

ported in the experiments on a liquid shear mixing layer by Huang and

Ho [37] and the numerical simulation by Moser and Rogers [17]. Hussain and

Zaman [38] and Hussain [39] pointed out that the counter-gradient transfer

of scalar and momentum in shear flows is governed by coherent large-scale

structure. Furthermore, Ito et al. [33] experimentally investigated the mo-

mentum and mass transfer from developing to well-developed region in thef

shear mixing layers by modifying the initial condition using trip wires. They

found that in the developing mixing layer, even though the total momentum

transfer obeys the gradient momentum transfer, the counter-gradient mo-

mentum transfer takes place in specific frequency bands. As shown above,

it can be seen that the counter-gradient transfer was observed under various

conditions in large-scale structure coexisting field. However, their research

did not refer to its details of the driving factor of the counter-gradient trans-

fer, due to the limited measurable data.

1.1.3 Turbulent Prandtl number in large-scale struc-

ture coexisting field

Since the governing equations of velocity and scalar fields are similar in

shape, it is well known that there is a strong relationship between momen-

tum and scalar transfer [40,41]. Focusing on the turbulent Prandlt number,

PrT , defined by the ratio of the eddy diffusivity coefficient to the turbulent

scalar diffusivity coefficient, it has been pointed out that PrT is smaller than

1 (approximately PrT = 0.5 ∼ 1.0) in various turbulence fields [42, 43, 44].

This means that the dissimilarity exists inherently even when the global gra-

dient of the scalar and velocity field are the same. On the other hand, there

are reports that PrT decreases when large-scale structures coexist in the

turbulent flow. This phenomenon is also thought to be due to the pressure.

Actually there is a correlation between negative pressure and large-scale

vortex. However, since the physical interpretation on this is not clear, the

investigation is still necessary.

1.1.4 Non-equilibrium turbulence characteristics

The term “equilibrium” is usually applied to the steady state of the energy

spectrum with the inertial range in the Kolmogorov theory [45]. This theory
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CHAPTER 1. INTRODUCTION

is called “universal equilibrium theory.” Kolmogorov’s inertial subrange is

a constant flux state to which energy is inputed and lost at the same rate.

That is, the word “equilibrium” can be understood to mean a “balance,”

even if it is applied to a balance of fluxes, not of static quantities.

Usually, the turbulence energy is transported from larger to smaller

scales of motion [46,47,48], and if this downward cascade occurs without a

time lag, Cϵ =
ϵLu

(2K/3)
3
2
∼ Lu/λ

Reλ
takes a constant value (ϵ is the dissipation

rate of the turbulent kinetic energy for the unit mass, Lu is the integral

length scale, K is the local average of turbulent kinetic energy, and Reλ

(= (2K/3)
1
2λ/ν) is the turbulent Reynolds number based on (2K/3), Tay-

lor’s microscale, λ, and the kinematic viscosity, ν).

On the other hand, turbulent flows in which Cϵ is not constant have

been found in various type flows, for example, grid turbulence, turbulent

boundary layers, axisymmetric turbulent wakes, uniformly shear flow, and

box turbulence with unsteady energy input and so on. Recent research

has found that this phenomenon in which Cϵ is not constant is related

to the large-scale structure. Goto and Vassilicos [34] suggested that the

existence of a low-frequency conspicuous peak in the power spectrum for

the velocity fluctuation causes the scaling of Cϵ ∼ Re−1
λ (i.e., Cϵ does not

take a constant value). This cause is also explained by the work of Goto and

Vassilicos [34,49,50]; the instantaneous values of energy flux and dissipation

are never equal in the case of an unsteady turbulence (with a peak on the

low-wavenumber side of the spectrum). It is believed that this is caused

by the cascade time-lag occurring between energy flux and dissipation. In

recent years, this idea began to be supported by researches of several type

grid turbulence and wake. If this interpretation is correct, it is expected

that the same tendency is also seen in the shear mixing layer where the

large-scale structure is dominant.

1.2 Research purpose and theme of this the-

sis

In this thesis, I performed a direct numerical simulation of a spatially de-

veloping shear mixing layer covering from developing to fully-developed re-

gions. The aim of this study is to investigate the influence of large-scale

structure on various phenomena and characteristics (e.g., counter-gradient
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CHAPTER 1. INTRODUCTION

momentum transport phenomenon, PrT , and non-equilibrium turbulence).

Chapter 1 gave the introduction and purpose. Chapter 2 describes the

numerical details of the DNS. In Chapter 3, the basic flow characteristics

for the velocity field are briefly given and the counter-gradient momentum

transport phenomenon is discussed. Chapter 4 describes the scalar trans-

port mechanisms and characteristics of PrT . Chapter 5 describes the spatial

transition of the dissipation coefficient of the turbulent kinetic energy. Fi-

nally, in Chapter 6, the conclusion of this study is summarized.

7



Chapter 2

Numerical Method

2.1 Overview of direct numerical simulation

A conventional staggered grid arrangement is used in which the velocity

components are located on cell faces and the pressure and other scalar vari-

ables are located at cell centers (See Fig. 2.1). The governing equations are

the normalized continuity and Navier–Stokes equations for incompressible

flows, and the scalar transport equation,

∂Ui

∂xi

= 0, (2.1)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −∂P

∂xi

+
1

Re

∂2Ui

∂xj∂xj

, (2.2)

∂C

∂t
+ Uj

∂C

∂xj

=
1

ReSc

∂2C

∂xj∂xj

, (2.3)

where Ui (i = x, y, and z) is the instantaneous velocity component in

the i direction and P is the instantaneous pressure, C is the instantaneous

scalar concentration, and Sc is the Schmidt number. The flow and scalar

fields are solved using a finite difference method with the fractional step

method [51, 52, 53]. The Poisson equation is solved by the conjugate gra-

dient (CG) method [52, 53]. The mass conservation is ensured up to the

machine accuracy (∼ 10−14). The explicit/implicit hybrid scheme based on

the Crank–Nicolson method and the third-order Runge–Kutta method are

used for time integration [54]. The schematic of the present computational
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V(i, j, k)

U(i, j, k)U(i-1, j, k)

V(i, j-1, k)

P(i, j, k)

xixi-1

yj

yj-1

Δxi

Δyj

W(i, j, k)

U(i, j, k)U(i-1, j, k)

W(i, j, k-1)

P(i, j, k)

xixi-1

zk

zk-1

Δxi

Δzk

y

x

z

x

Figure 2.1: Schematic of staggered grid.

domain is shown in Fig. 2.2 (a). Here, the origin of the coordinate system

is the center of the fluid inflow and x, y, and z represent the streamwise,

vertical, and spanwise directions, respectively. The flow is slip condition

in the vertical (y) direction and the periodic condition in the spanwise (z)

direction. The scalar is Neumann condition in the vertical (y) direction and

the periodic condition in the spanwise (z) direction. The outflow condi-

tion for the flow and scalar fields that includes the influence of viscosity is

adopted, and it is as follows [55]:

∂Ui

∂t
+ U0

∂Ui

∂x
=

1

Re

(
∂2Ui

∂y2
+

∂2Ui

∂z2

)
, (2.4)

∂C

∂t
+ U0

∂C

∂x
=

1

ReSc

(
∂2C

∂y2
+

∂2C

∂z2

)
, (2.5)

where U0 (= (U1 +U2)/2; U1 = 2.0 and U2 = 1.0) is the inlet mean stream-

wise velocity.

The inlet streamwise velocity is given by the following equations:

U = U1 (y/L > 0.16), (I)

U = U1(
y/L

0.16
)1/7 (0 < y/L ≤ 0.16), (II)

U = −U2(
y/L

0.26
)1/7 (−0.26 < y/L ≤ 0), (III)

U = U2 (y/L ≤ −0.26), (IV)

9



CHAPTER 2. NUMERICAL METHOD

U1 

U2 

x 

z 

y 
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-0.04

-0.02

0.00

0.02

0.04
 (I): y/L ³ 0.16

 (II): 0 £ y/L < 0.16

 (III): -0.26 £ y/L < 0

 (IV): y/L < -0.26

(IV)

(III)

(II)

 

 

y/
L

U

(I)

(a) 

(b) 

Lx  (Nx) 

Lz  (Nz) 

Ly  (Ny) 

0 1

-0.04

-0.02

0.00

0.02

0.04

 

 

y/
L

C

(c) 

Figure 2.2: Schematics of the (a) cordinate system, (b) inlet streamwise

velocity, and (c) inlet scalar concentration. Lx, Ly, and Lz are the com-

putational domain of the streamwise, vertical, and spanwise directions, re-

spectively. Nx, Ny, and Nz are the grid points of the streamwise, vertical,

and spanwise directions, respectively.
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Figures 2.2 (b) and (c) show the schematic of the inlet streamwise veloc-

ity and inlet scalar concentration, respectively. The velocity defect was

estimated from the experimental study by Ito et al. [33]. In addition, a

uniform random noise with an amplitude of 0.02∆U (∆U = U1 −U2 = 1.0)

was added to the streamwise velocity. A passive scalar is introduced in the

upper layer (y/L > 0) at a concentration of C = 1.0. The Reynolds num-

ber, based on U0 and L, and the Schmidt number are set to Re = 10, 000

and Sc = 1, respectively. Moreover, the Reynolds number based on the 99

% mixing layer thickness and U2 is Reδ = 130 [56,35].

2.2 Algorithms of the combined Runge-Kutta

method and fractional step method [57]

The time advancement scheme for Eqs. (2.1) and (2.2) can be written as

∂Uk
i

∂xi

= 0, (2.6)

and

Uk
i − Uk−1

i

∆t
= αkL(U

k−1
i ) + βkL(U

k
i )− γkN(Uk−1

i )

− ζkN(Uk−2
i )− (αk + βk)

∂P k

∂Xi

, (2.7)

where L(Ui) andN(Ui) are the discretization approximations for the viscous

term and the convection term, and L(Ui) and N(Ui) are as follows:

L(Ui) =
1

Re

∂2Ui

∂Xj∂Xj

, (2.8)

N(Ui) =
∂

∂Xj

UiUj. (2.9)

In addition, k = 1, 2, 3 means number of the subsep, U0
i and U3

i denote the

instantaneous velocities at step n and n + 1. In this thesis, ∂/∂Xi is the

finite-difference operator. It can be seen that the viscous and convection

terms of Eq. (2.7) are all treated explicitly to avoid repetitive operation.

Table 2.1 shows the list of the coefficients αk, βk, γk, and ζk in Eq. (2.7) [58].

