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Detection of T-cells and B-cells for Blood 

Analysis System Using Microfluidic Chip 

Bilal Turan 

Abstract 

This thesis presents a blood analysis system for the isolation and detection of T-cells and 

B-cells. Providing an accurate count of total leukocytes from limited amounts of blood is a 

rather challenging ordeal.  

First, we introduce the microfluidic chip that is designed and fabricated for the isolation of 

T-cells and B-cells. A micro-pillar array based gradual filtering with anti-clogging strategies 

such as escape routes is used to isolate the T-cells and B-cells from sub-microliter of whole 

blood. Based on the difference in size and deformability, leukocytes were separated from other 

blood cells by micropillar arrays. We confirmed the microfluidic chip is clog-free. Using the 

microfluidic chip, a trap rate of 99.8% is achieved.  

Then we introduced a machine learning algorithm to detect T-cells and B-cells. The 

variability of cells in size, morphology and color intensity along with the emission spectrum 

crosstalk between fluorescence dyes make cell detection among pillars extremely difficult. A 

Support Vector Machine (SVM) supervised machine learning classifier based on both 

Histogram of Oriented Gradients (HOG) and color distribution features was proposed to 

distinguish T-cells and B-cells in a rapid and robust manner. HOG features were utilized to 

detect cells from background and noise; color distribution features were employed to alleviate 

the effect of fluorescence spectrum crosstalk. The experiment showed we achieved an average 



 

 

detection accuracy of 94% for detecting T-cells and B-cells from the background. Furthermore, 

we also got 96% accuracy with cross validation to detect T-cells from B-cells.  

Finally, we propose a Convolutional Neural Network (CNN) to further increase the 

accuracy of the detection. A CNN is trained and used to distinguish T-cells and B-cells with an 

accuracy rate of 98%, a specificity of 99% and a sensitivity of 97%. We also propose an HOG 

feature based SVM classifier to preselect the detection windows to accelerate the detection to 

process images in less than 10 mins. The proposed on-chip cell detecting and counting method 

will be useful for numerous applications in diagnosis and for monitoring diseases. 
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Chapter 1. 

 

Introduction 

 

1.1 Blood 

Blood is vital to us. Unlike any other part of our anatomy, from the ancient times, its 

importance is acknowledged. Blood, or bleeding is what causes people to take the quickest 

action in caring for themselves. Losing 15-20 percent of the total blood volume, a man or 

woman will probably feel nausea, experience dizziness, have blurred vision, and is likely to 

faint [1]. Blood delivers oxygen and nutrients to the cells and cleanses the body by carrying the 

waste products. It consists of plasma and several types of cells. Figure 1.1 illustrates these blood  
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Figure 1.1 Blood cells [2]. 

 

cells which consist of red blood cells (RBCs), white blood cells (leukocytes), and platelets 

(thrombocytes).  

 

1.1.1 Plasma 

Blood plasma is the liquid part of the blood, that holds the blood cells in suspension. It can 

be separated from the blood by centrifuging whole blood until the blood cells settle at the 

bottom of the tube. Plasma comprises 55% of the blood volume and is mostly water. It contains 

dissolved proteins, glucose, clotting factors, hormones, carbon dioxide, oxygen and electrolytes 

[3]. The condition of blood plasma is an indication of health and diseases [4-6]. 
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1.1.2 Red Blood Cells  

Red blood cells contain the blood’s hemoglobin, the iron-containing oxygen-transport 

protein which gives the red color to the cells and the blood. Red blood cells normally occupy 

45% of the blood. Red blood does not have a nucleus or most organelles, giving more space for 

hemoglobin. 

Blood diseases involving the red blood cells include anemia, hemolysis and polycythemias. 

Anemias characterized by low oxygen transport capacity of the blood, and could be caused by 

low red blood cell count [7], some abnormality of the red blood cells [8] or the hemoglobin [9-

11]. Hemolysis is the term for the excessive breakdown of the red blood cells, which can be 

caused by the malaria parasite [12]. Polycythemias are diseases characterized by a surplus of 

red blood cells [13] which causes increased viscosity of the blood. 

 

  1.1.3 Platelets 

Platelets react to bleeding from blood vessel injury by clumping and make a blood clot. 

Unless the injury is too big, they plug the hole. The blood clot is only a temporary solution, 

before the tissue is repaired. Platelets are disc shaped cytoplasm fragments from 

megakaryocytes and have no cell nucleus. 

When platelet count is low [14], the bleeding might not stop, or there would be an increased 

tendency to bleed. Although too many platelets do not cause symptoms often, it might increase 

the risk of thrombus which is blood clotting inside blood vessels [15].  

 

  1.1.4 White Blood Cells 

White blood cells are part of the immune system. They destroy and remove old cells as 

well as attack foreign invaders. Leukocytes are found throughout the body, including the blood 

and lymphatic system [16]. All white blood cells have nuclei, unlike red blood cells or platelets. 
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White blood cells are divided into five main types: neutrophils, eosinophils, basophils, 

monocytes and lymphocytes. These types can be distinguished by their physical and functional 

characteristics. Lymphocytes are further divided into T-cells, B-cells and NK cells.  

White blood cells population count change dramatically in the presence of infections [17, 

18], malignancies [19, 20], autoimmune disorders [21, 22], and chemical-induced 

hematotoxicity [23, 24]. Quantifying the number of leukocyte subpopulations, such as CD3+ 

(T-cell), CD19+ (B-cell), CD4+ (helper T-cell), and CD8+ (cytotoxic T-cell) cells, can be more 

informative of the immune response of the body comparing to the total leukocyte count. [25-

30]. 

 

1.2 Blood Analysis Systems 

Blood analysis are often used in health care to determine physiological and biochemical 

states. Biochemical tests such as basic metabolic panel analyzes the plasma and complete blood 

count provides a detailed count for cells in the blood. Blood count tests are one of the most 

requested blood tests in clinical laboratories. The idea of counting the cells in the blood was 

one of the earliest ways to study blood. This also marks the beginning of studying blood 

quantitatively. The credit for performing the first blood counts, goes to Professor Karl Vierordt. 

He used capillary tubes with a known diameter, so he could control the amount of blood that he 

was putting on top of a slide coated with albumen. After the blood dried, he placed a micrometer 

over the glass slide, and then he counted the blood cells. In his later works, he used a solution 

of gum Arabic to dilute the blood first. Although time consuming and tedious, his methods are 

considered to be fairly accurate [31]. Figure 1.2 illustrates example apparatuses that are used 

for cell counting in the early years of hematology. Most blood counts today include a complete 

blood  
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Figure 1.2 (a) Cramer’s blood-counting apparatus, (b) Malassez’s haemocytometer and (c) 

Alferow’s haemocytometer [31]. 

 

count and leukocyte differential count that gives the percentage of each leukocyte type, such as 

neutrophils, eosinophils, basophils, monocytes, and lymphocytes [32]. 

 

1.2.1 Conventional Methods for Diagnostics 

In 1954, Wallace Coulter developed an instrument that could measure cell size and count 

the absolute number of cells [33]. Over time, with the development of new instruments, cell  
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Figure 1.3 A schematic of a microfluidic flow cytometer constructed in 1965 by Kamentsky 

and used to analyze cells at 1000 cell s-1 [34]. 

 

size and nucleic acid content could be measured, by a two-dimensional approach that compared 

light scatter and light absorption [35, 36]. Figure 1.3 shows the instrument that was developed 

by Kamentsky in 1965. In the beginning these instruments were only used to investigate the 

functions of immune cells. Over time they started to be used in clinical facilities as diagnostics. 

Flow cytometry renders examination of cells possible. Cells are suspended in a stream of fluid, 

and hydrodynamically focused to flow one cell at a time through a microfluidic channel. A laser 

beam is focused at the flow of cells and scattered. Capturing the scattered light, size and 

granularity can be determined. Fluorescence dyes could be used to label the cells, which is 

excited when passing through the laser beam. The light emitted by fluorescence can be detected 

by fluorescence detectors. Figure 1.4 illustrates the flow cytometer and a sample output. 
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Figure 1.4 (a) Simplified notion of flow cytometry with sorting (b) sample output [37, 38].  

 

After analyzing the cells, it is desirable to sort them into different channels or containers, 

to increase purity or to isolate rare cells. Recent flow cytometers can analyze and sort cells 

using multiple channels of fluorescence, several angles of scattered light, and other non-optical 

parameters such as impedance [34]. Currently, fluorescence-activated cells sorting (FACS) is 

used as the golden standard in biological research and clinical diagnostics to automatically 

determine the count for one or multiple types of cells [39, 40]. Figure 1.5 shows a modern flow 

cytometer. 

FACS provides high throughput and high accuracy. However, requirements of large 

volume sample (in the order of mL) and expensive reagent, bulky equipment size, sophisticated 

costly optical component and the requirement of technical personnel make conventional FACS  
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Figure 1.5 Attune NxT Flow Cytometer, ThermoFisher Scientific [41] 

 

prohibitive for point-of-care application. In addition, FACS is traditionally relied on for non-

imaging technique by laser scattering and fluorescence emission for cell identification and 

hence there is no image information of cells [42]. Thus, it is crucial to develop a point-of-care 

blood analysis system, which is automated - or can be operated without any experts, requires a 

small amount of blood volume and can produce results in a matter of minutes [38]. Such a blood 

analysis system would have tremendous use in any clinical laboratory and especially in the 

developing world. 