Furthermore, Eq. (2.7) is solved as follows in the fractional step method:

11



CHAPTER 2. NUMERICAL METHOD

Table 2.1: Value of coefficients αk, βk, γk, and ζk [58].

sub-step k αk βk γk ζk

1 8/15 0 8/15 0

2 5/12 -17/60 5/12 -17/60

3 3/4 -5/12 3/4 -5/12

Ûk
i − Uk−1

i

∆t
= (αk + βk)L(U

k−1
i ) + βkL(Û

k
i − Uk−1

i )

− γkN(Uk−1
i )− ζkN(Uk−2

i ), (2.10)

Uk
i − Ûk

i

∆t
= −∂ϕk

∂xi

. (2.11)

Here, ϕk in Eq. (2.11) is a function of P k, Uk, and Uk−1, and it satisfies the

following equation:

∂ϕk

∂xi

= (αk + βk)
∂P k

∂xi

− βkL(U
k
i − Ûk−1

i ). (2.12)

The Poisson equation for ϕk is derived from Eq. (2.11) and the continuity

equation Eq. (2.1), and is shown in the following equation:

∂2ϕk

∂xi∂xi

=
1

∆t

∂Ûk
i

∂xi

. (2.13)

Figure 2.3 shows the outline of time progression combining Runge-Kutta

method and the fractional step method. The vertical arrows in the fig-

ure show the process of correcting the calculation to satisfy the continuity

equation at each step.

2.3 Solving the Poisson equation [59]

In this calculation, the Poisson equation for pressure in Eq. (2.13) is solved

by using the conjugate gradient (CG) method. The CG method is an algo-

rithm for solving simultaneous linear equations with a symmetric positive

definite matrix as a coefficient. This is often used as an iterative method
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Figure 2.3: The interpolation of the instantaneous velocity.

and is used as a solution to partial differential equations. Here, a linear

equation for a vector x is expressed by the following equation:

Ax = b. (2.14)

Here, A is the n × n symmetric positive definite matrix. b is the one

dimensioal matrix of n. First, we substitute x0 as the predicted value of

the solution or 0 into the equation. At this time, the initial error r0 is

expressed by the following equation:

r0 = b−Ax0. (2.15)

r0 is replaced with p0, and initial number is set to k = 0. After that, repeat

the following process:

αk =
rTk rk

pT
kApk

, (2.16)

xk+1 = xk + αkpk, (2.17)

rk+1 = rk − αkApk, (2.18)

βk =
rTk+1rk+1

rTk rk
, (2.19)

13
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pk+1 = rk+1 + βkpk, (2.20)

k = k + 1. (2.21)

This process is completed when the error rk+1 reaches a sufficiently small

value.
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Chapter 3

Momentum transport process

3.1 Introduction

Elucidation of the momentum transport process, in free shear flows, is often

required in fluid engineering for the modeling and prediction of flows. The

shear mixing layer is one of the canonical free shear flows, and since the

discovery of large-scale structure by Brown & Roshko [9], numerous studies

on both developing laminar shear mixing layers [60, 61, 62] and developed

turbulent mixing layers with self-similarity [28, 29, 63] have been carried

out over the decades. Moreover, attention has been recently paid to the

transition of coherent large structures between the pre- and post-transition

mixing layer [26,27].

Another interesting feature appearing in mixing layers during the tran-

sition state is the counter-gradient momentum transport (CGMT), where

the momentum is transported against the mean velocity gradient. This phe-

nomenon was observed in the experiments on a liquid shear mixing layer by

Huang & Ho [37] and the numerical simulation by Moser and Rogers [17].

Hussain & Zaman [38] and Hussain [39] indicated that the counter-gradient

transport of heat and momentum in shear flows is governed by coherent

large eddies. Ito et al. [33] experimentally investigated the momentum and

mass transport in developing and developed shear mixing layers by modify-

ing the initial condition using trip wires. They found that in the developing

mixing layer, even though the total momentum transport is positive gradi-

ent momentum transport (GMT), negative momentum transport (CGMT)

takes place in specific frequency bands. However, the forcibly developed

mixing layer by the trip wires can be different from a spatially (naturally)

developed turbulent mixing layer. Moreover, the characteristics of the mix-
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ing layer in experimental studies highly depend on the experimental system

and the initial conditions. For instance, numerical simulations by McMullan

and Garrett [64] show that the variation in the initial inflow conditions has

a significant influence on the spatial development of turbulence. Laizet et

al. [35] pointed out that the wake effects of the splitter plate remain even

in the self-similar region. Furthermore, Ito et al. [33] do not refer to the

driving factor of the negative contribution, due to the limited measurable

data. In order to clarify that, it is required to conduct numerical simula-

tions, which can provide much more data in comparison with experiments.

In this context, the recent development of supercomputers enables us to

conduct direct numerical simulations (DNS) in high Reynolds-number flows

and large computational domain [30,31,65,66,67,68].

In this study, we performed a DNS for a spatially developing shear mix-

ing layer with an emphasis on momentum transport. The computational do-

main is set relatively large to include from the developing to fully-developed

regions. The simulation is aimed at clarifying the driving mechanism and

vortical structure of the partial CGMT that appears in the quasi self-similar

region, which is highly related to the transition from laminar to turbulence

in the mixing layer.

3.2 Numerical setup

In this section, the domain is a rectangular box with a size of Lx×Ly×Lz =

2.1L × 1.0L × 0.8L resolved by Nx ×Ny ×Nz = 2, 210 × 1, 350 × 780 grid

points. L is the height of the computational domain. A staggered grid

system is employed and the grid size is uniform in the x and z directions

while finer meshes are given near the center of the mixing layer (y = 0) in

the y direction and as follows:

y(j)

L
=

1

Ly

(
1− tanh−1

(
tanh(1.0)

(
1.0− 2.0

j

Ny

)))
. (3.1)

The spatial derivatives of the velocities and scalar are discretized by the

fourth-order central difference scheme in the x and z directions and by the

second-order central difference scheme in the y direction [69]. The spacing

in the x and z directions is constant with a value of 0.001L. The mini-

mum grid spacing in the y direction is approximately 0.0004L at the center.

The spatial resolution is smaller than 2.7η. Here, η = (ν3ϵ−1)1/4 is the
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Figure 3.1: Instantaneous images of the flow. (a) Vorticity magnitude on

the x− y plane (z = 0), (b) vorticity magnitude on the x− z plane (y = 0),

and (c) the scalar concentration on the x− y plane (z = 0).

Kolmogorov length scale and ν and ϵ are the kinematic viscosity and tur-

bulent kinetic energy dissipation rate, respectively. The time step is set to

∆t = 5.7 × 10−4 and the maximum Courant number is 0.3. In this study,

the spatial and time resolutions are comparable to those of the DNSs by

Attili and Bisetti [30,65,66,67] and Fiscaletti et al. [31, 68].

The computation has been performed for 1,300,000 time steps and 1,000,000

steps were used to obtain reliable statistical values. The statistical values

in the present study are arithmetically averaged based on time and the z

direction and are denoted with the over bar of the following figures.

3.3 Basic flow characteristics

Figures 3.1 (a) and (b) show instantaneous images of the vorticity mag-

nitude |ω| = |∇ × u| on the x − y (z = 0) and x − z planes (y = 0),

respectively. In the present study, u = (u′, v′, w′) and u′, v′, and w′ are

the instantaneous streamwise, vertical, and spanwise velocity fluctuations,

respectively. Figure 3.1 (c) shows the instantaneous scalar concentration

on the central plane (z = 0) at the same time. It is confirmed that when
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the streamwise distance increases, the mixing layer thickness increases and

small-scale disturbances appear more frequently. The scalar mixing pro-

ceeds accordingly. The lines of C = 0.05 and C = 0.95 in Fig. 3.1(c) will

be used later to identify the inner region of the mixing layer. Figure 3.2 (a)

shows the streamwise distributions of the normalized momentum thickness.

They are defined by

δU =
1

∆U2

∫ Ly/2

−Ly/2

(U1 − U)(U − U2)dy, (3.2)

where U is the local mean streamwise velocity. δU0 is the initial momentum

thickness obtained by extending the line that indicates the rate of the mixing

layer development in 0.7 ≤ x/L ≤ 2.0 to x = 0 by the least squares method

(Fig. 3.2 (a)), and about 0.005L. δU is known to increase linearly with the

streamwise distance in the turbulent mixing layer [16]. In the present study,

linearity appears from x/L = 0.7 (x/δU0 = 140). The spreading rate of the

mixing layer, dδU/dx, against (U1 −U2)/(U1 +U2) is shown in Fig. 3.2 (b).

Although it strongly depends on the initial conditions and spanwise length

of the domain [70], it is basically a function of (U1 − U2)/(U1 + U2) [8, 25].

Figure 3.2 (b) indicates that the present flow is typical compared with prior

research [9, 16,30,38,70,71,72,73,74,75,76,77,78,79].

Figure 3.3 shows the streamwise distributions of the mean-squared ve-

locity fluctuations and the Reynolds shear stress. It illustrates that the peak

appears approximately at x/L = 0.5 (x/δU0 = 100) for all cases, which is

similar to the results by Attili and Bisetti [30]. The values become constant

as it proceeds toward the downstream direction [46]. The vertical location

where U0 appears in the slower-stream side (y < 0) in the downstream re-

gion but the shift reaches a maximum of 3 % with respect to the 99 % of

the mixing layer thickness. Therefore, y = 0 can be regarded as the center

of the mixing layer under discussion in the present paper.

Self-similarity for the velocity fluctuations and the Reynolds shear stress

are demonstrated in Fig. 3.4. All values are normalized by the maximum

value of the vertical distribution of each statistic at a certain streamwise

location, (□)max, and ymax is the vertical location where the maximum of

each variable exists. All statistics collapse from x/L = 0.67 (x/δU0 = 137).

Thus, the present mixing layer is self-preserved downstream of x/L = 0.67

(x/δU0 = 137). In addition, to confirm the turbulent state, the power
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Figure 3.2: Development of the momentum thickness. (a) Streamwise

distribution of the normalized momentum thickness; (b) dδU/dx vs. (U1 −
U2)/(U1 +U2). Data from prior research [9,16,30,38,70,71,72,73,74,75,76,

77,78,79] are also plotted.
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Figure 3.3: Streamwise distributions of the mean-squared velocity fluctua-

tions and the Reynolds shear stress at the center (y = 0).

spectra for the streamwise velocity fluctuation were calculated. The power

spectra were obtained from the time series data at a fixed point and fre-

quency f was converted to wavenumber k by k = 2πf/U . In the present

study, the turbulence level is approximately from 10 % to 15 % at the center;

therefore, one may doubt the applicability of the Taylor’s frozen turbulence

hypothesis. In order to confirm its validity, we reconstructed a spatial vor-

ticity field from the time series data of the velocity obtained at x/L = 0.78

and compared it with that obtained from the instantaneous flow field. Here,

the convective velocity is used for the local mean streamwise velocity. The

result shows that the medium-to-large-scale structures, which we are inter-

ested in, are very similar in the two images, indicating that the hypothesis

is valid (Figs. 3.5).