 

1.2.2 Blood Analysis Using Microfluidic Chips 

In order to develop a compact blood analysis system, researchers are actively looking to 

microfluidic devices as the platform for the next generation translatable cell sorter. 

Microsystems enable cell-based assays, covering all the steps from cell culture, through 

selection and treatment, to biochemical analysis [43]. Microfluidic based devices are a proven 

technology for cellular handling as they can offer precise spatial and temporal control in a 

greatly miniaturized platform [34, 43]. Cell isolation can be grouped into categories by the  
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Figure 1.6 Microsystems enabling cell-based assays from cell culture to biochemical analysis. 

A collection of microsystems enabling cell-based assays, covering all the steps from cell culture, 

through selection and treatment, to biochemical analysis [43]. 

 

property of cells that are utilized, physical properties such as size, deformability, density and 

electrical charges; and biological properties such as marker proteins i.e. monoclonal antibody. 
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It is possible to combine different methods together, for the intended application. For cell 

isolation, there are several methods that utilize the physical characteristics of the cell [44]. It is 

possible to separate blood cells using non-inertial forces such as electrohydrodynamic [38], 

magnetic bead immunoassay [45], dielectric properties [46], optical force [47], magnetic [48], 

or acoustic [49, 50], as active separation techniques. These strategies might harm the cells or 

change their properties that render these unsuitable when the separated blood cells are intended 

to be used for another application. Microfluidic chips using these techniques are complex and 

suffer from low flow rates. On the other hand, passive separation techniques exploit the 

difference in size and deformability of cells in which they do not use any external force that 

might harm the cells, but isolate or trap the cells by the design of micropillars or pores inside 

the microfluidic chip [51]. These devices have simpler mechanical design and can support faster 

flow rates [52, 53]. 

 

1.2.2.1 Cell Isolation Based on Size and Deformability 

The cells in the blood have various sizes and deformability. It is possible to exploit this 

difference for the isolation of blood cells. Leukocytes are larger than RBCs and platelets, using 

a microcavity array and designing its filtration conditions carefully it is possible to isolate 

leukocytes from the whole blood [52]. Figure 1.7 demonstrates the isolation system and 

isolation results. Leukocytes are trapped on the microcavity array while RBCs and platelets 

pass through.  

The isolation of rare cells such as circulating tumor cells (CTCs) are crucial for the early 

diagnosis of cancer and rare cell research. An open-channel microfluidic chip for ease of 

recovery after isolation of CTCs is proposed [51]. Figure 1.8 shows the overview of the CTC 

isolation system. The air-liquid interface is utilized, so that blood cells drift towards the air-
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liquid interface, and large cells such as CTCs are trapped by the micropillar arrays while smaller 

cells such as RBCs pass  

 

Figure 1.7 Microcavity array-based WBC counting device. (a) WBCs are trapped by 

microcavity array while RBCs pass through the gaps (b) Scanning electron microscope (SEM) 

image of microcavity array. (c) Schematic design of the device. (d) Fluorescent image of 

trapped RBCs. Scale bar; 50 µm. (e) SEM images of trapped RBCs [52]. 

 

through the gaps of the micropillar arrays. Air-liquid interface is maintained by the controlled 

introduction of the whole blood to the microfluidic chip by the help of motorized pumps. After 

the isolation of CTCs, using fluorescence microscopy the CTCs can be detected and recovered 

automatically using a motorized micropipette.  
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Figure 1.8 Overview of the CTC isolation system. (a) The image of the fabricated microfluidic 

chip and its SEM image. (b) Concept of the CTC isolation system. (c) CTCs move towards the 

meniscus of the air liquid interface and towards the bottom of the microfluidic chip by the forces 

acting on the CTSs. (d) Small cells such as RBCs pass through gaps between the micro-pillars, 

while larger cells such as CTCs and some of the WBCs get trapped [51]. 

 

1.2.2.2 Cell Isolation Based on Density 

Density based microfluidic separation techniques can be used when separating particles 

which is not different in size but in their density. Cells encapsulated in mono-disperse polymer 

beads can be separated using standing surface acoustic waves (SSAWs), based on the density 

of the beads [49]. Figure 1.9 shows the separation of beads uniform in size but encapsulates 

different quantities of cells. The beads are first aligned at the center of microfluidic channel by 

hydrodynamic focusing. Then through acoustic radiation force, are separated by their density. 
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Figure 1.9 (a) Schematic illustration of the working principle of the standing surface acoustic 

waves (SSAWs). When acoustic radiation force is applied, beads are separated by their density. 

(b) The fabricated device [49]. 

 

1.2.2.3 Cell Detection Based on Electrical Analysis 

Hematology analyzers which utilize the electrical properties study the blood cells 

according to their size and membrane properties. Cells are probed by using kHz and MHz 

frequencies with sensing electrodes [38]. Figure1.10 demonstrates the concept while Figure 
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1.11 illustrates the details of the microfluidic chip. It is possible to obtain the three-part WBC 

differential  

 

Figure 1.10 Illustration of the approach for blood cell counter. After lysing RBCs and quenching 

the lymphocytes, neutrophils, monocytes and eosinophils are counted. RBCs and platelets are 

counted after dilution on a separate chip [38]. 

 

and RBC/platelet counts, using only electrical analysis [38]. Lymphocytes can be separated 

from neutrophils, monocytes and eosinophils based on their different pulse amplitudes. 

Neutrophils can be differentiated from monocytes and eosinophils based on their membrane 

properties that is reflected by the impedance change at high frequencies which is greater than 1 

MHz. 
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Figure 1.11 Overview of the leukocyte detection. (a) Schematic of the leukocyte counting chip 

with lysing, quenching and counter modules. (b) Schematic of the sensing region. (c) The 

typical voltage pulses obtained as the leukocytes pass through the counting region. (d) The 

amplitude histogram of the cell voltage pulses obtained with the sensing region [38]. 

 

1.2.2.4 Cell Isolation Based on Marker Proteins 

Marker proteins are like fingerprints for cells. Using a specific antibody for a marker, it’s 

possible to label and detect certain cells. The isolation of cells can be realized using magnetic 

beads coated with antibodies specific to the cell we want to separate [45]. After the mixing the 

cells with the magnetic beads, it is possible to isolate the target cells using a magnetic field and 

washing. Then purified cells are transported to the cell counting module, which excites the 



 

28 

 

fluorescence bound to the magnetic beads using a laser source, and the cells are counted using 

a photomultiplier tube. Figure 1.12 illustrates the device design and the steps of the isolation.   

 

 

Figure 1.12 Cells are isolated by using magnetic beads. (a) Cells are mixed with magnetic beads, 

(b) then purified using washing in a magnetic field. (c-d) Fluorescence detection while cells 

pass through the optical detection region and sorting using microvalves [45]. 
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1.3 Cell Imaging Technologies 

Over the years with the development of new techniques and emerging technologies, cell 

analysis has evolved with regard to speed, sensitivity, spatial resolution, cost, etc. Every form 

of cell analysis represents a compromise. Three dimensional (3D) optical scanning microscopy 

can achieve great spatial resolution, but scanning takes time [54]. A standard optical 

microscopy has a variety of modes (transmitted light, scattered light, fluorescence, phase 

contrast, etc.), each of which provides distinct and complementary information about the cell 

[55] and is suitable to obtain a two-dimensional (2D) image of the cell. A flow cytometry 

measures fluorescence intensity and scattering from cells suspended in flow. Only a limited 

number of signals for each cell is available depending on the optical system, and spatial 

resolution is lost entirely, nevertheless it is possible to measure thousands of cells in a second 

[56].  

The form of cell analysis and the method to process the data depends on the application 

and its time requirements. In case of real time detection and sorting of cells as in flow cytometry, 

only a fraction of a millisecond per cell is allowed. On the other hand, for confocal microscopy, 

3D scans can be analyzed in detail offline. Due to the sheer amount of data from 3D scans or 

images, storing and processing raw cell data is not always possible and various features were 

extracted to simplify cell analysis [57]. Extracting simple features such as the size or circularity 

of a cell is significant in many cases, and the 2D image of the cell obtained via fluorescence 

optical microscopy will ease the processing and sharing of data. If the feature extracted from 

the 2D image is to be used for the detection and classification of cells, caution is required to 

prevent the loss of important information that might be included in an image. Hence, the 

extraction of features that contain most of the related information was researched and used for 

applications that require the detection and classification of cells [58]. With the improvement of 
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automation in image analysis and the ease of access to available algorithms, creating large 

datasets of cells and cell features became possible [59].  

 

1.4 Machine Learning 

Not so long-ago machine learning was only science fiction. Even before modern computers, 

the mind boggled with the idea of machines performing the tasks related to the mind. In the 18th 

century a chess playing automaton called “The Turk” fooled the masses into thinking that a 

simple clockwork machine can think and respond like a human would [60]. Although “The 

Turk” was a hoax and controlled by an operator, the questions raised by it about machines 

replacing humans in mental activities is salient. Two centuries after “The Turk”, in 1997 IBM’s 

Deep Blue won against world chess champion Garry Kasparov [61]. 

Alan Turing theorized how a machine would decipher and execute a set of instructions, 

which is considered the beginning of computer science [62]. Computers can progressively 

perform better on a specific task through algorithms and statistical models, which is called 

machine learning. Types of machine learning can be distinguished by the way they learn from 

the available data. In supervised learning, the data has known labels that are used to learn a 

model [63, 64]. When some part of the data is missing, and needs to be filled by the machine 

learning it is called semi-supervised learning [65, 66]. Algorithms like Support Vector Machines 

(SVM) is a type of supervised learning, which learns a boundary from the training data, and 

can classify the new data as one of the two classes using this boundary [67, 68]. When the labels 

of the data are not given, it is possible to make sense of the provided data which is called 

unsupervised learning [69, 70]. Neural networks such as autoencoders can learn features from 

data or remove noise in an unsupervised manner [71, 72]. As contrary to supervised and 

unsupervised learning, in reinforcement learning, there might not be pairs of inputs and labels, 
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and learning is possible through direct rewards to certain actions that learning algorithm takes. 

Google’s DeepMind is an example of reinforced learning where a deep neural network learns 

how to play a computer game like a human would [73]. 

 

1.5 Thesis Overview 

Our goal is the isolation of leukocytes from the whole blood without time consuming and 

cell damaging techniques such as centrifugation or RBC lysis. A pillar-based microfluidic chip 

and blood analysis system is proposed by our laboratory to isolate the leukocytes from the 

whole blood. The blood analysis system has support for automatic scanning of the filtration 

zone in the microfluidic chip. After the isolation, machine-learning methods for T-cells and B-

cells detection is applied for robust and rapid detection.  

T-cells and B-cells are dyed with immunofluorescence dyes and fluorescence images are 

used to detect T-cells and B-cells. A dataset consisting of more than 10,000 cell images labelled 

as T-cells and B-cells are generated as a result of this study and used to train the machine 

learning algorithms. Dataset is semi-automatically generated, and manually confirmed by an 

expert.  

Figure 1.13 delineates the 5 chapters of this dissertation. We will first introduce the blood 

analysis system and talk about microfluidic chip design and isolation results in Chapter 2. 

Chapter 3 focuses on Histogram of Oriented Gradients (HOGs) feature based Support 

Vector Machine (SVM) classification. We also discuss how the dataset is generated, and the 

tools that we supplied the experts to use for ease of identification. After the classifier is trained, 

using sliding window approach we have detected whether each detection window is a cell or 

not. Details of the training and detection will be discussed in further detail in the following 

sections. 
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Figure 1.13 Outline of the dissertation. 
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Chapter 4 discusses the ways to improve the detection we have established in Chapter 3. 

A convolutional neural network (CNN) based approach is proposed. We have employed a pre-

trained CNN and re-trained it ever slightly to detect T-cells and B-cells. We have discussed the 

time requirements of CNN and proposed a way to accelerate the detection by a two-layer 

classification. In the first layer, we use a HOG based classifier to preselect the detection 

windows, then CNN can be used to classify only the preselected windows to reduce amount of 

total detections that is required to achieve a similar detection accuracy. 

In this study we propose to use a CNN to detect T-cells and B-cells from 2D fluorescence 

microscopy images. A pretrained convolutional neural network (CNN) is fine tuned to detect 

T-cells and B-cells from the background. A preselection method for detection windows using 

the HOG feature based SVM classifier is introduced to accelerate the detection process. Sliding 

window method is used on test images and each detection window in the image is classified by 

the trained CNN. The comparison of the performance between the trained CNN and our 

previous work which utilized the HOG feature based SVM classifier is demonstrated. 

Furthermore, the impact of the preselection method in performance is also discussed. 

In the last chapter we will summarize our findings and discuss the future direction of our 

research. 
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Chapter 2. 

 

Blood Analysis System Using Microfluidic 

Chip 

 

2.1 Concept of Blood Analysis System 

Our main goal is to develop a simple and highly efficient blood analysis system through 

the utilization of a microfluidic chip. The system must have a performance which is comparable 

to a standard flow cytometer used in clinical applications. Our system is to be able to identify 

the number of T-cells (CD3+) and B-cells (CD19+) among a cell population. For this purpose, 

our laboratory has developed a semi-automated cell separation system as Figure 2.1 
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demonstrates [51]. Apart from the microfluidic chip, the system includes a CMOS camera 

attached to a microscope for immunofluorescence imaging. XY motorized stages helps 

positioning the microfluidic chip and is used to take images of the whole chip in an automated 

way. The system is equipped with standard PC for image analysis. Upon capturing the target 

cell on the microfluidic chip, immunofluorescence imaging is used to identify the target cells. 

The whole chip is scanned automatically, and T-cells and B-cells are counted.  

 

  

Figure 2.1 Rare cell sorter [51] 
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2.2 A Pillar-Based Microfluidic Chip 

A pillar-based microfluidic chip is designed by our colleagues to isolate leukocytes from 

whole blood with high efficiency and without clogging [74]. All red blood cells and platelets 

must be removed during the processes of leukocyte counting and analysis, since they may 

disrupt the subsequent analysis of the leukocytes. In whole blood, red blood cells outnumber 

leukocytes approximately 1,000:1. The average size and number of each cell in human 

peripheral blood is shown in Table 1 [52]. As listed in Table 1 , the size difference of the blood 

cells makes pillar-based cell separation possible.  

 

Table 1 Typical composition of peripheral blood [52] 

Cell type Number (/mL) Size(mm) 

Red Blood Cells 4,000,000–6,200,000 7.5–8.5 

Platelets 150,000–400,000 2–3 

Total leukocytes 4,500–11,000  

Neutrophils 1,800–7,700 15–17 

Eosinophils 50–400 14 

Basophils 25–1,000 10–14 

Monocytes 100–800 15–20 

Lymphocytes 1,000–4,000 6–15 

 

The proposed microfluidic chip uses gradual size-based filtering which was developed for 

various cell applications [75-77]. However, problems such as low cell capture rate, low 

separation performance and high cell clogging remain. Hence, conducting a pre-treatment of 

sample is necessary such as hemolysis and centrifugation. A chip design that can overcome 
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these problems without the necessity of pre-treatment is proposed by our colleagues. Cells are 

captured in the gap between the pillars and excess cells are introduced to the escape routes in 

the micro-pillar array, thus preventing clogging. This in turn reduces the time required for the 

diagnosis by eliminating sample pre-treatment. 

 

2.2.1 Chip Design 

Figure 2.2 (a-b) demonstrates the concept of the microfluidic chip. Since there is not much 

work done on how to design such a microfluidic chip in the literature, the proposed microfluidic 

chip is designed through a trial and error process based on the size and deformability of the 

cells [74]. The microfluidic chip employs gradual size-based filtration with gap sizes ranging 

from 3 to 15 μm. Micro-pillar arrays with bigger gap sizes are intended for larger cells such as 

leukocytes whose size can differ between 7 to 30 μm as listed in Table 1. If the gap is too large, 

cells might escape due to their deformability, resulting in losses in such devices [78-80]. A non-

pillar area that is termed as an escape route, whose width is greater than the gap between micro-

pillars, is used in the pillar-based cell filtration area to decrease pressure during trapping. 

The fluid pressure increases from bigger gap sizes to smaller gap sizes such as 3 μm and 4 

μm. The escaped cells will flow through the least resistance path which is the empty pillar gap 

in the next row. The escape route is the preferred path in case micro-pillar gaps are occupied by 

cells. Red blood cells are more flexible and can hence suffer deformability up to 2 μm and can 

escape through all the micro-pillar arrays [81]. Hence, the direct separation of  leukocytes 

from whole blood is possible. 

The height of the microfluidic chip is also important for the accuracy of the detection of 

the leukocytes after trapping. As Figure 2.2 (c-d) shows if the microfluidic chip is too high then 

more than one leukocyte might be trapped in the same gap and this might cause errors during  
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Figure 2.2 The concept for preventing clogging of cells. (a) When WBCs are captured in the 

gaps between the pillars, and other cells will keep flowing through the escape routes which is 

the path of least resistance. (b) Design of the microfluidic chip (c-d) Side view of the pillars. 

Cells overlap if the micro-pillar is high (i.e., 20 μm or more) [74]. 
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detection of the leukocytes from fluorescence images. The height of the microchannel is 

designed to be 13 μm via trial and error. The total capture area is 10 mm in width and 20 mm 

in length. 

Table 2 provides the details of the microfluidic chip design. Most of the micro-pillars have 

a size of 20 μm x 14 μm. It is important for micro-pillars to have a size big enough to endure 

the demolding process during fabrication. If the strength of the pillars is not enough, they might 

easily break. As Table 2 shows, the size of the escape route is related to the gap size. With a 

larger escape route, more cells can pass through. Small target cells are anticipated to be captured 

at smaller pillar gaps. 

 

Table 2 Details of the microfluidic chip design [74]. 

Pillar gap 

(μm)  

Pillar 
length 

(μm) 

Pillar width 

(μm)  

Wall width 
(μm) 

Number of 
arrays 

Pillar array 
row-to-row 

(μm) 

Number of 
pillar gaps 

Escape 
route width 

(μm) 

Escape route 
number per 

pillar arrays 

15 20 14 - 12 25 4140 - - 

14 20 14 200 12 25 5,850 30 13 

13 20 14 200 12 25 2,652 30 13 

12 20 14 200 12 25 2,652 30 13 

11 20 14 200 12 25 2,652 30 13 

10 20 14 200 12 25 7,800 25 13 

9 20 14 48 48 25 14,112 20 49 

8 20 14 48 60 25 18,000 20 50 

6 20 14 58 60 25 19,080 20 53 

5 20 14 44 60 25 20,520 15 57 

4 22 20 54 48 25 13,536 14 47 

3 22 20 42 40 15 14,520 6 33 
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2.2.2 Microfluidic Chip Fabrication 

The process of the microfluidic chip fabrication is based on the soft-lithography technique. 