Figure 3.6 shows the instantaneous pressure distributions together with

a velocity vector map of the first mode of the proper orthogonal decom-

position (POD) analysis. Note that although the pressure of streamwise

direction is unsteady, we treat it as stationary because the region of the

streamwise direction is set to the length that can be regarded as steady

state. Furthermore, Fig. 3.7 shows the normalized power spectra of the

pressure fluctuations at the center (y = 0) and x/L = 0.78, 1.38, and 1.95

(x/δU0 = 160, 283, and 399). It is confirmed that, in the upstream region
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Fig.5Figure 3.4: Vertical distributions of the mean-squared values of the (a)

streamwise, (b) vertical, and (c) spanwise velocity fluctuations, as well as

(d) the Reynolds shear stress for the streamwise and vertical velocity fluc-

tuations.
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(Fig. 3.6 (a)), negative and positive pressures appear alternatively at regular

intervals, which correspond to the coherent vortical and stretching regions,

respectively. The distance between the centers of the high- or low-pressure

regions is approximately kδU = 0.075, and it links to the peak wavenumber

for the pressure power spectrum at x/L = 0.78 (x/δU0 = 160) (Fig. 3.7).

In the downstream region (Fig. 3.6 (b)), the vortical and stretching regions

are also confirmed but with random intervals. The randomness makes the

shape of the pressure power spectrum broader and less peaky.

3.4 Budget for momentum transport

As shown in Fig. 3.4 (d), −u′v′ > 0 at all locations. Here, −u′v′ > 0 repre-

sents the GMT (positive production) and −u′v′ < 0 represents the CGMT

(negative contribution). Therefore, the overall momentum is transported

positively (i.e., −u′v′ > 0) at all locations. The co-spectra for the Reynolds

shear stress at x/L = 0.78, 1.38, and 1.95 (x/δU0 = 160, 283, and 399) are

analyzed to clarify the scale dependency of the momentum transport. The

results are shown in Fig. 3.8. The vertical location and wavenumber are

normalized by the momentum thickness. Figure 3.8 illustrates that the co-

spectra take positive values (GMT) in the entire scale at all three locations.

However, at x/L = 0.78 (x/δU0 = 160), there is a clear trend of the CGMT,
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approximately at kδU = 0.15 at the off-central regions (y/δU = ±2.5) and

approximately at kδU = 0.075 and 0.15 at the central region (y/δU = 0). In

other words, the momentum transport process varies even in the self-similar

region of x/L > 0.67. The peak wavenumber (kδU = 0.15) corresponds to

the half distance between the coherent vortices.

To investigate the driving mechanism of this phenomenon, the budget

of the momentum transport equation for the Reynolds shear stress is exam-

ined. The equation is written as follows:

0 = Cu′v′ + Pu′v′ + ϵu′v′ +Πu′v′ +Du′v′ , (3.3)

Cu′v′ = Uk
∂

∂xk

u′v′, (3.4)

Pu′v′ =

[
v′u′

k

∂U

∂xk

+ u′u′
k

∂V

∂xk

]
, (3.5)

ϵu′v′ = 2ν

[( ∂u′

∂xk

)( ∂v′
∂xk

)]
, (3.6)

Πu′v′ = − p′
(∂u′

∂y
+

∂v′

∂x

)
, (3.7)

Du′v′ = DT
u′v′ +Dν

u′v′ +DP
u′v′

=

[
− ∂

∂xk

u′v′u′
k

]
+

[
ν

∂

∂xk

(∂u′v′

∂xk

)]

+

[
−∂(p′u′)

∂y
− ∂(p′v′)

∂x

]
. (3.8)

The right-hand terms in Eq. (3.3) are called convection term, Cu′v′ , pro-

duction term, Pu′v′ , dissipation term, ϵu′v′ , pressure-strain correlation term,

Πu′v′ , and diffusion term Du′v′ , respectively. Furthermore Du′v′ can be di-

vided into turbulent diffusion term, DT
u′v′ , viscous diffusion term, Dν

u′v′ ,

and pressure diffusion term, DP
u′v′ as shown in Eq. (3.8). Figures 3.9

(a)–(c) show the budget for the momentum transport at x/L = 0.78, 1.38,

and 1.95 (x/δU0 = 160, 283, and 399), respectively. It is found that Cu′v′

and Dν
u′v′ are negligibly small. The contributions of the dissipation term,

pressure-strain correlation term, turbulent diffusion term, and pressure dif-

fusion term at different locations are plotted in Figs. 3.10 (a)–(d), respec-

tively. In addition, the pressure-correlation term can be decomposed into

−p′(∂u′/∂y) and −p′(∂v′/∂x) as shown in Fig. 3.11. Note that the terms
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Figure 3.9: Budget for the momentum transport at (a) x/L = 0.78

(x/δU0 = 160), (b) x/L = 1.38 (x/δU0 = 283), and (c) x/L = 1.95

(x/δU0 = 399).
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are normalized by the maximum value of the production term, (Pu′v′)max,

at each streamwise location to clarify the structural differences. The fig-

ures indicate that the driving mechanism of the CGMT varies depending

on the vertical location. More specifically, in the pressure diffusion term

negative contribution appears only at y/δU = ±2.5, while in the dissipa-

tion, pressure-strain correlation, and turbulent diffusion terms it appears

around at y/δU = 0. Moreover, the change in the pressure-strain corre-

lation term is not monotonous and shows a bouncing motion between the

negative and positive productions at the off-central region (y/δU = ±2.5).

Interestingly, similar behavior is observed in a stably-stratified shear flow,

where the CGMT takes place [80], although the driving force is surely dif-

ferent. Since it is indicated that the mechanism depends on the vertical

location, we will discuss the phenomenon at the central (y/δU = 0) and

off-central regions (y/δU = ±2.5) separately.

First, we will focus on y/δU = ±2.5. The pressure diffusion term is

investigated because it is the only term that represents the loss of the

Reynolds stress at this location. The power spectra for the pressure dif-

fusion, which are normalized by the maximum value of the production

term at each streamwise location, (Pu′v′)max, are shown in Fig. 3.12. At

x/L = 0.78 (x/δU0 = 160), a peak appears at kδU ∼ 0.15 for the distribu-

tion at y/δU = ±2.5, whereas such a peak does not appear at y/δU = 0.

Furthermore, this is the same wavenumber as the one appearing in the co-

spectrum for the Reynolds shear stress (Fig. 3.8). In addition, the peak

becomes smooth at x/L = 1.38 (x/δU0 = 283) and 1.95 (x/δU0 = 399),

which is the same trend as in the co-spectrum for the Reynolds shear stress.

Hence, the pressure diffusion term is thought to contribute to the CGMT

in the off-central region.

kδU = 0.15 at x/L = 0.78 (x/δU0 = 160) and y/δU = ±2.5 corresponds

to the half distance between the coherent vortices estimated by the pressure

spectrum (Fig. 3.7). In order to capture the phenomenological image of the

flow field, we show the instantaneous color contour map of the pressure dif-

fusion term in Fig. 3.13. On the y/δU = ±2.5 lines, the negative region of

the −u′v′ (i.e., CGMT), indicated by the black line, appears at specific loca-

tions with an interval of kδU = 0.15 in the upstream region (Fig. 3.13 (a)).

Both the negative regions of the Reynolds shear stress and pressure diffu-

sion term appears periodically at the same intervals; however, the negative

regions overlap only partially. In the downstream region (Fig. 3.13 (b)),
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Figure 3.10: Budget terms normalized by the production term. (a) dissipa-

tion term; (b) pressure-strain correlation term; (c) turbulent diffusion term;

(d) pressure diffusion term. The y-axis is normalized by the maximum value

of the production term, (Pu′v′)max, at each streamwise location.
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Figure 3.14: Joint PDFs for the Reynolds shear stress and pressure diffusion

term in the (a–c) upstream (x/L = 0.78) and (d–f) downstream (x/L =

1.38) regions at y/δU = 2.5, respectively. (a, d) kδU = 0.065 − 0.09; (b, e)

kδU = 0.08− 0.30; (c, f) kδU = 0.22− 0.54.
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the relationship of the negative regions between the Reynolds shear stress

and pressure diffusion term becomes unclear and both the negative regions

appearances become more random. Consequently, it loses the signature of

the CGMT at the specific wavenumber bands.

In the present simulation, the trend of CGMT at the specific wavenum-

ber bands is observed. However, the value of the Reynolds shear stress is

on the positive (GMT) side at all wavenumbers and it is not obvious if

the pressure diffusion term is truly contributing to the loss of the Reynolds

stress. Hence, we calculated the joint PDF for the Reynolds shear stress

and pressure diffusion term in the upstream (x/L = 0.78) and downstream

(x/L = 1.38) regions at y/δU = 2.5. Note that the negative Reynolds

shear stress and the negative pressure diffusion term appear alternately as

shown in Fig. 3.13(a). Therefore, shift adjustments are required to visual-

ize the negative contribution and the relationship between the two terms on

the joint PDF map. Thus we performed an orthogonal wavelet decomposi-

tion [81] with 20 wavelet basis and calculated the optimal degree of the shift

that maximizes the correlation between the two terms at each wavenumber

bands. The resulting joint PDFs optimized for the wavenumber bands of

kδU = 0.065 − 0.09, 0.08 − 0.30, and 0.22 − 0.54 are shown in Figs. 3.14

(a)–(c), respectively. In Fig. 3.14 (b) a large negative momentum produc-

tion prevails in the third quadrant, meaning that the CGMT does occur

at this specific wavenumber band and is highly related with the pressure

diffusion term in the upstream region. In contrast, such a positive relation-

ship is not seen in Figs. 3.14 (a) and (c), meaning that the CGMT is not

strongly correlated with the eddies with wavenumbers of kδU = 0.065−0.09

and 0.22 − 0.54. In the downstream region, the PDF weakly prevails in

the third quadrant for all wavenumber bands (Figs. 3.14 (d)–(f)), meaning

that the negative Reynolds shear stress still exists but is dispersed with

streamwise distance. In other words, the event transforms from periodic to

random as it moves toward the downstream region. Figure 3.13 (b) indicates

that the randomness is caused by the deformation and merge of the coher-

ent vortices. Finally, we demonstrated that similar results are obtained for

y/δU = −2.5.