A master mold is made using a Si-wafer. Via the employment of a molding process the 

microchannel part is made of poly-dimethylsiloxane (PDMS). Following this, the microchannel 

part is bonded with a glass plate in order to create the microfluidic chip. Firstly, the photomask 

was prepared using laser lithography (DWL66FS, Heidelberg Instruments Mikrotechnik GmbH, 

Heidelberg, Germany). The Si-wafer (thickness 500 μm, Matsuzaki Ltd., Japan) is then spin 

coated using an epoxy-based photoresist (SU-8 3010, Microchem, MA, USA) to the required 

thickness (~10 μm). The photoresist is cured with a soft bake (95 °C, 30 min) process. After 

this, the Si-wafer was exposed to UV light with the photomask using a mask aligner (Suss MA6, 

SUSS MicroTec, Germany). Then the Si-wafer was developed and dry-etched utilizing a deep 

reactive ion etching process (RIE-800, Samco, Japan). Plasma polymerization (RIE-800, 

Samco, Japan) of octafluorocyclobutane (C4F8) was used for passivation of the Si-mold to 

ensure that the surface is non-adhesive during repeated PDMS microfluidic chip demolding 

processes. PDMS microchannel part was prepared with a PDMS pre-polymer (Silpot 184, Dow 

Corning Toray Co., Ltd., Japan) mixed with a curing agent in a 10:1 (w/w) ratio, and then it 

was poured onto the Si-mold and baked for 45 minutes at 85°C. The cured PDMS was then 

demolded and the PDMS microchannel part was treated with an O2 plasma (Femto Science 

Cute-MPR, South Korea) to finish the PDMS-glass bonding process. Figure 2.3 shows the 

process steps for microchannel fabrication [74]. Figure 2.4 shows the fabricated PDMS 

microfluidic chip. 
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Figure 2.3 Fabrication process of the microfluidic chip [74]. 

 

 

Figure 2.4 Fabricated PDMS microfluidic chip [74]. 
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2.2.3 Sample Preparation 

Human blood samples were collected from healthy donors at the National Hospital 

Organization Nagoya Medical Center. The study protocol was reviewed and approved by the 

institutional review board, and written informed consent was obtained from all participants. In 

order to prevent coagulation, the samples were collected in a collection tube with EDTA and 

were used within 24 hours. For T-cells and B-cells detection, the blood sample was mixed with 

a two-color direct immunofluorescence reagent (BD SimultestTM CD3-FITC(Ex 494 nm, Em 

520 nm) / CD19-PE(Ex 496 nm, Em 578 nm), BD Bioscience, San Jose, CA) and incubated at 

room temperature for 15 minutes. Then the prepared sample was diluted 10 times using the 

dilution buffer (PBS + EDTA) and kept in the dark at room temperature until the experiments 

were conducted. 

 

2.2.4 Cell Isolation Results 

CD3+ and CD19+ cells are successfully captured using the microfluidic chip. The cell 

isolation experiment is performed for several times, and the results are compared with a flow 

cytometer (BD FACSCantoTM II, BD Biosciences, San Jose, CA, USA) as a reference 

instrument. When introducing the sample to the microfluidic chip, sample flow speed is the 

deciding factor on the capture rate of the leukocytes and where they are captured, since the 

deformability of cells highly depends on fluid stress [82]. Sample flow speed is decided as 3 

µL/min empirically, where many cells can be captured and faster sample introduction becomes 

possible [74]. First, sheath liquid is introduced (PBS with 5 mM EDTA) into the microfluidic 

chip to remove the bubbles. Then 1 µL whole blood (Total sample volume: 10 µL) is introduced 

into the chip and collected out of the chip in a tube. Following the sample introduction, the 

fluorescence of T-cells and B-cells were excited (488 nm) and the filtration zone on the chip 
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was scanned automatically. As Figure 2.4 illustrates, most T-cells (green) and B-cells (yellow) 

were captured in 5 µm to 8 µm gaps area. 

 

Figure 2.5 Partial scanned images of the filtration zone for T and B lymphocytes. 
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Through several experiments our colleagues confirmed that the cell capture area of the 

microfluidic chip remains clog-free. By counting the leukocytes that did not get trapped by the 

microfluidic chip and ended up flowing to the outlet we have confirmed a trap rate of 99.8% in 

capturing leukocytes using the microfluidic chip, and through the comparison with a flow 

cytometer the ratio of CD3+ and CD19+ found to have a coefficient of r = 0.9876 and a 

coefficient of variation (CV) of 2.77% which proves that our system and microfluidic chip can 

be successfully used to isolate leukocytes from whole blood [74]. 

 

2.3 System Configuration 

Figure 2.6 shows the system configuration used in our experiments. The single inlet single 

outlet fabricated device was connected to a gastight syringe pump (1710 TLLX SYR, Hamilton, 

USA). The syringe pump and XY scanning stage were manipulated by a high precision 

controller (QT-AMH2, Chuo Precision Industrial, Japan), through serial communication via PC 

Controller. 

The imaging system is designed to be able to detect weak fluorescence signals from a cell. 

A 488 nm light source (Lumencor Inc., Beaverton, OR, USA) is used to excite fluorescence 

CD3-FITC(Ex 494 nm, Em 520 nm) and CD19-PE(Ex 496 nm, Em 578 nm). For multicolor 

fluorescence detection a dichroic mirror (DM505, Olympus, Japan) is utilized. An emission 

band-pass filter for the wavelength range of 500-650 nm (Semrock, Rochester, NY, USA) is 

used, to improve the signal to noise ratio for the emission light. A wide range filter is utilized 

to cover the entire FITC and PE fluorescence emission spectrum, since cell detection is 

compromised when the detection filter spectrum is limited [74]. 
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Figure 2.6 System configuration. 

 

The relative intensity of fluorescence light emission depends on the expression of cell 

surface antigen [83] and the type of fluorochrome [84]. Fluorescence emission signals are weak, 

so to alleviate this a high sensitivity CMOS-camera (ASI178 MC, Zhen Wang Optical Company, 

China, 3,096 x 2,080, pixel size 2.4 µm) is installed on the eyepiece body tube of the microscope. 

Utilizing the high sensitivity camera, low noise images could be acquired. The filtration zone 

of the microfluidic chip was scanned frame by frame, and after an image was acquired the chip 

was moved using motorized stages. The total area of the filtration zone can be covered by 420 

images and the scanning time is 14 mins.  

Automation of the blood analysis system is important for the ease of use such as controlling 

the XY stages and sample flow speeds through a user-friendly interface. After the chip is placed 
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on the XY stage and the connections are made, the rest of the isolation and detection is semi-

automated. The simple user interface enables inexperienced users to easily change the flow 

speed, positioning of the microfluidic chip and controlling of the light sources. Although the 

initial positioning of the microfluidic chip has to be manually set by moving the XY stages 

through the user interface and few parameters needs to be set, image acquisition is automated. 

Thus, user do not have to worry about accurately scanning the filtration zone, or scanning the 

same spot twice. After the acquisition of images, detection and counting of T-cells and B-cells 

is possible. 
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Chapter 3. 

 

Detection of T-cells and B-cells with Support 

Vector Machines (SVM) using Histogram of 

Oriented Gradients (HOG) Features 

 

3.1 Introduction 

After isolation, captured cells are usually distinguished from the microfluidic chip’s 

fluorescent microscopy images. Using different cell markers, we can detect, identify and count 

cells. However, cells imaged by fluorescence microscopy exhibit heterogeneous intensity levels 

and are often badly contrasted. The variability of cell size and morphology, differences in 
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illumination over time and across the whole microfluidic chip hamper the ability to specify a 

global set of parameters for cell detection algorithms over the whole experiment. Furthermore, 

there are serious spectrum crosstalk between fluorescence dyes when performing dual or 

multiple cells detection. The available algorithms for illumination correction and segmentation 

do not perform well enough to achieve satisfying results on many experiments [85].   

Therefore, there is a strong motivation for the development of an automatic cell detection 

and counting method [86]. A machine learning algorithm, with an appropriate feature extractor 

for the application is the key to success. For this, Histogram of Oriented Gradients (HOG) 

represents a robust feature descriptor used in computer vision area for object detection [87]. 

One of the key advantages of HOG is being able to describe object orientation while showing 

invariance to geometric and photometric transformations because it operates in localized 

regions. In other words, HOG tends to be unaffected by changes in shapes and lighting, which 

appear in larger spatial regions. These advantages make HOG features fit our situation 

especially well due to the cell’s variability in intensity and shape on pillar based microfluidic 

chip. A support vector machine (SVM) can be used to classify HOG features. SVM is a 

supervised machine learning algorithm, which creates a model according to the training data, 

and then the test data can be classified according to the said model [88]. 

The framework of object detection with Histogram of Oriented Gradients (HOG) and color 

features is illustrated by the block diagram in Figure 3.1. It consists of separate training and 

testing phases. In the training phase, we trained two separate SVMs to detect cells from 

background and to identify the detected cells as T-cells or B-cells. First using the dataset that is 

generated from the dual dyed images, a linear-kernel SVM is trained to detect cells from 

background. Then, the images that are dyed with only singe dye are exhaustively searched using 

the sliding window method, finding HOG for each window and classified by the first SVM.  
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Figure 3.1 The steps for T-cell and B-cell detection using machine learning. HOG and color 

features are learned from training images and using SVM cells are detected from test images. 

 

Found cells are then used for their color information to train a Radial Basis Function (RBF)-

kernel SVM [88] to identify T-cells from B-cells. Although RBF-SVM is timewise costly, it 

gives better accuracy. In the testing phase, unseen images are scanned with sliding window and 

HOG features are generated from the position of each window in the image. These features are 

classified as cell or background with the linear SVM classifier, then classified cells are further 

processed to get the color information and classified as T-cells or B-cells using the RBF SVM. 

 

3.2 Dataset 

There is no standard dataset for fluorescent cell images, so we created a custom dataset to 

be used in our detection algorithms. To train and test the detection of cells we used the scan 

images from 10 experiments that are dyed with the dual dye. Seven experiments are used as 

training data which consist of 2,940 images. Another three experiments consisting of 1,320 

images are reserved for the test. A total of 6,200 cell images and 35,000 background images are 

gathered semi-automatically from the training images. Figure 3.2 shows a sample from this 

dataset.  
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Figure 3.2 Example images from the dataset. (a) Cell images centered and scaled. (b) Hard 

negative images, that is manually eliminated. (c) Background images. 

 

Cells come in many sizes and shapes since they are deformed by the pillars of the 

microfluidic chip. To simplify the problem we scaled each cell, so the detector only needs to be 

trained for the shape information. First a small set of cell images are cropped manually from 

the training images. This is used to train the initial detector which is then used to automatically  



 

53 

 

 

Figure 3.3 Cells are scaled to 48 px in order to keep all the available information, which is 

decided by the cell size distribution. A band of 16 px around the cells include background 

information, as background information is crucial for accuracy of detection. 

 

detect and gather training images time effectively. Detected cells are then centered, cropped and 

scaled. As Figure 3.3 shows the scale of the dataset is important for retaining all the available 

information. Hence, we decided to scale each cell to 48 px, which is decided by the distribution 

of cell sizes that we automatically detected. A band of 16 px around the cells include 

background information which is important for the accuracy of detection [87]. Thus, our 

detection window size is decided to be 80 px, scaled cell together background band.  

Automated process of cell detection, centering, scaling and cropping is the first step in 

creating the dataset. Unfortunately, the detected cells are not accurately processed, firstly 

because the initial dataset that we used to automate cell detection is very small, and also for the 

image processing is likely to fail when there is more than one cell in the cropped region. For 

those reason the cells are manually checked by an expert to eliminate the misdetections and 

noises, which are used as hard negatives as Figure 3.2(b) shows. Since looking through  
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Figure 3.4 Manual identifications of cell by an expert. Green rectangles are chosen as cells, red 

rectangles are noise/background and crossed red images will be removed from the dataset. 

 

thousands of cell images are not an easy task, a program to ease this laborious work is created 

for the experts to use. Figure 3.4 displays the graphical user interface (GUI) of the said program. 

40 cell images are shown to the expert in each window, as well as the image color normalized 

image, binary image showing the size of the cell to give an idea about the scaling, and lastly 

the scaled final image. An expert can look all four images to decide whether to keep it as a cell 

or mark it as noise which is shown in red rectangles. In case there is a problem with scaling, 

there are more than a cell or simply unsure about it, they can mark it with crossed in red to 

remove from the dataset, in which it will not be a part of either cells or background. 

50 training images which are dense in cells are annotated manually, also fixing the scaling 

of the cells when necessary. Another program is supplied to experts, where the cell boundaries 

are shown to the expert and they can add, remove or change the size of the rectangles. Since 
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images are large, it is possible to zoom to any area in the image. These annotations are also used 

to automated creation of negative training samples in different scales. For the accuracy of the 

detection, these images have to be correctly annotated, even for cell which are weak in 

fluorescence intensity. For HOG features the intensity of the images are irrelevant, and it is 

possible to detect even the weakest cells as long as it can be differentiated from the background 

in terms of weak gradients. For this reason, we supplemented the experts with locally 

normalized images which is shown in the right of the program GUI in Figure 3.5. For every 

pixel (x, y) in image 𝐼 the local normalized image 𝐼𝑛 is calculated as, 

𝐼𝑛(x, y) =
𝐼(𝑥, 𝑦) − 𝑚𝐼(𝑥, 𝑦)

𝜎𝐼(𝑥, 𝑦)
 

where 𝑚𝐼(𝑥, 𝑦)  is an estimation of the local mean of image 𝐼  around the pixel (𝑥, 𝑦)   

𝜎𝐼(𝑥, 𝑦) is an estimation of the local variance of image 𝐼 around the pixel (𝑥, 𝑦)  Normalized 

images are calculated in MATLAB for simplicity, by convolving the image with gaussian filters 

to find local mean and variance. The sizes of the filters are empirically chosen, to get a 

normalized image where cells are easy to differentiate from the background. 

Using the dataset generated automatically and annotated by an expert the HOG based 

detector is trained, then annotated images are exhaustively searched for misdetections. 

Misdetections are added to the negative dataset which is also called hard negatives. The 

extended dataset is then used to re-train the final detector. 

Emission spectrum crosstalk between the dyes prevents experts from manually labelling 

the cells as T-cells and B-cells. Hence in order to train the second SVM which identifies T-cells 

from B-cells, we used the datasets which are only dyed with fluorescence dye. For these images 

from the single dye experiments, it is possible to label the cells as T-cells or B-cells depending 

on the dye. These cells are automatically extracted with the final classifier, and only used to 

train the second SVM with the color features. 
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Figure 3.5 Manual additions/corrections of cell by an expert. Cells and noise are annotated by 

rectangles. On the right, a locally normalized version of the image is supplemented. 

 

3.3 Histogram of Oriented Gradients (HOG) 

Preparing the data set appropriately is vital in achieving good performance. Cell images 

are centered and scaled. Since the size of the cells vary, we upscaled them to 80 pixels squares, 

with the scaling factor suited to the longest side of the cell bounding boxes. A margin of 16 

pixels around the cell on all four sides are included, as this border provides a significant amount 

of context that facilitates detection. As Figure 3.6 shows, HOG helps us define the shape context 

of the cells effectively, which in return makes it possible to detect all different shapes of cells 

deformed by the micropillars in our study. 

We computed HOG descriptors for the prepared cell samples. A HOG feature vector is 

modeled for such an image. Figure 3.7 demonstrates the step by step computation of HOG 

descriptors. Firstly, one of the image gradient values are determined, to represent the directional 

changes in 
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Figure 3.6 (a-b) Histogram of gradient features overlaid on cells, (c) noise and (d) background 

image 

 

intensity or color. Then the magnitude of the gradient vector is calculated using the partial 

derivatives of image I in the x and y directions, 

|𝛻𝐼| =  √(
𝜕𝐼

𝜕𝑥
)

2

+ (
𝜕𝐼

𝜕𝑦
)

2

 

Next, the gradients in the respective directions are computed through the application of the one 

dimensional centered, point discrete derivative mask in the horizontal and vertical directions, 

  
𝜕𝐼

𝜕𝑥
= 𝐼 × [−1 0 1], 



 

58 

 

  
𝜕𝐼

𝜕𝑦
= 𝐼 × [

−1
0
1

]. 

 

The gradient orientations are computed using the vertical and horizontal gradients as, 

𝜃 = tan−1 (

𝜕𝐼
𝜕𝑥

 
𝜕𝐼
𝜕𝑦

⁄ )  

 

Image I is then split into cells, and for each cell, a local one dimensional histogram of gradient 

directions (orientations) is calculated using the pixels from that cell. The histogram channels 

are evenly spread across 0 to 180 degrees in absolute values and 9 bins were used for the local 

histogram, thus each histogram bin corresponds to a 20-degree orientation interval. The 

obtained cell histograms are then merged into a descriptor vector of the image. Firstly, the 

obtained cell histograms are locally contrast normalized, since the shadowing and illumination 

in the image may vary. This requires grouping the cells into larger, spatially-connected blocks. 