On the other hand, the CGMT at the central region of the mixing layer

is observed in the pressure-strain correlation and turbulent diffusion terms.

We exclude the dissipation term from the driving mechanisms of the CGMT

because it is passive.
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Figure 3.16: Co-spectra for (a–c) p′ and −∂v′/∂x, and (d–f) p′ and −∂u′/∂y

in the pressure-strain correlation term at (a,d) x/L = 0.78 (x/δU0 = 160),

(b,e) x/L = 1.38 (x/δU0 = 283), and (c,f) x/L = 1.95 (x/δU0 = 399).
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First, the turbulent diffusion term is examined. Figure 3.15 shows the

normalized power spectra for the turbulent diffusion term. The power spec-

trum at y/δU = 0 is larger than that at y/δU = ±2.5 in the entire region.

However, no peak is observed at either kδU ∼ 0.075 or 0.15. In addition,

there is no significant difference in the spectral shape among the locations.

Therefore, this term should not be the critical term of the CGMT at the

specific wavenumbers bands. Next, we examine the pressure-strain correla-

tion term. Since it consists of two terms, i.e., −p′(∂u′/∂y) and −p′(∂v′/∂x),

we show their co-spectra individually. Figures 3.16 (a–c) are the co-spectra

for p′ and ∂v′/∂x and Figs. 3.16 (d–f) are those for p′ and ∂u′/∂y. The

co-spectra for p′ and ∂v′/∂x show the negative contribution in the entire re-

gion but no peak is observed at neither kδU = 0.15 nor 0.075 at x/L = 0.78

(x/δU0 = 160). On the other hand, the co-spectra for p′ and ∂u′/∂y show

the negative contribution approximately at the wavenumbers of kδU ∼ 0.075

and 0.15 at the center (y = 0). This suggests that −p′(∂u′/∂y) is the crit-

ical parameter that characterizes the CGMT at the specific wavenumber

bands. Moreover, the spectrum shapes of the co-spectra for p′ and ∂u′/∂y

at x/L = 1.38 and 1.95 (x/δU0 = 283 and 399) are similar to each other

and different from those at x/L = 0.78 (x/δU0 = 160).

Similarly to the pressure diffusion term, we show the instantaneous color

contour map of −p′(∂u′/∂y)/Pmax in the pressure-strain correlation term in

Fig. 3.17. In the upstream region (Fig. 3.17 (a)), the negative (blue)

area appears not only in the stretching region but also in the vortical region

where the positive area (red) dominates, and no visible relationship is found

between the negative contribution of −p′(∂u′/∂y) and CGMT. Therefore,

the joint PDF for −p′(∂u′/∂y) and the Reynolds shear stress are calculated

in the same way as for the pressure diffusion term. Figure 3.18 shows the

results without and with the phase shift. Note that the phase shift is done

by the same method as in Fig. 3.14. Figure 3.18 (a) indicates that the two

terms are dependent [46] even though it is not clear from the snapshot (Fig.

3.17 (a)). Figure 3.18 (b) shows a positive correlation between the two terms

and the negative Reynolds shear stress (CGMT) appears more dominantly

in the region where −p′(∂u′/∂y) is negative. This can be the evidence of the

CGMT and the relationship between the CGMT and negative −p′(∂u′/∂y).

As the flow proceeds toward the downstream direction, the negative

contribution in the coherent vortex begins to disperse while that in the

stretching region remains intact (indicated by [A] in Fig. 3.17 (b)). This can
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Without the phase shift; (b) with the phase shift.

be supported by the fact that the negative contribution in the co-spectrum

for p′ and ∂u′/∂y appears even in the downstream region (x/L = 1.38

and 1.95) as shown in Figs. 3.16(e) and (f). Moreover, the wavenumbers

of kδU = 0.06 (Fig. 3.16 (e)) and 0.045 (Fig. 3.16 (f)) correspond to

the peak wavenumbers of the pressure fluctuation spectrum (Fig. 3.7).

In addition, comparison of Figs. 3.6 (b) and 3.17 (b) indicates that the

negative contribution of −p′(∂u′/∂y) ([A] in Fig. 3.17 (b)) appears at the

locations where the large-scale positive pressure remains. Pressure is not

necessarily synchronized with the velocity field. However, the CGMT in

the present study occurs at medium-to-large scales in situations where the

coherent flow structure remains. Therefore, there is a good match between

them. On the contrary, since the dispersed negative contribution tends to

appear continuously with an increasing streamwise distance, the negative

part of the co-spectrum expands to the lower wavenumber side (Figs. 3.16

(e) and (f)).
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3.5 Relationship between the CGMT and vor-

ticity distribution

It is of great interest to clarify the relationship between the CGMT and

the transition of the mixing layer from laminar to turbulence. The vorticity

magnitude is known as a good indicator to distinguish the turbulent and

non-turbulent regions in jets [82,83,84,85,86]. Thus, the same method can

be applied in the present study.
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0.66 ≤ x/L ≤ 0.80. The upper and lower black lines indicate C = 0.95

and C = 0.05, respectively.

The vorticity magnitude normalized by ∆U and δU , ωnor = |ω|/(∆U/δU)

has been used as the index to distinguish the turbulent and non-turbulent

regions [53]. In this study, the area that satisfies ωnor ≥ ωT is regarded

as the vortical region and the area that satisfies ωnor < ωT is regarded

as the non-turbulent region, where ωT is the threshold value determined

from the volume fraction of the turbulent region V in the specific area.

Furthermore, Watanabe et al. [53] used dV/dωnor as the index function to

determine ωT ; we employed this method as well. Figure 3.19 shows the

instantaneous distribution of ωnor in 0.66 < x/L < 0.80, where the trend of

CGMT can be observed. It is demonstrated that the vorticity magnitude is

large in the coherent vortical region. Figure 3.20 shows the volume fraction

of the normalized vorticity magnitude, V , and its derivative, −dV/dωnor,

as functions of ωnor obtained from the entire domain in Fig. 3.19. It is not

successful to determine the ωT from this figure because there is no clear

plateau in both lines. Thus, we divided the area into three regions (regions

(I), (II), and (III)) because the flow characteristics in region (II) are different

from those in regions (I) and (III). V and dV/dωnor as functions of ωnor,
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Figure 3.20: Volume fraction of the normalized vorticity magnitude, V ,

and −dV/dωnor as functions of the threshold ωT examined for 0.66 ≤ x/L ≤
0.80.

in each region, are shown in Figs. 3.21 (a)–(c), respectively. Note that ωT

is determined at each location and each region. In the vortical regions ((I)

and (III)), there is a nearly flat plateau for both V and dV/dωnor, and 0.08

and 0.2 can be chosen as ωT , respectively. Such a clear plateau is not seen

in region (II). Thus, we will discuss only the vortical regions.

Figure 3.22 shows the instantaneous distributions of −u′v′/∆U2 (color

contour map) and the high-vorticity region for (a) 0.30 ≤ x/L ≤ 0.34, (b)

0.55 ≤ x/L ≤ 0.61, (c) 0.80 ≤ x/L ≤ 0.90, and (d) 1.60 ≤ x/L ≤ 1.80.

The isopleth of C = 0.05 and C = 0.95 (gray lines) are also shown. The

ωT is set to 0.04, 0.07, 0.15, and 0.10 for Figs. 3.22 (a)–(d), respectively.

Note that the same vortex is captured in a Lagrangian way in order to trace

its development in these figures. The high-vorticity area is shaded in (a),

(b), and (c). Since the majority of the flow is the high-vorticity region in

Fig. 3.22 (d), it is not shaded and the dispersed small fragments repre-

sent the small-vorticity region. Additionally, Fig. 3.23 shows the velocity

derivatives toward the streamwise direction at approximately the center of

the same streamwise locations. In Fig. 3.22 (a), the overall shape of the

vortex is oval and the high-vorticity region appears in the boundary be-

tween the GMT and CGMT in the upstream region. However, Fig. 3.23

(a) illustrates that the streamwise change of the velocity derivatives is mild
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3.19.
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Figure 3.22: Instantaneous distributions of −u′v′/∆U2 (color contour map)

and the high-vorticity region (shaded) for (a) 0.30 ≤ x/L ≤ 0.34, (b) 0.55 ≤
x/L ≤ 0.61, (c) 0.80 ≤ x/L ≤ 0.90, (d) 1.60 ≤ x/L ≤ 1.80.
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Figure 3.23: Streamwise distributions of the velocity derivatives toward the

streamwise direction for (a) 0.30 ≤ x/L ≤ 0.34 at y/L = 0.005 (y/δU0 =

1.0), (b) 0.55 ≤ x/L ≤ 0.61 at y/L = 0.008 (y/δU0 = 1.7), (c) 0.80 ≤ x/L ≤
0.90 at y/L = 0.005 (y/δU0 = 1.0), (d) 1.60 ≤ x/L ≤ 1.80 at y/L = 0.0

(y/δU0 = 0.0).
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even in the high-vorticity regions, and the flow is far from turbulent. This

fact coincides with the perception in prior studies [38, 39], in which only

laminar (non-turbulent) flow is supposed to show the generation of the loss

of the Reynolds stress. The high-vorticity region gradually spreads, flowing

toward the downstream direction, although it still consists of large lumps

and is limited in the boundary area (Fig. 3.22 (b)). Besides, the streamwise

change of the velocity derivatives in the high-vorticity area is still relatively

mild (Fig. 3.23 (b)).

At the following streamwise location (Fig. 3.22 (c)), where the trend

of CGMT was observed, the overall vortical shape is deformed and the

high-vorticity region is fragmented and stretched. In addition, the vortex

drags and merges the high-vorticity region with the forehead stretching

region (indicated by A). Even at this moment, part of the high-vorticity

region is transported toward the counter-gradient direction, as indicated by

B. Moreover, unlike Figs. 3.23(a) and (b), the streamwise change of the

velocity derivatives (especially dw′/dx) is significant and the amplitude is

large in the high-vorticity region (indicated by B) (Fig. 3.23 (c)). In view

of this, we can say that the trend generating the loss of the Reynolds stress

appears in the flow where the turbulent and non-turbulent regions mix.

After repeating the merge, while deforming the shape, the flow becomes

nearly a fully-developed mixing layer, where the non-turbulent region and

CGMT scarcely appear (Figs. 3.22 (d) and 3.23 (d)). In other words, the

non-turbulent region and the CGMT almost simultaneously disappear.