After the normalization is conducted, all the histograms can be concatenated in a single feature 

vector, representing the HOG descriptor. Depending on the cell size and block overlap, the 

amount of detail one could obtain varies. We used [8x8] cell size to calculate blocks of [16x16] 

pixels with overlaps using 9 histogram channels. These settings can be regarded as a default 

choice in object detection. The feature vector of the image is computed as its HOG descriptor, 

with 2916 coefficients. 
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Figure 3.7 (a) Original image, (b) horizontal and vertical derivatives of image, (c) orientations 

of gradients overlaid on each pixel, (d) orientations gathered into histograms and block 

normalized 

 

3.4 Color Features 

Because the long emission spectrum tail of dyes causes overlap like with the fluorophores 

FITC and PE, in our T-cells and B-cells counting experiment, cells are stained by a two color 

(CD3-FITC/CD19-PE) immunofluorescence dye. The color vectors for cells fluctuate in a big 

range. Cells can be sorted from background and noise through HOG features, but among the 

detected cells, it is difficult to decide the cell type when taking multicolor cell detection. To 
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alleviate the influence of fluorescence emission spectrum crosstalk, we calibrated the color 

distribution of FITC and PE single dye stained cells and then classified dual stained cells by the 

model trained from single dye stained cells color features. We stained samples with single dye, 

FITC Mouse Anti-Human CD3 (BD Pharmingen TM, BD Bioscience, San Jose, CA) for T-cells 

and PE Mouse Anti-Human CD19 (BD Pharmingen TM, BD Bioscience, San Jose, CA) for B-

cells. The single dye stained samples were introduced to the same isolation system and sorted 

under the same condition as dual dye stained sample. As stained by only one fluorescent dye, 

the detected cells’ type could be decided. We used previously trained HOG detector to detect 

the cells and extracted the average color in RGB space for every cell in FITC and PE. After the 

cells are detected, an adaptive thresholding using Otsu’s method is performed to find the cell 

segment [89]. Then average color in RGB is calculated using this thresholding as a mask. We 

trained an RBF kernel SVM using the color averages from single dye stained cells. This 

calibration needs to be performed only once. Through cross-validation, an average accuracy of 

96% was achieved. 

 

3.5 Detection Results 

We have created a data set to test the performance of the HOG detector. 500 positive cell 

images are cropped, centered and scaled from the annotated test images. 50 difficult examples 

containing noise and 450 randomly selected background examples are used as negative test set. 

To quantify the HOG detector performance, we plot Receiver Operating Characteristics 

(ROC’s), i.e. true positive rate (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
) versus false positive rate (

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠+𝑇𝑟𝑢𝑒𝑁𝑒𝑔
). 

Using also this test set we calculated accuracy, specificity and sensitivity values as: 
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Accuracy = (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) 

Specificity = (
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔

𝑇𝑟𝑢𝑒𝑁𝑒𝑔 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠
) 

Sensitivity = (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
) 

In addition to this set of 1,000 image patches, negative images from test data exhaustively 

searched and around 4,500,000 negative images are added to plot Detection Error Tradeoff 

(DET) curve on log-log scale i.e. miss rate (
𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
) versus false positive per window 

(
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
). DET curves present the same information as ROC’s but small differences in 

probabilities are easier to distinguish. Figure 3.8 presents ROC’s and DET curves. 

Different points in ROC and DET curves corresponds to different accuracy, specificity and 

sensitivity. We have achieved an accuracy of 94% and sensitivity of 90% when specificity was 

chosen to be 99%. 

In one experiment, 420 frames are scanned for the filtration zone on the microfluidic chip. 

With the classifiers trained with HOG and color distribution feature, all the 420 images were 

processed in 67 s with our experiment PC (CPU i7-8700K 3.7 GHz, Nvidia GTX 1080Ti, 64 

GB RAM). We have used OpenCV libraries for HOG to perform GPU processing. Figure 3.9 

shows the results of an example detection, although cells are of different morphology and size, 

all cells have been detected. 
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Figure 3.8 (a) ROC and (b) DET curves for HOG detector. 



 

63 

 

3.6 Summary 

Several methods exist for counting the cells in an image [90, 91]. The difficulty of 

performing the cell segmentation or detection task and choosing the correct algorithm depends 

much on the type of cells being targeted. If the cells are well separated from each other and 

have uniform intensity, simple thresholding or watershed algorithms are popular choices of 

approach. If the cells are packed together, algorithms which account for cell shape and size are 

preferred [92]. But in our application, the unavoidable uneven illumination over time and across 

the whole microfluidic chip makes the cells fluorescence intensity differs from image to image. 

And the cells’ shape and size were deformed by pillar structure. The intensity, shape and size 

features could not be utilized directly to detect cells in our pillar-based microfluidic chip system. 

Another approach, like the one used in this study, is to recognize cells using training-based 

machine learning methods. Examples of cells and background are given to the detector, which 

learns their most important characteristics. Furthermore, to detect both T-cells and B-cells in a 

single experiment, the emission spectrum crosstalk of these two cells’ dyes should also be 

overcome. In this work, cell detection from fluorescence microscope images is studied using 

both HOG and color distribution features with SVM learning classifier. HOG features were 

utilized to distinguish cells from background noise. But HOG features could only distinguish 

cells from background and noise, how to eliminate the crosstalk between FITC and PE emission 

spectrum is still a question. We evaluated the color distribution of cells solely stained by FITC 

or PE and trained the classifier based on the single stained cells’ color features. The classifier 

was used to determine the cell type when sample were stained by dual-color fluorescence (FITC 

and PE). 
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In our work, detection of T-cells and B-cells are important in terms of the ratio between 

them, hence it is more important to have a small ratio of false positives than having a small 

ratio  

 

Figure 3.9 Results of counting, a part of the image is cropped for better visibility. The detected  

T-Cells were labeled with green rectangle and detected B-Cells were labeled with orange 

rectangle. 

 

of miss rates. Therefore, we set our detector to have less false positives. This is the reason we 

chose to prioritize having a high enough specificity rate such as 99% while sacrificing accuracy 

and sensitivity which were 94% and 90% respectively.
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Chapter 4. 

 

Improving the Detection of T-cells and B-

cells with Deep Learning 

 

4.1 Introduction 

As we discussed in the previous chapter, features that can identify the shape of a cell can 

be extracted by Histogram of Oriented Gradients (HOG) features and this simplifies the 

classification process by decreasing the amount of sheer data an image holds. But in case of 

HOG we lose important information such as color data etc. The HOG encompasses the shape 

of the cells while operating in localized regions and remaining invariant to geometric and 

photometric transformations. In other words, the HOG can work even when there are 
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fluctuations in the illumination and shapes of the cells to some extent due to its isolation system 

design. The HOG can distinguish the cells from the background with a high accuracy rate. 

However, it might be possible to incorporate features other than shape to increase the accuracy 

but deciding on what features to use and how to combine them remains an issue.  

To get more from an image a key approach is to employ machine learning methods to 

automate feature extraction, and directly use raw data for classification [93, 94]. Convolutional 

neural networks (CNNs), train directly on the labeled raw data, and learn the features to be 

extracted from the images automatically. CNNs are widely used for applications that require 

object recognition and computer vision such as self-driving cars and face-recognition [95, 96]. 

CNNs are also used in applications pertaining to cells [97-99]. Despite the attractive qualities 

of CNNs, they were not widely used for cell detection and classification until recent years, since 

they require powerful GPUs and large datasets to train. Current GPUs optimized for training 

CNNs and large datasets containing millions of labeled images such as ImageNet only became 

available in recent years [100]. 

 

4.2 Dataset 

In previous chapter we discussed how we created a dataset that contains a total of 6,200 

cells and 35,000 background images. We augmented this dataset by using the horizontal 

reflections of the cell images, then a random subset of background images were chosen for the 

sake of a better-balanced dataset. 

Figure 4.2 illustrates the steps of creating the final dataset and the training of CNNs. Cell 

images from the experiments in which cells are stained with a single dye were automatically 

extracted by the proposed CNN and added to the final dataset. These cells were used to calibrate 

the color distribution and a separate CNN – which will be elaborated on in the following  
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Figure 4.1 Dataset after automated labeling of cells. (a) B-cells, (b) T-cells and (c) background 

images. 
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chapters - was trained to distinguish T-Cells from B-Cells. Then using the trained CNN, 

previously un-annotated cells are annotated. The dataset for training the CNN is finalized with 

three labels; T-Cell, B-Cell and background as Figure 4.1 demonstrates. The dataset for testing 

is kept as it is, for the sake of performance comparison. 

 

4.3 Training of Convolutional Neural Network 

Figure 4.2 illustrates an artificial neuron and a neural network. The core of a neural network 

is a neuron which is inspired by a biological neuron. It has weights as parameters that can be 

learned. It can have many inputs and only one output. The weighted averages of the inputs are 

calculated then given to the activation function. Depending on this activation function, the 

output is relayed to the next connected neuron. Neural network is a combination of many 

neurons as input layer which is connected to hidden layers, and those connected to the final 

output layer. A neural network is considered a deep neural network if there is more than two 

hidden layers. It is proven that a neural network with enough complexity can solve any problem 

[101]. However, neural networks are inefficient with images, simply due to the amount of data 

an image holds. Convolutional neural networks approximate a fully connected neural network, 

using the idea that convolutions can capture the spatiality of the images and can decrease the 

number of parameters a network need to have. 

Training a CNN from scratch requires a tremendous amount of data. Although it is possible 

to re-train a pre-trained CNN using a small dataset which is called transfer learning [102]. It is 

not always possible to have enough data for a certain application but using data which is in 

another domain can greatly improve the performance of learning. Transfer training makes use 

of the already existing CNNs and fine tunes them to the new datasets with a short training time. 

Many pre-trained CNNs exist like AlexNet [103], VGG [104] and GoogleNet [105]. In this 
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Figure 4.2 (a) An artificial neuron with n inputs, (b) A neural network with one hidden layer. 

 

study we use AlexNet since it is lightweight. Figure 4.3 shows the structure of AlexNet, which 

takes an image of 227 x 227-px size as input and has five convolutional layers. The last three 

layers are fully connected, and last layer have 1,000 neurons for the classification of 1,000 

classes. It can be thought as the first convolutional layer learns simple color filters, and as we 

go deeper in the network, layers can emphasize simple shapes, complex shapes and shapes that 

can be used to define a cell. Only 6% of the parameters of the AlexNet is within the 

convolutional layers, which is the proof of how efficient convolutional neural networks can be 

in the sense of number of parameters that needs to be learned.  

Transfer learning can be accomplished by removing the last layer of the AlexNet and using 

the rest of the parameters. AlexNet can classify 1,000 classes but does not include our classes 

which is T-cell, B-cell and background. So, we replace the last layer of AlexNet according to 

the number of labels we have. Then using our labelled data, we re-trained the pre-trained CNN. 

MATLAB’s pretrained AlexNet was chosen as a starting point and a stochastic gradient descent 

with momentum algorithm (with hyperparameters: momentum 0.9, initial learn rate 0.001, max 

epochs 100, mini batch size 128) was used for re-training. Hyperparameters is crucial for the 
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Figure 4.3 The layers of the AlexNet. It is designed to work on two GPUs in parallel, thus the 

image is split into two GPUs and only in some layers there is connection between GPUs [103].  

 

accurate learn process. Initial learn rate can be changed to accelerate the learning, but it might 

cause the learning to diverge as well. Mini-batch corresponds to a subset of dataset which from 

the network’s gradients are calculated in each iteration. When all available mini-batches in the 

dataset is iterated, it is called an epoch, and decides how long training will continue. We have 

empirically tried many different hyperparameters, but the main point is whether the learning 

time is enough or if we should train more. Figure 4.4 shows the training process of the 

MATLAB over a graph of accuracy of each iteration, as the CNN. We can see the accuracy 

increases, and converges at a point, and no more training is necessary after about 50 epochs. 

Figure 4.4 (a) is the training graph of 100 epochs while (b) is the training for only 10 epochs. 

In case of 10 epochs only sensitivity dropped by 1% while accuracy and sensitivity were the 

same. 

Our dataset has around 25,000 training images and we only have three labels: T-Cell, B-

Cell and background. Thus, our transfer learned CNN (from here on called AlexCAN: AlexNet 

based Cell Analyzer Network) has 3 neurons in its last layer.  
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Figure 4.4 Training graphs of CNN. Each white and gray column represents an epoch.   
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Our dataset that is annotated by an expert does not have annotations for T-cells and B-cells, 

so it was only labeled as cells and background. We re-trained a CNN which can detect cells 

from the background as Figure 4.5 shows. Training images were scanned exhaustively by 

employing the sliding window method to detect cells. We used 3 different scales for the 

detection window as 64 x 64 pixels, 80 x 80 pixels and 100 x 100 pixels. Since AlexNet requires 

an input size of 227 x 227 pixels, image patches must be resized before they can be classified. 

Following the classification of the whole image, multiple detection windows for single cells are 

combined and weak detections are eliminated. 

 

4.4 Calibrating Color Distribution 

In Chapter 3, after the detection of the cells, a color feature-based detector was used to 

identify cells as T-cells or B-cells respectively. The emission spectrum crosstalk between the 

dyes prevented us from annotating the cells manually, hence we dyed cells with a single dye, 

and introduced them to the same isolation system. As they were stained with only one 

fluorescent dye, the detected cells’ type could be determined.  

Images from the single dye experiments are used to create a color dataset as Figure 4.2 

illustrates. Using the sliding windows method and trained CNN for detection, we created a 

dataset of 2,300 cells annotated as T-cells and B-cells from 6 experiments and 2,500 images. 

By using this new dataset, another CNN is re-trained which can separate cells into T-cells and 

B-cells. A 5-fold cross validation is used to assess the performance. Although this process is 

straightforward and can be achieved with a simple color feature, we achieved a 99% accuracy 

rate compared to a 96% accuracy rate from Chapter 3 which used a simpler color feature 

detector.  
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Figure 4.5 Flow chart of training AlexCAN. Firstly, a CNN<Cell/Background> is re-trained 

using the original dataset and used on training images dyed with a single dye to calibrate color 

features. After that, another CNN<T-cell/B-cell> is trained from color features, which is used 

to annotate the original dataset. Lastly AlexCAN is re-trained from the original dataset and the 

color feature dataset. 

 

Due to the high purity of the detections from the trained CNN and overall accuracy of the 

automatic annotation, we could add this new dataset to the initial dataset. We also annotated the 

cells in the initial dataset as T-cells and B-cells using the newly re-trained CNN. This finalized 

our dataset with three labels as Figure 4.1 illustrates. Using the final dataset AlexCAN is re-

trained to detect the cells from the background and this time also annotate them as T-cells and 

B-cells. Cross validation proved that using the final dataset for AlexCAN can achieve the same 



 

74 

 

99% accuracy rate for classifying T-cells from B-cells using the color dataset. Moreover, its 

accuracy in distinguishing cells from the background is also equal to that of the previously re-

trained CNN which could detect cells from the background without the type of the cell. 

Therefore, compared HOG feature based SVM, which we first detected cells from the 

background and then annotated them as T-cells and B-cells, AlexCAN is simpler. 

 

4.5 Speeding-up by Preselecting Windows using HOG and SVM 

AlexCAN has improved performance in terms of identifying T-cells and B-cells and 

distinguishing them from noise and background. But processing all the images from a single 

experiment is simply infeasible which requires as much time as 3 days even with the utilization 

of GPU processing (CPU i7-8700K 3.7 GHz, Nvidia GTX 1080Ti, 64 GB RAM) and efficient 

implementation (MATLAB – pretrained AlexNet). This is due to the number of detection 

windows that needs to be classified (in the order of 105 for a single image). Moreover every 

detection window has to be resized to the input size of the AlexCAN. However, even if a smaller 

CNN with an input size of our detection window is trained, it will still not be fast enough to be 

used in our application. Hence, we have to reduce the number of detection windows to meet the 

time requirement of our application.  

Due to the design of the chip, cells are sparse on the images. Thus it is possible to reduce 

the number of detection windows by preselecting them by employing a simpler and faster 

method. In Chapter 3, we used a HOG features based SVM classifier to detect cells from noise 

and background. By using HOG features, it is possible to differentiate not only cells but also 

noise from the background. Hence, we prepared a dataset by coupling cells and noise images 

together as a positive dataset and used background images as a negative dataset. Figure  
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4.6 illustrates samples from this new dataset. Using this dataset, the HOG features based SVM 

classifier is trained. 

 

 

Figure 4.6 Dataset that is tailored to be used for the preselection of detection windows. (a) T-

cells, B-cells and noise are all grouped into positive dataset, and (b) the remaining background 

images are left as negative dataset. 
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We propose a two-layer classification scheme. At the first layer the HOG features based 

SVM classifier is used to detect cells and noise from background. The detection windows 

classified as positive by the HOG features based SVM constitute the preselected windows in 

our algorithm, and the remaining detection windows will be ignored. In other words, detections 

from the first classifier are used as input for the second classifier which is AlexCAN. We define 

the success rate of the HOG features based SVM classifier using the number of cells that are 

missed. When a cell is not within any preselected window, we count it as a miss. Figure 4.7 

demonstrates the miss rate of cells by the first classifier versus the percentage of the preselected 

windows i.e. the ratio of preselected windows to all the detection windows. The miss rate 

decreases as the percentage of preselected windows increases. The processing time of AlexCAN 

increases linearly with the increasing of the percentage of the preselected windows, hence the 

miss rate has a lower bound depending on our time requirement. 

 

Figure 4.7 Miss rate of the HOG features based SVM when preselecting windows for AlexCAN. 
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Figure 4.8 illustrates this process flow, with an example image. Input images are first 

preprocessed by the HOG features based SVM classifier. Using the sliding windows approach, 

the images are scanned using three different scales as 64 x 64 pixels, 80 x 80 pixels and 100 x 

100 pixels. Figure 4.8 (b) shows the preselected windows which are the output of the first 

classification layer. The preselected windows are resized to the input size of AlexCAN and then 

each preselected window is classified as T-cell, B-cell and background. The detections from T-

cells and B-cells are grouped separately, and weak windows are eliminated. 

 

 

Figure 4.8 (a) Original image. (b) Green rectangles show preselected windows by the HOG 

features based SVM classifier, (c) classification results by AlexCAN; green rectangles show 

detection windows that are classified as T-cells and orange rectangles show detection windows 

that are classified as B-cells and (d) final result after grouping the detection windows. 
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4.6 Detection Results  

We used the same test set from chapter 3, in order to compare performance. 500 positive 

cell images were cropped, centered and scaled from the annotated test images. 50 complex 

examples containing noise and 450 randomly selected background examples were used as 

negative test set. To quantify the performance of the detectors we plotted the Receiver Operating 

Characteristics (ROC’s), i e  true positive rate (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
 ) versus false positive rate 

(
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠+𝑇𝑟𝑢𝑒𝑁𝑒𝑔
). Also using this test set we calculated accuracy, specificity and sensitivity 

values as: 

Accuracy = (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) 

Specificity = (
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔

𝑇𝑟𝑢𝑒𝑁𝑒𝑔 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠
) 

Sensitivity = (
𝑇𝑟𝑢𝑒𝑃𝑜𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
) 

In addition to this set of 1,000 image patches, negative images from the test data were 

exhaustively searched and around 4,500,000 negative images were added to the plot Detection 

Error Tradeoff (DET) curve on a log-log scale i.e. miss rate (
𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔

𝑇𝑟𝑢𝑒𝑃𝑜𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔
) versus false positive 

per window (
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
). The DET curves present the same information as the ROC’s but 

small differences in probabilities are easier to distinguish. We presented the performance of 

three different cases. In the first case AlexCAN was used to classify the image by employing 

the sliding window method. In the second case detection windows were preselected using the 

HOG features based SVM classifier to be used with AlexCAN. The last case was our previous 

work to provide a performance comparison between our previos work and AlexCAN and 

AlexCAN using preselected windows. 
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Figure 4.9 presents the ROC’s and DET curves for the three different cases. The different 

points in the ROC’s and DET curves correspond to different rates of accuracy, specificity and 

sensitivity. We achieved an accuracy of 98%, sensitivity of 97% and specificity of 99% in both 

cases using AlexCAN and AlexCAN using preselected windows, compared to the accuracy of 

94%, sensitivity of 90% and specifity of 99% of HOG based SVM classifier we have introduced 

in Chapter 3. 