3.6 Conclusions

The driving mechanism and vortical structure of the partial CGMT, appear-

ing in the quasi self-similar region in shear mixing layer, were investigated by

a direct numerical simulation. The main conclusions of this chapter are sum-

marized as follows. The self-similarity between the velocity fluctuations and

the Reynolds shear stress are demonstrated in x/L ≥ 0.67 (x/δU0 ≥ 137).

However, the trend of CGMT is observed at around kδU = 0.075 and 0.15

at x/L = 0.78 (x/δU0 = 160), and kδU = 0.075 corresponds to the distance

between the vortical/stretching regions of the coherent structure. The bud-

get analysis for the Reynolds shear stress revealed that it is caused by the

pressure diffusion term at the off-central region and by −p(∂u′/∂y) in the

pressure-strain correlation term at the central region. As the flow moves
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toward the downstream direction, the appearance of those terms becomes

random and the trend of CGMT at the specific wavenumber bands disap-

pear. Furthermore, we investigated the relationship between the CGMT and

vorticity distribution in the vortex region of the mixing layer, in association

with the spatial development. In the upstream region, the high-vorticity

region appears in the boundary between the areas of the GMT and CGMT.

The area generating the loss of the Reynolds shear stress gradually spreads

by flowing toward the downstream direction, and subsequently, the fluid

mass with high-vorticity is transported from the forehead stretching region

toward the counter-gradient direction. In this location, the velocity fluctua-

tion in the high-vorticity region is large and turbulence is actively produced.

In view of this, the trend generating the loss of the Reynolds shear stress ap-

pears in the flow where the vortical and non-turbulent regions mix. Then,

the non-turbulent region and CGMT almost simultaneously disappear in

the fully-developed region.
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Chapter 4

Characteristics of turbulent

Prandtl number

4.1 Introduction

The knowledge for the similarity between the momentum and scalar transfer

helps to construct the turbulent scalar flux model [87, 88]. Verification of

the similarity between the momentum and scalar transfer in turbulent shear

flow is often done using turbulence Prandtl number PrT defined by the

ratio of the eddy diffusivity coefficient vT and turbulent scalar diffusivity

coefficient αT (i.e., PtT = vT/αT ). Since the governing equations for the

velocity and scalar are similar, it is expected that turbulent characteristics

between the momentum and scalar transfer in the turbulence field are also

similar. Therefore, the assumption defined as PrT = const., assuming the

similarity between the momentum and scalar transfer, have been proposed

for modeling the turbulent scalar fluxes based on Reynolds stresses [87, 88,

89,90].

On the other hand, it has the dissimilarity between the momentum and

scalar transfer in various shear turbulent flows [42, 91, 92] such as axisym-

metric turbulent jet [93], channel flow [94,95,96,97], (perturbed) turbulent

boundary layer [98,99,100,101], turbulent mixing layer [44], perturbed tur-

bulent flow [102,103], and Couette flow [95]. In these shear flows, PrT takes

various values between 0.5 and 1.0.

The influence of turbulence field on PrT has been investigated so far.

Fiedler [104,105] investigated the relationship between the momentum and

heat transfer in two-dimensional turbulence mixing layer where the large-

scale vortex is dominant. As the results, they showed that heat is trans-
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ported more actively than momentum by a large-scale vortical motion.

Chambers et al. [44] focused on the relationship between large-scale struc-

ture and PrT . They showed that when the turbulent field is dominated by

the large-scale structure, PrT takes a smaller value than that of the gen-

eral turbulence field (PrT = 0.5 − 1.0). It can be said that the results of

Chambers et al. are reasonable because the large-scale structure greatly

changes depending on the type of shear turbulence flow and the initial con-

ditions. However, it is not sufficiently mentioned what dynamical motion

of the large-scale structure is causing their dissimilarities.

In this chapter, we investigate the relationship between the large-scale

structure and PrT . Shear mixing layer is a suitable flow to investigate the

relationship between them since the clear large-scale structure induced by

the Kelvin-Helmholtz instability remains until far downstream. This study

aims to clarify the influence of the large-scale structure on PrT . Note that

the calculation conditions in this chapter are the same as those in Chapter

3.

4.2 Results and discussion

To confirm the self-similarity, vertical distributions of the mean streamwise

velocity and concentration are shown in Figs. 4.1(a) and 4.1(b). From

x/L = 0.78 (x/δU0 = 160), both mean velocity and concentration distribu-

tions almost collapse. Vertical distributions of the Reynolds shear stress,

−u′v′, and vertical scalar flux, −v′c′, are also shown in Figs. 4.2(a) and

4.2(b). Here, −u′v′ and −v′c′ are normalized by (∆U)2 and ∆U∆C, re-

spectively. Both statistics collapse from x/L = 1.38 (x/δU0 = 283). Thus,

the mixing layer is self-preserved downstream of x/L = 1.38 (x/δU0 = 283).

To discuss the similarity of the momentum and scalar transfer, PrT is

calculated by the following equation:

PrT =
vT
αT

=
−u′v′/(dU/dy)

−v′c′/(dC/dy)
. (4.1)

Here, αT and vT are the turbulent scalar diffusivity coefficient and eddy

diffusivity coefficient, respectively. Figure 4.3 shows the streamwise distri-

butions of PrT , αT , and vT . PrT changes toward the downstream direction

up to about x/L < 1.4, and in the further downstream region, PrT takes a
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Figure 4.1: Vertical distributions of the (a) mean streamwise velocity, (b)

mean concentration.
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Figure 4.2: Vertical distributions of the (a) Reynolds shear stress for −u′v′,

and (b) vertical scalar flux for −v′c′.
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Figure 4.3: Streamwise distributions of the PrT , vT , and αT at the center

(y = 0).

constant value of PrT = 0.78. It is known that, PrT takes a value from 0.5 to

1.0 in various turbulence fields for fully-developed turbulence [42,91], so the

result of this simulation is plausible. To investigate in more detail, we show

vT and αT . There is no big difference in the trend of vT and αT . Hence, we

also investigate in furthermore detail, dU/dy, dC/dy, and (dU/dy)/(dC/dy)

in Fig. 4.4(a) and −u′v′, −v′c′, and u′v′/v′c′ in Fig. 4.4(b), respectively.

In Fig. 4.4(a), dU/dy and dC/dy take a peak approximately at x/L = 0.1

and these values decrease with increaseing the streamwise distance. At this

time, the streamwise distribution of (dU/dy)/(dC/dy) become a constant

approximately at x/L ≥ 1.4. In Fig. 4.4(b), −u′v′ and −v′c′ take a peak

approximately at x/L = 0.4 and decrease with increaseing the streamwise

distance. At this time, u′v′/v′c′ also become a constant approximately at

x/L ≥ 1.4. From the above, it reveals that when PrT is changing toward

the downstream direction, both (dU/dy)/(dC/dy) and u′v′/v′c′ also change,

and when PrT takes a constant value, both of them also take a constant

value.

Figures 4.5 and 4.6 show the joint probability density function (JPDF)

of u′ and v′ and JPDF of c′ and v′, respectively. Here, u′, v′, and c′ are

normalized by the root mean square values of themselves (indicated by u′,
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(dU/dy)/(dC/dy), and (b) −u′v′, −v′c′, and u′v′/v′c′ at the center (y = 0).
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v′, and c′, respectively). In Figs. 4.5(a)–(c), JPDFs of u′ and v′ take a

negative correlation and a similar distribution at each downstream location

(x/L = 0.78, 1.38, and 1.95). In Figs. 4.6(a)–(c), JPDFs of c′ and v′

also show a tendency of negative correlation similar to Figs. 4.5, but these

JPDFs are much different from JPDFs of u′ and v′ on the upstream region

because of existences of the scalar of C = 0 and 1 in the concentration field.

The influence of the scalar of C = 0 and 1 in the concentration field appears

as [A] and [B] in the Figs. 4.6(a) and 4.6(b). The difference between JPDF

of u′ and v′ and JPDF of c′ and v′ becomes small at downstream region (at

x/L = 1.95).

To support the above remarks, we show the contour maps of the instan-

taneous concentration and streamwise velocity in Figs. 4.7 and Figs. 4.8.

Here, the blue and red areas in Figs. 4.7(a) and 4.8(a) indicate the value

of C = 0.0 and C = 1.0, respectively. In the same way, the blue and red

ares in Figs. 4.7(b) and 4.8(b) indicate the value of U ≤ 1.0 and U ≥ 2.0,

respectively. In the upstream region (Figs. 4.7(a) and 4.7(b)), the scalar of

C = 0.0 and 1.0 pass through the center of the mixing layer (on the bro-

ken line) and these events correspond to the dominated regions indicated

by [A] and [B] in the Fig. 4.6(a). However, the instantaneous streamwise

velocity field (Fig. 4.7(b)) is leveled according to the averaged streamwise

velocity gradient. This means that the flow originally in the upper stream

is deaccelerated strongly and transported to the lower region, and the flow

originally in the lower stream is accelerated and transported to the upper

region. In the downstream region (Figs. 4.8(a) and 4.8(b)), the scalar of

C = 1.0 in the instantaneous concentration is still carried slightly to the

center, and the instantaneous streamwise velocity of the flow (Fig. 4.8(b))

is further leveled than on the upstream region (Fig. 4.7(b)).

To clarify the scale contributing to the disagreement between the mo-

mentum and scalar transfer, the co-spectra for u′ and v′ and co-spectra for

c′ and v′ are calculated. The results are shown in Figs. 4.9(a)–(c). Here,

wavenumber k is normalized by the momentum thickness. In the upstream

region (x/L = 0.78), the co-spectrum for u′ and v′ is a clear trend of the

downward convex approximately at kδU = 0.075 and 0.15. In chapter 3

(Fig. 3.8), it had already been clarified that the downward convex of the

co-spectrum is caused by momentum transfer of the counter-gradient direc-

tion due to the dynamical motion of the large-scale structure. Furthermore,

the co-spectra for c′ and v′ have a sharp spectral peak and the height of the

55



CHAPTER 4. CHARACTERISTICS OF TURBULENT PRANDTL
NUMBER

 

0.7 0.8 0.9

0.7 0.8 0.9

0.0 1.0 0.5 

C 

1.0 2.0 1.5 

U 

x/L  

x/L  

0.0 

0.0 

y/
L

  
y/
L

  
(a) 

(b) 

Mass of C = 1.0 

Mass of C = 0.0 

 

0.04

-0.04 

0.08 

0.04 

-0.04 

0.08 
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and red regions in Fig. 4.7(a) indicate the value of C = 0.0 and C = 1.0,
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spectral peak is very high compared to that of the co-spectrum for u′ and

v′. This similar tendency of the co-spectra is also observed in the turbu-

lent mixing layer with the dynamical motion of the large-scale structure by

Chambers et al [44]. They measured PrT and obtained the value of PrT of

about PrT = 0.4, which is somewhat smaller than the result of the present

study (PrT = 0.55) at x/L = 0.78. However, in the present study, it should

also be noted that the value of PrT in upstream region changes toward the

downstream direction, and smaller PrT is seen in the further upstream side

of x/L = 0.78. It is also revealed that the disagreement between the mo-

mentum and scalar transfer is occurred by the scale corresponding to the

large-scale structure because the spectral peak of the co-spectra corresponds

to the average frequency of appearance of the large-scale structure [44,?].