In one experiment, a total of 420 images were scanned for the filtration zone on the 

microfluidic chip. Preselecting windows via the HOG feature based SVM classifier takes about 

20 secs for 420 images. Classifying preselected windows with AlexCAN takes less than 10 min 

with our experiment PC. We used OpenCV libraries for the HOG features to perform GPU 

processing and MATLAB for AlexCAN. 

 

4.7 Summary 

In chapter 3, the HOG features were utilized to distinguish cells from background and 

noise. However, the HOG features only use shape information, and other features such as color 

and texture are omitted. In blood analysis system we propose, the estimation of the ratio of T-

cells and B-cells have utmost priority, so we chose to have a specificity rate as high as 99% and 

hence sacrificing the accuracy and sensitivity rate which were 94% and 90% respectively. This 

is a result of the HOG features is very good, but it still has room to improve. 

We trained a pre-trained CNN employing transfer learning in order to address the low 

sensivity. Owing to optimized feature kernels that are trained using an image dataset in the order 

of millions, the pre-trained AlexNet enables a great improvement in performance compared to 

the HOG features based SVM classifier. Transfer learning makes it possible to apply a pre-

trained network to a new domain such as T-cell and B-cell detection with a dataset only in the  



 

80 

 

 

Figure 4.9 (a) ROC’s curves for three different cases are presented along with the area under 

curves (AUC). The performance of AlexCAN is clear through the ROC’s curve and AUC. In 

the case of using preselected windows ROCs only includes preselected windows thus it starts 

from a high true positive rate, but does not increase with increasing false positive rate, hence 
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the AUC of it is smaller. (b) DET curves which are similar to ROC’s provide a better 

comparison. 

order of thousands. With AlexCAN we achieved an accuracy of 98%, sensitivity of 97% and 

specificity of 99%. Even though recent advances in GPU architecture rendered it possible to 

train CNNs as large as ours, using the sliding window method and classifying all the windows 

in every image from an experiment is time consuming. 

Increasing the speed for our application is crucial. However using a better GPU or training 

a smaller and faster CNN is unfortunately not the answer. We need an increase in speed in the 

order of hundreds, and we proposed a method to preselect detection windows. By reducing the 

number of windows to be classified, the total time for detection was reduced from about 3 days 

to 10 mins which is almost 500 times faster. This method might miss some cells, but looking at 

our results, the total time required for detection is down to feasible levels. As Figure 4.8 (d) 

shows, AlexCAN using preselected windows can detect all the cells despite their varying 

morphology and size. 
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Chapter 5. 

 

Conclusion and Future Works 

 

5.1 Summary 

In this thesis we presented a blood analysis system for the isolation and detection of T-cells 

and B-cells using a pillar-based microfluidic chip. The leukocytes are isolated from whole blood 

using gradual filtering by the microfluidic chip and via immunofluorescence imaging the T-

cells and B-cells are detected automatically by employing machine learning methods. The 

proposed method and system could also be applied to all other specific leukocytes using 

different fluorescent dyes.  
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In chapter 2, the microfluidic chip design and isolation of the leukocytes are discussed in 

detail. A micro-pillar array based gradual filtering is proposed, and anti-clogging strategies such 

as adding escape routes to the microfluidic chip design are proposed. The microfluidic chip 

design is accomplished through many empirical trial and errors. The microfluidic chip can be 

fabricated using soft lithography, first a mold is created by photolithography from photoresist 

that is spin coated on a silicon wafer, then PDMS is molded and bonded with glass through 

plasma treatment. Thus, it is ensured and confirmed that our chip is clog-free. Using the 

microfluidic chip, a trap rate of 99.8% is achieved. Lastly, we discussed the system 

configuration in which the autonomous scan of filtration zone of the microfluidic chip is made 

possible, and the images acquired are sent to the image analysis for detection.  

In Chapter 3, a Histogram of Oriented Gradients (HOG) and color features based SVM 

classifier was proposed to overcome the difficulties in the cell detection process, such as 

fluorescence emission spectrum crosstalk, variability of cell size and morphology, differences 

in illumination and inconsistence fluorophores expressing level on living cells. We performed 

numerous cell detection experiments using the detection technique provided. The experiment 

tests performed on various image datasets, have produced satisfactory detection results that 

prove the effectiveness of our proposed approach. It has achieved a high accuracy of 94%, 

specificity of 99% and sensitivity of 90%. For T-cells B-cells detection we have achieved 96% 

cross-validation accuracy. Image analysis requires about 67 secs for a single experiment. 

In Chapter 4, a deep convolutional neural network classifier is trained to detect and classify 

T-cells and B-cells. The experiments performed on various image datasets, have produced 

satisfactory detection results that prove the effectiveness of our proposed approach. We 

achieved a high accuracy of 98%, specificity of 99% and sensitivity of 97%. For T-cells and B-

cells detection we achieved a 99% cross-validation accuracy rate. AlexNet based cell network 

analyser’s (AlexCAN’s) performance is found to be better compared to HOG features based 
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SVM classifier (accuracy of 94%, specificity of 99% and sensitivity of 90%). However, CNNs 

require more time compared to the simple HOG features based SVM classifier, and it is 

infeasible for practical use. Hence, we proposed a two-layer classification method to accelerate 

detection, we first use a HOG based SVM classifier to preselect windows to be classified by 

AlexCAN. Using AlexCAN with preselected windows, we achieved the same accuracy rate of 

98%, specificity of 99% and sensitivity of 97%. Preselecting windows with HOG based SVM 

requires 20 secs and AlexCAN requires 10 mins to classify the preselected windows. 

The blood analysis system has a high capture rate of leukocytes as high as 99.8% using the 

microfluidic chip. Combined with the 98% detection accuracy of T-cells and B-cells our 

proposed system can effectively and accurately isolate and count T-cells and B-cells from a 

small volume of whole blood.  

 

5.2 Future Works 

5.2.1 Integration and Improvement of the Blood Analysis System 

As a point-of-care standalone blood analysis system, our work is far from complete. We 

will continue to improve to make it more efficient, smaller in size and cheaper in cost. As a 

parallel research rare cell isolation from open microfluidic chip also continues. Using the same 

system, and different microfluidic chips, we would like to make the blood analysis system to 

have multiple uses in research centers and clinical laboratories all around the world. 

Our short-term work is the integration of the proposed machine learning algorithms to the 

blood analysis system. The machine learning detection of T-cells and B-cells are completed 

using a different PC after the complete scan of the filtration zone. This means, the images first 

have to be saved into the hard-drive of the PC and then need to be loaded again before the 

detection algorithms could be used. Although it is not vital to integrate the detection into the 
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blood analysis system, it is possible to detect and count T-cells and B-cells in parallel with the 

automated scanning of the microfluidic chip. This way the time requirement for the scan and 

detection would be significantly reduced.  

And lastly, we are currently in the middle of an upgrade of the blood analysis system. The 

main body of the blood analysis system is designed again to make it smaller and to increase the 

functionality with the addition of the new components. It will be possible to further automate 

the isolation and scanning process with position calibration and auto focusing of the microscope. 

A new user interface and automation system needs to be implemented for the new blood 

analysis system, as well as the integration of the machine learning algorithms we proposed. 

 

5.2.2 Point-of-Care Blood Analysis System 

Roughly 37 million people worldwide are infected with HIV, the disease burden is the 

highest in resource limited settings. The CD4+ T-cell count is a critical test in the management 

of HIV and is widely used to determine when to initiate antiretroviral therapy and to monitor 

the efficacy of treatment [28]. Flow cytometry is the standard diagnostic method for T-cells 

counting, but it requires centralized laboratory facilities and trained personnel, which is simply 

not possible to afford for poverty-stricken regions. Point-of-care blood analysis systems that 

are being developed are expected to eliminate the socioeconomic or geographic barriers that 

currently prevent access to two-thirds of HIV-infected people in resource limited settings such 

as Sub-Saharan Africa [106].  

The blood analysis system we have proposed in this thesis, can rapidly and accurately 

separate and count T-cells from the whole blood. We hope our system will be used as a point-

of-care diagnosis of many diseases, which is otherwise costly and time consuming. Microfluidic 

chips are inexpensive and disposable, and we believe our system would be affordable even in 
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resource limited regions. For this purpose, our future work is the completion and 

commercialization of the blood analysis system that we have proposed. 
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