As the flow goes toward downstream, the width of the sharp spectral peak

of the cospectra for c′ and v′ becomes broader. In the most downstream

region (x/L = 1.95), co-spectra for u′ and v′ and co-spectra for c′ and v′

are almost collapse.
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To investigate the driving term of the dissimilarity between the momen-

tum and scalar transfer, the budget equations for the momentum and scalar

transfer are examined. These equations are written as follows:

−∂u′v′

∂t
= Cu′v′ + Pu′v′ + ϵu′v′ +Πu′v′

+ DT
u′v′ +Dν

u′v′ +DP
u′v′ , (4.2)

−∂v′c′

∂t
= Cv′c′ + Pv′c′ + ϵv′c′ +Πv′c′

+ DT
v′c′ +Dν

v′c′ +DP
v′c′ . (4.3)

The right-hand terms in Eqs. (4.2) and (4.3) are called convection term,

Cu′v′ and Cv′c′ , production term, Pu′v′ and Pv′c′ , dissipation term, ϵu′v′ and

ϵv′c′ , pressure-strain correlation term, Πu′v′ , and pressure-scalr gradient cor-

relation term, Πv′c′ , turbulent diffusion term, DT
u′v′ and DT

v′c′ , viscous

diffusion term, Dν
u′v′ and Dν

v′c′ , and pressure diffusion term, DP
u′v′ and

DP
v′c′ , respectively. Table 4.1 summarizes some representative terms in the

equations which are evaluated in the present study. Figures 4.10(a) and

4.10(b) show the streamwise distributions of the budget for the momentum

and scalar transfer. It should be note that the magnitude of the resid-

ual error is sufficiently smaller than dominant terms (i.e., production term,

pressure-strain correlation term, pressure-scalar gradient correlation term,

and pressure diffusion terms). In the upstream region, there is a greatly

difference in the pressure-strain correlation term, pressure-scalar gradient

correlation term, and pressure diffusion terms. Since there are no particular

differences in the other terms of two budget equations, it is inferred that

the differences seen in the instantaneous contour map (Figs. 4.7(a) and

4.7(b)) and the JPDF (Figs. 4.5(a) and 4.6(a)) are caused by terms related

to pressure. As it goes downstream, the difference between the momentum

and scalar transfer budget becomes smaller.

Finally, in order to investigate the influence of the scalar of C = 0.0 and

1.0 on PrT , we take conditional statistics based on the instantaneous con-

centration. The conditional turbulent Prandtl number PrTcs(= vTcs/αTcs,

where αTcs and vTcs are the conditional turbulent scalar diffusivity and

conditional eddy diffusivity, respectively) is calculated by the reconstructed

time-series data excluding the duration of the scalar of C = 0.0 and 1.0 in

the time-series data of the instantaneous concentration. The result is shown
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transfer and (b) scalar transfer.
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in Fig. 4.11. PrTcs takes a constant value of PrTcs = 0.78 approximately at

x/L > 0.6 and collapses to PrT approximately at x/L > 1.4. It can be seen

that the existence of the duration of the scalar of C = 0.0 and 1.0 causes

PrT to change, and the Prandtl number becomes a constant by removing

this duration. When comparing the details of PrT and PrTcs, there is no

significant difference between vT and vTcs, but αTcs is smaller than αT on

the upstream region.

In summary, when PrT is changing toward the downstream direction,

both (dU/dy)/(dC/dy) and u′v′/v′c′ also change. At this time, both JPDF

of u′ and v′ and JPDF of c′ and v′ take a negative correlation, but there

are big differences in their distributions because of existences of duration

of scalar of C = 0.0 and C = 1.0. As it proceeds toward the downstream

direction, both JPDF of u′ and v′ and JPDF of c′ and v′ are more similar

and those co-spectra almost collapse.

4.3 Conclusions

We performed a DNS of a spatially developing shear mixing layer and in-

vestigate the influence of the large-scale structure on dissimilarity between

the momentum and scalar transfer. As the main conclusions of this chapter,

when PrT is changing as the flow goes downstream, both (dU/dy)/(dC/dy)

and u′v′/v′c′ also change, but in the region where PrT is constant, both of

them are also constant. In both regions, JPDF of u′ and v′ and JPDF of c′

and v′ take a negative correlation. But, in the upstream region, JPDF of

c′ and v′ is very different from JPDF of u′ and v′ because of the existence

of the duration of the scalar of C = 0.0 and 1.0. The budget analysis for

momentum and scalar transfer revealed that the differences between the

momentum and scalar transfer are caused by terms related to pressure. In

the most downstream region, both JPDF of u′ and v′ and JPDF of c′ and

v′ are similar, and the co-spectrum for u′ and v′ and for c′ and v′ almost

collapse.
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Chapter 5

Turbulent dissipation in shear

mixing layer

5.1 Introduction

Theoretical analysis and modeling of turbulent flows usually require an as-

sumption about the dissipation coefficient of the turbulent kinetic energy

Cϵ. In particular, because the turbulence model is used in various engineer-

ing situations, formulation of the dissipation coefficient is very important.

　

The formulation of turbulence models requires the use of pertinent scales

for the velocity and size with the largest energy contribution, and it is

expressed by [45]

Cϵ =
ϵL

(2K/3)
3
2

∼ L/λ

Reλ
, (5.1)

where ϵ is the dissipation rate of the turbulent kinetic energy, Lu is the

integral length scale, K is the local average of turbulent kinetic energy, and

Reλ(= (2K/3)
1
2λ/ν) is the turbulent Reynolds number based on Taylor’s

microscale, λ, and the kinematic viscosity, ν. Usually, the turbulence energy

is transported from larger to smaller scales of motion [46], and Cϵ takes a

constant value if this downward cascade occurs without a time lag. It is

a cornerstone assumption of turbulence theory [45, 46, 47, 48] and has been

demonstrated in various flows [106,107,108,109,110], and it is also used in

various turbulence models such as the k − ϵ model [111,112,113,114].
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On the other hand, turbulent flows in which Cϵ is not constant have been

found in different types of flows such as grid turbulence [115, 116, 117, 118,

119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,

137, 138, 139, 140], uniformly sheared turbulence [141], turbulent boundary

layers [142, 143], and axisymmetric turbulent wakes [144, 145, 146, 147]. In

addition, direct numerical simulation (DNS) studies in box turbulence with

unsteady energy input [34, 49, 50] show that, when Cϵ is not constant, it

follows the new scaling law of Cϵ ∼ Re0/ReL ∼
√
Re0/Reλ, where Re0 =

U∞Lb/ν, where U∞ and Lb are respectively the initial velocity and bulk

length, and ReL =
√
KL/ν [50, 117]. This scaling holds in wakes with

large-scale oscillations [144,145,146], constant-pressure turbulent boundary

layer [142], and grid turbulence [45,117,119,131], too.

Nedić and Tavoularis [141] found that Cϵ varies toward the downstream

direction in uniformly sheared turbulence. They also explained that Cϵ

is expressed as Cϵ ∼ Reαλ , and the changes in α are the consequences of

structural changes in the turbulence. Goto and Vassilicos [34] suggested

that the existence of a conspicuous peak in the power spectrum for the

velocity fluctuation causes the scaling of Cϵ ∼ Re−1
λ . In this regard, the

shear mixing layer is a suitable flow to investigate the relationship between

Cϵ and the coherent structure because large-scale coherent eddies induced

by the Kelvin-Helmholtz (K-H) instability [9, 148] remain until far down-

stream [64]. In the remainder of this chapter we use the term “coherent

structure” to mean the structure with temporal periodicity that has a con-

spicuous spectral peak in the low-wavenumber part of the power spectrum

(in other words, it means the large-scale structure with a temporally peri-

odic appearance). In fact, the mixing layer has rarely been the focus of past

researches on Cϵ. Therefore, we investigated the spatial variation of Cϵ and

the effect of the coherent structure in a spatially developing shear mixing

layer on the scaling of Cϵ by DNS.

5.2 Numerical setup

The domain is a rectangular box with a size of Lx×Ly×Lz = 3.2L×L×L

resolved by Nx ×Ny ×Nz = 3, 100× 1, 460× 970 grid points. The spacing

in the three directions is constant and the value is 0.001L in the x and z

directions and 0.0007L in the y direction. The spatial derivatives of the

velocities and scalar are discretized by the fourth-order central difference
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Table 5.1: Streamwise location of each station.

Station A B C D E F G

x/L 0.3 0.7 1.1 1.5 1.9 2.3 2.7

x/δU0 61.4 143 225 307 389 471 553

scheme in the x, y and z directions. The spatial resolution is smaller than

2.6η. Here, η is the Kolmogorov length scale. The time step is set to

∆t = 5.6× 10−4 and the maximum Courant number is 0.3.

The computation has been performed for 600,000 time steps and 400, 000

(= N0) steps were used to obtain reliable statistical values. The length of

the time series based on U0 and L is estimated as ∆tN0U0/L ∼ 336. The

total CPU time of the present simulation was about 60,000 hours, which

is sufficient time to take statistics. The condition of the inlet streamwise

velocity and Reynolds number are the same as the one shown in Chapter 3.

5.3 Scaling of turbulent energy dissipation

Figure 5.1 (a) shows the streamwise distributions of the velocity fluctuta-

tions. All values are normalized by (∆U)2 and all statistics take a constant

value approximately from x/L = 1.9 (station E). The self-similarity for the

velocity fluctuations are also investigated in Figs. 5.1 (b)-(d). All statis-

tics collapse from x/L = 1.9 (station E). Thus, the present mixing layer is

self-preserved downstream of x/L = 1.9 (station E).

Figure 5.2 shows the streamwise evolutions of the normalized momentum

thickness. Here, the representative points of seven downstream locations are

indicated by “A-G” (see Table 5.1 for the station locations), respectively.

δU0 is the initial momentum thickness obtained by extrapolating the line

that indicates the mixing layer development in 1.1 ≤ x/L ≤ 3.0 (linear

growth set by self-similarity is observed from x/L = 1.1, which corresponds

to station C) to x/L = 0 by the least squares method, and about 0.005L. In

the linearly increasing region of the momentum thickness, the growth rate

is dδU/dx ≈ 0.017.

Figure 5.3 shows the power spectra for the streamwise velocity fluctua-

tion at the center of the mixing layer at x/L = 1.5 (station D) and x/L = 2.3

(station F). The vertical and horizontal axes are normalized by the energy
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Streamwise distributions, (b) vertical distribution of the streamwise fluctu-

ation (c) vertical distribution of the vertical fluctuation (d) vertical distri-

bution of the spanwise fluctuation.
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(y = 0). The inset shows the enlarged view in the downstream region

(station D-G).

unit (ϵν5)1/4 and η, respectively. Here, the power spectra were obtained

from the time-series data at fixed points. The frequency f was converted

to the wavenumber k by k = 2πf/U . At x/L = 1.5 (station D), spectral

spikes are seen on the lower wavenumber side. However, these spikes are

suppressed at x/L = 2.3 (station F). The inertial subrange with a −5/3

slope is clearly observed at both downstream locations.

Figure 5.4 shows the streamwise profiles of the ratio of the mean-squared

velocity derivatives in the different directions, K1−K6, which are commonly

used as the indicators of local isotropy [112, 149, 150], and are defined as

follows:
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K1 =
2⟨(∂u′

∂x
)2⟩

⟨(∂v′
∂x

)2⟩
, K2 =

2⟨(∂u′

∂x
)2⟩

⟨(∂w′

∂x
)2⟩

, K3 =
2⟨(∂u′

∂x
)2⟩

⟨(∂u′

∂y
)2⟩

,

K4 =
2⟨(∂u′

∂x
)2⟩

⟨(∂u′

∂z
)2⟩

, K5 =
⟨(∂u′

∂x
)2⟩

⟨(∂v′
∂y
)2⟩

, K6 =
⟨(∂u′

∂x
)2⟩

⟨(∂w′

∂z
)2⟩

. (5.2)

The ratios in all pairs have constant values close to 1 (0.85 < K1−K6 < 1.1)

in the region of x/L ≥ 1.5 (station D). Thus, it can be concluded that

relatively good local isotropy holds in that region.

In high-Reynolds number self-preserving turbulence, K and Lu are ex-

pressed by K ∼ U2
∞(x−x0

Lb
)−n and Lu ∼ Lb(

x−x0

Lb
)m, where x0 is a virtual ori-

gin originating from each turbulent field. Note that Lb and U∞ can be cho-

sen appropriately according to each turbulent field, and they are defined as

“unit” in the present study. In the mixing layer, the exponents n and m are

generally accepted to take values of 0 and 1, respectively [46, 121]. Figures

5.5(a) and (b) illustrate the downstream variations ofK (= 1
2
(u′2+v′2+w′2),

where u′, v′, and w′ are the r.m.s. values of the streamwise, vertical,

and spanwise velocity fluctuations, respectively, and the integral scale Lu

(= U
∫ τ0
0

f(τ)dτ , where f(τ) is the auto-correlation function of the stream-

wise velocity fluctuations and τ is the time lag, and f(τ) is integrated over

the time lag from zero to τ0 when the functions become less than 0.02).

From these figures, we find that K ∝ x0 and Lu ∝ x1, respectively, from

x/L = 1.5 (station D). By assuming the local isotropy of the turbulent ki-

netic energy dissipation rate, ϵ = 2ν<eijeij> = 15ν<(∂u/∂x)2> ∼ νK/λ2,

where eij is eij = (∂u′
i/∂xj + ∂u′

j/∂xi)/2, in which ui denotes the fluctu-

ation velocity component, with the cornerstone assumption ϵ ∼ K3/2/Lu

[151,152,153,154], Taylor’s microscale λ for the mixing layer evolves as:

λ2 ∼ L2
bRe−1

0

(
x− x0

Lb

)
. (5.3)

That is, we obtain the relation λ2 ∝ x1. Figure 5.6 shows the streamwise

variations of Taylor’s microscale λ2 (= (2K/3)/⟨(∂u/∂x)2⟩). It shows that

λ2 ∝ x1 from x/L = 1.5 (station D).

In the same way that we derived Eq. (5.3), we obtain the evolutions of

Reλ and Lu/λ as follows:
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(y = 0).

72



CHAPTER 5. TURBULENT DISSIPATION IN SHEAR MIXING
LAYER

0 1 2 3
0.00

0.01

0.02

0.03
l
2
/L
2

x/L

l
2
 µ x

1

0 200 400 600

x/d
U0

A B C D E F G

Figure 5.6: Streamwise distributions of λ2/L2 at the center (y = 0).

Reλ = K
1
2λ/ν ∼ Re

1/2
0

(
x− x0

Lb

) 1
2

, (5.4)

Lu/λ ∼ Re
1/2
0

(
x− x0

Lb

) 1
2

. (5.5)

That is, we obtain the relations (Reλ)
2 ∝ x1 and (Lu/λ)

2 ∝ x1, respectively.

It is worth noting that Eqs. (5.4) and (5.5) are consistent with Cϵ = const.

from the definition of Cϵ, i.e., Eq. (5.1). Streamwise variations of (Reλ)
2

and (Lu/λ)
2 are shown in Figs. 5.7(a) and (b), respectively. (Reλ)

2 also

shows the tendency of a linear increase in x/L ≥ 1.5 (station D) as in Lu

(Fig. 5.5(b)) and λ2 (Fig. 5.6), but (Lu/λ)
2 (Fig. 5.7(b)) is almost constant

up to x/L = 1.9 (station E) and increases linearly in x/L ≥ 2.3 (station F).

Figure 5.8 shows the streamwise variation of Cϵ. It rapidly decreases toward

the downstream direction, and approaches a constant value of Cϵ = 0.6 in

x/L ≥ 1.5 (station D).

Equations (5.4) and (5.5) also show the relation Lu/λ ∼ Reλ. The

relationship between Lu/λ and Reλ in the present study is shown in Fig.

5.9(a). It is found that Lu/λ is almost constant in x/L ≤ 1.9 (up to station
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Figure 5.8: Streamwise distributions of Cϵ at the center (y = 0).

E). This is the same characteristic seen in several types of grid turbulence

[118, 117, 134]. In x/L ≥ 2.3 (in the downstream region from station F),

Lu/λ almost follows the slope of Cϵ = 0.6. We also show the relationship

between Cϵ and Reλ in Fig. 5.9(b). It shows that the slope follows Re−1
λ

over a wide area (from station A to station E). In other words, the scaling

law proposed by Goto and Vassilicos [34] also holds in the present flow.

5.4 Self-similarity of energy-containing struc-

ture

Goto and Vassilicos [34] suggested that the dissipation law changes from

Cϵ ∼ Re−1
λ to Cϵ ∼ Re0λ (i.e., Cϵ takes a constant value) in accordance

with the disappearance of the spectral spikes in the power spectrum for the

velocity fluctuation. The scaling law based on the Taylor-Kolmogorov the-

ory is a statistically stationary cascade in which the large-scale energy flux

balances dissipation. Then, if some peaks remain on the lower wavenumber

side of the spectrum, as shown in Fig. 5.3, it is thought that the dissi-

pation rates of the small and large scales do not evolve together. This
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Figure 5.10: Contributions of each POD mode of the streamwise velocity

fluctuation.

opinion is also supported by the work of Goto and Vassilicos [49, 34]; the

instantaneous values of energy flux and dissipation are never equal in the

case of an unsteady turbulence (with a peak on the low-wavenumber side

of the spectrum). It is believed that this is caused by the cascade time-

lag occurring between energy flux and dissipation. In the present case,

Cϵ ∼ Re−1
λ holds up to x/L = 1.9 (up to station E), and in the further

downstream region, Cϵ becomes Cϵ ∼ Re0λ. Furthermore, in Fig. 5.3, the

spectral spikes in the low-wavenumber part of the power spectra appear at

x/L = 1.5 (station D), but they disappear at x/L = 2.3 (station F). The

spikes in the spectrum at x/L = 1.5 (station D) are caused by the coherent

structure induced by the K-H instability. In order to confirm the details

of the large-scale energy-containing structure, we performed proper orthog-

onal decomposition (POD) analysis [155, 156] for the streamwise velocity

fluctuation at several streamwise locations using time-series data. The con-

tributions of each POD mode are shown in Fig. 5.10. It confirms that the

first mode is dominant in the upstream region and the turbulence energy is

distributed to the higher modes as the flow goes downstream. Considering

that the first mode corresponds to the coherent structure in the upstream
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Figure 5.11: Power spectra for the first and second POD modes of the

streamwise velocity fluctuation at the center (y = 0). (a) x/L = 1.5 (station

D), (b) x/L = 2.3 (station F).
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Figure 5.12: Cumulative distribution function of the mode energy rate

shown in Fig. 5.10.

region [157, 158], this fact indicates that the energy of the coherent struc-

ture is dispersed into various modes with increasing streamwise distance.

It should also be noted that the change in the energy distribution becomes

smaller in the downstream region.

Figures 5.11(a) and (b) show the power spectra multiplied by the wavenum-

ber for the first and second POD modes at x/L = 1.5 (station D), where

Cϵ follows Cϵ ∼ Re−1
λ , and x/L = 2.3 (station F), where Cϵ ∼ Re0λ, re-

spectively. In these figures, the power spectra for the measured raw data

are also shown. At x/L = 1.5 (station D), the power spectrum of the raw

data consists of several strong and discrete peaks. The most energetic one

(indicated by A in Fig. 5.11(a)) corresponds to the coherent structure due

to the K-H instability, and the second and third ones (indicated by B and

C, respectively) are their harmonic components. On the other hand, at

x/L = 2.3 (station F), Fig. 5.11(b) shows that the spectrum of the raw

data has a broader distribution, and the spectrum peak of the first POD

mode is smaller than that at x/L = 1.5 (station D).

The frequency of appearance of the large-scale energy-containing struc-

ture of the mixing layer changes as the flow goes downstream. This is
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Table 5.2: Information for reconstructing time-series data.

Station A B C D E F G

x/L 0.3 0.7 1.1 1.5 1.9 2.3 2.7

Mode 1 2 4 5 6 6 6

Fth 0.82 0.68 0.71 0.61 0.62 0.62 0.62

because these structures are merged, strained, and collapsed, and excited

to different frequencies. The harmonics components shown in [B] and [C] in

Fig. 5.11(a) are the result of energy excitation. Therefore, we think these

harmonics components are parts of a large-scale energy-containing struc-

ture. Looking at the spectrum of the first mode in Fig. 5.11(a), if only

peak [A] is captured, it is insufficient for the extraction of the energy con-

taining structure. Hence, we will try to reconstructed data including more

of these energy-containing structures. The cumulative distribution function

F (x,Mode) of the mode energy rate (as shown in Fig. 5.10) is shown in

Fig. 5.12, and it is expressed by the following equation:

F (x,Mode) =
Mode∑
n=1

(Mode energy rate). (5.6)

Figure 5.12 is used to construct the time-series data expressing the structure

governing the mixing layer. The time-series data is created by summing the

modes until the cumulative energy rate exceeds 60 %, and this cumulative

energy rate is defined as Fth (see Table 5.2 for information on reconstructing

time-series data). The spectra of the POD reconstructed signals are shown

in Fig. 5.13 with spectra of raw signals. Since the power spectrum for the

reconstructed data includes peaks [A], [B], and [C] at x/L = 1.5 (Fig. 5.13

(a)), it is sufficient for extracting the dominant energy-containing structure.

At x/L = 2.3 (Fig. 5.13 (b)), it is found that the reconstructed spectrum

covers a wide area of the low-wavenumber region. To phenomenologically

visualize the large-scale energy-containing structure, reconstructed isopleth

maps of the streamwise velocity fluctuation at x/L = 2.3 is presented in Fig.

5.14. By reconstructing the data, it illustrates that fine disturbances seen

in raw data (Fig. 5.14 (a)) is eliminated and a large-scale energy-containing

structure can be extracted (Fig. 5.14 (b)).

Figure 5.15 shows time-series data of the streamwise velocity fluctuation
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Figure 5.13: Power spectra for raw data and POD reconstructed data

according to the condition of Table 2 of the streamwise velocity fluctuation

at the center (y = 0). (a) x/L = 1.5 (station D), (b) x/L = 2.3 (station F).
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Figure 5.14: Reconstructed isopleth maps of the streamwise velocity fluc-

tuation at x/L = 2.3 (station F). (a) Raw data, (b) POD reconstructed

data accoridng to the condition of Table 2.

at the center reconstructed from the data composed by the sum of the modes

until the cumulative energy rate exceeds 60 %. Note that the broken line in

Figure 5.15 shows u′ = 0. We also measured the streamwise length, Lcycle,

which is the length estimated from the cycle of the zero-crossing point of

the time-series data created as described above. Here, Lcycle is expected to

be the length corresponding to the large-scale energy-containing structure

in the mixing layer. Figure 5.16 shows the probability density function of

Lcycle normalized by Lu. A peak appears at all locations, but it is sharp

in the upstream region whereas the distribution becomes broader and less

peaked as the flow goes downstream. Further, these distributions almost

collapse for x/L ≥ 2.3 (station F). In other words, the streamwise length

corresponding to the large-scale energy-containing structure varies in the

broader range, and its distribution becomes the same in the downstream

region (x/L ≥ 2.3), where Cϵ follows Cϵ ∼ Re0λ, whereas it is relatively

confined in the narrower range in the upstream region (x/L ≤ 1.9), where

Cϵ follows Cϵ ∼ Re−1
λ . Therefore, Fig. 5.16 reveals that Cϵ becomes a

constant when the distributions of Lcycle reach a self-similar state. This

proposal is also supported by Fig. 5.12. When the energy distributions from

large to small scale reaches a self-similar state, the cumulative distribution

function should collapse because it means that the energy holding ratio

for each wavenumber in the power spectrum is the same regardless of the
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Figure 5.15: Image of normalized time-series data of the streamwise ve-

locity fluctuation at the center. Lcycle is the streamwise length estimated

from the cycle of the zero-crossing point of the velocity fluctuation.

downstream location. In fact, Fig. 5.12 collapses in x/L ≥ 2.3 (station F).

It can be seen from Figs. 5.10 and 5.12 that the graphs do not collapse

in the lower order mode on the upstream side. This indicates dissimilarity

of energy distribution in lower order modes. Figure 5.16 clearly shows that

the dissimilarity in the lower order mode is related to the dissimilarity of

the distribution of large-scale energy-containing structures.

To deduce the relationship between Lcycle and the large-scale energy-

containing structure, the ratio, between the integral scale of the streamwise

direction and the averaged value of the zero-crossing length of the POD

reconstructed signal, i.e., Lcycle/Lu, is presented in Fig. 5.17. In the re-

gion where Lu linearly increases (x/L ≥ 1.5) in Fig. 5.5(b), Lcycle/Lu is

distributed between 1 and 1.15. We also took a maximum value, Lmax
cycle, of

the distribution of Lcycle in Fig. 5.17. Lmax
cycle/Lu is distributed between 1 and

1.2. Hence, it is clear that Lcycle corresponds to a large-scale.

In summary, when the distribution of Lcycle does not reach the self-

similar state, Cϵ follows Cϵ ∼ Re−1
λ , and when it reaches the self-similar

state, Cϵ follows Cϵ ∼ Re0λ (i.e., Cϵ takes a constant value). This study

suggests that it is necessary to satisfy the self-similarity of the distribution

of the length of the large-scale energy-containing structure in order to apply
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Figure 5.16: Probability density function of Lcycle for each downstream

location at the center. The time-series data is created by the sum of the

modes until the cumulative energy rate exceeds 60 %.
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the condition where Cϵ is a constant. The results in this study would help

formulate new theories and improve various turbulence models based on the

hypothesis ϵ ∼ K3/2/Lu such as the k − ϵ model.

5.5 Conclusions

In this chapter, the spatial change in Cϵ in the mixing layer is investigated

in association with the self-similarity of the large-scale energy-containing

structure by DNS. It is found that the scaling law Cϵ ∼ Re−1
λ holds over

a wide area in the upstream region, and Cϵ takes a constant value on the

further downstream side. Although the streamwise length of the large-scale

energy-containing structure in the mixing layer exists in both regions, its

distribution is concentrated on a certain scale in the former region whereas

it varies over a broader range in the latter region. It is also revealed that Cϵ

becomes a constant when its distributions reach a self-similar state. Further-

more, this study suggests that it is necessary to satisfy the self-similarity of

the distribution of the length of the large-scale energy-containing structure

in order to apply the condition that Cϵ is a constant.
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Chapter 6

Conclusion

We perform simulations of turbulence generated by the free-shear mixing

layer. The result of this thesis is divided into three parts (Chapters 3, 4,

and 5). Here the conclusions for each chapter are summarize.

Characteristics of the momentum transport process of the turbulent field

coexisting with the large-scale structure were investigated in Chapter 3.

The aim of this study is to clarify the driving mechanism and the vorti-

cal structure of the partial counter-gradient momentum transport (CGMT)

appearing in the quasi self-similar region. In the present DNS, the self-

similarity is confirmed in x/L ≥ 0.67 (x/δU0 ≥ 137), where L and δU0 are

the vertical length of the computational domain and the initial momentum

thickness, respectively. However, the trend of CGMT is observed at around

kδU = 0.075 and 0.15, where k is the wavenumber, δU is the normalized

momentum thickness at x/L = 0.78 (x/δU0 = 160), and kδU = 0.075 cor-

responds to the distance between the vortical/stretching regions of the co-

herent structure. The budget analysis for the Reynolds shear stress reveals

that CGMT is caused by the pressure diffusion term at the off-central region

and by −p(∂u/∂y) in the pressure-strain correlation term at the central re-

gion. As the flow moves toward the downstream direction, the appearance

of those terms becomes random and the trend of CGMT at the specific

wavenumber bands disappears. Furthermore, we investigated the relation-

ship between the CGMT and vorticity distribution in the vortex region of

the mixing layer, in association with the spatial development. In the up-

stream location, the high-vorticity region appears in the boundary between

the areas of gradient momentum transport (GMT) and CGMT. The area

generating the loss of the Reynolds shear stress gradually spreads by flow-

ing toward the downstream direction, and subsequently, the fluid mass with
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high-vorticity is transported from the forehead stretching region toward the

counter-gradient direction. In this location, the velocity fluctuation in the

high-vorticity region is large. In view of this, the trend generating the loss

of the Reynolds shear stress appears in the flow where the turbulence pro-

duction and non-turbulent regions mix. Then, the non-turbulent region and

CGMT almost simultaneously disappear in the fully-developed region.

In Chapter 4, we aim to clarify the influence of the large-scale structure

on the turbulent Prandtl number PrT . As a main conclusion, PrT takes a

small value (PrT ∼ 0.5) in the dominant region of the large-scale structure.

The budget analyses for the Reynolds stress equation and the scalar flux

equation revealed that the differences between the momentum and scalar

transfer are caused by terms related to pressure (i.e., pressure-strain correla-

tion term, pressure-scalar gradient correlation term, and pressure diffusion

terms). Phenomenally, the momentum in the field where a large-scale vor-

tex coexists tends to be transported toward the counter-gradient direction

under the influence of pressure, but the scalar is transported toward the

gradient direction. As a result, it is thought that the difference in the driv-

ing force between the momentum and scalar transport causes the decrease

of the PrT .

In Chapter 5, we investigate the spatial transition of the dissipation

coefficient of the turbulent kinetic energy, Cϵ. The scaling law suggested by

Goto and Vassilicos [Phys. Rev. E 94, 053108 (2016)], Cϵ ∼ Re−1
λ , holds

over a wide area in the upstream region (0.3 ≤ x/L0 ≤ 1.9, where x is the

streamwise direction and L0 is the height of the computational domain),

and Cϵ takes a constant value in the further downstream region, where Reλ

is the turbulent Reynolds number based on Taylor’s microscale. Proper

orthogonal decomposition (POD) analysis is performed to investigate the

distributions of the streamwise length of the large-scale energy-containing

structure, which is estimated from the cycle of the zero-crossing point of

the time-series data composed of the sum of the POD modes until the

cumulative energy rate exceeds 60 %. It is shown that Cϵ becomes a constant

when the distributions of the length of the large-scale structure reach a

self-similar state. This result suggests that it is necessary to satisfy the

self-similarity of the distribution of the length of the large-scale energy-

containing structure in order to apply the condition that Cϵ is a constant.
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